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If someday a delegate comes to my land

And asks me:

“Where is the grave of the Unknown Soldier here?”

I will tell him:

“Sir,

On the bank of any stream,

On the bench of any mosque,

In the shade of any home,

On the threshold of any church,

At the mouth of any cave,

In the mountains on any rock,

In the gardens on any tree,

In my country,

On any span of land,

Under any cloud in the sky,

Do not worry,

Make a slight bow,

And place your wreath of flowers.”

Abdullah Pashew, Kurdish poet

The Unknown Soldier
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Abstract

Recent advancements in mobile communication technology have led to the fifth

generation of mobile cellular networks (5G), driven by the proliferation in data traffic

demand, stringent latency requirements, and the desire for a fully connected world.

The adoption of the 5G technology is becoming a necessity for Mobile Network

Operators (MNOs) to remain competitive in the market and efficiently cope with

the stringent requirements in terms of latency, data rate, coverage, and providing

support for many futuristic use cases and services. This transformation calls for novel

technology solutions such as Multi-Access Edge Computing (MEC) and Network

Function Virtualization (NFV) to satisfy service requirements while providing dy-

namicity and instant service deployment for the users.

MEC and NFV are two principal and complementary enablers for 5G networks

whose co-existence can lead to numerous benefits. While the former intends to

provide cloud computing capabilities at the edge of the network, low-latency services

to the end-users, real-time access to Radio Access Network (RAN) information, and

offload the backhaul, the latter exploits the potential of virtualization technology to

decouple Network Functions (NFs) such as firewalls, Intrusion Detection System

(IDS), and Intrusion Prevention System (IPS) from vendor-specific and dedicated

servers and enabling them to run on top of standard servers as Virtual Network

Functions (VNFs).

Despite the numerous advantages MEC offers, physical resources at the edge

are extremely scarce and require efficient utilization. Moreover, the heterogeneity of

these resources further necessitates devising generic methods applicable to different

platforms. Finally, considering the roll-out of 5G networks, a higher number of

users join/leave the network or update their service requirements. Consequently,

novel approaches are needed to adapt the network to these changes in order to avoid

resource over-utilization while meeting user requirements.

In this doctoral dissertation, we first attempt to optimize resource utilization

(mainly storage) at the network edge for the scenario of live video streaming. We
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specifically consider the problem of DASH video prefetching and studying the trade-

off between different video prefetching/caching options with the goal of maximizing

the number of users served from the edge. The work aims to utilize the real-time

RAN information available at the MEC servers to develop a Machine Learning (ML)-

based prediction solution and anticipate user requests. Consequently, prefetching

approaches are used to prefetch/cache video contents from a centralized video server.

We then carry out a relative comparison between proposed prefetching approaches to

verify the applicability of the proposed solutions in different network configurations.

Regarding the advantages of NFV technology for the deployment of Network

Functions (NFs), the second problem that this dissertation address is the proper

association of the users to the gNBs (base station in 5G networks) along with ef-

ficient placement of Service Function Chains (SFCs) on the substrate network. We

consider a 5G network, enabled with the MEC technology that can be used to host

applications as well NFs deployed as VNFs. Our primary purpose is to find a proper

embedding of the SFCs in a hierarchical 5G network. The problem is formulated

as a Mixed Integer Linear Programming (MILP) model, having the objective to

minimize service provisioning cost, link utilization, and the effect of VNF migration

on users’ perceived Quality of Experience (QoE). A heuristic algorithm is also

proposed, following the objective of minimizing the number of users affected by

VNF migration. The proposed algorithms provide MNOs with various options to

select between promptness, solution optimality, and user satisfaction.

After rigorously analyzing the proposed SFC placement and considering the

dynamicity of mobile networks, our next objective is to develop an approach that can

adjust the network based on the users’ varying demands. Therefore, we develop an

Integer Linear Programming (ILP) based model that aims to minimize the resource

provisioning cost by dynamically embed and scale SFCs so that provisioning cost

is minimized while user requirements are met. Specifically, we consider different

VNF scaling strategies, including vertical, horizontal, and hybrid, with a particular

emphasis on studying the trade-offs between the vertical and horizontal VNF scaling

strategies. The time complexity of the ILP model is tackled by proposing a heuristic

algorithm, which performs comparably to the ILP hybrid approach.

Keywords. 5G, MEC, NFV, VNE, ILP, MILP, SFC Placement, Resource Allocation,

User Association, DASH, Scaling, Machine Learning.

Copyright: 2020, by Rasoul Behravesh
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Chapter 1

Introduction

This chapter outlines the motivations and objectives of this dissertation, states the

problems, the methodologies employed to solve the problems, and draws the main

results. First, we describe the necessities of the newborn applications such as Virtual

Reality (VR), Augmented Reality (AR), autonomous cars, Internet of Things (IoT),

and the challenges towards the implementation of the fifth generation of mobile

networks (5G). Second, we introduce the leading enabler technologies for 5G to

fulfill the requirements of these applications. Third, we summarize the optimization

approaches undertaken to tackle the problem of lifecycle management and place-

ment of SFCs in the context of 5G networks endowed with the MEC technology.

Finally, we draw the structure of the dissertation and preview the contents of the

subsequent chapters.

1.1 Motivations and Objectives

Technological development can significantly contribute to human lives to make it

more comfortable, enjoyable, safer, and healthier. Lately, human-technology interac-

tion has been rapidly growing and profoundly transforming the way humans interact

with their outside world. Recent communication developments have made smart

devices an integral part of human lives [1]. Consequently, a mushrooming number

of internet-capable devices and services communicate through the network and gen-

erate an unprecedented amount of traffic. Cisco forecasts that by 2022 the number

of mobile-connected devices per capita will reach 1.5, and as a consequence, the

annual generated traffic will reach almost one zettabyte in the same year [2]. Thus,

on the one hand, mobile data traffic has been growing immensely, forcing Mobile
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Network Operators (MNOs) to increase the network capacity to accommodate the

traffic demand. On the other hand, the current mobile networks are not flexible and

cannot react based on traffic change in the network.

The new emerging applications and the excessive number of internet-capable

devices in today’s Information Technology (IT) world pose challenges to existing

networks in terms of technologies and business models. In this regard, International

Telecommunication Union - Radiocommunication Sector (ITUR), which is a spe-

cialized agency for facilitating international connectivity in telecommunication net-

works by allocating global radio spectrum, and developing technical standards to

ensure connectivity of network and technology seamlessly, has defined high-level

specifications targeting the new generation of mobile communication systems named

International Mobile Telecommunications-2020 (IMT-2020) [3].

Unlike the previous generations of mobile communication systems, which had

the mission to enhance the network capacity and provide higher speed for the users,

International Telecommunication Union (ITU) classifies the demands of IMT-2020

into three broad categories: (i) enhanced Mobile Broadband (eMBB), which intends

to meet the users’ demand for an increasingly digital lifestyle and focuses on services

that have high requirements for bandwidth such as video streaming, online gaming,

AR, and VR; (ii) massive Machine Type Communication (mMTC), which is the

ability to connect a massive number of sensors to the internet, coined as IoT that

is desirable for use case scenarios such as smart cities and smart homes; (iii) Ultra

Reliable Low Latency Communications (URLLC), which is required for stringent

latency applications such as self-driving, e-health, and industry automation. IMT-

2020 requirements include objectives and Key Performance Indicators (KPIs) that

any IMT-2020 compliant standard has to meet. For example, IMT-2020 defines that

the peak data rate should reach 10 Gbps and even 100 Gbps for special use cases;

the number of internet-connected devices should reach 1 million per km2 and obtain

sub-millisecond latency on the air interface [3], [4].

5G has been defined by 3rd Generation Partnership Project (3GPP) as a standard

to meet the objectives and KPIs specified in IMT-2020. The major enhancements

in 5G is foreseen to happen in the RAN, Transport Network, and Core Network.

Several technologies and enablers, such as massive Multiple Input Multiple Out-

put (massive MIMO) and beamforming, Cloud-Radio Access Network (C-RAN),

Millimeter Waves (mmWave), Control and User Plane Separation (CUPS), Network

Slicing (NS), Service Based Architecture (SBA), MEC, and NFV exist in order to

meet the requirements of 5G [3].
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MEC [5] and NFV [6] are two key enablers for 5G networks. MEC is a technol-

ogy that intends to shift the processing, intelligence, and storage resources available

in the central cloud towards the network edge, close to the end-users. Employing

MEC in the mobile network ecosystem leads to many advantages such as low latency

in providing services to the end-users, ability to provide location-aware services,

offloading the backhaul, and opening up a new revenue stream for MNOs by leasing

their computing resources in the mobile network to third-party business (know as

verticals). NFV is another enabler for 5G networks, and its co-existence with MEC

can lead to enormous advantages. Employing NFV unleashes the power of virtualiza-

tion in the context of mobile network and enables the softwarized instance of legacy

NFs such as firewalls, IPSs, and IDSs to be executed on Commercial-Off-The-Shelf

(COTS) servers. MEC and NFV are complementary concepts. Although the MEC

architecture has been designed to work with different deployment options, the most

interesting option is the one that allows instantiation of MEC and NFV on the same

infrastructure and make it possible to reuse European Telecommunications Standards

Institute (ETSI) NFV Management and Orchestration (MANO) components to fulfill

management and orchestration tasks [7], [8].

MANO is a key element in the ETSI NFV framework, responsible for the

coordination of resources and lifecycle management of network services. Given

that resources at the edge are extremely scarce and heterogeneous, developing new

approaches that can efficiently utilize network resources and, at the same time, meet

user requirements is of great importance. Moreover, network dynamicity is one of the

main characteristics of today’s networks, which necessitates having approaches that

can easily adapt to the network changes and continuously optimize the network [6].

Given the challenges mentioned above, this dissertation aims to study the trade-

offs between different SFC placement options and develop optimization-based al-

gorithms to efficiently utilize network resources while optimizing different aspects

of the mobile networks. First, we aim to employ the MEC services at the edge in

order to collect data about user’s behavior and develop ML-based approaches for

video content prefetching. Next, we propose new approaches for user association,

SFC placement, and VNF migration in the context of a hierarchical 5G network.

Finally, we study the trade-off between different VNF scaling approaches and devise

an approach that efficiently utilizes network resources while meeting user demands.
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1.2 Problem Statement

Caching in mobile networks can be implemented both in the core and RAN. Caching

in the core can be implemented through Content Delivery Networks (CDNs), leading

to advantages such as ease of management, scalability, and high cache-hit ratio.

On the contrary, caching in RAN improves Quality of Experience (QoE) for end-

users and alleviates the load on the backhaul link up to 35% [9]. Recently, with

the evolution of MEC technology, caching in the RAN can be performed more

efficiently. MEC provides storage and computing capacities for the applications in

the RAN, close to the end-users. Besides, MEC provides some value-added services

for the applications and allows them to make more intelligent caching decisions.

An example of such services is the Radio Network Information Service (RNIS)

that provides information about the radio context and helps make proper caching

decisions. Despite the advantages of caching in the RAN, the storage capacity at

the RAN is limited and shared among many applications. Therefore, there is a high

demand for devising intelligent methods to cache video contents accurately. Thus,
given the limited computing and storage resources at the edge and considering
the finite bandwidth in the backhaul, the problem is to prefetch and cache video
segments at the edge efficiently.

The emergence of MEC as a major enabling technology for 5G networks has

made it possible to provide an IT service environment with full cloud computing

capabilities within the RAN, in close proximity to mobile end-users. MEC is ex-

pected to play a pivotal role in 5G networks by shifting the applications, services,

and processing capabilities closer to the end-users and, therefore, offloading the

transport network and reducing the round-trip delay experienced by the end-users.

For instance, owing to the NFV technology, MEC enables the core network com-

ponents of the 5G network such as Access and Mobility Management Function

(AMF), User Plane Function (UPF), Application Function (AF), and NFs such as

firewalls, IDS, IPS, and load balancers to be deployed at the network edge as Virtual

Network Functions (VNFs) [10]. Despite the advantages mentioned above, resources

at the network edge are very scarce in terms of computing, processing, and storage;

therefore, acquiring resources at the edge is very costly. Thus, another problem is
to develop an algorithm that properly associates the User Equipments (UEs) to
the gNodeBs (gNBs), embeds the VNFs on the substrate network, and allocates
the radio, computing, and transport resources based on the objective defined by
the MNOs.
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The rapid change in the mobile data traffic demand calls for efficient approaches

to dynamically adjust the mobile network’s capacity according to the demand. MNOs

have the possibility to increase/decrease the capacity of both the 5G core network and

application VNFs upon the need, ensuring optimal resource utilization and lowering

the service provisioning cost. This is where the vertical, horizontal, and hybrid VNF

scaling strategies come into play. While the vertical VNF scaling implies that the

existing VNF is resized upon the need by adding/removing computational, memory,

or storage resources, in the case of the horizontal VNF scaling, another instance

of the same VNF is spawned/terminated. Although horizontal scaling ensures high

scalability and reliability, it suffers from increased resource consumption and state

migration challenges. On the other hand, while vertical scaling provides higher uti-

lization of resources, thereby creating resource-optimized VNFs, its lower scalability

and inability to change the VNF host significantly affect its practical implementation.

Since both scaling strategies have their pros and cons, applying only a vertical or

a horizontal scaling strategy cannot perform well in all scenarios. This is why

it is important to consider the so-called hybrid VNF scaling strategy, in which it

is possible to perform either vertical or horizontal VNF scaling depending on the

need. However, it is a non-trivial task to decide which type of scaling to perform

for a specific VNF since there is a number of parameters (e.g., the VNF type, its

resource requirements) to take into account. After performing VNF scaling, the

placement of the VNF is another challenge that requires careful considerations. On

the one hand, the interconnections between VNFs composing SFCs must be taken

into account in order to make an optimal placement decision. On the other hand,

the resource scarcity of the MEC servers at the network edges (e.g., collocated with

gNBs) must be considered in order to efficiently utilize the network resources while

at the same time satisfying the Quality of Service (QoS) requirement of the requested

applications/services. Thus, the last problem that we tackle in this dissertation
is to develop an algorithm that enables the MNOs to dynamically embed SFCs
and scale VNFs during the run-time based on the changes in the load.

All the problems mentioned above are modeled as Virtual Network Embedding

(VNE) problems and formulated and solved employing mathematical optimization

algorithms. Moreover, heuristic algorithms are proposed to tackle the scalability

issues of the mathematical optimization approaches. The following section explains

the methodologies adopted to solve the described problems.
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1.3 Methodology

Traditionally, networks used to be designed statically with diverse network devices

chained in a sequence to provide the desired functionality that the network was

designed to deliver. NFV, a major player in the realization of 5G networks, revo-

lutionized the way networks used to be designed. NFV technology decouples NFs

from proprietary and vendor-specific hardware; consequently, it enables software

instances of NFs called VNFs to be deployed and executed on standard COTS servers

[6]. NFV yields numerous advantages, including dynamicity, cost reduction, high

availability, service innovation, and reduced power utilization.

One of the most prominent advantages of NFV is the dynamic approach to the

construction and management of networks. NFV technology enables MNOs that

own the network infrastructure to dynamically share their infrastructure with various

Mobile Virtual Network Operators (MVNOs)1, who can make Virtual Network Re-

quests (VNRs)2. MVNOs define their desired services and expectations in the form

of VNRs or NF forwarding graphs, which include the network functions and the links

that connect these functions [11].

A major challenge in the NFV ecosystem is the VNE problem, which is em-

bedding VNRs in a shared substrate network (physical infrastructure). The VNE

problem has been proven to be NP-hard and has been extensively studied by the

literature [12]–[14]. The embedding process consists of two steps: node embedding

and link embedding. While in the node embedding step, each VNF in the VNR

should be mapped into a substrate node, in the link embedding step, each virtual link

in the VNR should be mapped to a path in the substrate network.

In this dissertation, we have formulated several VNE problems employing math-

ematical optimization techniques, which are then solved using the Gurobi mathe-

matical optimization solver [15]. Mathematical optimization models comprise cost

minimization/maximization objective(s) and one or more constraints. The cost func-

tion is a mathematical formula that determines the productivity of different aspects

of the network, such as cost of resources, link utilization, and energy consumption.

The model’s constraints define the network characteristics and define the limits over

either physical and virtual resources. The model needs to fulfill all the constraints

to reach a viable solution for the problem. Mathematical optimization solvers use

1MVNOs are mobile communication providers that are not owning mobile network infrastructure,
but they lease the infrastructure from other MNOs to provide services to their own costumers.

2VNRs are simply virtual requests (a.k.a slice in mobile networks) with specific demands in terms
of resources requested by, for example, MVNOs.
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algorithms such as Branch & Bound (BB) and Branch & Cut (BC) to solve the model.

For instance, the BB algorithm starts by removing integrality restrictions to relax the

problem. If the resulting relaxed model can satisfy all the integrality restrictions,

it can simply reach the solution, and the result will be the optimal solution of the

original model. Otherwise, the algorithm further divides the problems into branches

(sub-problems) and examines the lower and higher bounds when the solution is

fractional. Upon solving one branch, the algorithm stops to examine that branch

and compares the results with other branches. In case another branch is found to

be superior, the branch will be pruned; otherwise, the best solution will be updated.

This process continues until all branches are examined, and the optimal solution to

the problem is reached. Unlike the BB algorithm, BC is widely used in the existing

mathematical optimization solvers and continuously adds valid inequality constraints

(cuts) to the model and seeks to find a valid solution. Usually, cutting branches leads

to alleviation of the time required to reach a solution, but sometimes it may have a

reverse effect.

While the mathematical optimization techniques always reach the optimal solu-

tion to the problem, they become computationally intractable when the problem size

increases (e.g., the substrate network components such as gNBs, computing nodes,

transport links, and VNR composition of VNFs and the virtual link between them).

Aiming to tackle the mathematical models’ scalability issue, we propose heuristic

algorithms to reach near-optimal solutions in a considerably shorter time scale. As

the final step, we confirm the validity of the proposed heuristic algorithms through

extensive simulations and comparisons with the optimal solutions derived from the

mathematical models.

1.4 Main Contributions

Following the motivations and challenges mentioned in Section 1.1 and Section 1.2,

the contributions provided by this dissertation are broadly divided into three main

parts:

� Caching video content closer to the users at the edge MEC servers yields

several benefits both for the users and the MNOs. Specifically, it curtails

the content access delay for the users and improves their QoE [16]. It also

alleviates the backhaul transport network load for the MNOs. However, the

limited capacity of the edge MEC servers calls for an intelligent decision on

what content and where to cache in order to ensure that the QoE of the users
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is improved while, at the same time, the network resources (e.g., storage,

bandwidth) are used efficiently. In this context, the prediction, anticipatory

prefetching, and caching of video segments at the right bitrate during the

streaming at the MEC servers play a pivotal role in MEC-enabled Dynamic

Adaptive Streaming over HTTP (DASH) video streaming.

Our first contribution, which yielded the following publications [17]3, is to

employ machine learning algorithms to predict the number and bitrate of the

video segments expected to be requested based on current network bandwidth,

playback buffer conditions, and radio network metrics made available by the

RNIS at the MEC. We also predict user base station association to detect

where to prefetch a requested segment in a changing dynamic network. We

then develop a novel formulation to optimize video segment prefetching,

transcoding, and resource allocation jointly in a MEC-enabled 5G network.

The performance of the proposed approach is shown through extensive simu-

lations performed in various configurations of the network.

� In the context of MEC-enabled 5G networks, not only the edge nodes such as

ordinary gNBs can be endowed with computational capabilities, but also the

aggregation points of the gNBs (e.g., anchor gNBs) and the core network. The

cloud Data Centers (DCs) could still be used for latency-tolerant applications

as cheap computational resources. In general, the closer the computing node

is to the user, the less its computational capacity is, and the more costly

it is to spawn/instantiate VNFs on that node. Given the heterogeneity of

computing nodes and the diversity of the QoS requirements (e.g., data rates,

latency) of the application, a natural question arises: which gNB should users

be associated with and where their required applications should be deployed

to ensure that their application requirements are satisfied while the network

resources are used in the most efficient manner?

As our second contribution, which yielded the following publication [18]4, we

derive a comprehensive End-to-End (E2E) delay estimation model for users,

taking into account the transmission and the propagation time over the air and

the transport links along with the VNF processing time. After that, we provide

a novel formulation for the joint problem of user association, SFC placement,

and resource allocation in the context of MEC-enabled 5G networks. The

problem is formulated and solved in a hierarchical mobile network consist-

ing of edge, core, and cloud servers, each with different characteristics and

3The extended version of this work is ongoing and soon will be submitted to the IEEE Transactions
on Network and Service Management journal, and here we only show partial results.

4The extended version of this work is under review in the IEEE Transaction on Network and
Service Management journal.
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resource provisioning costs. We examine the trade-offs between different

user associations and SFC placement options and carry out comprehensive

simulations to demonstrate the performance of the proposed approaches.

� As mentioned above, considering the diverse characteristics of the substrate

network and a diverse set of applications that have emerged in the context of

5G networks, user association and SFC/VNF placement are very challenging

problems that demand careful investigations. Moreover, regarding the dynam-

icity of mobile networks and the rapid changes in terms of the number of users

who use the network and their traffic demand, actively managing and adjust-

ing the network to meet the users’ changes in demand plays a fundamental

role in today’s networking. In this regard, after performing SFC placement,

scaling of VNFs is another challenge that requires careful considerations. On

the one hand, the interconnections between VNFs composing an SFC must

be taken into account in order to make an optimal placement decision. On

the other hand, the resource scarcity of the MEC servers at the network edges

(e.g., collocated with gNBs) must be considered in order to efficiently utilize

the network resources while at the same time satisfying the QoS requirement

of the requested applications/services.

In light of the arguments mentioned above, as our last contribution [19]5, we

demonstrate the pros and cons of vertical, horizontal, and hybrid VNF scaling

strategies. To this end, we formulate and solve a joint UE association, SFC

placement, and VNF scaling problem, having the objective of minimizing

the service provisioning cost while satisfying users’ QoS requirements. We

specifically study the SBA design of the 5G core network and propose a

method that embeds and scales different 5G core components, each charac-

terized by different characteristics. Extensive simulations are performed to

validate the performance of the proposed method.

1.5 Outline

The structure of this dissertation is summarized as follows. In the current chapter,

we first unveiled the motivations behind our work and presented the objectives of

this dissertation. The problems, together with the approaches undertaken to solve the

problems, were discussed in detail. Finally, the main contributions of this dissertation

were highlighted.

5The extended version of this work is ongoing and soon will be submitted to the IEEE Transactions
on Mobile Computing journal, and here we only show partial results.
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Chapter 2 will provide in-depth background on the enabling technologies, in-

cluding NFV and Software-Defined Networking (SDN), in the context of 5G net-

works. A particular focus will then be given to the lifecycle management of network

services by highlighting in detail the challenges in this research area from different

perspectives. Due to the critical role of MEC in our study, a special focus will be

given to computing paradigms from cloud to MEC. Eventually, we present a broad

explanation of DASH as the main video content delivery standard over the Internet.

Chapter 3 walks through the state-of-the-art studies on the problem of user

association, SFC placement, VNF migration, VNF scaling, prefetching, and caching

of DASH video content in mobile networks. The key findings of the state-of-the-art

works in each of these challenging problems will be presented.

In chapter 4, we investigate the problem of DASH video content prefetching in

mobile networks. Firstly, we define the motivations behind video content prefetch-

ing and caching in mobile networks and the need for anticipatory prefetching of

video segments at the right bitrate during streaming at the MEC servers. In this

regard, we employ ML algorithms to predict the number and bitrate of the video

segments expected to be requested based on current network bandwidth, playback

buffer conditions, and radio network metrics made available by the RNIS service at

the MEC. We also predict user base station association to detect where to prefetch

predicted segments when the user associations change. We then formulate an ILP-

based problem for jointly optimizing video segment prefetching, transcoding, and

resource allocation, with the objectives of maximizing cache-hit and byte-hit ratios.

In chapter 5, we study the joint problems of user association, SFC placement,

and resource allocation in MEC-enabled 5G networks. Specifically, we first motivate

the need for having a system that optimizes resource utilization for MNOs, and at the

same time, meets user demands given the heterogeneity and varying cost of resources

in the network. We then present MILP techniques to provide novel formulations of

the problem. The study proposes three minimization objectives, including service

provisioning cost, the impact of VNF migration on UE’s experienced QoE, and trans-

port network utilization. We also develop a scalable heuristic algorithm that reaches

a near-optimal solution to minimize the impact of VNF migration on QoE of UEs

in a much shorter time scale compared to our proposed MILP-based algorithm. We

perform comprehensive simulations, drawing a comparison between the proposed

algorithms by considering different types of service requests with diverse data rates

and E2E latency requirements.
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In chapter 6, we investigate the joint problems of user association, SFC place-

ment, and scaling of 5G core components in MEC-enabled 5G networks. Firstly,

we motivate the need for having efficient approaches to adjust the mobile network’s

capacity according to the demands. Our approach enables MNOs to increase/de-

crease the capacity of both the 5G core network and application VNFs upon the need,

ensuring optimal resource utilization and lowering the service provisioning cost. We

thus propose a method that demonstrates the pros and cons of vertical, horizontal,

and hybrid VNF scaling strategies. To this end, we formulate and solve a joint UE

association, SFC placement, and VNF scaling problem by leveraging ILP techniques,

with the objective of minimizing the service provisioning cost while satisfying users’

QoS requirements. A scalable heuristic method will be proposed to address the

scalability issue of the ILP formulation. The performance of the presented algorithms

will be compared by extensive simulations carried out considering different types of

service/requests with diverse requirements.

Finally, chapter 7 summarizes the main contributions of this dissertation, fol-

lowed by the key findings of the work. Moreover, we propose several promising

research directions for future works.
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Chapter 2

Background

2.1 SDN and NFV in 5G Network

Virtualization is a technique widely used in IT and specifically in the cloud domain

to create isolated logical components on top of a standard and shared physical in-

frastructure. Virtualization makes system design considerably more flexible, agile,

and efficient compared to the traditional fixed and hardware-dependent approaches.

Recently, virtualization has found great applicability in mobile networks [20]. With

the emergence of 5G networks, virtualization became a promising technology to

fulfill the defined 5G objectives. SDN and NFV are two major enablers for 5G

networks that are based on network abstraction. While SDN aims to separate control

and data planes and deliver centralized management to the network, NFV’s mission

is to decouple NFs from hardware and make them able to run on standard and vendor-

agnostic hardware. Although SDN and NFV can exist without each other, their co-

existence results in more significant benefits. Nguyen et al. [21] provide a detailed

survey on the applications of SDN and NFV in mobile networks.

SDN technology has gained tremendous attention during the last decade. The

separation of control and data planes is the principal strategy of SDN towards reach-

ing programmability and centralized management in the network [22]. A general

view of SDN architecture comprises three planes: data plane, control plane, and

management plane. SDN has completely transformed the legacy vertical network

design, and instead, brought forward a horizontal approach in which development

and innovation are more likely to happen. This transformation breaks the guidelines

set in the classical networking approach, in which both control and data planes are lo-

cated in the physical devices, developing protocols is vendor-dependent, and network
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configuration is cumbersome. Overall, an SDN-based architecture is differentiated

from the traditional network architectures by having four characteristics of decoupled

control and data planes, centralized network decisions, flow-based data forwarding,

and abstracted management policies [23].

The data plane in SDN includes network devices (routers, firewalls, load bal-

ancers, etc.) and is responsible for forwarding data flows in the network. These

devices do not perform any forwarding decision; instead, they follow the instructions

received from the control plane. The control plane is the location where decisions

about routing, switching, and policies takes place. It also contains protocols that

determine the behavior of the network. The control plane (also known as network

operating system) is responsible for converting the high-level decisions received from

the management plane into the low-level rules that can be executed by the underlying

devices [23].

The plane separation requires well-defined Application Programming Interfaces

(APIs) to establish communication between the planes [23], [24]. Northbound APIs

are programming interfaces that allow the applications and orchestrator in the man-

agement layer to define a high-level policy for the network. Then, the control plane

converts the policies into more specific rules that can be implemented into the com-

modity hardware through southbound APIs such as OpenFlow [25], [26], OVSDB [27],

and ForCES [28]. Detailed studies on SDN architecture and protocols can be found

in [22]–[24], [29], [30].

The NFV technology plays a key role in the realization of the 5G networks

[6], [31], [32], as it decouples the legacy Network Functions (NFs) such as routers,

firewalls, IDS, IPS, etc., from purpose-built hardware and deploys them as platform-

independent VNFs. Apart from the legacy NFs, 5G core components such as the

UPF, AMF, and Session Management Function (SMF) in the 5G core SBA de-

sign [33] are another example of NFs that can be deployed as VNFs, providing un-

precedented management flexibility while curtailing both Capital Expenditure (CapEx)

and Operational Expenditure (OpEx). Furthermore, the separation of functionality

from hardware promotes evolution in both software and hardware planes indepen-

dently. Additionally, NFV provides the opportunity to represent NFs and applications

as a single VNF or multiple VNFs interconnected in a particular order forming SFCs.
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2.2 VNF Lifecycle Management and Service Function
Chaining

Ensuring a highly available framework that can provide E2E service provisioning

requires an efficient system to manage, orchestrate, monitor, and control system

components. In this regard, a significant effort from standardization bodies has been

devoted to developing an NFV management and orchestration framework. ETSI has

realized the high potentials of NFV and allocated an Industry Specification Group

(ISG) to develop a prevalent NFV framework called NFV MANO [6].

In the ETSI NFV MANO framework, VNFs are software implementations of

legacy NFs that run on top of the NFV Infrastructure (NFVI), which by itself com-

prises a virtualization layer that provides virtual resources from a pool of physical

resources to make VNFs run on a logically isolated shared infrastructure. NFV

MANO is the entity responsible for making sure that services requested by the users

are up and running. It includes three modules: Virtualized Infrastructure Manager

(VIM), VNF manager (VNF), and NFV Orchestrator (NFVO). The VIM constitutes

the functionalities for controlling and managing the interaction between VNFs with

the physical and virtualized resources. The VNF manager is in charge of the life-

cycle management of VNFs. Finally, the NFVO is responsible for orchestration

and management of physical and software components and realizing services on

NFVI. Lifecycle management includes instantiation, updating, migration, scaling,

and termination of VNF instances to ensure service continuity during the runtime of

the VNFs. A detailed description of the framework and the reference points can be

found in [6].

Placement. One of the main intentions of the NFV MANO platform is to

have better resource utilization by allocating multiple VNFs to the same physical

resource or aggregating multiple physical resources to serve a function with higher

demands. Allocating VNFs to physical resources is a challenging task that should

be performed wisely. Translating high-level SFC placement goals into low-level

instruction happens in the NFVO component in the MANO framework. The NFVO

component should contain an algorithm that is capable of mapping SFCs to physical

hardware dynamically [34]. Finding an optimal placement of SFCs on the substrate

network is one of the challenges that this dissertation will address.

Migration. Regarding the dynamicity of current networks, migration of VNFs

is one of the main challenges that need to be studied. There are many scenarios in

which the migration of VNFs is required or may result in better performance. For
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instance, a user that receives services from one base station easily moves to another

base station, and the management system should support its migration without worry-

ing about service disruptions. Moreover, it is possible that adding a network function

to the network triggers some topology changes in the network. Besides, in some cases

moving VNFs to different hosts can boost the overall network performance [35].

Scaling. The rapid changes in the mobile data traffic volume call for efficient

approaches to dynamically adjust the mobile network’s capacity according to the

demand. The scalability feature of NFV technology enables MNOs to meet the user

demands in real-time and makes them able to handle unexpectedly high peak loads

when needed without over-provisioning of resources. Therefore, the resources to

meet the growing demand of users can be provisioned immediately without the lead

times inherent in planning deployments of network hardware appliances or the costs

associated with specialized installation procedures. MNOs will increase/decrease

the network capacity of the 5G core and application VNFs upon the need, ensuring

optimal resource utilization and decreasing the service provisioning cost. This is

where the vertical, horizontal, and hybrid VNF scaling strategies come into play.

While vertical VNF scaling implies that the existing VNF is resized upon the need

by adding/removing computational, memory, or storage resources, in the case of the

horizontal VNF scaling, another instance of the same VNF is spawned/terminated.

2.3 Multi-access Edge Computing

DCs are situated at the core of concentration in modern-day software development

paradigms. DCs are the primary building block of the IT infrastructure for numerous

small to large-size organizations and businesses. The traditional approach of utilizing

DCs in organizations was to keep silos of physical storage and computing devices in

the organization premises, aiming to preserve data in its premises. However, the

necessity of updating the hardware to meet the users’ demand is a limiting factor

against DC growth. Furthermore, storing one organization’s data in one place brings

up many security and vulnerability issues; hence, the DC approach has been progres-

sively replaced by cloud computing.

Cloud computing is a paradigm referring to the on-demand delivery of com-

puting, storage, networking, and software resources in a pay-as-you-go manner.

Thanks to virtualization technology, a pool of resources is available to the users

and can be accessed and released dynamically with minimal required management

efforts [36]. Many businesses have adopted the cloud computing paradigm due to
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the enormous advantages it brings to their organizations. The ease of management,

accessibility, the flexibility of growth, and cost per usage are some advantages of

cloud computing, to name a few.

Many newly emerged applications and services that adopt Artificial Intelligence

(AI) and big data analytics are tailored to a cloud-based approach for their data

processing. Despite the extensive advantages of cloud computing, some challenges

call for novel technologies to evolve and address the gaps. One of the main issues

with cloud computing adoption for delay-sensitive applications is the long distance

between the data source (cloud) and data consumer (e.g., user, devices, sensors).

Moreover, the transmission of massive data to/from the cloud causes extra backhaul

utilization [37]. Location unawareness is another issue with the centralized-cloud

approach. By performing all the computing in the cloud, tracking the usage patterns

of users belonging to distinct geographical areas is difficult.

MEC [7] is one of such technologies that is expected to play a principal role

in 5G networks by shifting the applications, services, and processing capabilities

closer to the end-users and, therefore, offloading the transport network and reducing

the round-trip delay experienced by the end-users. MEC is expected to be widely

adopted in the 5G networks to satisfy the ultra-low latency requirement of certain

applications and services while at the same time alleviating the transport network

load [7].

MEC employs virtualization in order to run MEC applications as software-only

entities at the mobile network edge on top of the virtualized infrastructure. As stated

earlier, NFV provides a virtualization platform, where NFs can run on top of it as

software instances and being managed and orchestrated. MEC and NFV are two

complementary concepts, and MEC architecture is designed in a way that can support

different deployment options. A deployment option of MEC is proposed by ETSI

that allows instantiation of MEC application and VNFs on the same virtualization

infrastructure. The deployment proposes using ETSI NFV MANO to perform the

management and orchestration of MEC applications [7].

The infrastructure that hosts both MEC applications and VNFs is very similar;

therefore, ETSI proposed a MEC architecture that can host both VNFs and MEC

applications on the same infrastructure [7]. Apart from that, there are some other

essential functionalities that MEC is anticipated to fulfill. Mobility support is an

inevitable functionality for mobile networks, which is expected to be considered in

the design of MEC. In order to support mobility functionality, a MEC system needs

to support continuity of the service, migration of applications/VNFs, and transfer
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and exchange of application and user-specific states. ETSI has considered different

deployment scenarios for MEC, given the performance, cost, scalability, and operator

preferred deployments. For instance, MEC can be deployed in the RAN, at an

aggregation point, or at the edge of the core network.

Both MEC applications and VNFs have various resource requirements regard-

ing computing, storage, and network resources. Moreover, applications can have

different QoS requirements, for example, strict latency or data rate requirements.

Plus, for many applications, the condition may vary over time and require the MEC

system to change the location of the application due to mobility of the UEs, lack of

resources, and energy efficiency. Given these reasons, the MEC system should be

able to deploy VNFs and MEC applications at the most suitable node and at the

right moment. Moreover, the MEC system should be able to react to variations

that happen in the network status and, based on the changes, place, migrate, and

scale application VNFs.

2.4 Prefetching and Caching

With the emergence of 5G high-speed networks, the expectation for high-quality

4K/8K video streaming has also increased. The emergence of MEC technology

enables MNOs to provide network services at the edge [9]. The effective handling

of video traffic at the mobile edge by MNOs will become increasingly important to

satisfy customers with QoS as they stream higher volumes at higher qualities.

Currently, HTTP Adaptive Streaming (HAS) is the dominant video delivery

technique and has been adopted by leading video content providers such as YouTube

and Netflix [38]. Videos in the HAS technique are split into equally sized segments

available in multiple bitrates (qualities). DASH [39] is a standardized HAS tech-

nique, which emerged as a collaboration between 3GPP in TS 26.234 Release 9 [40]

and Moving Picture Experts Group (MPEG) [41]. The metadata about the segments

and bitrates in DASH is available in the Media Presentation Description (MPD) at

the video server, accessible to the clients upon issuing a video request. The Adaptive

Bitrate (ABR) algorithm in the client continuously measures the bandwidth and

buffer status. Based on the measurements and the MPD file, the client makes the

next segment’s request in a way that the user can achieve the highest satisfaction. The

user’s satisfaction is achievable through reaching minimum stalling at the playback,

minimum bitrate oscillation, and maximum usage of the bandwidth [42].
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Caching video content closer to the users at the edge MEC servers yields a

number of benefits both for the users as well as for the MNOs. Specifically, it

curtails the content access delay for the users and improves their QoE [16]. It also

alleviates the backhaul transport network load for the MNOs. The limited capacity

of the edge MEC servers, however, calls for intelligent decisions on what content and

where to cache, so to make sure that the users’ QoE is improved while the network

resources (e.g., storage, bandwidth) are used in an efficient manner. In this context,

the prediction, anticipatory pre-fetching, and caching of video segments of the right

quality during streaming at the MEC servers play a key role in MEC-enabled DASH

video streaming.
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3.1 DASH Video Prefetching and Caching

A considerable portion of the Internet traffic originates from the excessive download

of a small set of popular multimedia content requested by a vast number of users. In-

network caching helps avoid retransmission of duplicated popular contents, leading

to savings in transport bandwidth, backhaul bandwidth, energy usage, and improving

QoE for the end-users. In this regard, a sizeable body of literature has studied the

problem of DASH video caching in various network deployment scenarios.

Liang et al., in [16] proposes an online algorithm able to prefetch and cache

video segments in real-time, aiming to maximize the byte-hit ratio under the limited

bandwidth condition between the proxy and video server. Authors in [43], aiming

to maximize the byte-hit by prefetching video segments, propose a framework that

predicts the next segment bitrate requested by the user, taking the cache server band-

width and the client’s adaption scheme information into account. The study in [44]

formulates the problem of video bitrate selection as a MILP model to maximize

user utility. Moreover, the authors study the effect of multi-path on the transmission

capacity in a multi-autonomous system environment. Finally, a distributed algorithm

capable of reaching a near-optimal solution on a shorter time scale is proposed to

tackle the scalability issues of the MILP-based algorithm.

Authors in [45] consider a mobile network, enabled with MEC servers that can

expose the network information service to be used for service improvement. An

adaption algorithm runs on the MEC servers, responsible for alleviating network

congestion and improving the user’s QoE. The study in [46] considers a heteroge-

neous network in which each client can switch between different wireless networks.
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A MEC application is introduced to estimate the bandwidth and update the client

about the network condition. Therefore, it is considered as a proxy-based approach

that helps the client to make proper decisions at the moment.

Authors in [47] propose a MEC-enabled framework capable of utilizing RNIS to

cache and update the cache for DASH video service. They propose request popularity

and expected popularity as two metrics to improve video quality and reduce buffer

time. The work in [48] proposes a MEC-based DASH video caching strategy. The

algorithm stores each segment’s highest bitrate on the edge servers and employs the

processing power accessible at the MEC servers to transcode the video segment

on demand. A cache prefetching scheme is proposed in [49], which is able to

prefetch video segments using an adaptation algorithm that considers the throughput

measurements from the client and the predicted throughput at the cache. A learning-

based caching and the prefetching method is proposed in [50] to improve users’ QoE

for adaptive video streaming. The algorithm caches the most popular video segments

at the edge to tackle the problems of network jitter.

Performing prediction in RANs is especially challenging due to continuous

changes in the physical channel conditions and the availability of different RANs [51].

Employing ML to predict specific metrics (e.g., channel throughput) for RAN has

gained importance in the past years [51]–[54]. Within the context of DASH, previous

work employing ML focuses mainly on bandwidth estimation at the client, which

constitutes an input to most ABR algorithms. To this extent, Raca et al. [55] demon-

strate that integrating throughput prediction in the client can increase QoE regardless

of the employed ABR algorithm. The same authors [56] further explore this idea by

employing the random forest algorithm at the client to predict the expected average

throughput over a time horizon. The model employs percentiles of historical client-

side radio channel metrics (e.g., RSRP, and SNR) and historical application through-

put as input to the model. Another work by [56] evaluates the influence of different

window sizes for both metrics aggregation and prediction horizons on a dataset with

different mobility patterns and test their model using different ABR algorithms.

Overall, their model achieves a QoE improvement by up to 30%. Moreover, Mao

et al. in [57] develop a reinforcement learning method for directly obtaining the

bitrate for the next video chunk. The model employs an Actor-Critic neural network

model at the client, whose input includes historical throughput information, buffer

state, and next chunk sizes. Lian et al. [16] demonstrate and motivate the benefits of

predictive pre-fetching. They consider streaming over a wired network wherein the

segment bitrate switching rate is low, justifying their assumption that the next bitrate

requested can be assumed to be the same as the previous bitrate requested.
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3.2 User Association

The problem of user association in 5G networks is one of the research areas in-

vestigated in this dissertation. An optimal user association mechanism results in an

efficient PRB utilization at gNBs, while ensuring the expected QoE for the users [58].

User association in mobile networks and particularly in 5G network has been the

center of focus for many studies [59]–[67].

Liu et al. in [59] formulate the problem of user association in HetNets as a Nash

bargaining problem. The objective is to maximize data rate utility while guaranteeing

users’ data rate demand and balance load among the base stations. Lei et al. in [60]

design a delay-aware user association strategy for 5G HetNets intending to minimize

the overall power consumption in the network while applying strict delay constraints.

Amine et al. in [61] formulate the problem of user association in 5G ultra-dense

multi-RAT HetNets as a multi-objective optimization problem, which is solved lever-

aging the weighted sum technique. The work by Cacciapuoti et al. [62] presents a

constrained optimization method for mobility-aware user association in mmWave

networks. The method is capable of tracking the frequent variations in the network

topology and channel condition. Similarly, the work by Amine et al. [63] addresses

the UE association problem in 5G HetNets to meet the user’s QoE requirements using

a one-to-many matching game based on matching theory.

The work presented by Goyal et al. [64] introduces an optimal user association

method in 5G mmWave networks, which can recalculate the cost of possible han-

dovers and also the erratic nature of mmWave channels. The work by Harutyunyan

et al. [65] studies the user association problem in a cache-enabled mobile network,

capturing the trade-off between the radio access network and the transport network

utilization in 5G networks. A joint user association and user scheduling solution

has been presented by Ge et al. [66], where the authors aim to minimize the users’

achievable throughput. Liakopoulos et al. [67] employ a data-driven technique to

predict future traffic patterns and then associate users with base stations based on

pre-calculated association maps of the given time.

3.3 SFC Placement

The service function chain placement is yet another problem studied in this disserta-

tion. There is a sizable body of works studying the SFC problem [68]–[80]. More-

over, a vast number of surveys fully explore this problem from different perspectives,
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such as type of required placement (i.e., dynamic or static), objectives, and metrics

of the VNFs [81]–[83].

The study by Alleg [68] addresses the problem of SFC placement to efficiently

utilize the network resources while respecting the E2E latency requirement of the

UEs. Zhang et al. [69] propose a VNF placement method, which takes advan-

tage of the edge, core, and cloud servers in service-customized 5G networks. An

interference-aware method is proposed to tackle the negative effect of the VNF con-

solidation (i.e., VNF interference) with the goal of maximizing the overall throughput

of the accepted requests. Yang et al. [70] provide two models to calculate, respec-

tively, the transmission delay of flows traversing a chain of VNFs and the availability

of SFC for VNF resiliency. Furthermore, they propose an Integer Non-Linear Pro-

gramming (INLP) model and a heuristic algorithm to jointly solve the problems of

delay-sensitive VNF placement and VNF resiliency. Similarly, the approach in [71]

solves an SFC-based resource allocation problem using ILP by jointly tackling the

VNF placement and routing problems to reduce energy consumption. The same

problem is investigated by Wang et al. in [72], where MILP techniques are used

through a three-phase study, namely VNF chain composition, VNF forwarding graph

embedding, and VNF scheduling. Agrawal et al. [73] jointly solve the problems of

VNF placement and CPU allocation in 5G networks. The authors consider latency

as the primary KPI and try to minimize the ratio between the actual and maximum

allowed latency.

The work presented by Zhang et al. [74] utilizes the theory of open Jackson

network to evaluate data traffic in data centers and proposes two heuristic algorithms

to jointly optimize the SFC placement and request scheduling while minimizing the

latency and resource utilization in the network. Similarly, the study in [75] proposes

a MILP model for VNF placement in hierarchical 5G networks, where VNFs can be

deployed at the edge, core, and cloud nodes. The main goal is to minimize the overall

latency, which is composed of queuing, processing, transmission, propagation, and

optical-electronic-optical conversion delay. The parallel VNF deployment approach

is adopted in [76] to achieve latency reduction in service delivery. The bottleneck

issue caused by the imbalanced deployment of parallel VNFs is mitigated by map-

ping multiple instances of the VNFs. Moens et al. [77] introduce an ILP model

to map VNFs on the servers in order to minimize the number of utilized servers.

The work, however, does not consider the underlying network characteristics but

only services and VM requests. The work by Bari et al. [78] investigates a VNF

Orchestration Problem (VNF-OP) and proposes an ILP and a heuristic solution to

determine the number of required VNFs and their locations without violating Service
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Level Agreements (SLAs). The main objective of the work is to minimize OpEx and

resource fragmentation. The authors of [79] jointly study the problem of VNF place-

ment and routing, having the objective of maximizing network throughput. Finally,

the proposed work in [80] jointly tackles VNF placement and resource allocation

problems as a Mixed-Integer Program (MIP) based on an SDN/NFV-enabled MEC

infrastructure. However, the fitness function does not consider E2E service latency

requirements. The work in [84] formulates the problem of VNF placement at the

network edge to minimize the network latency from the UEs to their respective VNF

hosted on edge servers. A method is presented to dynamically re-schedule VNFs so

as to attain optimal allocation and avoid SLA violations. The study by [85] presents

an ILP model to jointly solve the problems of user association, SFC placement, and

resource allocation, in which UEs are assumed to have different E2E latency and data

rate requirements.

3.4 VNF Lifecycle Management

3.4.1 VNF Migration

VNF migration is yet another interesting problem that is covered in this disserta-

tion. There is a long line of research attempting to address the VNF migration

problem [35], [86]–[89].

The study by Xia et al. [35] defines the VNF migration cost as the overall traffic

served by the VNF, which is minimized by an ILP model. Furthermore, trying

to tackle the scalability issue of the ILP model, a heuristic model is proposed to

minimize the migration cost and satisfy the computing and transport resource uti-

lization constraints. Another study in [86] models the problem of VNF migration for

latency stringent applications in a highly dynamic environment. The work proposes a

heuristic algorithm that triggers the VNF migration based on the applications’ latency

requirement violation. Carpio et al. [87] introduce a linear programming model to

combat the problems of QoS degradation caused by service interruptions and im-

proper load distribution among servers. They study the trade-off between VNF repli-

cation and migration of already deployed VNFs to balance the load on servers and

reduce migrations. The work presented by Hawilo et al. [88] proposes a MILP model

to smartly decide whether to migrate or instantiate the VNF of the same service in

case of failure or resource scaling, with the objective of minimizing service downtime

and service latency. The work presented in [89] considers flexible placement and



26 Chapter 3. State of the Art

migration of VNFs in a MEC-enabled 5G architecture. The authors consider both

the computational and network needs of the UEs and present a proof of concept

where the NFV orchestrator handles network resources and services in real-time.

3.4.2 VNF Scaling

Significant research effort has been invested in studying the problem of VNF scal-

ing [90]–[98]. In [90], Sedaghat et al. study the trade-off between cost and per-

formance for vertical and horizontal scaling of virtual machines. The study in [91]

evaluates the performance of horizontal, vertical, and hybrid scaling in the cloud

environment, concluding that while horizontal scaling has the lowest overhead, the

hybrid method offers the highest flexibility. Furthermore, Wang et al. in [92] con-

clude that the VM scale-out operation is preferable for cloud environments under low

throughput demand and budget constraints, while the VM scale-up operation is more

appealing for high throughput demand.

Buyakar et al. in [93] propose a vertical auto-scaling algorithm for data plane

VNFs in the 4G core network to avoid under-utilization of network slices. On

the contrary, a control theory-based VNF horizontal scaling method is put forward

in [94], which also studies load balancing among AMF instances. A fixed threshold-

based vertical scaling approach is introduced by Moghaddassian et al. in [95]. The

resource threshold is updated based on real-time monitoring of the data utilization,

while the scaling-down/up decisions are made during an observation period. A

queuing theory-based and a mathematical model are proposed in [96], which for-

mulates an optimization problem that aims to minimize the VNF’s processing time

and link transmission delay. Both vertical and horizontal VNF scaling strategies

are separately considered. Tang et al. [97] study the horizontal VNF scaling problem

proposing an approach for forecasting the load on the VNFs in order to scale them on

time. Subramanya et al. [98] present an ML-based method for predicting the number

of VNFs needed and then employ ILP techniques to place and scale VNF instances.
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MEC-Assisted Video Prefetching

In this chapter, we propose an approach for MNOs to efficiently use the infrastructure

with minimal resource over-utilization and maximum user satisfaction for the DASH

video streaming application. Specifically, we employ machine learning algorithms to

predict the number and bitrate of the video segments expected to be requested based

on current network bandwidth, playback buffer conditions, and radio network metrics

made available by the RNIS at the MEC. We also predict user base station association

to know where to prefetch a requested segment in a changing dynamic network. We

then formulate an ILP-based model for jointly optimizing video segment prefetching,

transcoding, and resource allocation having objectives of maximizing the cache-hit

and the byte-hit ratios. A heuristic algorithm will be proposed to tackle the scalability

issue of the ILP-based approach, achieving a near-optimal solution in a considerably

shorter time scale while maximizing the cache-hit ratio.

4.1 Overview

Video content is the dominant traffic in terms of volume on the current Internet.

Cisco forecasts that video will constitute roughly 79% of the total Internet traffic

by the end of 2022 [2]. With the ongoing deployment of 5G high-speed networks,

the expectation for high-quality 4K/8K video streaming over mobile networks has

also increased. The emerging MEC technology enables MNOs to provide network

services at the mobile edge [9]. The effective handling of video traffic at the edge by

MNOs will become increasingly important to satisfy customers with the guaranteed

video QoE, as they stream higher volumes at higher qualities. A video streaming
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use-case, such as live streaming events at a sports festival, is an example of a chal-

lenging scenario wherein a large number of users stream videos in a small area,

streaming instant replays, and live streams of other games at sports festivals. In the

future, this could even include live-VR with stricter QoE requirements.

Currently, DASH [39] is the dominant video delivery standard that has been

adopted by most content providers, e.g., YouTube and Netflix [38]. It dictates that

each video is split into equally-sized segments available at multiple video qualities,

or bitrates. High variability of the bandwidth available to a user in dynamic mo-

bile networks requires an adjustment of the video bitrate based on the network and

playback buffer’s current state. This is done by the ABR algorithm, which, using

monitoring information, adjusts the bitrate of the next segment request to maintain

the highest possible QoE for the users [42].

Caching video content closer to the users at the edge MEC servers yields ben-

efits both for the users and the MNOs. It reduces the content access delay for

the users, improving their QoE [16] while also alleviating the backhaul transport

network load for the MNOs. However, the limited capacity of the edge MEC servers

calls for intelligent decisions on what content to cache and where to cache it to

improve QoE while also efficiently using the network resources. In this context,

prediction, anticipatory prefetching, and caching of video segments at right bitrate

during streaming at the MEC servers play a pivotal role in MEC-enabled DASH

video streaming.

In this chapter, we employ machine learning algorithms to predict the number

and bitrate of the video segments expected to be requested based on current network

bandwidth, playback buffer conditions, and radio network metrics made available by

the RNIS at the MEC. We also predict user base station association to know where

to prefetch a predicted segment when the user associations are changing. We then

formulate an ILP based problem for jointly optimizing video segment prefetching,

transcoding, and resource allocation, with the objectives of maximizing cache-hit and

byte-hit ratios. Moreover, a heuristic algorithm is proposed to tackle the scalability

issue of the ILP-based solution, achieving a near-optimal solution in a considerably

shorter time scale while maximizing the cache-hit ratio.
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4.2 Problem Statement

Figure 4.1 depicts the envisioned mobile network, which is composed of a 5GC, and

gNBs, with MEC servers co-located with gNBs. The MEC servers are characterized

by processing, memory, and storage resources. While these resources are limited for

the MEC servers at the network edge, they are abundant at the 5GC. Therefore, the

resource usage at the 5GC is much cheaper than that of the network edges, though

the former also imposes transport network usage costs.

We assume that a set of requests will be issued from UEs for a set of video

segments, possibly in different bitrates at any given time. The ML model proposed

in Section 4.4.1 is responsible for predicting the requests, the bitrate, and the gNB

association of each UE. After obtaining the prediction outcome from the ML model,

the ILP model decides whether to pre-fetch the requested video segment(s) in specific

bitrates to the network edge or, if available, to transcode higher bitrate segments

available at the network edge to make sure that the bitrate requirements of UEs are

satisfied while the network resources are used efficiently.

Depending on the segment duration, segment bitrate, and availability of the sub-

strate network resources, there might be multiple pre-fetching options, each in favor

of optimizing certain aspects of the network. The problem of joint video segment

pre-fetching, transcoding, and resource allocation can be formally stated as follows.

Given: a 5G network composed of MEC servers collocated with gNBs and

the 5GC, which are interconnected via transport network links. Additionally, a set of

UEs that are connected to gNBs, making video segment requests with specific bitrates.

Find: joint video segment pre-fetching, transcoding, and resource allocation.

Objective: maximize (i) the cache-hit ratio and (ii) the byte-hit ratio. We define

the cache-hit ratio as the number of requests served from the edge (whether directly

from the same gNB, from neighbor gNBs, or using transcoding) to the number of

requests issued to the network. Similarly, the byte-hit ratio is defined as the number

of bytes served from the edge to the number of bytes requested by the UEs.

4.3 System Architecture

Fig. 4.2 illustrates the system architecture. It consists of three main modules: 5G

Core (5GC), MEC Server, and DASH Client. The 5GC server contains the Video
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FIGURE 4.1: Sample mobile network and service request models.

Server and the Decision Maker sub-modules. The Video Server provides all the

segments of available videos and a MPD file containing metadata about each video’s

available representations. The MPD file is available to the clients upon requesting a

video to ensure that they only ask for the available bitrates on the video server.

The Video Server provides the videos to the Prefetch Requester or directly

to the client through the Request Handler. A client can be directly served from

the Video Server when the decision given to the Request Handler mandates not

to prefetch the requested segment or when one of the prediction models is wrong.

Decision Maker implements the logic of the ILP and Heuristic algorithms. The

algorithms run periodically on the 5GC upon receiving the prediction output during

each prediction window.

The MEC Server encompasses several sub-modules. The RNIS sub-module

collects radio metrics related to each client and then feeds them to the ML Predictor

sub-module. The ML Predictor uses the data received from the RNIS and Request

Handler to predict the next segment(s) bitrate(s) for the clients. The Request Handler

takes the prediction’s output to query the Cache Manager to check if the predicted

segment bitrate can be found in the cache. If the local cache cannot fulfill the request,

the Decision Maker will be asked to decide on the request. Upon making a decision, it

notifies the Request Handler about how to handle the request. There are four possible

options for the Request Handler if the content cannot be found in the local cache: (i)

prefetch the segment with the requested bitrate using the Prefetcher sub-module, (ii)

prefetch a higher bitrate of the segment and use it for serving even the users that
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FIGURE 4.2: Proposed system architecture.

ask for the lower bitrate of the same segment using the Transcoder sub-module, (iii)

redirect the request to the Video Server at the 5GC, or (iv) redirect the request to one

of the neighbors MEC Servers that can have the same bitrate or even a higher bitrate

that can be transcoded. It is essential to mention that this process is performed after

handling the request for segment (sk), before the next segment (sk+1) is requested.

Finally, the last module, DASH Client, comprises three sub-modules, Band-

width Estimator, Playback Buffer, and Segment Requester. The Segment Requester

collects the information from the other two sub-modules and decides the next seg-

ment’s bitrate to be requested. The request will then be issued to the Request Handler

in the MEC Server.

4.4 Proposed Methods

4.4.1 Prediction Model

The prediction algorithm runs periodically over prediction windows to predict the

requests expected in the next window. The ILP decides which of these requests

to pre-fetch at the beginning of each window (decision instant). The goal of the

prediction model is to provide the ILP with information at each decision instant,

about what segment requests are to be expected from the clients in the next window.

Assuming sequential segment requests by the client, an effective caching strategy

requires for each client the prediction of both the qualities of the requested segments

over the prediction window, and the MEC server node in the network at which to

place the content. The prediction procedure runs synchronously at each decision

instant before the ILP, whereby one prediction is obtained for each client associated

with the respective MEC server. The prediction window size is denoted as ∆t. At
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any given decision instant k, RAN and DASH client-related metrics are collected

over the metrics aggregation window, i.e., over the time interval [tk−θ∆t, tk) , θ ∈
R+. These metrics are fed to the predictor model (see Fig. 4.3). Since the ILP runs

synchronously, the prediction output Pn,k for each client n at the decision instant k

must include the number of segments expected to be requested by each client over

the prediction window, the expected bitrate of these segments, and the expected gNB

association to place the content. The modular design of the system (see Fig. 4.2)

allows instantiating the predictor with different algorithms. In this work, we devise

an ML system composed of three individual predictors, as described below.

Number of Segments: The NSEG-Predictor returns the expected number of

segments requested by the client n (Nn,k in Fig. 4.3-III). Configurations at the DASH

client and the current state of the playback buffer determine the client’s number of

requests (including no requests). Hence, Nn,k is an integer number greater than or

equal to 0 (Nn,k ∈N0).

Bitrate Mode: The MODE-Predictor returns the most frequent bitrate of the

requested segments for client n (Qn,k in Fig. 4.3-III). One bitrate Qn,k is predicted

and assigned to the Nn,k segments expected to be requested. In the case of multiple

modes, the highest bitrate is selected due to the transcoding option at the MEC.

MODE-Predictor performs predictions only on samples with Nn,k ≥ 1.

gNB Association: The GNB-Predictor returns the expected gNB association for

client n (Bn,k in Fig. 4.3-III). gNB association is relevant when considering client mo-

bility since it determines where to place the pre-fetched content. Wrongly allocating

MEC capacity for content will negatively affect the cache-hit rate.

Each predictor handles a multi-class classification problem. The number of

possible classes for NSEG- and MODE-predictor depends on the choice of ∆t. For

the GNB-Predictor, it depends on the number of MEC edge servers in the network.

Figure 4.3 summarizes the metrics used for the three prediction tasks. The input

metrics used to train the NSEG- and MODE-predictors either directly or indirectly

influence the bitrate chosen by ABR algorithms (a,b,c,d,e from Fig. 4.3-I). The in-

put metrics to the GNB-Predictor influence the clients gNB association (b,g,f from

Fig. 4.3-I). Since only averages over windows do not capture the distribution of some

metrics, we also use the 25th, 50th, 75th, and 90th quantiles for metrics a,b and d.

These metrics can be obtained at the MEC server through the RNIS and a

monitoring component that logs the current state of each UEs DASH client based
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FIGURE 4.3: Prediction inputs and outputs at a decision instant.

on the requests and responses that pass through the MEC. The overall complexity of

the prediction procedure scales linearly with the number of users in the network.

4.4.2 Prefetching Models

Mobile Network Model. Let G = (N,E) be an undirected graph modeling the mobile

network, where N represents the computing nodes, which are the union of the set of

gNBs Ngnb and the 5GC N5gc, N = Ngnb ∪N5gc. E represents the set of backhaul

and Xn links, interconnecting the gNBs with the 5GC and gNBs with each other,

respectively. As already mentioned, each node n ∈ N has a collocated MEC server

that is characterized with a storage Cstg(n) and processing capacity Ccpu(n). While

the former is used to cache video segments, the latter, if needed, is used to transcode

video segments from a high bitrate h to a lower bitrate q, which is the one predicted

to be requested by the UE. There is a link em,n ∈ E between the nodes m,n ∈ N if

they are directly connected, which has a certain amount of bandwidth denoted by

Ce
bwt . Nvid represents the set of videos available to the UEs. Each video v ∈ Nvid is

divided into multiple segments Nv
seg, each of which s ∈ Nv

seg is available in multiple

bitrates Nv,s
br . Table 4.1 summarizes the parameters of the mobile network.

UE Request Model. The UE requests are modeled as a directed graph Ḡ = (N̄, Ē),

where N̄ is the union of UEs and their requested bitrate of a specific video and

segment, N̄ = N̄ue ∪ N̄v,s
br , and Ē represents the virtual links between UEs and their

requested bitrate. Moreover, ωbr(r) represents the bitrate of the given requested
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TABLE 4.1: Mobile network parameters

Parameters Description
G = (N,E) Graph representing the mobile network.
N Set of nodes that can host videos N = Ngnb∪N5gc.
E Set of links connecting the nodes in G.
Ngnb Set of gNBs in G.
N5gc Set of core nodes/servers in G.
Nvid Set of videos.
Nv

seg Set of segments of each video v ∈ Nvid .

Nv,s
br

Set of available bitrates for each segment s ∈ Nv
seg of video v ∈ Nvid .

Bitrates are in order from the lowest to the highest q1 < ... < q5.

ω
h,q
cpu

Number of CPU cores required for transacting a segment from bitrate
h to the desired bitrate q of the user.

Ccpu(n) Number of CPU cores available on node n ∈ N.
Cstg(n) Caching storage of node n ∈ N in Megabytes.
Cbwt(e) The bandwidth capacity of the substrate link e ∈ E.

τs Segment time duration. All the segments are considered to be in the
same duration.

α The weight factor to prioritize the embedding options.

video segment by the UE. It is possible to have multiple requests from the same UE

in any given time. Table 4.2 summarizes the notations used for the service requests.

Problem Formulation. The joint video segment pre-fetching, transcoding, and re-

source allocation problem is modeled as a VNE problem, which is proven to be

NP-hard [18]. The embedding process is performed in two steps, including the node

embedding and the link embedding step. In the node embedding step, each virtual

node (e.g., UEs and video segments) in the request is mapped to a substrate node

(e.g., gNBs). In the link embedding instead, each virtual link is mapped to a single

substrate path.

ILP-based Method

ILP techniques are employed to formulate the described VNE problem that has two

objective functions. While the first objective (4.1) tends to maximize the cache-hit

ratio, the second (4.2) maximizes the byte-hit ratio. Table 4.3 summarizes the vari-

ables used in the ILP model.
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TABLE 4.2: UE request parameters

Parameters Description
Ḡ(N̄, Ē) Video request graph.

N̄ Set of requests in Ḡ.

N̄r
vid The video in the request r ∈ N̄ .

N̄r,v
seg The segment of video v ∈ Nvid in the request r ∈ N̄.

Nr
br The bitrate of the request r for its video segment.

ωbr(r) The bitrate of a video segment for the UE’s request r ∈ N̄.

Ē Set of links connecting UEs to the requested bitrate in Ḡ.

There are multiple ways to increase the cache-hit ratio. The UE requested

video segment(s) with a specific bitrate, if already cached/available, can be served

either from the host gNB or from a neighbor gNB leveraging the Xn interface. If

the requested bitrate of the desired segment is not already available at any of the

gNBs/edge sites while higher bitrates of the same video segments are available, then

they can be transcoded to the desired bitrate/quality. Note that the video segment

prefetching is based on the prediction of the UE-requested video segment along with

its bitrate for the subsequent timeslot.

CacheHit : max ∑
r∈N̄

∑
n∈Ngnb

∑
h∈Nr

br
h≥q

αχ
r,h
n (4.1)

The second objective function (4.2) aims to maximize the byte-hit ratio, employing

the same weighting factors. This objective is particularly beneficial for storing videos

with high storage demand at the edge, resulting in backhaul load alleviation.

ByteHit : max ∑
r∈N̄

∑
n∈Ngnb

∑
h∈Nbr(r)

h≥q

αωbr(r)χr,h
n (4.2)

In the following, we present the constraints that, regardless of the objective function,

have to be satisfied for a valid solution. The first constraint ensures that the storage

used for storing the videos is less than or equal to the maximum storage capacity of

the edge nodes.

∀n ∈ Ngnb : ∑
v∈Nvid

∑
s∈Nv

seg

∑
q∈Nv,s

br

ω
v,s
br τ

s
χ

v,s,q
n ≤Cstg(n) (4.3)
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At any given time, each UE should be provided with one video segment in the

requested bitrate.

∀r ∈ N̄ : ∑
n∈N

∑
h∈Nr

br
h≥q

χ
r,h
n = 1 (4.4)

The following constraint guarantees that a video segment is available at the edge only

if at least one UE is requesting that video segment.

∀n ∈ N,∀v ∈ Nvid,∀s ∈ Nv
seg,h ∈ Nv,s

br : ∑
r∈N̄

χ
r,h
n −µχ

v,s,h
n ≤ 0 (4.5)

where s and v are the segment and the video of request r, while µ is a big

number. Constraint (4.6) ensures that the virtual links are mapped on a substrate link

as long as the link has sufficient capacity.

∀e ∈ E : ∑
ē∈Ē

ωbr(ē)χ ē
e ≤Cbwt(e) (4.6)

Constraint (4.7) enforces a continuous path established between the UE and the

bitrate of the video segment in the virtual request r ∈ N̄.

∀i ∈ N,∀em,n ∈ Ē :

∑
e∈E i→

χ
em,n

e − ∑
e∈E→i

χ
em,n

e =


−1 if i = m

1 if i = n

0 otherwise,

(4.7)

where E i→ represents the links originating from node i ∈ N, while E→i represents all

the links entering node i ∈ N.

Finally, constraint (4.8) makes sure that the number of CPU cores utilized for

transcoding a video segment in bitrate h ∈ Nv,s
br to the lower desired bitrate q ∈ N̄r

br

are not higher than the number of CPU cores available at the edge.

∀n ∈ Ngnb : ∑
r∈N̄

∑
h∈Nr

br
h>q

ω
h,q
cpuχ

r,h
n ≤Ccpu(n) (4.8)

Heuristic

Although the ILP model achieves the optimal solution in different network config-

urations, the problem becomes computationally intractable with the increase in the
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TABLE 4.3: Binary decision variables

Variables Description

χ
v,s,h
n

Indicates if the bitrate h ∈ Nv,s
br of the segment s ∈ Nv

seg of video
v ∈ Nvid has been mapped on the edge node n ∈ Ngnb.

χ
r,h
n

Indicates if the request r ∈ N̄ of the video segment bitrate h has
been mapped on the node n ∈ N.

χ ē
e

Indicates if the virtual link ē ∈ Ē is mapped on the substrate link
e ∈ E.

network size, the number of UEs, videos, and their segments. In order to tackle

this issue, we propose a heuristic algorithm (see Algorithm 1) that is able to reach

a near-optimal solution for video segment prefetching, transcoding, and resource

allocation in a very limited time scale even for very complex network configurations.

The proposed algorithm, named Heu cache_hit, follows the same objective of

maximizing cache-hit ratio for the video segments. Like the ILP cache-hit algorithm,

Heu cache_hit needs to have the weighting factors before running the algorithm. For

each request r ∈ N̄, the weighting factor α is computed for each node n∈N by taking

into consideration the UE-gNB association and the desired state of the MNO, which

indicates the preference for mapping the request. For example, the MNO may give

the highest preference for serving the UE requests from the same gNB that the UEs

are associated. The next preferred option would be to choose transcoding a higher

bitrate to the desired bitrate or use the neighbor gNBs to retrieve the segment bitrate.

Serving the UEs from the 5GC gets the least priority.

The algorithm considers each request predicted to be issued during the next

time window, extracting its predicted bitrate q and the host gNB g. We remind the

reader that the video, segment, and bitrate are inherently included in the request.

The heuristic then calculates the weighting factors α for each request based on the

UE-gNB association and sorts them in descending order.

This is followed by traversing all the bitrates and nodes as possible solutions in

the sorted list of the weighting factors α . The alloc is an array to store the embedding

decisions. If the candidate solution has already been embedded on the substrate

network, indicated by alloc[r,h,n] == 1, then the UE will be served from the same

video segment on the same node without prefetching a new segment. If the desired

content is on a node different from the host gNB, then a path will be established

between the host gNB and the node serving the desired content if the physical links

in the path have sufficient capacity.
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Algorithm 1: Heu cache_hit
Input: (G, Ḡ)
Output: (video, segment, bitrate) pre-fetching, transcoding, and resource

allocation ;
1 for r ∈ N̄ do
2 q← N̄r

br ;
3 g← gnbAssociation(r) ;
4 • Compute α weighting factor for request r;
5 • Sorte α in descending order;
6 for h,n ∈ α do
7 if alloc[r,h,n] == 1 then
8 if n 6= g and C(n,g)

bwt (e)> ωbr(r) then
9 • Allocate path Pn,g and update resources;

10 • Allocate (h,n,r) and update resources;
11 break;

12 else
13 if Cstg(n)> ωr

br(n)∗ τs then
14 if h > q and ω

h,q
cpu >Ccpu(n) then

15 if n 6= g and C(n,g)
bwt (e)> ωbr(r) then

16 • Allocate path Pn,g and update resources;

17 • Allocate (h,n,r) and update resources;
18 ω

h,q
cpu(n)← ω

h,q
cpu(n)−ω

h,q
cpu ;

19 break;

20 else
21 if n 6= g and C(n,g)

bwt (e)> ωbr(r) then
22 • Allocate path Pn,g and update resources;

23 • Allocate (h,n,r) and update resources;
24 break;

In the case of the absence of the solution on the node, if the node has enough

storage capacity, the heuristic will check if the bitrate of the solution needs transcod-

ing to be performed on it. If transcoding is required (line 14), the solution will be

assigned to the request. The CPU capacity on the node will be deducted; otherwise,

the solution will be embedded, and the paths will be allocated at lines 22 and 23. In

general, the algorithm’s complexity grows linearly and depends on the network size,

including the number of edge nodes, number of videos, number of segments, and

number of available bitrates.
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4.5 Performance Evaluation

This section provides an in-depth comparison between the proposed ILP and heuris-

tic algorithms with the baseline based on the performance results derived from the

predictor models.

4.5.1 Data Collection for Prediction and Evaluation

An ns-3 [99] simulated network is used to generate data to train the prediction

algorithms and to evaluate the pre-fetching ILP and heuristic algorithms. The eval-

uation of the ILP and heuristic evaluation is done offline by processing the output

from the predictor and the ground-truth from the ns-3 generated data. Two separate

datasets [100] have been generated from a simulated urban mobile network deploy-

ment scenario with the same setup parameters. We use the ns-3 DASH module im-

plementation by Vergados et al. [101] to simulate the DASH client-server interaction

of segment requests and response.

The simulation setup consists of 12 gNBs and uses carrier aggregation with

three component carriers of 20 Mhz to provide a maximum downlink bandwidth of

60 Mhz, which can reach an aggregated downlink bitrate of up to 225 Mbps. A

variable number of UEs (between 27 - 68) move between these gNBs with velocities

ranging between 1.4 - 5.0 m/s (walking/cycling speeds expected in the considered

deployment scenario of a large arena). UEs, use DASH to stream video content in

this dynamic wireless network environment. Data is collected over 27 runs of 1000

seconds each.

The UEs in the network request segments from one of the 10 videos that are

currently being streamed. The UE’s video stream play times are within 10 seconds of

each other, representing realistic behavior of live streams that are viewed within small

delays of the actual event (this delay could be due to replays or delayed requests). The

videos are streamed at 50 frames per second, with segments’ duration of 8 seconds.

The set of available bitrates are {1, 2.5, 5, 8, 16, 35} Mpbs (higher rates correspond

to HD, 2K, and 4K video qualities).

4.5.2 Prediction

A total of 27 runs of data (each 1000 seconds of simulation) are used: 23 of them for

training the predictors, and 4 for the evaluation of predictive pre-fetching as described
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in in Sec. 4.5.3. We employ Random Forest (RF) for the predictor models since it

has the flexibility of a non-parametric method and has been demonstrated to perform

well for similar tasks [54], [56]. Additionally, we explore Gradient Boosting Trees

(XGB) for classification [102] due to prior evidence of boosting trees outperforming

RF [103].

Pre-Processing. The data pre-processing step consists of reading and parsing

the log files generated by various network monitoring components. Only requests

after the first requested segment are considered (the task is not to predict when the

client starts requesting). The prediction window is then slid through each client’s

trace data until the last segment is requested. To get the input features, the data is

first divided according to client-id. The required metrics are then extracted over the

metrics aggregation window for each prediction interval. All the metrics and ground

truths are compiled into one data structure (one for each client).

Prediction Window Size. This parameter directly influences the number of

possible classes for the NSEG- and MODE-predictor. Therefore, the class occurrence

distribution is computed for varying window sizes in Fig. 4.4, according to Sec. 4.5.2.

While there is a small influence on the MODE class distribution, there is a significant

influence on the NSEG class distribution. Since one bitrate is predicted for all

segments in the prediction window, the ideal implies having one segment in each

window. This occurs with a 2-sec window size but results in an imbalanced class

distribution (no segment requested ∼ 80% of the time). Additionally, the window

size must be significantly larger than both the ILP and heuristic running time. For

these reasons, we select window sizes of 4, 8, and 16 sec to find the best performing

predictors. The prediction window size determines the number of training samples:

211630, 105484, and 52010 samples are generated for respectively 4, 8, and 16-sec

window sizes.

Training. We employ a train-test set split of 80%-20%. The XGB models use

the softmax objective with the default learning-rate and regularization [102]. The

RFs perform split decisions based on the Gini impurity, and trees are built using

bootstrapping. For both RF and XGB we perform a grid search with the following

hyperparameters: i) the number of estimators (number of trees) with possible val-

ues {5, 15, 50, 100, 200, 350}, and ii) the maximum tree depth with possible values

{5, 15, 25}. It results in a total of 36 models to train for each predictor. We use 10-

fold cross-validation during training, and the best performing model configuration in

terms of accuracy on the test set is saved.

Model Performance. Table 4.4 summarizes the models’ performance. The
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best NSEG-predictor (test accuracy of 83.3%) employs XGB with 350 estimators

and 25 maximum depth using 4-sec for both prediction and metrics aggregation

windows. The best MODE-predictor (test accuracy of 89.7%) employs XGB with

350 estimators and 25 maximum depth using a 4-sec prediction and a 10-sec metrics

aggregation window size. Overall, XGB is generally capable of outperforming RF

regardless of the window sizes combination due to its capability of reducing variance

error. Moreover, irrespective of the prediction window size, an increase of the metrics

aggregation window size decreases the NSEG model’s performance. An increase

in the prediction window size also reduces overall performance: even matching

the number of training samples of the 4-sec prediction window size to that of the

16-sec window yields a 80.7% test accuracy. Furthermore, Fig. 4.5 shows how

increasing tree depth and the number of estimators positively affects the test accuracy

significantly until reaching 100 trees and a depth of 15 and 5 for NSEG and MODE,

respectively. Since the GNB-predictor problem is fairly simple due to the smaller

number of metrics with a simple relationship to the target prediction, it obtained a test

accuracy close to 100% regardless of the model employed. Overall, the high accuracy

score on the training sets suggests that the models are able to learn the separation

hyperplanes to classify the data, but the corresponding test accuracy suggests that
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the models generally overfit, even with the depth of 5. The best performing models

are used to compute the ILPs input.

4.5.3 Prefetching

This section elaborates on the simulations carried out in Python using the Gurobi

mathematical optimization solver [15]. The ILP and heuristic evaluation considers

the following additional parameters during the offline processing of data. The 5GC,

where the DASH video server runs, is equipped with a 16-core 2.4 GHz processor.

The edge MEC server is equipped with a 4-core 1.6 GHz processor with varying

storage of {25,50,75,100,125,150}MB.

This storage space is shared between all applications supported by the edge,

requiring efficient caching strategies. The edge MEC servers are interconnected over

5 Gbps Xn links, which, along with exchanging control information, are also used

to transfer video segment data. The MEC servers are connected to the 5GC over a

20 Gbps backhaul link.

The prefetching algorithms (ILP or heuristic) run periodically every four sec-

onds, in what we call a prefetching time slot. In each prefetching time slot, the

Decision Maker at the 5GC obtains the segment/bitrate/association predictions for all

UEs from the Predictor component at the MEC and puts together a set of prefetching

requests. Each of the quadruple (UE, segment, bitrate, gNB) is considered as a

request. The prefetching algorithm tries to find a solution that can serve all pre-

dicted requests. The ILP and the faster heuristic still take a finite amount of time

to run. However, the prefetching time slot is always longer than the time to run the

prefetching algorithm to ensure that the requests from one slot are fetched before the

beginning of the next.

The predicted requests can be served by either prefetching the requested seg-

ments to the edge, transcoding an existing segment at the edge, or skipping the cache

and waiting for the 5GC to serve the actual request. Three cases result in a user

being served from the 5GC. (i) the ILP decides that the user should be served from

the core, (ii) due to error in prediction, the wrong segment bitrate was prefetched

(iii) due to error in gNB association prediction, the prefetched segment was placed

at the wrong edge MEC server. The cache at the MEC server uses a simple Least

Recently Used (LRU) replacement strategy for content management. The Cache

Manager informs the Request Handler about the cache status and the requests that
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can be served from the edge, and it frees up cache space if needed by discarding any

other segments based on LRU.

The reported results are the average of four simulation runs with 95% confidence

intervals. During each simulation run, a variable number of requests will be issued,

and the prefetching algorithm is responsible for making an intelligent decision to

embed the requests on the substrate network.

Cache-hit Ratio. As stated earlier, a request can be served from the edge in

multiple ways. The first solution is to serve the request directly from the gNB that

the UE is associated with, and it can be either by the exact bitrate stored at the MEC

node or by transcoding a higher bitrate segment to the target bitrate. The second

solution is to serve the request through the neighbor gNBs with the same methods.

We define the cache-hit ratio as the ratio between the number of requests served

from the edge to the number overall number of requests. We argue that the higher

cache-hit results in higher satisfaction for both the end-users and the MNO. While the

end-users experience less delay, less jitter, and higher bitrate, the MNOs can offload

the backhaul to a large extent. Here we study the cache-hit ratio under different cache

sizes. It is clear that increasing cache size results in higher cache-hit. Therefore, we

want to study the impact of the cache-hit ratio in different network configurations.

It is worth mentioning that we decrease the cache size to a large extent to show the

system’s different behaviors for testing purposes.

As shown in Fig. 4.6a, the average cache-hit ratio with different cache sizes is

higher for the ILP cache-hit algorithm compared to the other two algorithms. As was

expected, the ILP cache-hit and Heu cache-hit achieve, respectively, the first and the

second highest cache-hit ratio due to the importance of the number of hits in the

objective function. The superior performance of the ILP cache-hit becomes obvious

when the cache storage is very limited, and all the predicted segments cannot be

accommodated at the edge MECs. Therefore, this is the scenario where ILP cache-hit

can make more intelligent decisions compared to ILP byte-hit and Heu cache-hit

algorithms in selecting a set of segments and bitrates to be prefetched that leads to

the maximum cache hit. Although, with the increase in the cache size, we encounter

a scenario in which all the predicted segments can be stored at the edge nodes,

therefore, making the prefetching decision straightforward for all of the algorithms

to prefetch whatever predicted and achieving a high cache-hit ratio.

Byte-hit Ratio. Similar to the cache-hit ratio, we also study the byte-hit rate

of the proposed algorithms. Obviously, with the more bytes served at the edge, the

more savings over the backhaul link can be archived. We intended to depict the ratio
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FIGURE 4.6: Average cache-hit ratio, byte-hit ratio and backhaul link
utilization for different cache sizes.

between the number of bytes served from the edge and the overall number of bytes

requested with this performance metric. Therefore, we expect the ILP byte-hit to

perform better than the other algorithms in prefetching higher bitrate segments that

can be shared among multiple UEs to the edge to save the bandwidth. Another ad-

vantage with the prefetching of high-bitrate segments is that a higher bitrate segment

can be transcoded to the lower bitrate segments and avoid of re-directing requests for

low-bitrate segments to the core and serve more users from the edge.

As illustrated in Fig. 4.6b, the number of bytes served from the edge for the

ILP byte-hit algorithm is more than the other two algorithms. Similar to the cache-hit

evaluation, the algorithm shows a better comparable performance concerning the

other algorithms when the cache size is smaller, and the algorithm needs to decide on

prefetching intelligently video segments to the edge. Here, the ILP cache-hit shows a

close performance to ILP byte-hit because it can prefetch more number of segments,

increasing the number of served bytes, but still being less than the ones archived by

ILP byte-hit. As expected, here also, the Heu cache-hit achieves a near performance

to what achieved by ILP cache-hit.

Link Utilization. Figure 4.7a illustrates the backhaul link utilization as a func-

tion of cache storage size, averaged over four simulation runs and compared with the

baseline in which all the segments are served from the core, and no pre-fetching is

performed. We can observe that Heu cache-hit and ILP byte-hit achieve, respectively,

the highest and the lowest backhaul H link utilization compared with the baseline.

This is justified by the fact that ILP byte-hit tends to pre-fetch high bitrate segments

that might be shared among multiple requests to the edge. Therefore, a smaller

portion of the high bitrate requests will be directed to the core, and the backhaul

link will be saved. As can be understood from Fig. 4.7a, the proposed algorithm

can save up to 69.15% of the backhaul link compared to the baseline. This happens

when the cache size is large but still performs better than the other algorithms, even

with a very limited cache size. Conversely, the Heu cache-hit algorithm follows the
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FIGURE 4.7: Average backhaul link utilization for different cache
sizes and execution time.

same objective of the ILP cache-hit but shows a lower performance compared to the

ILP-based algorithms.

Execution Time. The main goal of the proposed Heuristic algorithm (Heu

cache-hit) is to combat the scalability issue of the ILP cache-hit algorithms, which

become computationally intractable with the increase in the network size, the number

of videos, their segments, and the number of UEs requesting those video segments.

Fig. 4.7b demonstrates the average execution time of the proposed algorithms over

four runs. It can be observed that the execution time of the ILP algorithms is sig-

nificantly higher than that of the Heuristic. Thus, the Heu cache-hit, due to its

sub-optimal mapping solutions, exhibits lower performance compared to its ILP

counterpart in terms of cache-hit ratio, byte-hit ratio, and link utilization, it proves to

be competitive and also applicable to extensive size networks in real-world scenarios.

4.6 Discussion

In this chapter, we proposed a novel method for ML-driven predictive prefetching

for the problem of DASH video streaming in MEC-enabled mobile networks. We

showed that with an accuracy of (83-88-99%) for the three predictive tasks, we are

able to attain a MEC cache-hit ratio of 60%, which means that we were able to reduce

the access delay for 60% of the requests. The ML algorithm predicts the number

of segment requests, bitrate, and the gNB association of the UEs in a prediction

time window. An ILP model with two objectives was proposed to reach an optimal

solution for the video content prefetching and transcoding at the edge, followed by

a heuristic algorithm that achieves a near-optimal solution in an incredibly shorter

time scale. It is demonstrated that the backhaul link utilization can be reduced by

69.15% through caching at the edge using max byte-hit objective in a live streaming
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scenario with segment request overlaps. The developed Heuristic resulted in the

reduction of the execution time for prefetching in the 25 MB cache size scenario by

90% with a reduction in the cache-hit ratio by 7.5% and an increase in the backhaul

link utilization of 2.08%.
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Chapter 5

Latency-Aware User Association and
SFC Placement

This chapter uncovers the motivations towards latency-aware user association and

SFC placement in MEC-enabled 5G networks. The main objective of the chapter

is to propose novel user association and SFC placement algorithms to find optimal

gNBs and computing nodes to embed users’ requested services. The user association

and SFC placement problems are formulated employing MILP techniques, having

the objectives to minimize service provisioning cost, transport network utilization,

and the impact of VNF migration on users’ experienced QoE. A heuristic algorithm

is also proposed supporting the idea of minimizing the number of users affected

by VNF migration in a considerably shorter time scale. Comprehensive numerical

experiments are performed to draw a comparison between these approaches.

5.1 Overview

The 5th generation (5G) of cellular networks undertakes the mobile communication

landscape transformation by offering an extremely high QoE (e.g., low-latency, high

data rate) for the end-users. MEC [104] is a key enabler in the 5G network by

shifting the applications, services, and processing capabilities closer to the end-

users and, therefore, offloading the transport network reducing the round-trip delay

experienced by the end-users. MEC servers may reside along with the gNBs as

well as with the core network. While these MEC servers can be used to host low-

latency VNF applications, the cloud data centers can be used to accommodate the

latency-tolerant ones. In general, the closer the MEC server is located to the user,



50 Chapter 5. Latency-Aware User Association and SFC Placement

the less is its computational capacity, which means that the more costly is VNF

instantiation on that MEC server. Given the above considerations and the number

of users requesting various applications with diverse QoS requirements, the natural

question that arises is which gNBs to associate the users to and where to deploy their

requested applications, such as to make sure that their application requirements are

satisfied while the network resources are used most efficiently.

This chapter provides a comprehensive E2E delay estimation model for users,

taking into account the transmission and propagation time over the air and the trans-

port links along with the VNF processing time. We employ MILP techniques to pro-

vide a novel formulation of the joint user association, SFC placement, and resource

allocation problem. Aiming at alleviating the scalability issues of the proposed MILP

formulation, a heuristic algorithm that reaches a near-optimal solution is proposed to

minimize the impact of VNF migration on user QoE in a much shorter time scale. We

perform comprehensive simulations, drawing a comparison between the proposed

algorithms by considering different types of service requests with diverse data rates

and E2E latency requirements.

5.2 Problem Statement

Figure 5.1a depicts the reference network architecture in which the gNBs are collo-

cated with MEC servers, referred to as edge nodes, and are in charge of providing

coverage to the users and performing their baseband signal processing. The edge

nodes have a limited amount of computational capacity, which makes their usage

quite costly. It is essential to mention that we also consider the case in which a user

can be associated with one gNB while be served by a MEC server collocated with

another gNB. While all the nodes possess computing capabilities, only the gNBs

and the core are equipped with MEC servers. As opposed to the gNBs, the MEC

server collocated with the core node has much more computational capacity, making

the VNF instantiation much cheaper. Nevertheless, VNF instantiation on the core

node requires the use of the fronthaul transport resources, which contributes to the

total cost computation for the VNF instantiation. As for the cloud data center, it has

abundant computational resources, which makes it the cheapest solution to be used

for instantiating VNFs compared to the edge nodes and the core, regardless of the

additionally required transport network resources (i.e., both fronthaul and backhaul

resources). Thus, the closer is the computing node to the end-user, the less is its

computation capacity.
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FIGURE 5.1: Sample mobile network and service request models.

It is assumed that each user or UE requests a service with a certain bitrate

and delay tolerance. Upon receiving the service request from the UE, the network

provider shall decide on how to associate the UE to the network and embed his

request, such as to make sure that the UE service requirements are satisfied, while

the network resources are used in the most efficient manner. Figure 5.1b depicts the

service requests composed of UEs and the requested service, having either strict la-

tency or loose latency requirements, which are numerically defined in Section 5.4.1.

Figure 5.1c illustrates a sample service mapping whose objective is to minimize the

service provisioning cost. The service requested by UE-2 is placed in the cloud,

while the services of UE-1 and UE-3 are mapped on the MEC-1 server at the edge

due to their strict latency requirement. Note that since the VNF requested by UE-3

is already available on MEC-1, UE-3 is served by that VNF in order to reduce the

service provisioning cost while satisfying the latency demand.

The problem of joint user association, SFC placement, and resource allocation

can be formally stated as follows.

Given: a 5G network composed of gNBs and a core node that have collocated MEC

servers and are interconnected via fronthaul links. Additionally, given a cloud data

center node that is interconnected with the core node via a backhaul link. Moreover,

given a set of UEs randomly scattered in a geographical area, each requesting a

service with its respective data rate and latency requirement.

Find: joint user association, SFC placement, and resource allocation.

Objective: minimize (i) the service provisioning cost, (ii) the impact of VNF migra-

tion on UEs’ QoE, and (iii) the transport bandwidth consumption.
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The joint user association, SFC placement, and resource allocation problem is

modeled as a VNE problem and has been studied extensively in the literature [105],

[106]. The embedding process consists of two phases: the node embedding and the

link embedding. In the node embedding phase, each virtual node (e.g., UEs and

VNFs) in the request is mapped to a substrate node (e.g., gNBs, core servers, and

cloud nodes in the substrate network). In the link embedding instead, each virtual

link is mapped to a single substrate path. In both cases, constraints of nodes and links

must be satisfied in order for a solution to be valid.

5.3 Proposed Methods

Mobile Network Model. Let G = (N,E) be an undirected graph modeling the

mobile network, where N represents the computing nodes, which are the union of

the set of gNBs Ngnb, the core Ncore, and the cloud Ncloud , N = Ngnb∪Ncore∪Ncloud .

E represents the set of fronthaul and backhaul links interconnecting, respectively,

the gNBs with the core and the core with the cloud. Each computing node n ∈
N in the network is equipped with a certain amount of processing capacity repre-

sented by Ccpu(n). There is a link em,n ∈ E between the nodes m,n ∈ N if they are

directly connected.

Let ω i
cpu represent the number of CPU cores assigned to the instance i ∈ Ns

inst

of service s ∈ Nvn f , which is represented as a single VNF. It is assumed that at least

a single CPU core is required to spawn/instantiate a VNF, while it is also possible

to allocate three CPUs to a VNF instance depending on the data processing demand.

Ci
proc(n) is the processing capacity of instance i ∈ Ns

inst of VNF s ∈ Nvn f on node

n ∈ N. There is an upper bound on the number of UEs that can use a single CPU

core. Thus, the capacity of a VNF instance Ci
ue(n) can be expressed in terms of the

maximum number of UEs that can use that VNF, which depends on the number of

CPU cores allocated to that VNF. It is worth to mention that we also tackle the case

in which multiple instances of the same VNF are needed due to high traffic demand.

Finally, each link em,n ∈ E connecting the nodes m,n∈N in the network has a certain

bandwidth capacity Cbwt(e) in Gbps. Table 5.1 summarizes the parameters of the

mobile network.

UE Request Model. We model the service requests as a directed graph Ḡ = (N̄, Ē),

where N̄ is the union of UEs and their requested services, N̄ = N̄ue∪ N̄vn f , and Ē rep-

resents the virtual links between UEs and their requested services. It is assumed that
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TABLE 5.1: Mobile network parameters.

Parameters Description

G(N,E) Graph representing the mobile network.
Ngnb Set of gNBs in G.
Ncore Set of core servers in G.
Ncloud Set of cloud servers in G.
N Set of computing nodes in G.
E Set of links connecting the nodes in G.
Nvn f Set of services.
Ns

inst Set of instances of service s ∈ Nvn f .

Ni?
ue(n)

The number of UEs u∈ N̄ue served from the service instance i∈Ns
inst

on the node n ∈ N in the previous run.

ω i
cpu

The number of CPU cores that are required to run instance i ∈ Ns
inst

of service s ∈ Nvn f .
ω

g
prb The amount of PRB available on gNB g ∈ Ngnb.

ξ n
cpu The cost of one CPU core on node n ∈ N.

ξ e
bwt The cost of using one Mbps bandwidth of link e ∈ E.

ξ
g
prb The cost of using one PRB in gNB g ∈ Ngnb.

Cu
g

The maximum achievable data rate between UE u ∈ N̄ue and gNB
g ∈ Ngnb .

Ci
ue(n)

The maximum number of UEs that can use the instance i ∈ Ns
inst of

service s ∈ Nvn f on node n ∈ N.
Ccpu(n) The CPU cores of node n ∈ N.

Ci
proc(n)

Processing capacity of instance i ∈ Ns
inst of service s ∈ Nvn f on node

n ∈ N.
Cbwt(e) The bandwidth capacity of the substrate link e ∈ E.
d(g,u) Distance between gNB g ∈ Ngnb and UE u ∈ N̄ue.
Pg

tx The transmission power of gNB g ∈ Ngnb.
µ A big positive number.

UEs are randomly scattered in a geographical area, and each UE can be associated to

only one gNB.

In our model each UE u ∈ N̄ue requests only one service s ∈ N̄vn f , specifying

the maximum delay tolerance by T u
max and data rate demand ωu

bwt . The allocated

VNF instance should process the data transmitted by the UE. The total delay of

the service is calculated as the summation of the transmission time over the air,

which is considered to be equal to one transmission time interval (TTI = 1ms),

transmission time over fronthaul and backhaul links, propagation time over the air,
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TABLE 5.2: UE request parameters.

Parameters Description

Ḡ(N̄, Ē) Service request graph.

N̄ Set of UEs and requested services N̄ = N̄ue∪ N̄vn f in Ḡ.

N̄ue Set of UEs in Ḡ.

N̄vn f Set of services requested by the UEs in Ḡ.

Ē Set of virtual links connecting UEs to the services in Ḡ.

ωu
bwt Data rate requested from UE u ∈ N̄ue.

ω
u,g
prb

The number of required PRBs to support the data request of UE u ∈
N̄ue from gNB g ∈ Ngnb.

T u
max Maximum delay tolerance of UE u ∈ N̄ue.

T u
tx(g) The transmission time between UE u ∈ N̄ue and gNB g ∈ Ngnb.

T u
prp(g) The propagation time between UE u ∈ N̄ue and gNB g ∈ Ngnb.

and transport network, and the processing time of the VNF instance. It is worth

mentioning that each service is represented as a single VNF instance for the sake of

simplicity. Although the problem formulation can be easily adapted to support more

complex service function chains, it would dramatically increase the execution time

of the proposed MILP-based algorithm without adding any significant value. Table

5.2 summarizes the notations used for the service requests.

Air Interface Capacity Calculation. The air interface capacity between gNB g ∈
Ngnb and UE u ∈ N̄ue is denoted by Cu

g , which is a function of Signal to Interference

plus Noise Ratio (SINR) that can be computed through the following equation:

∀g ∈ Ngnb,∀u ∈ N̄ue : SINRg,u =
Pg

txd−δ

(g,u)

N 2 +∑k 6=g Pk
txd−δ

(k,u)

(5.1)

where Pg
tx denotes the transmission power of gNB g ∈ Ngnb. It is worth noting

that UEs will experience different signal strengths from the gNBs since cells are

overlapping in the area of coverage. d(g,u) is the euclidean distance between gNB

g ∈ Ngnb and UE u ∈ N̄ue, while δ represents the path loss coefficient and N is the

noise power. Accordingly, if we define W as the system bandwidth, the maximum

achievable air interface capacity Cu
g between gNB g ∈ Ngnb and UE u ∈ N̄ue can be

computed as follows:

Cu
g =W log(1+SINRg,u) (5.2)
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Based on the UE’s Channel Quality Indicator (CQI) value, which can be ob-

tained from the mapping table using the UE’s SINR, we can compute the number of

PRBs required to satisfy UE’ data rate demand [107]. The CQI is determined in a

way that corresponds to the highest Modulation and Coding Scheme (MCS), which

also can be derived from the mapping table given in [107].

Given the throughput demand ωu
bwt of UE u ∈ N̄ue, the number of required

PRBs to meet the data request of the UE from gNB g ∈ Ngnb can be computed as

follows [65]:

ω
u,g
prb =

ωu
bwtTsb f

2NsbcNsymNu,g
modbNant

(5.3)

where Tsb f is the duration of one sub-frame (1ms) and ωu
bwt represents the

throughput requested from the UE. Nsbc represents the number of sub-carries, which

is equal to 12 sub-carries per PRB. Nsym represent the number of symbols per slot

which is equal to 7 and we have 2 slots per sub-frame. Also, Nu,g
modb and Nant ,

respectively, represent the number of modulated bits per symbol for a given MCS

and the number of antennas per gNB that is considered to be 2 in our scenario.

5.3.1 MILP-based Method

The described VNE problem has been formulated by employing MILP techniques.

As mentioned earlier, three objectives are defined for the model, which are to mini-

mize (i) service provisioning cost that is defined by equation (5.4), (ii) the transport

network utilization given by equation (5.5), and (iii) the impact of VNF migration

on users’ quality of experience, defined by equation (5.6). Table 5.3 represents the

variables used in the MILP model.

The objective (5.4) tends to minimize the service provisioning cost, which en-

compasses the cost of using computing, link transmission, and radio access network

resources. While the costs of using link transmission and radio access network

resources are the same for, respectively, all the links and gNBs, the cost of the

computing resources depends on the type/location of the host node (e.g., edge, core,

cloud). The closer the host node is located to the cloud, the more abundant and the
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cheaper are its resources and, therefore, the cheaper is VNF instantiation.

CostM : min(∑
n∈N

∑
s∈Nvn f

∑
i∈Ns

inst

ξ
n
cpuω

i
cpuχ

i
n + ∑

u∈Nue

∑
ē∈Ēu

∑
e∈E

ξ
e
bwtω

u
bwt χ

u,ē
e

+ ∑
u∈Nue

∑
g∈Ngnb

ξ
g
prbω

u,g
prbχ

u
g )

(5.4)

The following objective (5.5) aims at minimizing the bandwidth consumption of the

transport network.

LinkM : min ∑
u∈Nue

∑
ē∈Ē

∑
e∈E

ω
u
bwt χ

u,ē
e (5.5)

This objective is particularly useful for the cases in which the transport network lacks

of capacity, or the UE requested service is latency sensitive.

Finally, the goal of the last objective (5.6) is to minimize the impact of VNF

migration on UEs’ quality of experience. The need for this objective stems from

the fact that the VNF migration may cause service interruption, which, in turn, may

degrade the QoS experienced by the UEs. The effect of the VNF migration onto the

UEs is minimized by intelligently selecting the VNF to be migrated. It is important to

mention that this objective takes into account also the cost1 of using CPU, transport

network, and PRB resources like in Formula (5.4). As opposed to Formula (5.4),

however, those resources have a very small coefficient in order to make sure that it

does not affect the main argument defined in Formula (5.6).

MigM : min ∑
n∈N

∑
s∈Nvn f

∑
i∈Ns

inst

Ni?
n ∗ Ii

n (5.6)

In the following, we present the constraints that, regardless of the objective function,

have to be satisfied for a solution to be valid.

Constraint (5.7) pertains to the UE association, making sure that each UE is

connected to only one gNB, which has to have sufficient link capacity (enforced by

formula (5.8)) and sufficient amount of PRBs in order to satisfy the UEs’ data rate

demand (enforced by constraint (5.9)).

∀u ∈ N̄ue : ∑
g∈Ngnb

χ
u
g = 1 (5.7)

∀g ∈ Ngnb : ∑
u∈N̄ue

ω
u
bwt χ

u
g <Cu

g (5.8)

1Note that this is not shown in Formula (5.6) in order to avoid confusion.
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∀g ∈ Ngnb : ∑
u∈N̄ue

ω
u,g
prbχ

u
g ≤ ω

g
prb (5.9)

As stated before, our model assumes that each UE requests only one service.

Thus, constraint (5.10) enforces each UE u ∈ N̄ue to be connected to only a single

service/VNF instance.

∀u ∈ N̄ue : ∑
n∈N

∑
s∈N̄vn f

∑
i∈Ns

inst

χ
i
u,n = 1 (5.10)

The following constraint guarantees that a VNF is spawned/instantiated only if at

least one UE is mapped on that VNF.

∀n ∈ N,∀s ∈ Nvn f ,∀i ∈ Ns
inst : ∑

u∈N̄ue

χ
i
u,n−µ ∗χ

i
n ≤ 0 (5.11)

As mentioned earlier, the amount of computational resources on the MEC servers

collocated with gNBs is limited and expensive, different from the cloud where we

can find significantly more amount of resources at a much cheaper price. In other

words, the more we get closer to the UE, the more resources get scarce and expensive.

Therefore, before placing a service on a node, it should be checked if that node has

a sufficient amount of resources to host the service, making sure that the number of

CPU resources assigned to a VNF instances running on a node does not exceed the

CPU capacity of that node (constraint (5.12)).

∀n ∈ N : ∑
s∈Nvn f

∑
i∈Ns

inst

ω
i
cpuχ

i
n ≤Cn

cpu (5.12)

Constraint (5.13) sets an upper bound on the number of UEs that can use the same

VNF instance.

∀n ∈ N,∀s ∈ Nvn f ,∀i ∈ Ns
inst : ∑

u∈N̄ue

χ
i
u,n ≤Ci

ue(n) (5.13)

Constraint (5.14) ensures that the virtual links can be mapped onto a substrate link

as long as the link has sufficient capacity:

∀e ∈ E : ∑
u∈N̄ue

∑
ē∈Ē

ω
u
bwt χ

u,ē
e <Ce

bwt (5.14)
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Constraint (5.15) indicates if the instance i ∈ Ns
inst of the service s ∈ Nvn f migarted

from the node n ∈ N.

∀n ∈ N,∀s ∈ Nvn f ,∀i ∈ Ns
inst : χ

i?
n −χ

i
n− Ii

n ≤ 0 (5.15)

The processing time T i
proc(n) of the ith instance of service s on the node n is computed

by constraint (5.16) considering the aggregated data to be processed by that service

instance, while constraint (5.17) ensures that if the UE u uses that VNF instance

(χ i
u,n = 1) then the VNF processing time T i

proc(u,n) = T i
proc(n) is taken into account.

∀n ∈ N,∀s ∈ Nvn f ,∀i ∈ Ns
inst : ∑

u∈N̄ue

ωu
bwt

Ci
proc(n)

χ
i
u,n−T i

proc(n) = 0 (5.16)

∀n ∈ N,∀u ∈ N̄ue,∀s ∈ Nvn f ,∀i ∈ Ns
inst :

µχ
i
u,n +T i

proc(n)−T i
proc(u,n)≤ µ

(5.17)

A similar approach is adopted by constraint (5.18) to compute the transmission time

T e
tx over the substrate link e, while constraint (5.19) handles the accurate transmission

time computation over the virtual link ē.

∀e ∈ E : ∑
u∈N̄ue

∑
ē∈Ēu

ωu
bwt

Ce
bwt

χ
u,ē
e −T e

tx = 0 (5.18)

∀e ∈ E,∀ē ∈ Ē,∀u ∈ N̄ue : µ ∗χ
u,ē
e +T e

tx−T u,ē
tx (e)≤ µ (5.19)

Constraint (5.20) ensures that there is a continues path between the UE u ∈ N̄ue

and the instance i ∈ Ns
inst of the service s ∈ N̄vn f .

∀m,n ∈ N,∀ē ∈ Ē,∀u ∈ N̄ue :

∑
e∈En→

χ
e(n,m)

e − ∑
e∈E→n

χ
e(n,m)

e =


−1 if i = n

1 if i = m

0 otherwise

(5.20)

where En→ represents the links originating from node n ∈ N, while E→n represents

all the links entering node n ∈ N.
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TABLE 5.3: Binary and continuous decision variables.

Variables Description
χu

g Indicates if UE u ∈ N̄ue is associated to gNB g ∈ Ngnb.

χ i
n

Indicates if instances i ∈ Ns
inst of service s ∈ Nvn f is running on node

n ∈ N.

χ i?
n

A parameter which shows the previous assignment of instance i ∈
Ns

inst of service s ∈ Nvn f on node n ∈ N.

χ i
u,n

Indicates if instances i ∈ Ns
inst of service s ∈ Nvn f is running on node

n ∈ N and assigned to UE u ∈ N̄ue.

χ
u,ē
e

Indicates if the virtual link ē ∈ Ē belonging to the request by UE
u ∈ N̄ue is mapped on the substrate link e ∈ E.

Ii
n

If a migration has taken place for the instance i ∈ Ns
inst of service

s ∈ Nvn f on node n ∈ N.

T i
proc(n)

Processing time of instance i ∈ Ns
inst of service s ∈ Nvn f on node

n ∈ N.

T i
proc(u,n)

Processing time of instance i∈Ns
inst of service s∈Nvn f on node n∈N

for UE u ∈ N̄ue.
T e

tx Transmission time over link e ∈ E.

T u,ē
tx (e) Transmission time over link e ∈ E for virtual link ē ∈ Ē.

The delay of a service s ∈ Nvn f is computed from the time the request is issued

until the time the requested data is received by the UE. We consider the propagation

delay, transmission delay, and the VNF computing delay for each UE u ∈ N̄ue. Both

the air interface delay and the transport link delay are taken into account in the

calculation of the propagation and transmission delay. Constraint (5.21) guarantees

that the aggregated delay does not exceed the maximum delay budget defined for the

UE u:

∀u ∈ Nue : ∑
n∈N

∑
s∈Nvn f

∑
i∈Ns

inst

T i
proc(u,n)

+ ∑
e∈E

T u,ē
tx,prp(e)+ ∑

g∈Ngnb

T u
tx,prp(g)≤ T u

max

(5.21)

5.3.2 Heuristic

Although the MILP model achieves the optimal solution in all the scenarios, it be-

comes computationally intractable with the increase in the network size. Therefore,

to combat the scalability issue of the MILP model, this section presents a heuristic
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Algorithm 2: MigH

Input: (G, Ḡ)
Output: UEs association, VNF placement and resource allocation;

1 Phase 1: Find the candidate gNBs;
2 for u ∈ N̄ue do
3 cand_gnb(u)← /0;
4 for g ∈ Ngnb do
5 ω

u,g
prb← calcPRB(u,g);

6 if ω
g
prb ≥ ω

u,g
prb and Cu

g ≥ ωu
bwt then

7 cand_gnb(u)← g;

8 Phase 2: Find the highest priority gNB and computing server for each
UE and then allocate the resources;

9 for u ∈ N̄ue do
10 for i ∈ Ns(u)

inst do
11 for n ∈ N do
12 serverPriority[u, i,n]← calcPriority(u, i,n);

13 f lag← False;
14 • Sort the cand_gnb(u) in ascending order according to the # of PRBs;
15 for g ∈ cand_gnb(u) do
16 for i,n ∈ serverPriority[u, i,n] ↓ do
17 T i

proc(u,n)← calcProcDelay(u, i,n);
18 T u,ē

tx,prp(g,n)← calcLinkDelay(u, ē,g,n);
19 T u

tx,prp(g)← calcAirDelay(u,g);
20 Ttot ← T i

proc(u,n)+T u,ē
tx,prp(g,n)+T u

tx,prp(g);
21 if Ttot ≤ T u

max then
22 f lag← True;
23 break;

24 if f lag is True then
25 • Allocate path Pg,n;
26 • Allocate and update network resources;
27 break;

28 Phase 3: Resource usage optimization and migration control;
29 for n ∈ N do
30 for i ∈ Ns(u)

inst do
31 for m ∈ N do
32 if i is mapped on m and n then
33 if Ttot ≤ T u

max and Ni,m
ue +Ni,n

ue ≤Ci
ue(n) then

34 for u ∈ maped(i→ n) do
35 •Migrate UEs to the VNF on node m;
36 • Allocate and update network resources;



5.3. Proposed Methods 61

algorithm, as shown in the algorithm (2), that aims at reaching a near-optimal solution

for the problem in a considerably shorter time.

Similar to the MigM algorithm, the objective of the proposed heuristic algorithm

is to minimize the number of users affected by VNF migration. The algorithm is

divided into three phases. The first phase aims at finding the list of the candidate

gNBs cand_gnb(u) for each UE u. A gNB g is considered to be a candidate for the

UE u only if that gNB has the required amount of PRBs ω
u,g
prb computed by formula

(5.3) and higher air interface capacity computed by formula (5.2) in order to support

the data rate demand of the UE u. This phase of the algorithm is of order O(mn), in

which m is the number of UEs and n is the number of gNBs.

The second phase of the algorithm attempts to find the highest priority gNBs and

computing server for each request and allocate enough resources to accommodate

the UE. As the first step, a 3D matrix (serverPriority[u, i,n]) is used to store each

computing server’s priority for hosting the requested service. The matrix is populated

by a function called calcPriority(u, i,n) that gives a score to each combination of

UE, VNF instance, and node. The logic behind the calcPriority(u, i,n) function is to

prioritize placing VNFs at the same node compared to the previous run and associate

the UEs to the same VNFs as before unless the UE requirement cannot be fulfilled

with the current allocation. The function computes the priority of embedding the

requested service type with different instances on different nodes for each of the

given UEs. Many parameters are involved in calculating the priority of embedding

a VNF instance on a node for a specific UE. When a UE was assigned to a VNF

instance on a specific node in the previous run, the same assignment will get the

highest priority — if not, assigning the UE to an instance of the same VNF type

embedded in the previous run, which did not serve the UE get the highest priority.

Next, if in the current run a VNF is embedded, the aim will be to reuse the same VNF

instance for the other UE in the same batch that asks for the same service type. The

last priority is to embed the requested service type on a node with the highest resource

capacity. It is worth noting that the number of CPU resources needed for VNF

instantiation and the amount of bandwidth required on the links are considered in

the priority calculation process for all the cases. The next step is to sort the candidate

gNBs for each UE in an ascending order based on the number of PRBs required to

associate the UE to the corresponding gNB. After that, for each candidate gNB, the

algorithm loops over all the servers, starting from the one with the highest priority.

The VNF processing delay on the node, transmission, and propagation delay over

the transport link and air interface are computed in each run. If the overall delay

of a placement solution is lower than the maximum delay tolerance of the UE, it
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TABLE 5.4: Service requirements.

Service type E2E delay tolerance Data rate requirement

Autonomous cars ≤ 50ms ≥ 1Mbps

Video streaming ≤ 400ms ≥ 5Mbps

Smart homes ≤ 300ms ≥ 3Mbps

Robotic ≤ 150ms ≥ 1Mbps

will be considered as the best solution and break the loop to allocate the required

resources to the request. This process is repeated until all the requests are embedded

on the substrate network. As noted, finding a proper placement and allocation is the

dominant procedure in the second phase; in this regards, the time complexity of this

phase is of order O(mnkp), k is the number of VNF instances, and p is the number

of nodes.

During the embedding process, we might encounter a situation in which many

VNFs are embedded in the very first runs but just a few UEs associated with them.

It happens due to the fact that with the arrival of new batches, UEs cannot be ac-

commodated on the previous VNF instances due to latency violation, and new VNF

instances will be instantiated for the newly arrived requests. In this regard, the third

phase of the algorithm tries to remove the old VNFs with few UEs attached to them

and re-associate the UEs with the recently deployed VNF instances. This procedure

takes place in order to avoid over-utilization of CPU resources. This procedure

might trigger a VNF migration on the condition that the delay requirement of all

the UEs being served from that VNF as well as the new UEs that are expected to

be associated with that VNF instance is fulfilled, and the total number of these UEs

(Ni,m
ue +Ni,n

ue ) does not increase the maximum number of UEs Ci
ue(n) allowed for this

VNF instance. During the migration process, VNF instances with less number of UEs

will be preferred for migration. As a consequence, this will result in the minimization

of the number of UEs affected by the VNF migration. This will be followed by the

allocation and update of the network resources. It is worth mentioning that, in order

to ensure the correctness of the solutions, we pass all the solutions found by the

heuristic trough the same constraints defined for the MigM formulation defined in

Section 5.3.1. The time complexity of this phase is of order O(mnkp), since it needs

to go over all the UEs, gNBs, VNF instance, and computing nodes. Overall, the

complexity of the algorithm is O(c1mn+ c2mnkp+ c3mnkp), where c is a constant

and negligible. Therefore, the complexity of the algorithm is of the order O(mnkp).
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5.4 Performance Evaluation

The goal of this section is to compare the presented MILP-based and heuristic al-

gorithms. We shall first describe the simulation setup used in our study. We will

then discuss the outcomes of the numerical simulations carried out in Python using

Gurobi mathematical optimization solver [15].

5.4.1 Simulation Environment

The mobile network considered in this work is composed of 6 nodes, out of which

one is a cloud server, one is a core server, and the rest are gNBs, referred to as edge

nodes. All of the edge nodes and the core node have a collocated MEC server. The

cloud server is connected to the core server via a 2.5 Gbps backhaul link; whereas, the

edge nodes are connected to the core server via 700 Mbps FH links. The edge nodes,

the core, and the cloud have, respectively, 2, 6, and 30 CPU cores, each of which

has a 3.4 GHz clock rate. The capacity of a VNF instance depends on the number of

allocated CPU cores. We assume that at least a single CPU core is required in order to

spawn/instantiate a VNF. The maximum number of UEs that can use the same VNF

depends on the number of CPU cores allocated to that VNF, and it is assumed that a

single CPU core can be used by 5 UEs at most. Thus, once a VNF is instantiated on a

node, it can be used by a certain number of UEs under the condition of not violating

the E2E latency of the UEs connected to the VNF instance.

Every minute, which is considered a single time slot, a new batch arrives com-

posed of 5 UEs, each of which is making a service request. For the sake of simplicity,

each service type is treated as a single VNF. Upon receiving the service requests, the

algorithms try to associate the UEs to the gNBs, place the VNFs on the computing

servers, and allocate enough resources to the spawned VNF. We consider 18 batches

of service requests (90 UEs in total) due to the scalability issue of the MILP-based

algorithms. We assume that 8 types of VNFs exist, each of which belongs to one

of the three service classes identified by their data rate and E2E delay tolerance

(strict, medium, and loose) requirement. Specifically, the data rate and the E2E delay

tolerance are selected, respectively, from the range of [Tmax <= 50;51 <= Tmax <=

200;201 <= Tmax <= 500] ms and [1−2;3−5;6−12] Mbps for the aforementioned

service classes. Examples of the services together with their E2E delay tolerance and

data rate requirements are given in Table 5.4. If the UE association and his service

request is accepted, the service provider has to guarantee that the required data rate

and the E2E delay tolerance are always satisfied.
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FIGURE 5.2: CPU utilization of edge, core and cloud nodes.

For the sake of simplicity, for both downlink and uplink, the data size and data

rate are considered to be the same. Although the Transmission Time Interval (TTI)

can be dynamically tuned in 5G networks, we consider Ttx = 1ms as fixed TTI.

The transmission time and processing time for each UE are computed considering

all other UEs mapped, respectively, on the same fronthaul/backhaul link and VNF.

Specifically, Ttx for the UEs using the same fronthaul or backhaul link at the consid-

ered moment is obtained by dividing the aggregated data size by the respective link

rate. As for the processing time T i
proc of a service/VNF, it is obtained by dividing

the aggregated data demand on the VNF by the processing capacity of that VNF,

which is the product of the number of CPU cores allocated to that VNF instance,

clock rate of each CPU edge nodes the number of CPU cycles required to process

one bit of information.

5.4.2 Simulation Results

The reported results are the average of 5 simulations with 95% confidence intervals.

During each simulation, the algorithms try to sequentially associate to the network

and embed the service requests of up to 90 UEs, whose requests arrive in batches

each composed of 5 UEs. It is important to mention that all the algorithms employ

a dynamic embedding strategy, that is, with the arrival of a new service request, the

request along with the ones that have been previously embedded are re-embedded.

Thus, with every embedding, the optimal embedding solution is found for all the

UEs’ requests.

CPU Utilization. As previously mentioned, a single CPU core can be used by

a maximum of five UEs. Consequently, the number of UEs that can use the same

VNF instance depends on its capacity in terms of the number of CPUs. Therefore,

the CPU utilization of a node is the ratio between the number of UEs using the VNFs
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deployed on that node and the total number of UEs that can use this node, which is

the multiplication of the number of the CPU cores of the node and the number of

UEs that can use the same CPU core.

Figure 5.2 shows the CPU utilization on all the computing nodes for a single

simulation run. Figure 5.2a depicts CPU utilization of the edges as a function of

the number of UEs for all the algorithms. As can be inferred, the LinkM algorithm

begins the process of VNF placement by utilizing edge resources. This stems from

the fact that the LinkM algorithm aims at minimizing the transport network utiliza-

tion, which is achieved by embedding the service requests at the edge servers, as

close to the UEs as possible. Due to the scarcity of the processing resources at the

edge, however, LinkM shortly runs out of the edge resources and starts utilizing the

core resources, as shown in Fig. 5.2b. For what concerns the cloud resources (see

Fig. 5.2c), we can observe that LinkM starts embedding VNFs in the cloud when 75

UEs are making a service request, achieving the lowest CPU utilization.

A reverse trend can be observed for the CostM objective in terms of CPU uti-

lization at the computing nodes. Specifically, it can be observed that CostM tends

to instantiate the VNFs starting from the core. This is due to significantly more

processing resource availability at the cloud, compared to the edge and the core,

which makes the total embedding cost much cheaper, regardless of the extra transport

resource consumption. As expected, for the same reason, the CPU utilization at both

edge and core is the smallest in most cases compared to the ones achieved by the rest

of the algorithms.

As for the MILP-based and heuristic algorithms (i.e., MigM, MigH), their CPU

utilization at the edge and the cloud lies somewhere in between the ones achieved

by CostM and LinkM, while it somewhat resembles to the CPU utilization of these al-

gorithms at the core. More specifically, we can observe that up to 45 UEs, both MigM

and MigH perform similar to CostM since also they start instantiating VNFs from the

cloud. When the number of UEs increases, however, it increases the transmission

time over the FH/BH links (Ttx), which, in turn, results in the forthcoming requests

being embedded on the core and the edges in order to avoid triggering VNF migra-

tions. This is justified by the fact that the migration objectives strive to minimize the

impact of VNF migration on UEs’ QoE.

Number of VNFs. VNF instantiation requires computing resources, which

incurs higher management costs on the network. In order to get an insight into how

are the VNFs distributed across the computing nodes, let us analyze Fig. 5.3, which

shows the result of a single simulation run. We can observe that after the second
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FIGURE 5.3: Number of VNF instance at edge, core and cloud nodes.

batch embedding (10 UEs), LinkM runs out of computing resources at the edges,

employing all of their CPU cores. Although this means that the edges can no longer

host new VNF instances, it does not restrict the UEs to use the VNF instances already

available on the edges and, therefore, increase their utilization, as shown in Fig. 5.2a.

Similarly, LinkM saturates also the CPU cores of the core node by instantiating 6

VNFs when there are 45 UEs making network association and service request; while,

as expected, it utilizes a small portion of the cloud node by ultimately instantiating

10 VNFs (see Fig. 5.3c).

Regarding the CostM algorithm, it is interesting to note that, even though it

achieves the least amount of CPU utilization at the core node up to 80 UEs (see

Fig. 5.2b), it instantiates more VNFs at the core up to 55 UEs compared to both of the

migration algorithms (MigM, MigH), as displayed in Fig. 5.3b. In essence, this means

that the VNFs instantiated by MigM and MigH on the core node, although fewer,

are utilized by more UEs. For what concerns to the number of VNFs instantiated

by CostM on the edges and cloud, plotted, respectively, in Fig. 5.3a and Fig. 5.3c,

they follow the same pattern of the CPU utilization at their corresponding nodes.

As for the MILP-based and heuristic migration algorithms, their performances

resemble each other, especially at the cloud. In general, it can be observed that MigM

and MigH utilize the VNF instances more efficiently compared to the rest of the algo-

rithms since with the same number of VNFs, they achieve a higher CPU utilization

in most of the cases. This is a consequence of the fact that MigM and MigH strives to

minimize the number of VNF migrations and their effect onto the UEs’ QoS, leading

to their higher utilization. As for the fluctuating behavior of the algorithms in Fig. 5.2

and Fig. 5.3a, it is due to the VNF migrations, which will be analyzed in Fig. 5.5.

As stated before, the more CPU cores are assigned to a VNF instance, the more

is its processing capacity, resulting in faster execution of UEs’ tasks; nonetheless,

the much more is also its instantiation cost. While Fig. 5.3 shows the total number

of VNF instances across the edges, the core, and the cloud, it does not show the
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capacity of those VNFs. In order to have a better understanding of how the CPU cores

of the computing nodes are allocated to the VNF instances, and how many VNFs

with different capacities are instantiated on the edges, the core, and the cloud, let us

analyze Fig. 5.4. It can be observed that after all embeddings only 1-CPU-core VNFs

are instantiated on the edge nodes. This is due to the fact that the computational

capacity of the edge nodes is very limited in comparison with the core and cloud

nodes. Therefore, the algorithms prefer to instantiate more VNF types on the edges

in order to meet the E2E latency requirement of the UEs with various service/VNF

request rather than to instantiate a few of them with more computational capacity.

For the same reason, similar behavior can be observed for the core (only MigH

instantiates 2-CPU-core VNFs), which has significantly less computing capacity

compared to the cloud. Moreover, the core is far closer to the UEs since it requires

no BH resources, curtailing the E2E latency experienced by the UEs. As for the

cloud node, we can observe that all the algorithms instantiate 2-CPU-core VNFs,

while MigM and MigH instantiate also 3-CPU-core VNFs. The rationale behind this

behavior is that the cloud node has plenty of CPU cores, which make the VNF

instantiation much cheaper. As expected, among all the algorithms, the highest

number of VNFs with different capacities is instantiated by CostM since, as opposed

to the rest of the algorithms, it always prefers to embed the VNFs at the cloud as long

as all of its constraints are satisfied.

Number of VNF migrations and their effect on users. The migration of

VNFs can have a severe effect on the overall performance of the network and the

UEs. For instance, a VNF migration may degrade its UEs’ QoS possibly resulting in
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their service interruption. While Fig. 5.3 shows how many VNFs are embedded at

the computing nodes, it does not show the VNFs that migrate across the computing

nodes. In order to see when and from which computing node the VNF migrations

take place, let us analyze the cumulative number of VNF migrations taken from a

single simulation run displayed in Fig. 5.5.

As shown in Fig. 5.5a, VNF migration from the edge starts shortly after em-

bedding a few batches of requests by the LinkM algorithm that, regardless of the

requested service type, tries to embed the VNFs at the edge to minimize the transport

network utilization. When the edges are no longer able to accommodate more VNFs

due to scarce CPU cores, it starts migrating those VNFs from the edge that do not

have strict E2E latency requirements. From the edge node, these VNF migrations

take place either to host a newly arriving service request that has a strict latency

requirement, or to increase the capacity of the migrated VNF by allocating more

CPU cores aiming at serving more UEs and satisfy their E2E latency requirements.

For the same reason, LinkM is the first algorithm that starts migrating VNFs from the

core (see Fig. 5.5b), while, as expected, the VNF migrations from the cloud for LinkM

is triggered much later (see Fig. 5.5c).

An opposite behavior is observed from CostM across all the computing nodes,

which due to its objective function, starts VNF instantiation from the cloud. Once

the number of UEs that are served from the VNFs instantiated in the cloud increases,

it increases the utilization of the FH and BH links, which in turn, increases the

transmission time over those links. As a consequence, with the arrival of more UEs’

service requests, this may result in the E2E latency constraint violation especially for

those UEs that have a strict latency demand, unless some of the VNFs are migrated

from the cloud. As expected, only a few VNF migrations are induced from the edge

for CostM.

For what concerns the MILP-based and heuristic migration algorithms, thanks

to the fact that they aim at minimizing the number of VNF migrations and their

effect onto the UEs QoS, they exhibit similar performance. Specifically, they trigger

no VNF migration from the edge and only a few VNF migrations from the core and

the cloud.

As already mentioned, each VNF migration may affect the UEs that are using

that VNF. In order to get an insight into how many UEs are affected due to the VNF

migrations, let us analyze Fig. 5.6. It can be observed that the number of UEs affected

by the VNF migrations closely follows the same pattern of the VNF migrations at all

the computing nodes (edges, core, and cloud) shown in Fig. 5.5. This is because
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FIGURE 5.5: Cumulative number of VNF migration from edge, core,
and cloud.
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FIGURE 5.6: Cumulative number of UEs affected by VNF migration
from edge, core, and cloud.

there is a direct relationship between the number of VNF migrations and the number

of UEs affected by those VNF migrations. The more are the migrated VNFs, the

more are the UEs affected by those VNF migrations. Thus, CostM, LinkM, and MigM

along with LinkH affect, respectively, the most, less and the least number of UEs.

Link utilization. Figure 5.7a and Fig. 5.7b illustrate, respectively, the FH and

BH link utilization as a function of the number of UEs for a single simulation run. We

can observe that CostM and LinkM achieve, respectively, the highest and the lowest

FH and BH link utilization. This is justified by the fact that CostM tends to utilize
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execution time.



70 Chapter 5. Latency-Aware User Association and SFC Placement

the cloud node resources as long as it does not violate the E2E latency constraints

imposed by the service requests, therefore consuming also FH and BH link resources.

Conversely, LinkM aims at minimizing the transport network consumption in the net-

work, therefore achieving the lowest FH and BH link utilization. For what concerns

the migration algorithms, they experience FH and BH utilization which is close to

the one’s of CostM algorithm when there are around 50 service requests; whereas, it

resembles more to LinkM when the number of requests increases.

Execution time. The main intention of the proposed heuristic algorithm is to

combat the scalability issue of the MILP-based algorithms, which become com-

putationally intractable when large substrate networks and more complex service

requests composed of multiple VNFs are considered. The results given in Fig.

5.7c demonstrate the substantial improvement of the heuristic algorithm compared

to its MILP-based counterparts in terms of execution time. Although the heuris-

tic, due to its sub-optimal mapping solutions, performs poorer in terms of CPU

utilization, the number of VNF migrations, and the number of affected UEs by

migration, it proves to be competitive and also applicable to extensive size networks

in real-world scenarios.

Figure 5.7c depicts the execution time of all the algorithms. It is obvious that

the CostM has much longer execution time compared to the other algorithms, which

is due to the more parameters involved in the objective function. Moreover, the

execution time of the MigM is higher than the LinkM. On the other hand, the execution

time of the heuristic algorithm is much smaller, and it can reach a near-optimal

solution in a matter of seconds.

5.5 Discussion

This chapter compared three strategies for solving a joint user association, SFC

placement, and resource allocation problem in MEC-enabled 5G networks. Based

on the reported results, we can conclude that LinkM, although saved the transport

network resources and, therefore, is suitable to be used in the network segment that

lacks the transport network capacity, and for the services that have a stringent latency

requirement, triggered the highest number of VNF migrations from the edge nodes

and the core node, thereby affecting the QoS for most of the UEs. CostM instead is

more appropriate to be used for the services that are latency tolerant and in the parts

of the network that have sufficiently high transport network capacity since it aims

at minimizing the service provisioning cost by instantiating VNF starting from the
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cloud node. Nonetheless, like LinkM, CostM yielded a significantly high number of

VNF migrations especially from the cloud node, degrading the QoS for many UEs.

As for MigM, it demonstrated to achieve better performance across all evaluation

metrics compared to LinkM and CostM algorithms, which are two extremes in terms

of employing the edge resources and the transport network resources. Thus, MigM

found a better trade-off between the computational capacity of the computing nodes

and the FH/BH bandwidth, resulting in a negligible number of VNF migrations.

Finally, at the expense of suboptimal UE association and SFC placement compared to

its MILP-based counterpart, MigH demonstrated the fastest execution time, making

it suitable for larger-scale problems.
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Chapter 6

User Association and SFC Lifecycle
Management

This chapter studies the problem of a joint user association, service functions chain

placement, and VNF scaling with a particular emphasis on analyzing the trade-offs

between the VNF scaling strategies. Specifically, we compare vertical, horizontal,

and hybrid VNF scaling strategies by formulating an ILP problem that minimizes

the service provisioning cost for the MNOs, while satisfying users’ data rate re-

quirements. The users’ service requests are represented as SFCs composed of the

end-to-end mobile network components (e.g., gNBs, 5G core network VNFs, and

application VNFs). Finally, we devise a heuristic algorithm to tackle the scalability

issue of the ILP-based approach.

6.1 Overview

The rapid change in the mobile data traffic demand calls for efficient approaches to

dynamically adjust the mobile network’s capacity according to the demand. MNOs

shall increase/decrease the capacity of both the 5G core network and application

VNFs upon the need, ensuring optimal resource utilization and lowering the service

provisioning cost. This is where the vertical, horizontal, and hybrid VNF scaling

strategies come into play. While the vertical VNF scaling implies that the existing

VNF is resized upon the need, adding/removing computational, memory, or storage

resources, in the case of the horizontal VNF scaling, another instance of the same

VNF is spawned/terminated. Although horizontal scaling ensures high scalability

and reliability of the service, it suffers from increased resource consumption and state
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1 x vCPU
1GB x vMEM

Vertical Scaling
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Horizontal Scaling

VNF x 2

1 x vCPU
1GB x vMEM

VNF x 3

1 x vCPU
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VNF x 1

1 x vCPU
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Hybrid Scaling

VNF x 2

1 x vCPU
1GB x vMEM

VNF x 2

2 x vCPU
2GB x vMEM

FIGURE 6.1: Horizontal, vertical, and hybrid VNF scaling.

migration challenges. On the other hand, while vertical scaling provides higher uti-

lization of resources, thereby creating resource-optimized VNFs, its lower scalability

and inability to change the VNF host significantly affect its practical implementation.

Since both scaling strategies have their pros and cons, applying only vertical or

horizontal scaling strategy cannot perform well in all the scenarios. This is why

it is important to consider the so-called hybrid VNF scaling strategy, in which it is

possible to perform either vertical or horizontal VNF scaling depending upon the

need. However, it is a non-trivial task to decide which type of scaling to perform for

a specific VNF since there is a number of parameters (e.g., the VNF type, its resource

requirements) to take into account.

After performing VNF scaling, the placement of the VNF is another challenge

that requires careful considerations. On the one hand, the interconnections between

VNFs composing an SFC must be taken into account in order to make an optimal

placement decision. On the other hand, the resource scarcity of the MEC servers

at the network edges (e.g., collocated with gNBs) must be considered in order to

efficiently utilize the network resources while at the same time satisfying the QoS

requirement of the requested applications/services.

6.2 VNF Scaling Strategies

Since the main focus of our paper is on the VNF scaling problem, we shall first intro-

duce the VNF scaling strategies studied in our work. The topmost figure of Fig. 6.1

illustrates the horizontal VNF scaling strategy. It is assumed that an autoscaling

group is defined with a minimum and maximum number of VNF instances, and that

there is a VNF template (i.e., VNF descriptor) with specific resource requirements

that is used to spawn VNF instances. In case of a scale-out operation, one or multiple

instances of the same VNF are deployed with identical resource flavor, using the pre-

defined VNF template, while in the case of a scale in operation, one or more of the

available VNF instances are terminated.
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In the case of a horizontal VNF scaling, it is also assumed that the new VNF in-

stance is preferably deployed on a different node, thus, guaranteeing high availability

of the VNF/service, which is one of the prominent advantages of this VNF scaling

strategy. Another advantage of the horizontal VNF scaling is its scalability, which is

achieved due to small resource footprint of the VNFs.

The middle figure in Fig. 6.1 displays the vertical VNF scaling strategy. This

type of VNF scaling implies that there is no change in the number of VNFs, while the

current VNF is resized adding/curtailing certain resources (e.g, CPU, MEM, or both)

in case of VNF scale up/down operation. In order to guarantee service continuity of

the VNF, it is assumed that the VNF is terminated only after deploying its resized

instance. The downside of the approach, however, is that it requires availability

of resources on the host node even during the scale-down operation of the VNF,

as opposes to the scale-in operation in the horizontal VNF scaling strategy. The

vaunted benefits of the vertical VNF scaling include enabling the creation of a CPU-

optimized or MEM-optimized VNF; that is, if only more CPU is required for a VNF,

for example, then a new (i.e., resized) VNF instance could be spawned with more

CPU resources, while leaving the MEM resource the same. This is in contrast to the

horizontal VNF scaling strategy, which would just instantiate another VNF allocating

both CPU and MEM resources even without the need for an extra MEM resource.

While the vertical VNF scaling is significantly less scalable, it is a better strategy

in terms of data consistency than its horizontal counterpart. This is because the

resized VNF instances are preferably placed on the same host node exempting the

need for the VNF/application state transfer from one node to another in case the

considered VNF is stateful. For more details on the characteristics of these VNF

scaling strategies, we refer the reader to [108].

As mentioned above, both the vertical and horizontal VNF scaling strategies

have pros and cons. Each of these strategies perform better in a specific scenario.

Therefore, more benefits can be reaped by using the hybrid VNF scaling strategy

shown on the right-hand side of Fig. 6.1. This strategy incorporates both vertical and

horizontal VNF scaling approaches, thereby enabling selection of the most appropri-

ate approach for a VNF while considering a number of parameters such as the VNF

type, its resource utilization and the QoS requirements, etc.
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FIGURE 6.2: Physical architecture of the mobile network.

6.3 Problem Statement

The physical architecture of the mobile network considered in this study is composed

of a 5G Core (5GC) and 5G Edges (5GEs), with the latter encompassing a gNB,

as shown in Fig. 6.2. The 5GC is connected to the 5GEs by means of backhaul

links. While both the 5GC and the 5GEs have deployed NFVI, the one of the 5GC

possesses significantly more computational (vCPU) and Memory (vMEM) resources

compared to that of 5GEs. By virtualizing the underlying hardware resources, NFVIs

are capable of hosting VNFs etsi2013gs. It is assumed that each NFVI has already

hosted MEC server as a VNF, which in turn is capable of hosting UE requested

application VNFs [109]. Apart from the MEC server, the NFVIs can also host 5GC

NFs such as UPF and Control Plane Function (CPF) as detailed in the subsequent

section, which are also deployed as VNFs.

The mobile network’s logical architecture is composed of gNBs, 5GC VNFs,

and various application VNFs, as depicted in Fig. 6.3a. It is worth to mention that,

thanks to NFVI and MEC servers, the logical mobile network can be mapped to

either only a 5GE node or a composition of 5GE and 5GC nodes in the physical

mobile network architecture depicted in Fig. 6.2. The 5GC VNFs are grouped into

Stateful Functions (STFs), CPFs, and a UPF. While for the sake of simplicity, it

is assumed that STFs and CPFs can be deployed as single VNFs, they consist of

multiple stateful and control plane functions, respectively. For instance, the STFs in



6.3. Problem Statement 77

gNB

CPF

UPF

STF

App 1

App N

(A) Logical network architecture.

   Operator's Perspective

gNB

CPF

UPF

STF

App X

UE

   User's Perspective

App XUE

(B) UE request.

FIGURE 6.3: Logical mobile network architecture and UE request.

the SBA are composed of Network Repository Function (NRF), Unstructured Data

Storage Function (USDF), and Unified Data Repository (UDR), while the CPFs

contain network functions such as access and AMF, and SMF. STFs store UEs’

subscription data, dynamic state data, application data, as well as the profiles of

different NF instances. CPFs instead handle all the control plane signaling between

the NFs and the UEs, performing authentication, session, and mobility management

for the UEs. The UPF, on the other hand, is in charge of routing and forwarding

the packets received either by the UEs through the gNBs in the uplink direction or

by the applications deployed on the MEC servers in the downlink direction. Note

that there may be multiple applications running on the MEC server, which can be

accessed through the UPF as per ETSI [104]. For more information on 5G SBA and

the functionalities of its NFs, we refer the reader to [110].

In Fig. 6.4 we show the message sequence diagram that illustrates a simpli-

fied call setup procedure and interactions between different SFC components (i.e.,

gNBs, CPFs, STFs, UPFs, and APPs). The procedure is initiated by a single UE,

with a request being transmitted over a wireless channel to the gNB. Firstly, the

user authentication starts with a gNB generating a request for a CPF, which further

cooperates with an STF in order to store and handle user subscription data. Secondly,

the gNogNB sends a session request to the CPF, which selects a corresponding UPF

VNF. As UPF plays a pivotal role in data transfer, it is then used to interconnect the

gNB and the application, thereby transferring the data between these two entities.

It is possible to deploy various applications on the mobile network in order

to serve the requests of the UEs. While from the UE perspective, the application

request is quite simple, it is more complex from the MNOs’ perspective, as Fig. 6.3b

illustrates in the upper and the lower parts, respectively. This is because in order to set

up a network communication for a UE, regardless of the kind of the procedure the UE

performs (e.g., attachment, handover, etc.), the UE has to be associated with a gNB,

which, in turn, should establish a data plane and a control plane communication with
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FIGURE 6.4: Sequence diagram of the UE request (to update it with
regards to different types of UEs (i.e., data, voice)).

their respective UPF and CPFs, and access UE-related subscription/state information

from STFs. Hence, the requests of the UEs are represented as SFCs encompassing

the components of the end-to-end mobile network, as illustrated in Fig. 6.3b.

The optimal placement of these SFCs depends on various factors, including the

resource availability, their cost, and QoS requirements of the requested service, such

as the date rate and the E2E latency. While the E2E latency demand of an SFC plays

a major role in the placement decision of the SFC, it is not considered in this work

since the main focus of this study is on the VNF scaling strategy. For a detailed

consideration of the SFC placement with an E2E latency requirement, we refer the

reader to our previous study [111]. The problem of joint UEs’ association, SFC

placement, and VNF scaling can be stated as follows:

Given: a 5G mobile network with i) each node (e.g., 5GEs, 5GC) having a

certain amount of vCPU and vMEM resources, ii) the transport network with the

capacity of the backhaul links, and iii) a number of UEs making application requests

with specific data rate demand.

Find: association of the UEs, the placement of the application SFCs, as well as

the appropriate VNF scaling, if needed.
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TABLE 6.1: Mobile network parameters.

Parameter Description

Gnet Mobile network graph.
Nnet Set of nodes/DCs in Gnet .
N5gc The 5GC in Gnet .
N5ge Set of 5GEs in Gnet .
Ngnb Set of gNBs, one per 5GE in Gnet .
Nup f ,c f p Set of user plane and control plane function VNFs.
Nst f ,app Set of stateful function and application VNFs.
Nvn f Set of all VNFs, Nvn f = Nup f ∪Ncp f ∪Nst f ∪Napp.
Nv

f lv Flavours of the VNF v, Nv
f lv = Nv

v− f lv∪Nv
h− f lv.

Enet Set of backhaul links in Gnet .
ωprb(g) PRB resources of gNB g n.
ωc,m(n) Computational and memory resources of the node n.
ω

vn f
c,m ( f ) Computational and memory resources of the flavour f ∈ Nv

f lv of
the VNF v ∈ Nvn f .

ω
up f ,app
t ( f ) Throughput of flavour f ∈ Nup f ,app

f lv of UPF and application VNF.

ω
cp f
e ( f ) Number of events supported by CPF flavour f ∈ Ncp f

f lv .

ω
st f
q ( f ) Number of queries supported by STF flavour f ∈ Nst f

f lv .

ωb(enm) Capacity of the link enm ∈ Enet .
loc(n) Geographical location of the node n ∈ Nnet .
δ (g) Coverage radius of the gNB g ∈ Ngnb (in meters).

Objective: minimize the MNO’s service provisioning cost.

Note that the mobile network/infrastructure provider is assumed to be the same

entity providing the applications/services implemented by the SFCs. The proposed

optimization approach, however, can be easily adapted to consider also the case in

which these entities are different.

6.4 Proposed Methods

Mobile Network Model. Let Gnet = (Nnet ,Enet) be an undirected graph modelling

the physical architecture of the mobile network, where Nnet =N5ge∪N5gc is the union

of the set of 5GEs and a 5GC. There is a one-to-one mapping between a 5GE and

a gNB, and it is assumed that the gNBs have sufficient amount of PRBs in order
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TABLE 6.2: UE request parameters.

Parameter Description

Greq UE request graph.
Nue Set of UEs in Greq.
Nue

vn f Set of VNFs in Greq.

Nue
app(u) Application VNF requested by UE u ∈ Nue.

ωue
d (u) Data rate requested by UE u ∈ Nue.

ωue
prb(u) Number of PRBs needed to satisfy ωue

d (u).

ωue
e (u) Number of events generated by UE u ∈ Nue.

ωue
q (u) Number of queries generated by UE u ∈ Nue.

Ereq,Ereq(u) Set of all virtual links, and that of the UE u ∈ Nue.

to meet the data rate demand of the services requested by the UEs. Each network

node n ∈ Nnet has a certain amount of vCPU ωc(n) and vMEM ωm(n) resource.

Additionally, each node n ∈ Nnet is associated with a geographic location loc(n), as

x, y coordinates while each gNB g ∈ Ngnb is also associated with a coverage radius

of δ (g), in meters. Enet is the set of backhaul links interconnecting the 5GEs with

the 5GC. An edge enm ∈ Enet exists if and only if there is a connection between

n,m ∈ Nnet . A weight ωb(enm) is assigned to each edge enm ∈ Enet : ωb(enm) ∈ N+

representing its capacity, in Gbps.

All the nodes (i.e., 5GEs and 5GC) are able to host both 5GC network VNFs

as well as application VNFs on their MEC server, which, in turn, is deployed as a

VNF, however, is not a subject of scaling in our study. Each VNF v ∈ Nvn f may have

multiple flavours Nv
f lv = Nv

v− f lv∪Nv
h− f lv, each representing either another instance of

the same VNF with identical amount of resources, referred to as horizontal flavour

f ∈ Nv
h− f lv, or a resized version of that VNF with more/less vCPU, and/or vMEM

resources, referred to as vertical flavour f ∈Nv
v− f lv. Each flavour f ∈Nv

f lv of the VNF

v ∈ Nvn f , where Nvn f = Nup f ∪Ncp f ∪Nst f ∪Napp has a certain amount of vCPU

and vMEM ω
vn f
c,m ( f ) resources. These resources for applications VNFs Nup f and

Napp are translated into a maximum amount of supportable traffic ω
up f ,app
t ( f ), while

for STFs Nst f and CPFs Ncp f , they are expressed in terms of a maximum number

of supportable queries ω
st f
q ( f ) and signalling events ω

cp f
e ( f ) that they can handle,

respectively. Table 6.1 summarizes the mobile network parameters.

UE Request Model. Both voice UEs and data UEs are considered. While the

former is engaged in a voice call and, therefore, requires a call communication setup
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TABLE 6.3: Binary decision variables.

Variable Description

χu
g Indicates if UE u ∈ Nue is associated with gNB g ∈ Ngnb.

χ v̂
f ,n Indicates if VNF v̂ ∈ Nue

vn f (u) requested by UE u is mapped to the
flavour f ∈ Nv

f lv of the same VNF on node n ∈ Nnet .

χv
f ,n Indicates if the flavour f ∈ Nv

f lv of the VNF v ∈ Nvn f on node
n ∈ Nnet has been used.

generating control plane events and queries towards, respectively, CPFs and STFs,

the latter is using an application, which apart from communication with CPFs and

STFs, requires also a data plane communication with the application service. All UE

requests are modelled as directed graphs Greq = (Nreq,Ereq) where Nreq = Nue∪Nue
vn f

is the union of the set of UEs and the set of VNFs (i.e., UPFs, CPFs, STFs, APPs)

that each UE has to have a connection with. Ereq is the set of virtual links between

UEs and their respective VNFs. Each data UE u ∈ Nue requires a certain amount

of data rate ωue
d (u) for its application. Additionally, it is assumed that the UE

communication setup process (e.g., during the initial UE to a gNB association, during

the UE handover, etc.) for each UE generates a certain fixed amount of signaling

events ωue
e (u) and queries ωue

q (u), which have to be handled by the CPFs and STFs,

respectively.

6.4.1 ILP-based Method

Upon receiving UE requests, the MNO shall i) associate the UE with a gNB, ii) either

place new VNFs on the computing nodes or use the already existing VNFs with/with-

out scaling them, and iii) allocate enough computing resources to accommodate the

request, if necessary. The goal is to satisfy the SFC requirements of the UE requests

while at the same time making sure that the substrate network resources are used in

an efficient manner. The SFC placement is modeled as a VNE problem, which is NP–

hard and has been studied extensively in the literature [106], [112]. The embedding

process consists of two parts: the node embedding and the link embedding. In the

node embedding, each virtual node in the request (e.g., CPF, STF) is mapped to a

substrate node (e.g., 5GE, 5GC). In the link embedding instead, each virtual link is

mapped to a single substrate path. In both cases, the constraints of the nodes and

links must be satisfied for an SFC mapping solution to be valid.
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Before formulating the ILP model, for each UE, we first need to find the set

of gNBs that provide coverage. Considering the location loc(u) of the UE u ∈ Nue

along with the location loc(g) and the coverage radius δ (g) of gNB g ∈ Ngnb, the set

of candidate gNBs Ω(u) for the UE u can be defined as follows:

Ω(u) = {g ∈ Ngnb|dis(loc(g), loc(u))≤ δ (g)} (6.1)

Formula (6.2) represents the objective functions considered in this ILP formu-

lation. The first two arguments in (6.2) calculate the VNF deployment cost for,

respectively, vertical and horizontal VNF scaling cases. The third argument takes

into account the backhaul link usage cost, while the last one considers the PRB usage

cost at the gNBs. ξc,ξm,ξe and ξp represent the cost of, respectively, a single vCPU

core, 1Mb vMEM, 1Mbps backhaul bandwidth, and one PRB. Table 6.3 shows all

binary variables used in this formulation.

Specifically, three objective functions are considered in this ILP formulation.

While they pursue the same goal of minimizing the service provisioning cost for the

MNO, they differ in terms of the used VNF scaling strategy, which is enforced by

binary coefficients Λv and Λh. More specifically, if in formula (6.2), if Λv = 1,Λh = 0,

then only vertical VNF scaling is considered in this objective, referred to as VS. If

Λv = 0,Λh = 1 then only horizontal VNF scaling is considered in this objective,

referred to as HS. Finally, if Λv = 1,Λh = 1 then both the vertical and horizontal

VNF scaling strategies are considered in the objective function, referred to as VHS

or a hybrid scaling, enabling the algorithm to pick the most appropriate VNF scaling

strategy for a specific VNF based on a number of parameters such as VNF type and

resource requirements.

Minimize :

Λv ∑
v∈Nvn f

∑
f∈Nv

v− f lv

∑
n∈Nnet

(ξcω
vn f
c ( f )+ξmω

vn f
m ( f ))χv

f ,n+

Λh ∑
v∈Nvn f

∑
f∈Nv

h− f lv

∑
n∈Nnet

(ξcω
vn f
c ( f )+ξmω

vn f
m ( f ))χv

f ,n+

∑
u∈Nue

∑
ê∈Ereq(u)

∑
e∈Enet

ξbωd(u)χ ê
e + ∑

u∈Nue

∑
g∈Ngnb

ξpωp(u)χu
g

(6.2)

Regardless of the considered objective function (e.g., VS, HS, or VHS), all the

following constraints have to be satisfied in order for an SFC placement solution to

be valid. In the considered scenario, each UE u∈Nue has to be associated to only one

gNB g ∈ Ngnb (Constraint (6.3)), which belongs to the set of candidate gNBs Ω(u)
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of that UE (Constraint (6.4)) and has to have sufficient amount of PRBs in order to

satisfy the data rate demand of all the UEs that are associated to that gNB (Constraint

(6.5)).

∀u ∈ Nue : ∑
g∈Ngnb

χ
u
g = 1 (6.3)

∀u ∈ Nue : ∑
g∈Ngnb\Ω(u)

χ
u
g = 0 (6.4)

∀g ∈ Ngnb : ∑
u∈Nue

ω
u
prbχ

u
g ≤ ω

g
prb (6.5)

Since each VNF flavour f ∈ Nv
f lv has a certain amount of vCPU and vMEM

resource requirement ω
vn f
c,m ( f ), each substrate network node n ∈ Nnet , be it a 5GE or

a 5GC, can host flavours of different VNF types (e.g., UPF, CPF, STF, application)

as long as it has sufficient amount of vCPU and vMEM resources to host the VNF

flavour (Constraint (6.6)).

∀n ∈ Nnet : ∑
v∈Nvn f

∑
f∈Nv

f lv

ω
vn f
c,m ( f )χv

f ,n ≤ ωc,m(n) (6.6)

The VNF flavours can serve the UEs as long as they have enough capacity (see

Constraints (6.7), (6.8) and (6.8)). The VNF types are characterized by different sorts

of resources. Specifically, while the UPF and application VNFs are characterized

by a maximum amount of supportable traffic enforced by Constraint (6.7), the CPF

VNF and the STF VNF are characterized by a maximum number of supported control

plane events, respectively (see Constraint (6.8)) and queries (see Constraint (6.9)).

∀v ∈ Nup f ,app, v̂ ∈ Nue
vn f (v),∀ f ∈ Nv

f lv,∀n ∈ Nnet :

∑
u∈Nue

ω
ue
d (u)χ v̂

f ,n ≤ ω
v
t ( f )

(6.7)

∀v ∈ Ncp f , v̂ ∈ Nue
vn f (v),∀ f ∈ Nv

f lv,∀n ∈ Nnet :

∑
u∈Nue

ω
ue
e (u)χ v̂

f ,n ≤ ω
v
e ( f )

(6.8)

∀v ∈ Nst f , v̂ ∈ Nue
vn f (v),∀ f ∈ Nv

f lv,∀n ∈ Nnet :

∑
u∈Nue

ω
ue
q (u)χ v̂

f ,n ≤ ω
v
q( f )

(6.9)
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Constraint (6.10) makes sure that each UE is connected to a single flavour of

each VNF type that composes the UE’s SFC request, while Constraint (6.11) guar-

antees that a VNF flavour is used if at least one UE uses it, where µ is a big number.

∀u ∈ Nue,∀v̂ ∈ Nue
vn f (u) : ∑

n∈Nnet

∑
f∈N v̂

f lv

χ
v̂
f ,n = 1 (6.10)

∀v̂ ∈ Nue
vn f ,∀ f ∈ N v̂

f lv,∀n ∈ Nnet : ∑
u∈Nue

χ
v̂
f ,n−µχ

v
f ,n ≤ 0 (6.11)

The backhaul link capacity constraint is handled by Constraint (6.12), which

ensures that the virtual links can be mapped on a substrate backhaul link if the one

has sufficient bandwidth to support the data rate demand of the virtual links. Lastly,

Constraint (6.13) enforces for each virtual link to be a continuous path established be-

tween the gNB hosting the UE and the nodes hosting the VNFs of the SFC requested

by the UE. E?i
net is the set of the links that originate from any node and directly arrive

at the node i ∈ Nnet , while E i?
net is the set of links that originates from the node i and

arrive at any node directly connected to i.

∀e ∈ Enet : ∑
u∈Nue

∑
ê∈Ereq(u)

ω
ue
d (ê)χ ê

e ≤ ωb(enm) (6.12)

∑
e∈E?i

net

χ
en,m

e − ∑
e∈E i?

net

χ
en,m

e =


−1 if i = n

1 if i = m

0 otherwise

(6.13)

∀i ∈ Nnet , ∀en,m ∈ Ereq

6.4.2 Heuristic

The ILP formulation becomes computationally intractable as the network’s size in-

creases (e.g., the number of gNBs, the number of VNFs, and the number of UEs).

For example, it takes a day on an Intel Core i7 laptop (3.0 GHz CPU, 16 Gb RAM)

using Gurobi solver [15] to associate and serve 50 UEs making service requests,

each composed of 4 VNFs in a network composed of 4 gNBs and a core. To tackle

the scalability issue of the ILP formulation, we propose a heuristic (the pseudo code

is not shown due to space limitation) able to find near-optimal solutions for all the

requests in a considerably shorter time.
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Algorithm 3: SmartScale
Input: (Gnet ,Greq)
Output: UEs association, SFC placement, VNF scaling, and resource allocation ;

1 Phase 1: Find candidate gNBs for each UE;
2 for u ∈ Nue do
3 cand_gnb(u)← /0;
4 for g ∈ Ngnb do
5 ωue

prb(u,g)←Calc_prb(u,g);
6 if ωue

prb(u,g)≤ ωprb(g) then
7 cand_gnb(u)← g;

8 Phase 2: Check if already there is a VNF in the network to serve the UE;
9 for u ∈ Nue do

10 for v ∈ Nue
vn f (u) do

11 map_cost←+∞;
12 tmp_cost← 0;
13 tmp_ f lv = tmp_n = tmp_gnb← /0;
14 f lag← f alse;
15 for n ∈ N do
16 for f ∈ N f lv do
17 if Nv

f ,n == 1 then
18 for g ∈ cand_gnb(u) do
19 if ωue

d (u)≤ ωb(egn) then
20 • compute link and prb cost for u;
21 tmp_cost← ξ e

g,n +ξ
prb
g

22 if tmp_cost < map_cost then
23 map_cost← tmp_cost;
24 tmp_ f lv← f ;
25 tmp_n← n;
26 tmp_gnb← g;
27 f lag← true;

28 if f lag == true then
29 • associate u to tmp_gnb;
30 • allocate tmp_ f lv on node tmp_n to the u;
31 • construct the forwarding graph for each UE;
32 • update prb resources and flavor capacity;
33 • update the link resources;

34 Phase 3: Associate the UE to a gNB, instantiate a new VNF on a node and allocate resources;
35 if f lag == f alse then
36 for i ∈ weight ↓ do
37 map_cost←+∞;
38 for g ∈ cand_gnb(u) do
39 if ωue

d (u)≤ ωb(egn) and i.(c,m)≤ ωc,m(n) then
40 • compute cpu, mem, link, and prb cost for u;
41 tmp_cost← ξ e

i.(g,n)+ξ
prb
i.g +ξi.(c,m)(i.n)

42 if tmp_cost < map_cost then
43 map_cost← tmp_cost;
44 tmp_ f lv← i. f lv;
45 tmp_n← i.n;
46 tmp_gnb← i.g;
47 f lag← true;

48 if f lag == true then
49 • associate u to tmp_gnb;
50 • embed tmp_ f lv on node tmp_n;
51 • allocate tmp_ f lv on node tmp_n to the u;
52 • update cpu, mem, prb, and flavor capacity;
53 • construct the forwarding graph for each UE;
54 • update the link resources;
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The proposed heuristic algorithm (3) pursues the hybrid VNF scaling objective

of the ILP formulation and consists of three phases. The algorithm iterates over all

the gNBs to find candidate gNBs for each UE in the first phase. A gNB is considered

as a candidate if the UE is under the coverage radius of the gNB, and the gNB has a

sufficient amount of PRBs to satisfy the UE’s data rate demand.

In the second phase, the algorithm tries to serve the UEs from the existing VNFs

in the network. The algorithm begins to serve UEs in sequence by looping over all

the UEs, the candidate gNBs of the UE, and all the computing nodes to find if an

instance of the UE’s requested VNFs exists on the node. If yes, then the cost of

serving that VNF instance will be computed. The cost encompasses the cost of PRB

resources to associate the UE with the candidate gNB and the link resources that are

needed to make a continuous path from the UE to the VNF instance. It is worth

noting that this phase does not take into account the cost of using CPU and memory

resources since the VNF instance already exists on the node, and there is no need to

allocate computing resources to embed the VNF. After computing the cost for each

possible solution (i.e., VNF, nodes, gNB) and finding a solution with a minimum

cost, the VNF instance will be allocated to the UE, the UE will be associated with a

gNB, and a path will be established from the gNB that the UE is associated with to

the node hosting the VNF. This is followed by updating the network resources.

The third phase of the algorithm attempts to accommodate those UE requests

for which there was no preexisting candidate VNF in the second phase. Thus in

this phase, the algorithm tries to instantiate a new VNF instance of the requested

service. Like the ILP, a weighting factor is considered for computing the cost of all

the different flavours of each VNFs. In this regard, the algorithm sorts the solutions

based on the cost in ascending order and loops over all the solutions until reaching

a case that leads to minimum cost. Unlike the second phase, the solution cost in

this phase encompasses the computing resources cost, link cost, and PRB cost. After

finding a flavour of the VNF instance that complies with the node, link, and PRB

resource demand, the VNF flavour will be embedded on the node, and the resources

will be allocated then updated.

6.5 Performance Evaluation

The goal of this section is to compare the presented ILP-based and heuristic algo-

rithms. We shall first describe the simulation setup used in our study. We will then
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discuss the outcomes of the numerical simulations carried out in Python using Gurobi

mathematical optimization solver [15].

6.5.1 Simulation Environment

A mobile network composed of 5 nodes is considered in this work, out of which

one is the core, and the rest are gNBs. The gNBs are connected to the core node

through 10 Gbps backhaul links. Both the core node and the gNBs have collocated

MEC servers that possess, respectively, 12 and 4 CPU cores and 12 and 4-gigabyte

memory, and are endowed with virtualization capability. Each CPU core is assumed

to be equipped with 1.5 GHz clock rate. We assume four VNF categories, UPF,

CPF, STF, and applications, with the last being in 5 types differentiated by their pro-

vided services and resource boundness (i.e., CPU-bound, memory-bound, or CPU-

memory-bound). Each VNF instance can be shared among multiple UEs as long

as it has sufficient capacity. Moreover, each VNF is available in multiple flavors,

which defines the combination of CPU and memory resources allocated to that VNF.

A VNF instance can have at least/most one/three CPU core(s) and one/three GB of

memory. Thus, 9 VNF flavors exist for each VNF category.

Two different types of mobile UEs are considered in this work, as already

introduced in Section 6.4. The first type of UEs are data UEs that make data requests,

and they use the application VNFs existing in the system. The second type of UEs is

voice UEs that do not ask for application but use voice services in the network and

generate control messages. The purpose of considering voice UEs in the system is

to show the impact of having different request types with diverse requirements and

increasing the load on STF and CPF components to trigger scaling operation. The UE

requests arrive sequentially in batches, each composed of 5 requests. It is assumed

that with the arrival of a new data UE batch, there are four voice UE batches and

that the UEs from the previous batches change their locations by moving in random

direction with speed selected from the set {5,25,50}km/h, mimicking pedestrians,

cyclist, and cars, while still keeping their data rate requirements. We consider up to

10 batches of data UE (50 data UEs in total) intending to trigger both scale-up and

scale-out operations. After 50 data UEs, we gradually decrease the number of data

UEs by 5 to trigger the scale-down and scale-in operations, if necessary, releasing

the allocated resources.

As mentioned in Section 6.4, the capacity of CPF and STF VNFs are char-

acterized, respectively, in terms of a maximum number of supportable events and
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queries, while UPF and application VNFs are characterized in terms of throughput.

All of these metrics are derived from the CPU and memory resource of the VNF.

Specifically, it is assumed that the throughput, event capacity, and query capacity

of, respectively, UPF, CPF, and STF are 80% dependent on the CPU and 20% on

the memory. The capacity of CPF and STF VNFs has been computed following

the approach in [113]. The CPU contribution in the overall capacity of a VNF is

computed as the number of cores multiplied by each core’s clock rate divided by

the number of clocks required to process one bit of data (considered 10 in our sce-

nario). Besides, if an application VNF is CPU-bound, the throughput depends on the

CPU and vice versa. The same approach applies to the memory-bound application

VNFs. In the case of CPU-memory-bound application VNF, instead, the throughput

is equally dependent on the CPU and memory of that VNF.

6.5.2 Simulation Results

The reported results are the average of 5 simulations with 95% confidence intervals.

Resource utilization. Figure 6.5 illustrates the CPU and the memory utilization

of the nodes (for a single simulation run) together with the under-utilization of the

VNFs as a function of the number of UE requests for both ILP-based and heuristic

VNF scaling algorithms. As expected, the vertical and the horizontal VNF scaling

strategies achieve, respectively, the lowest and the highest CPU and memory utiliza-

tion at the computing nodes (e.g., 5GEs, 5GC) as shown in Fig. 6.5a and Fig. 6.5b.

This is because the horizontal VNF scaling strategy instantiates more VNFs of the

same type allocating both CPU and memory resources from the host node even if the

scaling is triggered due to the lack of only CPU or memory resource. Conversely,

the vertical scaling strategy, thanks to its ability to resize the VNFs according to

the need of having more/less CPU, or memory, or both, uses the node resources

more efficiently while requiring the least amount of CPU and memory. For the

hybrid VNF scaling strategy, we observe that the ILP-based and heuristic algorithms’

performance resembles, and their CPU and memory utilization in most cases lies in

between the ones achieved by the vertical and horizontal scaling approaches. This

is justified by the fact that in this case, depending on the need, both vertical and

horizontal VNF scalings are performed, as shown in Fig. 6.7.

The total under-utilization of the VNFs is computed based on the usage of

throughput for UPF and application VNFs, queries for the STF VNFs, and control

plane event for the CPF VNFs derived from the CPU and memory of the VNFs. As
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FIGURE 6.5: CPU and memory utilization of the nodes for the VNF

scaling algorithms.
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FIGURE 6.6: Under-utilization of VNFs for the VNF scaling algo-
rithms.

expected, it reduces with the increase in the number of UE requests (see Fig. 6.6).

While the horizontal VNF scaling strategy consumes the highest amount of CPU

and memory of the nodes to instantiate VNFs, those VNFs and, therefore, those

resources are not used efficiently, leading to the highest total VNF under-utilization.

As opposed to the horizontal VNF scaling, the vertical VNF scaling strategy demon-

strates the lowest total VNF under-utilization, leading to the most optimal utilization

of the VNFs. As for the performance of the hybrid VNF scaling strategies, it is very

similar to that of the vertical scaling with a slightly higher VNF under-utilization. It

can also be observed that the difference between the VNF under-utilization achieved

by the scalings strategies is more evident when the number of UE requests is high.

This is because the more is the UEs, the more is the traffic demand, and, therefore,

the more are the number of VNF scalings.

Number of VNF scalings. The number of different types of VNF scalings

(e.g., scale-up, down, in, out) for the considered ILP-based and heuristic VNF scaling

algorithms for varying numbers of UEs is shown in Fig. 6.7. As expected, more VNF

scaling operations are induced when the number of UEs increases in the network.

We can observe that mostly VNF scale-up and scale-out operations perform when



90 Chapter 6. User Association and SFC Lifecycle Management

Up

Out

In

Down
V H H
y

H
e V H H
y

H
e V H H
y

H
e V H H
y

H
e V H H
y

H
e V H H
y

H
e V H H
y

H
e V H H
y

H
e V H H
y

H
e V H H
y

H
e V H H
y

H
e V H H
y

H
e V H H
y

H
e V H H
y

H
e V H H
y

H
e V H H
y

H
e V H H
y

H
e V H H
y

H
e V H H
y

H
e

5 10 15 20 25 30 35 40 45 50 45- 40- 35- 30- 25- 20- 15- 10- 5-

0

1

2

3

4

5

6

7

#
 o

f 
sc

a
li

n
g

s

FIGURE 6.7: Number of VNF scalings.

Vertical-ILP Horizontal-ILP Hybrid-ILP Hybrid-Heu
Scaling strategies

0

5

10

15

20

#
of

V
N

F
in

st
an

ce
s

App
UPF
CPF
STF

(A) Number of VNF instances.

Vertical-ILP Horizontal-ILP Hybrid-ILP Hybrid-Heu
Scaling strategies

101

102

103

104

105

E
xe

cu
tio

n
tim

e
[S

ec
]

Vertical-ILP
Horizontal-ILP
Hybrid-ILP
Hybrid-Heu

(B) Execution time.

FIGURE 6.8: Number of different VNF instances, their scaling types,
and the execution time for the VNF scaling algorithms.

the number of UEs increases, with most of the scale-ups/outs being triggered in the

case of vertical/horizontal VNF scaling. On the other hand, when the UEs start

leaving the network, VNF scale-up and scale-out operations are more dominant. It is

worth mentioning that in some rare cases, VNF scale-down and scale-in operations

are triggered even if the number of UEs increase in the network, while sometimes

VNF scale-up and scale-out are performed when the UEs leave the network. This is

due to the ability of the proposed algorithms to perform a customized VNF scaling.

For instance, when the scaling-up of a VNF is needed, it might be more efficient to

increase the CPU resource and decrease the allocated memory in order to meet the

request demand and, at the same time, minimize the provisioning cost and vice versa.

Number of VNF instances. Figure 6.8a illustrates the average number of

VNF instances for all VNF categories for the considered scaling strategies after

embedding 50 UE requests. It can be observed that in both the ILP-based and

heuristic VNF scaling strategies, there are a way more application VNFs than the

other VNF categories, and among the application VNFs, the highest number of VNFs

are instantiated by the horizontal VNF scaling, as expected. As for the UPF, CPF, and

STF VNFs, there are fewer instances of them due to the fact that these VNFs have
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much higher capacity, resulting in less frequent scalings. Naturally, the total number

of VNF instances of the hybrid VNF scaling strategies lies in between the ones of

the vertical and horizontal strategies due to being able to perform both vertical and

horizontal VNF scaling.

Execution time. The main motivation for proposing the heuristic algorithm for

the hybrid VNF scaling strategy is to address the scalability issue of the ILP-based

algorithms. Figure 6.8 shows the average execution time for all the algorithms for

associating 50 UE to the network, embedding the SFC requests, and performing VNF

scaling. It can be observed that the execution time of the heuristic algorithm is at least

three orders of magnitude less than that of the ILP-based algorithms, making it appli-

cable in more practical scenarios and more suitable for various 5G use cases. Thus,

the heuristic algorithm is much more scalable compared to ILP-based algorithms.

Nonetheless, this comes at the expense of sub-optimal mapping solutions, leading to

a slightly lower performance compared to its ILP-based counterpart.

6.6 Discussion

In this work, we studied a joint UE association, SFC placement, VNF scaling prob-

lem in the scenario of an end-to-end 5G network employing ILP and heuristic al-

gorithms. Specifically, vertical, horizontal, and hybrid VNF scaling strategies have

been compared, and their trade-offs are analyzed. We demonstrated that while the

vertical VNF scaling is the most efficient strategy in utilizing the resources of the

nodes and VNFs, it does not provide high availability to those VNFs due to their

fewer instances compared to the horizontal VNF scaling strategy. However, the high

availability of the horizontal VNF scaling strategy came at the expense of high CPU

and memory usage of the nodes and high VNF under-utilization, making it inefficient

from the resource utilization perspective. The hybrid VNF scaling strategy, on the

other hand, exhibited a better compromise between the high availability of the VNFs

and the resource utilization of the nodes and the VNFs.
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Chapter 7

Conclusion and Future Work

This chapter summarizes the research presented in this dissertation, concluding ob-

servations and suggests some promising directions for future work.

7.1 Conclusion

5G is on the horizon with the promise to revolutionize the mobile communica-

tion landscape. Unlike the previous generations of mobile communication tech-

nologies that solely focused on improving the network capacity and increasing the

data transmission rate, 5G makes a substantial transformation by focusing on three

main pillars, each targeting demands for specific use cases. Firstly, similar to its

predecessor 4G, 5G devotes enormous attention to increasing the capacity of the

network, which enables many applications such as high-quality video streaming,

VR/AR, online gaming, and many other bandwidth-hungry applications. Secondly,

5G intends to enable a massive number of IoT devices to join and communicate

through the network. The ability to support a vast number of devices facilitates many

applications such as smart cities and smart homes. Finally, 5G devotes a considerable

attention to the latency reduction in order to deliver sub-millisecond latency and lift

the barriers towards implementing applications such as autonomous driving, e-health,

and industrial automation.

MEC along with NFV have the potential to meet the requirement of the 5G

networks in terms of latency mitigation, flexibility enhancement, and CapEx and

OpEx reduction. MEC technology aims to shift the network intelligence, processing,

storage, and virtualization capabilities to the edge of the network in the proximity

of the end-users. MEC significantly reduces the time needed to access the content;



94 Chapter 7. Conclusion and Future Work

therefore, it considerably contributes to the overall E2E latency reduction. In the

context of mobile networks, MEC can be employed to host NFs and applications

deployed as VNFs. Scarcity of resources, resource provisioning cost, and hetero-

geneity of resources are the main challenges towards realizing MEC technology in

mobile networks.

In this doctoral dissertation, we investigated different strategies for content cach-

ing/prefetching, SFC placement, and VNF lifecycle management in the scenario of

MEC-enabled 5G networks. First, we investigated the problem of video content

prefetching/caching in MEC-enabled mobile networks. We specifically studied the

trade-offs between different prefetching strategies, their benefits, and challenges with

the ultimate goal of providing a set of methods for MNOs for video content prefetch-

ing. Second, we investigated the joint problem of user association and VNF place-

ment in MEC-enabled 5G networks. We specifically proposed several algorithms for

the efficient placement of SFCs on the substrate network while respecting the data

rate and latency demands of the UEs. Finally, we explored the trade-off between

different scaling strategies and proposed a scaling approach that attempts to minimize

the cost for MNOs while respecting the Service Level Agreement (SLA) for the UEs.

In Chapter 4, we addressed the problem of limited cache storage in MEC servers

in the context of mobile networks for the online DASH video streaming scenario.

Specifically, we proposed a novel ML-driven predictive prefetching method for the

problem of DASH video streaming in MEC-enabled mobile networks. Our first

task was to design prediction algorithms that can predict the number of segment

requests, bitrate of the segments, and gNB association of the UE in a prediction time

window. In this regard, three prediction algorithms were proposed that showed a

high accuracy of (83-88-99%) for the three predictive tasks. The next step was to

devise a prefetching algorithm that is able to make a trade-off between the number

of UEs served from the edge and the resource usage at each of the MEC nodes.

An ILP model with two objectives was proposed to reach an optimal solution for

the video content prefetching and transcoding at the edge, followed by a heuristic

algorithm that achieves a near-optimal solution in an exceedingly shorter time scale.

We were able to attain a MEC cache-hit ratio of 60%, which demonstrates that we

achieved a reduction of the access delay for 60% of the requests. We demonstrated

that our proposed algorithms could reduce the BH link utilization to a very large

extend through caching at the edge by using the max byte-hit objective in a live

streaming scenario with segment request overlaps.
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In Chapter 5, we studied the joint problems of user association, SFC placement,

and resource allocation in a hierarchical MEC-enabled 5G network setup. We first

provided a comprehensive E2E delay estimation model for users, taking into account

the transmission and the propagation time over the air and the transport links along

with the VNF processing time. Next, aiming at associating UEs to the gNBs and

embedding the services on the substrate network, we employed MILP techniques

to provide a novel formulation of the problem, with the objective to minimize the

service provisioning cost, the impact of VNF migration on the QoE of the UEs, and

the transport network utilization. Having the goal to tackle the scalability issue of

the proposed MILP method, a heuristic algorithm was proposed to reach a near-

optimal solution in order to minimize the impact of VNF migration on the perceived

QoE by the UEs in a much shorter time. Comprehensive simulations demonstrated

a comparison between the proposed algorithms by considering different types of

service requests with diverse data rates and E2E latency demands.

The dynamic nature of mobile networks demands algorithms that can actively

adjust to the changes of mobile networks. In order for MNOs to be competitive in the

market, ensuring optimal resource utilization, and lowering the service provisioning

cost, scaling approaches are needed that can dynamically adjust resource allocation

in order to have an optimal resource utilization while meeting user demands. In this

regard, in Chapter 6 we studied the joint UE association, SFC placement, and VNF

scaling problem in the scenario of an E2E 5G network. Specifically, we conducted an

extensive comparison of different scaling strategies, namely vertical, horizontal, and

hybrid scaling, and provided analysis of trade-offs. We used ILP models with three

objectives, each trying to minimize the cost for the given scaling strategy (vertical,

horizontal, hybrid). We proposed a heuristic algorithm following the same objective

of the hybrid scaling strategy. We demonstrated that while the vertical VNF scaling

is the most efficient strategy in utilizing the resources of the nodes and VNFs, it does

not provide high availability to those VNFs due to their fewer instances compared to

the horizontal VNF scaling strategy. However, the high availability of the horizontal

VNF scaling strategy is achieved at the expense of high CPU and memory usage

of the nodes and high VNF under-utilization, making it inefficient from the resource

utilization perspective. The hybrid VNF scaling strategy, on the other hand, exhibited

a better compromise between the high availability of the VNFs and the resource

utilization of the nodes and VNFs.
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7.2 Future Work

Inspired by the complexity of DASH video content prefetching, the importance of

devising new approaches for predicting UE’s requests, the need for proactive scaling

of the network, and in order to study the problems in a realistic scenario, we have

outlined the following future research directions to address the open issues arising in

this dissertation adequately.

� As shown in Chapter 4, numerous factors, including RAN metrics, client

metrics, and history of requests, are involved in the process of predicting

user requests in the scenario of DASH video prefetching. In Chapter 4, we

explored two major ML algorithms, namely Random Forest and Gradient

Boosting Trees, which are shown to be effective in state-of-the-art works.

One of the interesting research directions is to further investigate the problem

of DASH video segment prediction, provide analysis of the auto-correlation

of the dataset features, and study if the samples are independently distributed.

Considering the high impact of the prediction phase on the overall prefetch-

ing performance and the negative effect of wrong predictions on both UE’s

perceived QoE and resource usage at the edge, we intend to achieve higher

accuracy of the predictions. In this regard, we aim to further examine the

performance of other prediction algorithms, such as Neural Networks (NN),

and motivate our choice of the prediction algorithm based on data analysis.

� It has been previously emphasized that one of the main problems with the

ILP prefetching algorithm is its execution time to reach the optimal solution.

This drawback motivated us to devise a heuristic algorithm that reaches a

near-optimal solution in a much shorter time scale. Thus, another intriguing

research direction is to develop an E2E ML-based algorithm that, apart from

predicting user requests, performs the prefetching process using a reinforce-

ment learning agent. We aim to explore the applicability of replacement of

the ILP and heuristic algorithms by an ML-based agent and provide a fully

E2E automated system for the problem of DASH video content prefetching

at the network edge.

� While we have already studied the trade-off between different scaling strate-

gies (vertical, horizontal, and hybrid) in Chapter 6, an interesting research

direction would be to extend our approach further by investigating the state

exchange problem when scaling operation happens—this problem arises in

the case of horizontal scaling for stateful applications and STF 5G core VNFs.
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In this regard, we aim to extend the ILP formulation and the heuristic al-

gorithm by including the cost of exchanging the states related to the UEs.

Moreover, we are interested in showing the applicability of our proposed ap-

proaches by confirming their performance through a Proof of Concept (PoC)

implementation.

� Considering the fact that our approach in Chapter 6 is reactive and tries to

adapt the network based on the issued requests, users might be affected for

a duration of time until the system adapts itself. Therefore, one interesting

research direction is to devise a method to adjust the system before the users

issue their request. In this regard, as future work, we aim to employ ML tech-

niques to predict the number of users who join the network and their service

requirements. Knowing future requests allows us to scale the applications and

5G core components before they being requested by the UE, consequently

avoiding QoE degradation caused by reconfiguration.

� Finally, regarding the combinatorial optimization techniques used for prob-

lem formulation in this theses, it would be of great interest for us to investigate

Optimization Modulo Theories (OMT) techniques to formalize and model the

studied problems, drawing a comparison with the ILP/MILP techniques in

terms of their execution time and the optimality of mapping solutions.





99

Bibliography

[1] GSA, “The Road to 5G: Drivers, Applications, Requirements and Technical

Development,” Global Mobile Suppliers Association, 2015.

[2] Cisco, “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast

Update, 2017–2022,” 2019.

[3] M Series, “IMT Vision–Framework and Overall Objectives of the Future

Development of IMT for 2020 and beyond,” Recommendation ITU, 2015.

[4] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. Soong,

and J. C. Zhang, “What Will 5G be?” IEEE Journal on selected areas in

communications, vol. 32, no. 6, pp. 1065–1082, 2014.

[5] ETSI, “GR MEC 001 V2.1.1,” Multi-access Edge Computing (MEC); Ter-

minology, 2019.

[6] ——, “GS NFV 002 V1.2.1,” Network Functions Virtualisation (NFV); Ar-

chitectural Framework, 2014.

[7] ——, “GR MEC 017 V1.1.1,” Mobile Edge Computing (MEC); Deployment

of Mobile Edge Computing in an NFV environment, 2018.

[8] ——, “GS NFV-MAN 001,” Network Functions Virtualization (NFV); Man-

agement and Orchestration, 2014.

[9] ——, “GS MEC 002 V1.1.1,” Mobile Edge Computing (MEC); Technical

Requirements, 2016.

[10] S. Abdelwahab, B. Hamdaoui, M. Guizani, and T. Znati, “Network Func-

tion Virtualization in 5G,” IEEE Communications Magazine, vol. 54, no. 4,

pp. 84–91, 2016.

[11] H. Wu, F. Zhou, Y. Chen, and R. Zhang, “On Virtual Network Embedding:

Paths and Cycles,” IEEE Transactions on Network and Service Management,

vol. 17, no. 3, pp. 1487–1500, 2020.



100 Bibliography

[12] Z. Despotovic, A. Hecker, A. N. Malik, R. Guerzoni, I. Vaishnavi, R. Triv-

isonno, and S. A. Beker, “VNetMapper: A Fast and Scalable Approach to

Virtual Networks Embedding,” in Proc of IEEE ICCCN, Shanghai, China,

2014, pp. 1–6.

[13] M. Chowdhury, M. R. Rahman, and R. Boutaba, “Vineyard: Virtual Net-

work Embedding Algorithms with Coordinated Node and Link Mapping,”

IEEE/ACM Transactions on Networking, vol. 20, no. 1, pp. 206–219, 2011.

[14] S. Zhang, Z. Qian, J. Wu, S. Lu, and L. Epstein, “Virtual Network Embedding

with Opportunistic Resource Sharing,” IEEE Transactions on Parallel and

Distributed Systems, vol. 25, no. 3, pp. 816–827, 2013.

[15] Gurobi mathematical optimization solver, Accessed on 20.12.2020. [Online].

Available: https://www.gurobi.com/.

[16] K. Liang, J. Hao, R. Zimmermann, and D. K. Yau, “Integrated Prefetch-

ing and Caching for Adaptive Video Streaming over HTTP: an Online Ap-

proach,” in Proc. of ACM MM, Portland, Oregon, USA, 2015.

[17] R. Behravesh, D. F. Perez-Ramirez, A. Rao, D. Harutyunyan, R. Riggio,

and R. Steinert, “ML-Driven DASH Content Pre-Fetching in MEC-Enabled

Mobile Networks,” in Proc. of IEEE CNSM, Izmir, Turkey, 2020, pp. 1–7.

[18] R. Behravesh, E. Coronado, D. Harutyunyan, and R. Riggio, “Joint User

Association and VNF Placement for Latency Sensitive Applications in 5G

Networks,” in Proc. of IEEE CloudNet, Coimbra, Portugal, 2019.

[19] D. Harutyunyan, R. Behravesh, and N. Slamnik-Krijestorac, “Cost-Efficient

Placement and Scaling of 5G Core Network and MEC-Enabled Application

VNFs,” in Proc. of IEEE IM, Bordeaux, France, 2021.

[20] F. Z. Yousaf, M. Bredel, S. Schaller, and F. Schneider, “NFV and SDN

— Key Technology Enablers for 5G Networks,” IEEE Journal on Selected

Areas in Communications, vol. 35, no. 11, pp. 2468–2478, 2017.

[21] V.-G. Nguyen, A. Brunstrom, K.-J. Grinnemo, and J. Taheri, “SDN/NFV-

based Mobile Packet Core Network Architectures: A Survey,” IEEE Com-

munications Surveys & Tutorials, vol. 19, no. 3, pp. 1567–1602, 2017.

[22] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti,

“A Survey of Software-Defined Networking: Past, Present, and Future of

Programmable Networks,” IEEE Communications surveys & tutorials, vol. 16,

no. 3, pp. 1617–1634, 2014.

https://www.gurobi.com/


Bibliography 101

[23] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky,

and S. Uhlig, “Software-Defined Networking: A Comprehensive Survey,”

Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[24] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On Scalability of Software-

Defined Networking,” IEEE Communications Magazine, vol. 51, no. 2, pp. 136–

141, 2013.

[25] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.

Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation in Cam-

pus Networks,” ACM SIGCOMM Computer Communication Review, vol. 38,

no. 2, pp. 69–74, 2008.

[26] Open networking foundation, https://www.opennetworking.org/, Ac-

cessed on 20.12.2018.

[27] B. Pfaff and B. Davie, “The Open vSwitch Database Management Protocol,”

Tech. Rep., 2013.

[28] A. Doria, J. H. Salim, R. Haas, H. Khosravi, W. Wang, L. Dong, R. Gopal,

and J. Halpern, “Forwarding and Control Element Separation (ForCES) Pro-

tocol Specification,” Tech. Rep., 2010.

[29] A. Lara, A. Kolasani, and B. Ramamurthy, “Network Innovation Using Open-

Flow: A Survey,” IEEE communications surveys & tutorials, vol. 16, no. 1,

pp. 493–512, 2014.

[30] Y. Jarraya, T. Madi, and M. Debbabi, “A Survey and a Layered Taxonomy of

Software-Defined Networking,” IEEE Communications Surveys & Tutorials,

vol. 16, no. 4, pp. 1955–1980, 2014.

[31] G. ETSI, “Nfv 001 v1.2.1,” Network Functions Virtualisation (NFV), Use

Cases, 2017.

[32] R. Behravesh, E. Coronado, and R. Riggio, “Performance evaluation on vir-

tualization technologies for nfv deployment in 5g networks,” in Proc. of

IEEE NetSoft, 2019, pp. 24–29.

[33] ETSI, “ETSI 123 501 V15.9.0,” 5G, System Architecture for the 5G System

(5GS), 2020.

[34] S. Clayman, E. Maini, A. Galis, A. Manzalini, and N. Mazzocca, “The Dy-

namic Placement of Virtual Network Functions,” in Proc. of IEEE NOMS,

Krakow, Poland, 2014, pp. 1–9.

[35] J. Xia, Z. Cai, and M. Xu, “Optimized Virtual Network Functions Migration

for NFV,” in Proc. of IEEE ICPADS, Wuhan, China, 2016.

https://www.opennetworking.org/


102 Bibliography

[36] P. Mell, T. Grance, et al., “The NIST Definition of Cloud Computing,” Tech.

Rep., 2011.

[37] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and R. Boutaba,

“Network Function Virtualization: State-of-the-art and Research Challenges,”

IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 236–262,

2016.

[38] A. Bentaleb, B. Taani, A. C. Begen, C. Timmerer, and R. Zimmermann, “A

Survey on Bitrate Adaptation Schemes for Streaming Media over HTTP,”

IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp. 562–585,

2018.

[39] IEC_MPEG, “Information Technology Dynamic Adaptive Streaming over

HTTP (DASH)-part 1: Media Presentation Description and Segment For-

mats,” Tech. Rep., 2012.

[40] 3GPP, “Transparent end-to-end packet switched streaming service (PSS) (re-

lease 9),” Tech. Rep., 2009.

[41] ——, “Progressive Download and Dynamic Adaptive Streaming over HTTP

(release 10),” Tech. Rep., 2010.

[42] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and P. Tran-Gia,

“A Survey on Quality of Experience of HTTP Adaptive Streaming,” IEEE

Communications Surveys & Tutorials, vol. 17, no. 1, pp. 469–492, 2014.

[43] P. Juluri and D. Medhi, “Cache’n DASH: Efficient Caching for DASH,” ACM

SIGCOMM Computer Communication Review, vol. 45, no. 4, pp. 599–600,

2015.

[44] A. Araldo, F. Martignon, and D. Rossi, “Representation Selection Problem:

Optimizing Video Delivery Through Caching,” in Proc. of IEEE IFIP, Vi-

enna, Austria, 2016.

[45] Y. Li, P. A. Frangoudis, Y. Hadjadj-Aoul, and P. Bertin, “A Mobile Edge

Computing-based Architecture for Improved Adaptive HTTP Video Deliv-

ery,” in Proc. of IEEE CSCN, Berlin, Germany, 2016.

[46] Y. Li, P. A. Frangoudis, Y. Hadjadj-Aoul, and P. Bertin, “A Mobile Edge

Computing-assisted Video Delivery Architecture for Wireless Heterogeneous

Networks,” in Proc. of IEEE ISCC, Heraklion, Greece, 2017.

[47] Y. Tan, C. Han, M. Luo, X. Zhou, and X. Zhang, “Radio Network-aware

Edge Caching for Video Delivery in MEC-Enabled Cellular Networks,” in

Proc. of IEEE WCNCW, Barcelona, Spain, 2018.



Bibliography 103

[48] S. Kumar, D. S. Vineeth, et al., “Edge Assisted DASH Video Caching Mech-

anism for Multi-access Edge Computing,” in Proc. of IEEE ANTS, Indore,

India, 2018.

[49] S. K. Mehr, P. Juluri, M. Maddumala, and D. Medhi, “An Adaptation-aware

Hybrid Client-cache Approach for Video Delivery with Dynamic Adaptive

Streaming over HTTP,” in Proc. of IEEE/IFIP NOMS, Taipei, Taiwan, 2018.

[50] W. Shi, Q. Li, C. Wang, G. Shen, W. Li, Y. Wu, and Y. Jiang, “LEAP:

Learning-based Smart Edge with Caching and Prefetching for Adaptive Video

Streaming,” in Proc. of ACM IWQOS, Phoenix Arizona, USA, 2019.

[51] A. Samba, Y. Busnel, A. Blanc, P. Dooze, and G. Simon, “Instantaneous

Throughput Prediction in Cellular Networks: Which Information is Needed?”

In Proc. of IFIP/IEEE IM, Lisbon, Portugal, 2017.

[52] M. Karimzadeh, Z. Zhao, L. Hendriks, R. D. O. Schmidt, S. La Fleur, H. Van

Den Berg, A. Pras, T. Braun, and M. J. Corici, “Mobility and Bandwidth Pre-

diction as a Service in Virtualized LTE Systems,” in Proc. of IEEE CloudNet,

Niagara Falls, ON, Canada, 2015.

[53] D. Raca, A. H. Zahran, C. J. Sreenan, R. K. Sinha, E. Halepovic, R. Jana, and

V. Gopalakrishnan, “Back to the Future: Throughput Prediction for Cellular

Networks Using Radio KPIs,” in Proc. of ACM MOBICOM, New York, NY,

USA, 2017.

[54] C. Yue, R. Jin, K. Suh, Y. Qin, B. Wang, and W. Wei, “LinkForecast: Cellular

Link Bandwidth Prediction in LTE Networks,” IEEE Transactions on Mobile

Computing, vol. 17, no. 7, pp. 1582–1594, 2018.

[55] D. Raca, A. H. Zahran, C. J. Sreenan, R. K. Sinha, E. Halepovic, R. Jana,

V. Gopalakrishnan, B. Bathula, and M. Varvello, “Incorporating Prediction

into Adaptive Streaming Algorithms: A QoE Perspective,” in Proc. of ACM

SIGCOM NOSSDAV, New York, NY, USA, 2018.

[56] D. Raca, A. H. Zahran, C. J. Sreenan, R. K. Sinha, E. Halepovic, R. Jana, V.

Gopalakrishnan, B. Bathula, and M. Varvello, “Empowering Video Players

in Cellular: Throughput Prediction from Radio Network Measurements,” in

Proc. of ACM MM, New York, NY, USA, 2019.

[57] H. Mao, R. Netravali, and M. Alizadeh, “Neural Adaptive Video Streaming

with Pensieve,” in Proc. of ACM SIGCOM COMM, New York, NY, USA,

2017.



104 Bibliography

[58] D. Liu, L. Wang, Y. Chen, M. Elkashlan, K.-K. Wong, R. Schober, and L.

Hanzo, “User Association in 5G Networks: A Survey and an Outlook,” IEEE

Communications Surveys & Tutorials, vol. 18, no. 2, pp. 1018–1044, 2016.

[59] D. Liu, Y. Chen, K. K. Chai, and T. Zhang, “Nash Bargaining Solution based

User Association Optimization in HetNets,” in Proc. of IEEE CCNC, Las

Vegas, NV, USA, 2014.

[60] Y. Lei, G. Zhu, C. Shen, Y. Xu, and X. Zhang, “Delay-aware User Associa-

tion and Power Control for 5G Heterogeneous Network,” Mobile Networks

and Applications, vol. 24, pp. 1–13, 2018.

[61] M. Amine, A. Walid, A. Kobbane, and J. Ben-Othman, “New User Asso-

ciation Scheme Based on Multi-Objective Optimization for 5G Ultra-Dense

Multi-RAT HetNets,” in Proc. of IEEE ICC, Kansas City, MO, USA, 2018.

[62] A. S. Cacciapuoti, “Mobility-aware User Association for 5G mmWave Net-

works,” IEEE Access, vol. 5, pp. 21 497–21 507, 2017.

[63] M. Amine, A. Kobbane, and J. Ben-Othman, “New Network Slicing Scheme

for UE Association Solution in 5G Ultra Dense HetNets,” in Proc. of IEEE

ICC, Dublin, Ireland, 2020.

[64] S. Goyal, M. Mezzavilla, S. Rangan, S. Panwar, and M. Zorzi, “User asso-

ciation in 5g mmwave networks,” in Proc. of IEEE WCNC, San Fran, CA,

USA, 2017.

[65] D. Harutyunyan, A. Bradai, and R. Riggio, “Trade-offs in Cache-enabled

Mobile Networks,” in Proc. of IEEE CNSM, Rome, Italy, 2018.

[66] X. Ge, X. Li, H. Jin, J. Cheng, and V. C. Leung, “Joint User Association and

User Sscheduling for Load Balancing in Heterogeneous Networks,” IEEE

Transactions on Wireless Communications, vol. 17, no. 5, pp. 3211–3225,

2018.

[67] N. Liakopoulos, G. Paschos, and T. Spyropoulos, “Robust User Association

for Ultra Dense Networks,” in Proc. of IEEE INFOCOM, Honolulu, HI,

USA, 2018.

[68] A. Alleg, T. Ahmed, M. Mosbah, R. Riggio, and R. Boutaba, “Delay-aware

VNF Placement and Chaining based on a Flexible Resource Allocation Ap-

proach,” in Proc. of IEEE CNSM, Tokyo, Japan, 2017.

[69] Q. Zhang, F. Liu, and C. Zeng, “Adaptive Interference-aware VNF Placement

for Service-customized 5G Network Slices,” in Proc. of IEEE INFOCOM,

Paris, France, 2019.



Bibliography 105

[70] S. Yang, F. Li, R. Yahyapour, and X. Fu, “Delay-sensitive and Availability-

aware Virtual Network Function Scheduling for NFV,” IEEE Transactions

on Services Computing, 2019.

[71] M. M. Tajiki, S. Salsano, L. Chiaraviglio, M. Shojafar, and B. Akbari, “Joint

Energy Efficient and QoS-Aware Path Allocation and VNF Placement for

Service Function Chaining,” IEEE Transactions on Network and Service

Management, vol. 16, no. 1, pp. 374–388, 2019.

[72] L. Wang, Z. Lu, X. Wen, R. Knopp, and R. Gupta, “Joint Optimization of

Service Function Chaining and Resource Allocation in Network Function

Virtualization,” IEEE Access, vol. 4, pp. 8084–8094, 2016.

[73] S. Agarwal, F. Malandrino, C.-F. Chiasserini, and S. De, “Joint VNF Place-

ment and CPU Allocation in 5G,” in Proc. of IEEE INFOCOM, Honolulu,

HI, USA, 2018.

[74] Q. Zhang, Y. Xiao, F. Liu, J. C. Lui, J. Guo, and T. Wang, “Joint Optimization

of Chain Placement and Request Scheduling for Network Function Virtual-

ization,” in Proc. of IEEE ICDCS, Atlanta, GA, USA, 2017.

[75] Y. Bi, C. Colman-Meixner, R. Wang, F. Meng, R. Nejabati, and D. Sime-

onidou, “Resource Allocation for Ultra-low Latency Virtual Network Ser-

vices in Hierarchical 5G Network,” in Proc. of IEEE ICC, Shanghai, China,

2019.

[76] D. Zhang, X. Lin, and X. Chen, “Multiple Instances Mapping of Service

Function Chain with Parallel Virtual Network Functions,” Journal of Algo-

rithms & Computational Technology, vol. 13, 2019.

[77] H. Moens and F. De Turck, “VNF-P: A Model for Efficient Placement of

Virtualized Network Functions,” in Proc. of IEEE CNS, San Francisco, CA,

USA, 2014.

[78] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On orchestrating

virtual network functions,” in Proc. of IEEE CNSM, Barcelona, Spain, 2015.

[79] M. Huang, W. Liang, Y. Ma, and S. Guo, “Throughput maximization of

delay-sensitive request admissions via virtualized network function place-

ments and migrations,” in Proc. of IEEE ICC, Kansas City, MO, USA, 2018.

[80] N. Kiran, X. Liu, S. Wang, and C. Yin, “VNF Placement and Resource Al-

location in SDN/NFV-Enabled MEC Networks,” in Proc. of IEEE WCNCW,

Seoul, Korea (South), 2020.



106 Bibliography

[81] A. Laghrissi and T. Taleb, “A survey on the placement of virtual resources

and virtual network functions,” IEEE Communications Surveys Tutorials,

vol. 21, no. 2, pp. 1409–1434, 2019.

[82] J. Gil Herrera and J. F. Botero, “Resource Allocation in NFV: A Compre-

hensive Survey,” IEEE Transactions on Network and Service Management,

vol. 13, no. 3, pp. 518–532, 2016.

[83] Xin Li and Chen Qian, “A Survey of Network Function Placement,” in Proc.

of IEEE CCNC, Las Vegas, NV, USA, 2016.

[84] R. Cziva, C. Anagnostopoulos, and D. P. Pezaros, “Dynamic, Latency-Optimal

VNF Placement at the Network Edge,” in Proc. of IEEE INFOCOM, Hon-

olulu, HI, USA, 2018.

[85] D. Harutyunyan, N. Shahriar, R. Boutaba, and R. Riggio, “Latency-Aware

Service Function Chain Placement in 5G Mobile Networks,” in Proc. of

IEEE NetSoft, Paris, France, 2019.

[86] D. Cho, J. Taheri, A. Y. Zomaya, and P. Bouvry, “Real-time Virtual Network

Function (VNF) Migration Toward Low Network Latency in Cloud Environ-

ments,” in Proc. of IEEE CLOUD, Honolulu, HI, USA, 2017.

[87] F. Carpio, A. Jukan, and R. Pries, “Balancing the Migration of Virtual Net-

work Functions with Replications in Data Centers,” in Proc. of IEEE/IFIP

NOMS, Taipei, Taiwan, 2018.

[88] H. Hawilo, M. Jammal, and A. Shami, “Orchestrating Network Function

Virtualization Platform: Migration or Re-instantiation?” In Proc. of IEEE

CloudNet, Prague, Czech Republic, 2017.

[89] I. Sarrigiannis, E. Kartsakli, K. Ramantas, A. Antonopoulos, and C. Verik-

oukis, “Application and Network VNF migration in a MEC-enabled 5G Ar-

chitecture,” in Proc. IEEE CAMAD, Barcelona, Spain, 2018.

[90] M. Sedaghat, F. Hernandez-Rodriguez, and E. Elmroth, “A Virtual Machine

Re-packing Approach to the Horizontal vs. Vertical Elasticity Trade-off for

Cloud Autoscaling,” in Proc. of ACM CAC, Miami Florida, USA, 2013,

pp. 1–10.

[91] K. Hwang, Y. Shi, and X. Bai, “Scale-out vs. Scale-up Techniques for Cloud

Performance and Productivity,” in Proc. of IEEE CloudCom, Singapore, 2014,

pp. 763–768.



Bibliography 107

[92] W. Wang, L. Xu, and I. Gupta, “Scale Up vs. Scale Out In Cloud Storage and

Graph Processing Systems,” in Proc. of IEEE IC2E, Tempe, AZ, USA, 2015,

pp. 428–433.

[93] T. V. K. Buyakar, A. K. Rangisetti, A. A. Franklin, and B. R. Tamma, “Auto

Scaling of Data Plane VNFs in 5G Networks,” in Proc. of IEEE CNSM,

Tokyo, Japan, 2017, pp. 1–4.

[94] I. Alawe, Y. Hadjadj-Aoul, A. Ksentini, P. Bertin, and D. Darche, “On the

Scalability of 5G Core network: the AMF Case,” in Proc. of IEEE CCNC,

Las Vegas, HI, USA, 2018, pp. 1–6.

[95] M. Moghaddassian, H. Bannazadeh, and A. Leon-Garcia, “Adaptive Auto-

Scaling for Virtual Resources in Software-Defined Infrastructure,” in Proc.

of IEEE IM, Lisbon, Portugal, 2017, pp. 548–551.

[96] R. Gouareb, V. Friderikos, and A.-H. Aghvami, “Virtual Network Functions

Routing and Placement for Edge Cloud Latency Minimization,” IEEE Jour-

nal on Selected Areas in Communications, vol. 36, no. 10, pp. 2346–2357,

2018.

[97] H. Tang, D. Zhou, and D. Chen, “Dynamic Network Function Instance Scal-

ing based on Traffic Forecasting and VNF Placement in Operator Data Cen-

ters,” IEEE Transactions on Parallel and Distributed Systems, vol. 30, no. 3,

pp. 530–543, 2018.

[98] T. Subramanya and R. Riggio, “Machine Learning-driven Scaling and Place-

ment of Virtual Network Functions at the Network Edges,” in Proc. of IEEE

NetSoft, Paris, France, 2019, pp. 414–422.

[99] Network Simulator ns-3. [Online]. Available: https://www.nsnam.org/.

[100] ns-3 generated dataset for DASH over dynamic radio access networks. [On-

line]. Available: {https://github.com/akhila- s- rao/ns3_dash_

over_ran/}.

[101] An MPEG/DASH client-server ns3 module, Accessed on 23.07.2020. [On-

line]. Available: https://github.com/djvergad/dash.

[102] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” in

Proc. of ACM SIGKDD, New York, NY, USA, 2016.

[103] R. Caruana and A. Niculescu-Mizil, “An Empirical Comparison of Super-

vised Learning Algorithms,” in Proc. of ACM ICMLC, New York, NY, USA,

2006.

https://www.nsnam.org/
{https://github.com/akhila-s-rao/ns3_dash_over_ran/}
{https://github.com/akhila-s-rao/ns3_dash_over_ran/}
https://github.com/djvergad/dash


108 Bibliography

[104] S. Kekki, W. Featherstone, Y. Fang, P. Kuure, A. Li, A. Ranjan, D. Purkayastha,

F. Jiangping, D. Frydman, G. Verin, et al., “MEC in 5G networks,” ETSI,

White Paper, 2018.

[105] M. Chowdhury, M. R. Rahman, and R. Boutaba, “Vineyard: Virtual Net-

work Embedding Algorithms with Coordinated Node and Link Mapping,”

IEEE/ACM Transactions on Networking, vol. 20, no. 1, pp. 206–219, 2012.

[106] A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, and X. Hesselbach, “Virtual

Network Embedding: A Survey,” IEEE Communications Surveys & Tutori-

als, vol. 15, no. 4, pp. 1888–1906, 2013.

[107] A. Chiumento, M. Bennis, C. Desset, L. Van der Perre, and S. Pollin, “Adap-

tive CSI and Feedback Estimation in LTE and Beyond: a Gaussian Process

Regression Approach,” EURASIP Journal on Wireless Communications and

Networking, vol. 2015, no. 1, p. 168, 2015.

[108] A. N. Toosi, J. Son, Q. Chi, and R. Buyya, “ElasticSFC: Auto-scaling Tech-

niques for Elastic Service Function Chaining in Network Functions Virtualization-

based Clouds,” Journal of Systems and Software, vol. 152, pp. 108–119,

2019.

[109] ETSI, “Multi-access Edge Computing (MEC); Framework and Reference

Architecture,” ETSI Group Specification 003, 2019.

[110] 3GPP, “3GPP Technical Specification Group Services and System Aspects;

System Architecture for the 5G System,” 2019.

[111] D. Harutyunyan, N. Shahriar, R. Boutaba, and R. Riggio, “Latency and Mobility-

Aware Service Function Chain Placement in 5G Networks,” IEEE Transac-

tions on Mobile Computing, pp. 1–1, 2020.

[112] M. Chowdhury, M. R. Rahman, and R. Boutaba, “ViNEYard: Virtual network

embedding algorithms with coordinated node and link mapping,” IEEE/ACM

Transactions on Networking, vol. 20, no. 1, pp. 206 –219, 2012.

[113] F. Z. Yousaf, P. Loureiro, F. Zdarsky, T. Taleb, and M. Liebsch, “Cost Anal-

ysis of Initial Deployment Strategies for Virtualized Mobile Core Network

Functions,” IEEE Communications Magazine, vol. 53, no. 12, pp. 60–66,

2015.


	Frontpage3
	Thesis - Rasoul Behravesh

