
Bolt-on Differential Privacy for Scalable
Stochastic Gradient Descent-based Analytics

Xi Wu1∗ Fengan Li1∗ Arun Kumar2 Kamalika Chaudhuri2
Somesh Jha3 Jeffrey Naughton1∗

1Google 2University of California, San Diego 3University of Wisconsin-Madison
1{wuxi, fenganl, naughton}@google.com, 2{arunkk, kamalika}@eng.ucsd.edu,

3jha@cs.wisc.edu

ABSTRACT
While significant progress has been made separately on analytics
systems for scalable stochastic gradient descent (SGD) and private
SGD, none of the major scalable analytics frameworks have in-
corporated differentially private SGD. There are two inter-related
issues for this disconnect between research and practice: (1) low
model accuracy due to added noise to guarantee privacy, and (2)
high development and runtime overhead of the private algorithms.
This paper takes a first step to remedy this disconnect and proposes
a private SGD algorithm to address both issues in an integrated
manner. In contrast to the white-box approach adopted by previous
work, we revisit and use the classical technique of output pertur-
bation to devise a novel “bolt-on” approach to private SGD. While
our approach trivially addresses (2), it makes (1) even more chal-
lenging. We address this challenge by providing a novel analysis
of the L2-sensitivity of SGD, which allows, under the same pri-
vacy guarantees, better convergence of SGD when only a constant
number of passes can be made over the data. We integrate our al-
gorithm, as well as other state-of-the-art differentially private SGD,
into Bismarck, a popular scalable SGD-based analytics system on
top of an RDBMS. Extensive experiments show that our algorithm
can be easily integrated, incurs virtually no overhead, scales well,
and most importantly, yields substantially better (up to 4X) test ac-
curacy than the state-of-the-art algorithms on many real datasets.

1 Introduction
The past decade has seen significant interest from both the data
management industry and academia in integrating machine learn-
ing (ML) algorithms into scalable data processing systems such as
RDBMSs [23, 19], Hadoop [1], and Spark [2]. In many data-driven
applications such as personalized medicine, finance, web search,
and social networks, there is also a growing concern about the pri-
vacy of individuals. To this end, differential privacy, a cryptograph-
ically motivated notion, has emerged as the gold standard for pro-
tecting data privacy. Differentially private ML has been extensively

∗Work done while at UW-Madison.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14-19, 2017, Chicago, IL, USA
c© 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3064047

studied by researchers from the database, ML, and theoretical com-
puter science communities [10, 13, 15, 25, 27, 36, 37].

In this work, we study differential privacy for stochastic gradi-
ent descent (SGD), which has become the optimization algorithm
of choice in many scalable ML systems, especially in-RDBMS ana-
lytics systems. For example, Bismarck [19] offers a highly efficient
in-RDBMS implementation of SGD to provide a single framework
to implement many convex analysis-based ML techniques. Thus,
creating a private version of SGD would automatically provide pri-
vate versions of all these ML techniques.

While previous work has separately studied in-RDBMS SGD
and differentially private SGD, our conversations with developers
at several database companies revealed that none of the major in-
RDBMS ML tools have incorporated differentially private SGD.
There are two inter-related reasons for this disconnect between re-
search and practice: (1) low model accuracy due to the noise added
to guarantee privacy, and (2) high development and runtime over-
head of the private algorithms. One might expect that more sophis-
ticated private algorithms might be needed to address issue (1) but
then again, such algorithms might in turn exacerbate issue (2)!

To understand these issues better, we integrate two state-of-the-
art differentially private SGD algorithms – Song, Chaudhuri and
Sarwate (SCS13 [35]) and Bassily, Smith and Thakurta (BST14
[10]) – into the in-RDBMS SGD architecture of Bismarck. SCS13
adds noise at each iteration of SGD, enough to make the iterate
differentially private. BST14 reduces the amount of noise per iter-
ation by subsampling and can guarantee optimal convergence us-
ing O(m) passes over the data (where m is the training set size);
however, in many real applications, we can only afford a constant
number of passes, and hence, we derive and implement a version
for O(1) passes. Empirically, we find that both algorithms suffer
from both issues (1) and (2): their accuracy is much worse than the
accuracy of non-private SGD, while their “white box” paradigm
requires deep code changes that require modifying the gradient up-
date steps of SGD in order to inject noise. In turn, these changes
for repeated noise sampling lead to a significant runtime overhead.

In this paper, we take a first step towards mitigating both issues
in an integrated manner. In contrast to the white box approach of
prior work, we consider a new approach to differentially private
SGD in which we treat the SGD implementation as a “black box”
and inject noise only at the end. In order to make this bolt-on ap-
proach feasible, we revisit and use the classical technique of output
perturbation [16]. An immediate consequence is that our approach
can be trivially integrated into any scalable SGD system, including
in-RDBMS analytics systems such as Bismarck, with no changes
to the internal code. Our approach also incurs virtually no runtime
overhead and preserves the scalability of the existing system.

http://dx.doi.org/10.1145/3035918.3064047

While output perturbation obviously addresses the runtime and
integration challenge, it is unclear what its effect is on model ac-
curacy. In this work, we provide a novel analysis that leads to an
output perturbation procedure with higher model accuracy than the
state-of-the-art private SGD algorithms. The essence of our solu-
tion is a new bound on the L2-sensitivity of SGD which allows, un-
der the same privacy guarantees, better convergence of SGD when
only a constant number of passes over the data can be made. As a
result, our algorithm produces private models that are significantly
more accurate than both SCS13 and BST14 for practical problems.
Overall, this paper makes the following contributions:

• We propose a novel bolt-on differentially private algorithm
for SGD based on output perturbation. An immediate conse-
quence of our approach is that our algorithm directly inherits
many desirable properties of SGD, while allowing easy inte-
gration into existing scalable SGD-based analytics systems.

• We provide a novel analysis of the L2-sensitivity of SGD
that leads to an output perturbation procedure with higher
model accuracy than the state-of-the-art private SGD algo-
rithms. Importantly, our analysis allows better convergence
when one can only afford running a constant number of passes
over the data, which is the typical situation in practice. Key
to our analysis is the use of the well-known expansion prop-
erties of gradient operators [29, 31].

• We integrate our private SGD algorithms, SCS13, and BST14
into Bismarck and conduct a comprehensive empirical eval-
uation. We explain how our algorithms can be easily in-
tegrated with little development effort. Using several real
datasets, we demonstrate that our algorithms run significantly
faster, scale well, and yield substantially better test accuracy
(up to 4X) than SCS13 or BST14 for the same settings.

The rest of this paper is organized as follows: In Section 2 we
present preliminaries. In Section 3, we present our private SGD
algorithms and analyze their privacy and convergence guarantees.
Along the way, we extend our main algorithms in various ways to
incorporate common practices of SGD. We then perform a compre-
hensive empirical study in Section 4 to demonstrate that our algo-
rithms satisfy key desired properties for in-RDBMS analytics: ease
of integration, low runtime overhead, good scalability, and high ac-
curacy. We provide more remarks on related theoretical work in
Section 5 and conclude with future directions in Section 6.

2 Preliminaries
This section reviews important definitions and existing results.
Machine Learning and Convex ERM. Focusing on supervised
learning, we have a sample space Z = X × Y , where X is a
space of feature vectors and Y is a label space. We also have
an ordered training set ((xi, yi))

m
i=1. Let W ⊆ Rd be a hypoth-

esis space equipped with the standard inner product and 2-norm
‖ · ‖. We are given a loss function ` : W×Z 7→ R which
measures the how well a w classifies an example (x, y) ∈ Z, so
that given a hypothesis w ∈ W and a sample (x, y) ∈ Z, we
have a loss `(w, (x, y)). Our goal is to minimize the empirical
risk over the training set S (i.e., the empirical risk minimization,
or ERM), defined as LS(w) = 1

m

∑m
i=1 `(w, (xi, yi)). Fixing S,

`i(w) = `(w, (xi, yi)) is a function of w. In both in-RDBMS and
private learning, convex ERM problems are common, where every
`i is convex. We start by defining some basic properties of loss
functions that will be needed later to present our analysis.

DEFINITION 1. Let f :W 7→ R be a function:

• f is convex if for any u, v ∈ W ,
f(u) ≥ f(v) + 〈∇f(v), u− v〉

• f is L-Lipschitz if for any u, v ∈ W ,
‖f(u)− f(v)‖ ≤ L‖u− v‖

• f is γ-strongly convex if
f(u) ≥ f(v) + 〈∇f(v), u− v〉+ γ

2
‖u− v‖2

• f is β-smooth if
‖∇f(u)−∇f(v)‖ ≤ β‖u− v‖

Example: Logistic Regression. The above three parameters (L, γ,
and β) are derived by analyzing the loss function. We give an ex-
ample using the popular L2-regularized logistic regression model
with the L2 regularization parameter λ. This derivation is standard
in the optimization literature (e.g., see [11]). We assume some pre-
processing that normalizes each feature vector, i.e., each ‖x‖ ≤ 1
(this assumption is common for analyzing private optimization [10,
13, 35]. In fact, such preprocessing are also common for general
machine learning problems [6], not just private ones). Recall now
that for L2-regularized logistic regression the loss function on an
example (x, y) with y ∈ {±1}) is defined as follows:

`(w, (x, y)) = ln
(
1 + exp(−y〈w, x〉)

)
+
λ

2
‖w‖2 (1)

Fixing λ ≥ 0, we can obtain L, γ, and β by looking at the expres-
sion for the gradient (∇`(w)) and the Hessian (H(`(w))). L is cho-
sen as a tight upper bound on ‖∇`(w)‖, β is chosen as a tight upper
bound on ‖H(`(w))‖, and γ is chosen such that H(`(w)) � γI ,
i.e., H(`(w))− γI is positive semidefinite).

Now there are two cases depending on whether λ > 0 or not.
If λ = 0 we do not have strong convexity (in this case it is only
convex), and we have L = β = 1 and γ = 0. If λ > 0, we need
to assume a bound on the norm of the hypothesis w. (which can
be achieved by rescaling). In particular, suppose ‖w‖ ≤ R, then
together with ‖x‖ ≤ 1, we can deduce thatL = 1+λR, β = 1+λ,
and γ = λ. We remark that these are indeed standard values in the
literature for L2-regularized logistic loss [11].

The above assumptions and derivation are common in the opti-
mization literature [11, 12]. In some ML models, ` is not differ-
entiable, e.g., the hinge loss for the linear SVM [4]. The standard
approach in this case is to approximate it with a differentiable and
smooth function. For example, for the hinge loss, there is a body
of work on the so-called Huber SVM [4]. In this paper, we focus
primarily on logistic regression as our example but we also discuss
the Huber SVM and present experiments for it in the appendix.
Stochastic Gradient Descent. SGD is a simple but popular op-
timization algorithm that performs many incremental gradient up-
dates instead of computing the full gradient of LS . At step t, given
wt and a random example (xt, yt), SGD’s update rule is as follows:

wt+1 = G`t,ηt(wt) = wt − ηt`′t(wt) (2)

where `t(·) = `(·; (xt, yt)) is the loss function and ηt ∈ R is a
parameter called the learning rate, or step size. We will denote
G`t,ηt as Gt. A form of SGD that is commonly used in practice is
permutation-based SGD (PSGD): first sample a random permuta-
tion τ of [m] (m is the size of the training set S), and then repeat-
edly apply (2) by cycling through S according to τ . In particular,
if we cycle through the dataset k times, it is called k-pass PSGD.

We now define two important properties of gradient updates that
are needed to understand the analysis of SGD’s convergence in gen-
eral, as well as our new technical results on differentially private
SGD: expansiveness and boundedness. Specifically, we use these

definitions to introduce a simple but important recent optimization-
theoretical result on SGD’s behavior by [21] that we adapt and ap-
ply to our problem setting. Intuitively, expansiveness tells us how
much G can expand or contract the distance between two hypothe-
ses, while boundedness tells us how much G modifies a given hy-
pothesis. We now provide the formal definitions (due to [29, 31]).

DEFINITION 2 (EXPANSIVENESS). Let G : W 7→ W be an
operator that maps a hypothesis to another hypothesis. G is said
to be ρ-expansive if supw,w′

‖G(w)−G(w′)‖
‖w−w′‖ ≤ ρ.

DEFINITION 3 (BOUNDEDNESS). Let G : W 7→ W be an
operator that maps a hypothesis to another hypothesis. G is said
to be σ-bounded if supw∈W ‖G(w)− w‖ ≤ σ.

LEMMA 1 (EXPANSIVENESS ([29, 31])). Assume that ` is β-
smooth. Then, the following hold.

1. If ` is convex, then for any η ≤ 2/β, G`,η is 1-expansive.

2. If ` is γ-strongly convex, then for η ≤ 2
β+γ

, G`,η is (1 −
2ηβγ
β+γ

)-expansive.

In particular we use the following simplification due to [21].

LEMMA 2 ([21]). Suppose that ` is β-smooth and γ-strongly
convex. If η ≤ 1

β
, then G`,η is (1− ηγ)-expansive.

LEMMA 3 (BOUNDEDNESS). Assume that ` is L-Lipschitz.
Then the gradient update G`,η is (ηL)-bounded.

We are ready to describe a key quantity studied in this paper.

DEFINITION 4 (δt). Letw0, w1, . . . , wT , andw′0, w
′
1, . . . , w

′
T

be two sequences inW . We define δt as ‖wt − w′t‖.

The following lemma by Hardt, Recht and Singer [21] bounds δt
using expansiveness and boundedness properties (Lemma 1 and 3).

LEMMA 4 (GROWTH RECURSION [21]). Fix any two sequences
of updates G1, . . . , GT and G′1, . . . , G

′
T . Let w0 = w′0 and wt =

Gt(wt−1) and w′t = G′t(w
′
t−1) for t = 1, 2, . . . , T . Then

δ0 = 0, and for 0 < t ≤ T

δt ≤

ρδt−1 Gt = G′t is ρ-expansive.

min(ρ, 1)δt−1 + 2σt
Gt and G′t are σt-bounded,
Gt is ρ-expansive.

Essentially, Lemma 4 is used as a tool to prove “average-case
stability” of standard SGD in [21]. We adapt and apply this re-
sult to our problem setting and devise new differentially private
SGD algorithms.1 The application is non-trivial because of our
unique desiderata but we achieve it by leveraging other recent im-
portant optimization-theoretical results by [34] on the convergence
of PSGD. Overall, by synthesizing and building on these recent
results, we are able to prove the convergence of our private SGD
algorithms as well.
Differential Privacy. We say that two datasets S, S′ are neigh-
boring, denoted by S ∼ S′, if they differ on a single individual’s
private value. Recall the following definition:
1Interestingly, differential privacy can be viewed as notion of
“worst-case stability.” Thus we offer “worst-case stability.”

DEFINITION 5 ((ε, δ)-DIFFERENTIAL PRIVACY). A (random-
ized) algorithm A is said to be (ε, δ)-differentially private if for
any neighboring datasets S, S′, and any event E ⊆ Range(A),
Pr[A(S) ∈ E] ≤ eε Pr[A(S′) ∈ E] + δ.

In particular, if δ = 0, we will use ε-differential privacy instead of
(ε, 0)-differential privacy. A basic paradigm to achieve ε-differential
privacy is to examine a query’s L2-sensitivity,

DEFINITION 6 (L2-SENSITIVITY). Let f be a deterministic
query that maps a dataset to a vector in Rd. The L2-sensitivity of
f is defined to be ∆2(f) = maxS∼S′ ‖f(S)− f(S′)‖.

The following theorem relates ε-differential privacy andL2-sensitivity.

THEOREM 1 ([16]). Let f be a deterministic query that maps
a database to a vector in Rd. Then publishing f(D) + κ where κ
is sampled from the distribution with density

p(κ) ∝ exp

(
− ε‖κ‖

∆2(f)

)
(3)

ensures ε-differential privacy.

For the interested reader, we provide a detailed algorithm in Ap-
pendix E for how to sample from the above distribution.

Importantly, the L2-norm of the noise vector, ‖κ‖, is distributed
according to the Gamma distribution Γ (d,∆2(f)/ε). We have the
following fact about Gamma distributions:

THEOREM 2 ([13]). For the noise vector κ, we have that with
probability at least 1− γ, ‖κ‖ ≤ d ln(d/γ)∆2(f)

ε
.

Note that the noise depends linearithmically on d. This could de-
stroy utility (lower accuracy dramatically) if d is high. But there
are standard techniques to mitigate this issue that are commonly
used in private SGD literature (we discuss more in Section 4.3). By
switching to Gaussian noise, we obtain (ε, δ)-differential privacy.

THEOREM 3 ([17]). Let f be a deterministic query that maps
a database to a vector in Rd. Let ε ∈ (0, 1) be arbitrary. For
c2 > 2 ln(1.25/δ), adding Gaussian noise sampled according to

N (0, σ2); σ ≥ c∆2(f)

ε
, c2 > 2 ln

(
1.25

δ

)
(4)

ensures (ε, δ)-differentially privacy.

For Gaussian noise, the dependency on d is
√
d, instead of d ln d.

Random Projection. Known convergence results of private SGD
(in fact private ERM in general) have a poor dependencies on the
dimension d. To handle high dimensions, a useful technique is ran-
dom projection [7]. That is, we sample a random linear transforma-
tion T from certain distributions and apply T to each feature point
x in the training set, so x is transformed to Tx. Note that after this
transformation two neighboring datasets (datasets differing at one
data point) remain neighboring, so random projection does not af-
fect our privacy analysis. Further, the theory of random projection
will tell “what low dimension” to project to so that “approximate
utility will be preserved.” (in our MNIST experiments the accuracy
gap between original and projected dimension is very small). Thus,
for problems with higher dimensions, we invoke the random pro-
jection to “lower” the dimension to achieve small noise and thus
better utility, while preserving privacy.

In our experimental study we apply random projection to one of
our datasets (MNIST).

3 Private SGD
We present our differentially private PSGD algorithms and analyze
their privacy and convergence guarantees. Specifically, we present
a new analysis of the output perturbation method for PSGD. Our
new analysis shows that very little noise is needed to achieve dif-
ferential privacy. In fact, the resulting private algorithms have good
convergence rates with even one pass over the data. Since output
perturbation also uses standard PSGD algorithm as a black-box,
this makes our algorithms attractive for in-RDBMS scenarios.

This section is structured accordingly in two parts. In Section 3.1
we give two main differentially private algorithms for convex and
strongly convex optimization. In Section 3.2 we first prove that
these two algorithms are differentially private (Section 3.2.1 and
3.2.2), then extend them in various ways (Section 3.2.3), and finally
prove their convergence (Section 3.2.4).

3.1 Algorithms
As we mentioned before, our differentially private PSGD algo-
rithms uses one of the most basic paradigms for achieving differ-
ential privacy – the output perturbation method [16] based on L2-
sensitivity (Definition 6). Specifically, our algorithms are “instanti-
ations” of the output perturbation method where the L2-sensitivity
parameter ∆2 is derived using our new analysis. To describe the
algorithms, we assume a standard permutation-based SGD proce-
dure (denoted as PSGD) which can be invoked as a black-box. To
facilitate the presentation, Table 1 summarizes the parameters.

Symbol Meaning
λ L2-regularization parameter.
L Lipschitz constant.
γ Strong convexity.
β Smoothness.
ε, δ Privacy parameters.
ηt Learning rate or step size at iteration t.
W A convex set that forms the hypothesis space.
R Radius of the hypothesis spaceW .
k Number of passes through the data.
b Mini-batch size of SGD.
m Size of the training set S.

Table 1: Notations.

Algorithm 1 Private Convex Permutation-based SGD

Require: `(·, z) is convex for every z, η ≤ 2/β.
Input: Data S, parameters k, η, ε
1: function PrivateConvexPSGD(S, k, ε, η)
2: w← PSGD(S) with k passes and ηt = η
3: ∆2← 2kLη
4: Sample noise vector κ according to (3).
5: return w + κ

Algorithm 2 Private Strongly Convex Permutation-based SGD

Require: `(·, z) is γ-strongly convex for every z
Input: Data S, parameters k, ε
1: function PrivateStronglyConvexPSGD(S, k, ε)
2: w← PSGD(S) with k passes and ηt = min(1

β
, 1
γt

)

3: ∆2← 2L
γm

4: Sample noise vector κ according to (3).
5: return w + κ

Algorithms 1 and 2 give our private SGD algorithms for convex
and strongly convex cases, respectively. A key difference between
these two algorithms is at line 3 where different L2-sensitivities are
used to sample the noise κ. Note that different learning rates are

used: In the convex case, a constant rate is used, while a decreasing
rate 1

γt
is used in the strongly convex case. Finally, note that the

standard PSGD is invoked as a black box at line 2.

3.2 Analysis
In this section we investigate privacy and convergence guarantees
of Algorithms 1 and 2. Along the way, we also describe extensions
to accommodate common practices in running SGD. Most proofs
in this section are deferred to the appendix.
Overview of the Analysis and Key Observations. For privacy,
letA(r;S) denote a randomized non-private algorithm where r de-
notes the randomness (e.g., random permutations sampled by SGD)
and S denotes the input training set. To bound L2-sensitivity we
want to bound maxr,r′ ‖A(r;S) − A(r′;S′)‖ on a pair of neigh-
boring datasets S, S′, where r, r′ can be different randomness se-
quences of A in general. This can be complicated since A(r; ·) and
A(r′; ·) may access the data in vastly different patterns.

Our key observation is that for non-adaptive randomized algo-
rithms, it suffices to consider randomness sequences one at a time,
and thus bound maxr ‖A(r;S) − A(r;S′)‖. This in turn allows
us to obtain a small upper bound of the L2-sensitivity of SGD by
combining the expansion properties of gradient operators and the
fact that one will only access once the differing data point between
S and S′ for each pass over the data, if r is a random permutation.

Finally for convergence, while using permutation benefits our
privacy proof, the convergence behavior of permutation-based SGD
is poorly understood in theory. Fortunately, based on very recent
advances by Shamir [34] on the sampling-without-replacement SGD,
we prove convergence of our private SGD algorithms even with
only one pass over the data.
Randomness One at a Time. Consider the following definition,

DEFINITION 7 (NON-ADAPTIVE ALGORITHMS). A random-
ized algorithm A is non-adaptive if its random choices do not de-
pend on the input data values.

PSGD is clearly non-adaptive as a single random permutation is
sampled at the very beginning of the algorithm. Another common
SGD variant, where one independently and uniformly samples it ∼
[m] at iteration t and picks the it-th data point, is also non-adaptive.
In fact, more modern SGD variants, such as Stochastic Variance
Reduced Gradient (SVRG [26]) and Stochastic Average Gradient
(SAG [32]), are non-adaptive as well. Now we have the following
lemma for non-adaptive algorithms and differential privacy.

LEMMA 5. Let A(r;S) be a non-adaptive randomized algo-
rithm where r denotes the randomness of the algorithm and S de-
notes the dataset A works on. Suppose that

sup
S∼S′

sup
r
‖A(r;S)−A(r;S′)‖ ≤ ∆.

Then publishingA(r;S)+κwhere κ is sampled with density p(κ) ∝
exp

(
− ε‖κ‖2

∆

)
ensures ε-differential privacy.

PROOF. Let Ã denote the private version of A. Ã has two parts
of randomness: One part is r, which is used to compute A(r;S);
the second part is κ, which is used for perturbation (i.e. A(r;S) +
κ). Let R be the random variable corresponding to the randomness
of A. Note that R does not depend on the input training set. Thus
for any event E,

Pr[Ã((r, κ);S) ∈ E]

=
∑
r

Pr[R = r] · Pr
κ

[A((r, κ);S) ∈ E | R = r].
(5)

Denote Prκ[A((r, κ);S) ∈ E | R = r] by pκ(Ar(S) ∈ E). Then
similarly for S′ we have that

Pr[Ã((r, κ);S′) ∈ E]

=
∑
r

Pr[R = r] · pκ(Ar(S
′) ∈ E).

(6)

Compare (5) and (6) term by term (for every r): the lemma then
follows as we calibrate the noise κ so that pκ(Ar(S) ∈ E) ≤
eεpκ(Ar(S

′) ∈ E).

From now on we denote PSGD by A. With the notations in Def-
inition 4, our next goal is thus to bound supS∼S′ supr δT . In the
next two sections we bound this quantity for convex and strongly
convex optimization, respectively.
3.2.1 Convex Optimization
In this section we prove privacy guarantee when `(·, z) is convex.
Recall that for general convex optimization, we have 1-expansiveness
by Lemma 1.1. We thus have the following lemma that bounds δT .

LEMMA 6. Consider k-passes PSGD for L-Lipschitz, convex
and β-smooth optimization where ηt ≤ 2

β
for t = 1, . . . , T . Let

S, Si be any neighboring datasets. Let r be a random permuta-
tion of [m]. Suppose that r(i) = i∗. Let T = km, then δT ≤
2L
∑k−1
j=0 ηi∗+jm .

We immediately have the following corollary onL2-sensitivity with
constant step size,

COROLLARY 1 (CONSTANT STEP SIZE). Consider k-passes
PSGD for L-Lipschitz, convex and β-smooth optimization. Sup-
pose further that we have constant learning rate η1 = η2 = · · · =
ηT = η ≤ 2

β
. Then supS∼S′ supr δT ≤ 2kLη.

This directly yields the following theorem,

THEOREM 4. Algorithm 1 is ε-differentially private.

We now give L2-sensitivity results for two different choices of
step sizes, which are also common for convex optimization.

COROLLARY 2 (DECREASING STEP SIZE). Let c ∈ [0, 1) be
some constant. Consider k-passes PSGD for L-Lipschitz, convex
and β-smooth optimization. Suppose further that we take decreas-
ing step size ηt = 2

β(t+mc)
where m is the training set size. Then

supS∼S′ supr δT = 4L
β

(
1
mc

+ ln k
m

)
.

COROLLARY 3 (SQUARE-ROOT STEP SIZE). Let c ∈ [0, 1) be
some constant. Consider k-passes PSGD for L-Lipschitz, convex
and β-smooth optimization. Suppose further that we take square-
root step size ηt = 2

β(
√
t+mc)

. Then

sup
S∼S′

sup
r
δT ≤

4L

β

(
k−1∑
j=0

1√
jm+ 1 +mc

)

=O

(
L

β

(
1

mc
+ min

(
k

mc
,

√
k

m

)))
.

Remark on Constant Step Size. In Lemma 1 the step size is named
“constant” for the SGD. However, one should note that Constant
step size for SGD can depend on the size of the training set, and
in particular can vanish to zero as training set size m increases.
For example, a typical setting of step size is 1√

m
(In fact, in typ-

ical convergence results of SGD, see, for example in [12, 28], the
constant step size η is set to 1/TO(1) where T is the total number
of iterations). This, in particular, implies a sensitivity O(kη) =
O(k/

√
m), which vanishes to 0 as m grows to infinity.

3.2.2 Strongly Convex Optimization
Now we consider the case where `(·, z) is γ-strongly convex. In
this case the sensitivity is smaller because the gradient operators are
ρ-expansive for ρ < 1 so in particular they become contractions.
We have the following lemmas.

LEMMA 7 (CONSTANT STEP SIZE). Consider PSGD for L-
Lipschitz, γ-strongly convex and β-smooth optimization with con-
stant step sizes η ≤ 1

β
. Let k be the number of passes. Let S, S′ be

two neighboring datasets differing at the i-th data point. Let r be a
random permutation of [m]. Suppose that r(i) = i∗. Let T = km,
then δT ≤ 2Lη

∑k−1
j=0 (1− ηγ)(k−j)m−i∗ . In particular,

sup
S∼S′

sup
r
δT ≤

2ηL

1− (1− ηγ)m
.

LEMMA 8 (DECREASING STEP SIZE). Consider k-passes PSGD
forL-Lipschitz, γ-strongly convex and β-smooth optimization. Sup-
pose further that we use decreasing step length: ηt = min(1

γt
, 1
β

).
Let S, S′ be two neighboring datasets differing at the i-th data
point. Let r be a random permutation of [m]. Suppose that r(i) =
i∗. Let T = km, then supS∼S′ supr δT ≤ 2L

γm
.

In particular, Lemma 8 yields the following theorem,

THEOREM 5. Algorithm 2 is ε-differentially private.

One should contrast this theorem with Theorem 4: In the convex
case we bound L2-sensitivity by 2kLη, while in the strongly con-
vex case we bound it by 2L/γm.

3.2.3 Extensions
In this section we extend our main argument in several ways: (ε, δ)-
differential privacy, mini-batching, model averaging, fresh permu-
tation at each pass, and finally constrained optimization. These ex-
tensions can be easily incorporated to standard PSGD algorithm, as
well as our private algorithms 1 and 2, and are used in our empirical
study later.
(ε, δ)-Differential Privacy. We can also obtain (ε, δ)-differential
privacy easily using Gaussian noise (see Theorem 3).

LEMMA 9. Let A(r;S) be a non-adaptive randomized algo-
rithm where r denotes the randomness of the algorithm and S de-
note the dataset. Suppose that

sup
S∼S′

sup
r
‖A(r;S)−A(r;S′)‖ ≤ ∆.

Then for any ε ∈ (0, 1), publishing A(r;S) + κ where each com-
ponent of κ is sampled using (4) ensures (ε, δ)-differential privacy.

In particular, combining this with our L2-sensitivity results, we get
the following two theorems,

THEOREM 6 (CONVEX AND CONSTANT STEP). Algorithm 1
is (ε, δ)-differentially private if each component of κ at line 3 is
sampled according to equation (4).

THEOREM 7 (STRONGLY CONVEX AND DECREASING STEP).
Algorithm 2 is (ε, δ)-differentially private if each component of κ
at line 3 is sampled according to equation (4).

Mini-batching. A popular way to do SGD is that at each step,
instead of sampling a single data point zt and do gradient update
w.r.t. it, we randomly sample a batch B ⊆ [m] of size b, and do

wt = wt−1 − ηt
1

b

(∑
i∈B

`′i(wt−1)

)
=

1

b

∑
i∈B

Gi(wt−1).

For permutation SGD, a natural way to employ mini-batch is to
partition the m data points into mini-batches of size b (for sim-
plicity let us assume that b divides m), and do gradient updates
with respect to each chunk. In this case, we notice that mini-batch
indeed improves the sensitivity by a factor of b. In fact, let us con-
sider neighboring datasets S, S′, and at step t, we have batches
B,B′ that differ in at most one data point. Without loss of gener-
ality, let us consider the case where B,B′ differ at one data point,
then on S we have wt = 1

b

∑
i∈B Gi(wt−1), and on S′ we have

w′t = 1
b

∑
i∈B G

′
i(w
′
t−1), and so

δt =

∥∥∥∥∥1

b

∑
i∈B

Gi(wt−1)−G′i(w′t−1)

∥∥∥∥∥
≤1

b

B∑
i=1

‖Gi(wt−1)−G′i(w′t−1)‖.

We note that for all i except one in B, Gi = G′i, and so by the
Growth Recursion Lemma 4, ‖Gi(wt−1) − G′i(w′t−1)‖ ≤ ρδt−1

if Gi is ρ-expansive, and for the differing index i∗, ‖Gi∗(wt−1)−
G′i∗(w

′
t−1)‖ ≤ min(ρ, 1)δt−1 + 2σt. Therefore, for a uniform

bound ρt on expansiveness and σt on boundedness (for all i ∈ B,
which is the case in our analysis), we have that δt ≤ ρtδt−1 + 2σt

b
.

This implies a factor b improvement for all our sensitivity bounds.
Model Averaging. Model averaging is a popular technique for
SGD. For example, given iterates w1, . . . , wT , a common way to
do model averaging is either to output 1

T

∑T
t=1 wt or output the av-

erage of the last log T iterates. We show that model averaging will
not affect our sensitivity result, and in fact it will give a constant-
factor improvement when earlier iterates have smaller sensitivities.
We have the following lemma.

LEMMA 10 (MODEL AVERAGING). Suppose that instead of
returning wT at the end of the optimization, we return an averaged
model w̄ =

∑T
t=1 αtwt, where αt is a sequence of coefficients that

only depend on t, T . Then,

sup
S∼S′

sup
r
‖w̄ − w̄′‖ ≤

T∑
t=1

αt‖wt − w′t‖ =

T∑
t=1

αtδt.

In particular, we notice that the δt’s we derived before are non-
decreasing, so the sensitivity is bounded by (

∑T
t=1 αt)δT .

Fresh Permutation at Each Pass. We note that our analysis ex-
tends verbatim to the case where in each pass a new permutation is
sampled, as our analysis applies to any fixed permutation.
Constrained Optimization. Until now, our SGD algorithm is for
unconstrained optimization. That is, the hypothesis spaceW is the
entire Rd. Our results easily extend to constrained optimization
where the hypothesis spaceW is a convex set C. That is, our goal
is to compute minw∈C LS(w). In this case, we change the original
gradient update rule 2 to the projected gradient update rule:

wt =
∏
C

(
wt−1 − ηt`′t(wt−1)

)
, (7)

where
∏
C(w) = arg minv ‖v − w‖ is the projection of w to C.

It is easy to see that our analysis carries over verbatim to the pro-
jected gradient descent. In fact, our analysis works as long as the
optimization is carried over a Hilbert space (i.e., the ‖ ·‖ is induced
by some inner product). The essential reason is that projection will
not increase the distance (‖

∏
u−

∏
v‖ ≤ ‖u− v‖), and thus will

not affect our sensitivity argument.

3.2.4 Convergence of Optimization
We now bound the optimization error of our private PSGD algo-
rithms. More specifically, we bound the excess empirical riskLS(w)−
L∗S where LS(w) is the loss of the output w of our private SGD
algorithm and L∗S is the minimum obtained by any w in the fea-
sible set W . Note that in PSGD we sample data points without
replacement. While sampling without replacement benefits our
L2-sensitivity argument, its convergence behavior is poorly under-
stood in theory. Our results are based on very recent advances by
Shamir [34] on the sampling-without-replacement SGD.

As in Shamir [34], we assume that the loss function `i takes the
form of `i(〈w, xi〉)+r(w) where r is some fixed function. Further
we assume that the optimization is carried over a convex set C of
radius R (i.e., ‖w‖ ≤ R for w ∈ C). We use projected PSGD
algorithm (i.e., we use the projected gradient update rule 7).

Finally, R(T) is a regret bound if for any w ∈ W and convex-
Lipschitz `1, . . . , `T ,

∑T
t=1 `t(wt) −

∑T
t=1 `t(w) ≤ R(T) and

R(T) is sublinear in T . We use the following regret bound,

THEOREM 8 (ZINKEVICH [38]). For SGD with constant step
size η1 = η2 = · · · = ηT = η, R(T) is bounded by R2

2η
+ L2Tη

2
.

The following lemma is useful in bounding excess empirical risk.

LEMMA 11 (RISK DUE TO PRIVACY). Consider L-Lipschitz
and β-smooth optimization. Let w be the output of the non-private
SGD algorithm, κ be the noise of the output perturbation, and w̃ =
w + κ. Then LS(w)− LS(w̃) ≤ L‖κ‖.

ε-Differential Privacy. We now give convergence result for SGD
with ε-differential privacy.
Convex Optimization. If `(·, z) is convex, we use the following
theorem from Shamir [34],

THEOREM 9 (COROLLARY 1 OF SHAMIR [34]). Let T ≤ m
(that is we take at most 1-pass over the data). Suppose that each
iterate wt is chosen from W , and the SGD algorithm has regret
bound R(T), and that supt,w∈W |`t(w)| ≤ R, and ‖w‖ ≤ R for
all w ∈ W . Finally, suppose that each loss function `t takes the
form ¯̀(〈w, xt〉)+r(w) for someL-Lipschitz ¯̀(·, xt) and ‖xt‖ ≤ 1,
and a fixed r, then

E

[
1

T

T∑
t=1

LS(wt)− LS(w∗)

]
≤ R(T)

T
+

2(12 +
√

2L)R√
m

.

Together with Theorem 8, we thus have the following lemma,

LEMMA 12. Consider the same setting as in Theorem 9, and
1-pass PSGD optimization defined according to rule (7). Suppose
further that we have constant learning rate η = R

L
√
m

. Finally, let

w̄m be the model averaging 1
m

∑T
t=1 wt. Then,

E[LS(w̄T)− L∗S] ≤ (L+ 2(12 +
√
L))R√

m
.

Now we can bound the excess empirical risk as follows,

THEOREM 10 (CONVEX AND CONSTANT STEP SIZE). Consider
the same setting as in Lemma 12 where the step size is constant
η = R

L
√
m

. Let w̃ = w̄T + κ be the result of Algorithm 1. Then

E[LS(w̃)− L∗S] ≤ (L+ (2(12 +
√
L))R√

m
+

2dLR

ε
√
m
.

Note that the term 2dLR
ε
√
m

corresponds to the expectation of L‖κ‖.
Strongly Convex Optimization. If `(·, z) is γ-strongly convex, we
instead use the following theorem,

THEOREM 11 (THEOREM 3 OF SHAMIR [34]). Suppose W
has diameterR, andLS(·) is γ-strongly convex onW . Assume that
each loss function `t takes the for ¯̀(〈wt, xt〉)+r(w) where ‖xi‖ ≤
1, r(·) is possibly some regularization term, and each ¯̀(·, xt) is L-
Lipschitz and β-smooth. Furthermore, suppose supw∈W ‖`′t(w)‖ ≤
G. Then for any 1 < T ≤ m, if we run SGD for T iterations with
step size ηt = 1/γt, we have

E

[
1

T

T∑
t=1

LS(wt)− LS(w∗)

]
≤ c · ((L+ βR)2 +G2) log T

γT
,

where c is some universal positive constant.

By the same argument as in the convex case, we have,

THEOREM 12 (STRONGLY CONVEX AND DECREASING STEP SIZE).
Consider the same setting as in Theorem 11 where the step size is
ηt = 1

γt
. Consider 1-pass PSGD. Let w̄T be the result of model

averaging and w̃ = w̄T + κ be the result of output perturbation.
Then E[LS(w̃)− LS(w∗)] ≤ c · ((L+βR)2+G2) logm

γm
+ 2dG2

εγm
.

Remark. Our convergence results for ε-differential privacy is dif-
ferent from previous work, such as BST14, which only give con-
vergence for (ε, δ)-differential privacy for δ > 0. In fact, BST14
relies in an essential way on the advanced composition of (ε, δ)-
differential privacy [17] and we are not aware its convergence for
ε-differential privacy. Note that ε-differential privacy is qualita-
tively different from (ε, δ)-differential privacy (see, for example,
paragraph 3, pp. 18 in Dwork and Roth [17], as well as a recent
article by McSherry [5]). We believe that our convergence results
for ε-differential privacy is important in its own right.
(ε, δ)-Differential Privacy. By replacing Laplace noise with Gaus-
sian noise, we can derive similar convergence results of our algo-
rithms for (ε, δ)-differential privacy for 1-pass SGD.

It is now instructive to compare our convergence results with
BST14 for constant number of passes. In particular, by plugging
in different parameters into the analysis of BST14 (in particular,
Lemma 2.5 and Lemma 2.6 in BST14) one can derive variants
of their results for constant number of passes. The following ta-
ble compares the convergence in terms of the dependencies on the
number of training points m, and the number of dimensions d.

Ours BST14

Convex O
(√

d√
m

)
O
(√d(log3/2m)√

m

)
Strongly Convex O

(√
d logm
m

)
O
(
d log2m

m

)
Table 2: Convergence for (ε, δ)-DP and constant number of passes.

In particular, in the convex case our convergence is better with a
log3/2 m factor, and in the strongly convex case ours is better with
a
√
d logm factor. These logarithmic factors are inherent in BST14

due to its dependence on some optimization results (Lemma 2.5, 2.6
in their paper), which we do not rely on. Therefore, this comparison
gives theoretical evidence that our algorithms converge better for
constant number passes. On the other hand, these logarithmic fac-
tors become irrelevant for BST14 with m passes, as the denomina-
tor becomes m in the convex case, and becomes m2 in the strongly
case, giving better dependence on m there.

4 Implementation and Evaluation
In this section, we present a comprehensive empirical study com-
paring three alternatives for private SGD: two previously proposed
state-of-the-art private SGD algorithms, SCS13 [35] and BST14
[10], and our algorithms which are instantiations of the output per-
turbation method with our new analysis.

Our goal is to answer four main questions associated with the
key desiderata of in-RDBMS implementations of private SGD, viz.,
ease of integration, runtime overhead, scalability, and accuracy:

1. What is the effort to integrate each algorithm into an in-
RDBMS analytics system?

2. What is the runtime overhead and scalability of the private
SGD implementations?

3. How does the test accuracy of our algorithms compare to
SCS13 and BST14?

4. How do various parameters affect the test accuracy?

As a summary, our main findings are the following: (i) Our SGD al-
gorithms require almost no changes to Bismarck, while both SCS13
and BST14 require deeper code changes. (ii) Our algorithms in-
cur virtually no runtime overhead, while SCS13 and BST14 run
much slower. Our algorithms scale linearly with the dataset size.
While SCS13 and BST14 also enjoy linear scalability, the run-
time overhead they incur also increases linearly. (iii) Under the
same differential privacy guarantees, our private SGD algorithms
yield substantially better accuracy than SCS13 and BST14, for all
datasets and settings of parameters we test. (iv) As for the effects
of parameters, our empirical results align well with the theory. For
example, as one might expect, mini-batch sizes are important for
reducing privacy noise. The number of passes is more subtle. For
our algorithm, if the learning task is only convex, more passes re-
sult in larger noise (e.g., see Lemma 1), and so give rise to poten-
tially worse test accuracy. On the other hand, if the learning task
is strongly convex, the number of passes will not affect the noise
magnitude (e.g., see Lemma 8). As a result, doing more passes may
lead to better convergence and thus potentially better test accuracy.
Interestingly, we note that slightly enlarging mini-batch size can
reduce noise very effectively so it is affordable to run our private
algorithms for more passes to get better convergence in the convex
case. This corroborates the results of [35] that mini-batches are
helpful in private SGD settings.

In the rest of this section we give more details of our evaluation.
Our discussion is structured as follows: In Section 4.1 we first dis-
cuss the implemented algorithms. In particular, we discuss how we
modify SCS13 and BST14 to make them better fit into our exper-
iments. We also give some remarks on other relevant previous al-
gorithms, and on parameter tuning. Then in Section 4.2 we discuss
the effort of integrating different algorithms into Bismarck. Next
Section 4.3 discusses the experimental design and datasets for run-
time overhead, scalability and test accuracy. Then in Section 4.4,
we report runtime overhead and scalability results. We report test
accuracy results for various datasets and parameter settings, and
discuss the effects of parameters in Section 4.5. Finally, we discuss
the lessons we learned from our experiments 4.6.

4.1 Implemented Algorithms
We first discuss implementations of our algorithms, SCS13 and
BST14. Importantly, we extend both SCS13 and BST14 to make
them better fit into our experiments. Among these extensions, prob-
ably most importantly, we extend BST14 to support a smaller num-
ber of iterations through the data and reduce the amount of noise
needed for each iteration. Our extension makes BST14 more com-
petitive in our experiments.
Our Algorithms. We implement Algorithms 1 and 2 with the ex-
tensions of mini-batching and constrained optimization (see Sec-
tion 3.2.3). Note that Bismarck already supports standard PSGD
algorithm with mini-batching and constrained optimization. There-
fore the only change we need to make for Algorithms 1 and 2 (note

that the total number of updates is T = km) is the setting of L2-
sensitivity parameter ∆2 at line 3 of respective algorithms, which
we divide by b if the mini-batch size is b.
SCS13 [35]. We modify [35], which originally only supports one
pass through the data, to support multi-passes over the data.
BST14 [10]. BST14 provides a second solution for private SGD
following the same paradigm as SCS13, but with less noise per
iteration. This is achieved by first, using a novel subsampling tech-
nique and second, relaxing the privacy guarantee to (ε, δ)-differential
privacy for δ > 0. This relaxation is necessary as they need to use
advanced composition results for (ε, δ)-differential privacy.

However, the original BST14 algorithm needs O(m2) iterations
to finish, which is prohibitive for even moderate sized datasets. We
extend it to support cm iterations for some constant c. Reducing
the number of iterations means that potentially we can reduce the
amount of noise for privacy because data is “less examined.” This
is indeed the case: One can go through the same proof in [10] with
a smaller number of iterations, and show that each iteration only
needs a smaller amount of noise than before (unfortunately this
does not give convergence results). Our extension makes BST14
more competitive. In fact it yields significantly better test accuracy
compared to the case where one naïvely stops BST14 after c passes,
but the noise magnitude in each iteration is the same as in the orig-
inal paper [10] (which is for m passes). The extended BST14 al-
gorithms are given in Algorithm 4 and 5. Finally, we also make
straightforward extensions so that BST14 supports mini-batching.
Other Related Work. We also note the work of Jain, Kothari and
Thakurta [24] which is related to our setting. In particular their
Algorithm 6 is similar to our private SGD algorithm in the set-
ting of strong convexity and (ε, δ)-differential privacy. However,
we note that their algorithm uses Implicit Gradient Descent (IGD),
which belongs to proximal algorithms (see for example Parikh and
Boyd [30]) and is known to be more difficult to implement than
stochastic gradient methods. Due to this consideration, in this study
we will not compare empirically with this algorithm. Finally, we
also note that [24] also has an SGD-style algorithm (Algorithm
3) for strongly convex optimization and (ε, δ)-differential privacy.
This algorithm adds noise comparable to our algorithm at each step
of the optimization, and thus we do not compare with it either.
Private Parameter Tuning. We observe that for all SGD algo-
rithms considered, it may be desirable to fine tune some parameters
to achieve the best performance. For example, if one chooses to do
L2-regularization, then it is customary to tune the parameter λ. We
note that under the theme of differential privacy, such parameter
tunings must also be done privately. To the best of our knowledge
however, no previous work have evaluated the effect of private pa-
rameter tuning for SGD. Therefore we take the natural step to fill
in this gap. We note that there are two possible ways to do this.
Tuning using Public Data. Suppose that one has access to a public
data set, which is assumed to be drawn from the same distribution
as the private data set. In this case, one can use standard methods to
tune SGD parameters, and apply the parameters to the private data.
Tuning using a Private Tuning Algorithm. When only private
data is available, we use a private tuning algorithm for private pa-
rameter tuning. Following the principle on free parameters [22]
in experimenting with differential privacy, we note free parameters
λ, ε, δ, R, k, b. For these parameters, ε, δ are specified as privacy
guarantees. Following common practice for constrained optimiza-
tion (e.g. [35]) we set R = 1

λ
for numeric stability. Thus the pa-

rameters we need to tune are k, b, λ. We call k, b, λ the tuning pa-
rameters. We use a standard grid search [3] with commonly used
values to define the space of parameter values, from which the tun-
ing algorithm picks values for the parameters to tune.

We use the tuning algorithm described in the original paper of
Chaudhuri, Monteleoni and Sarwate [13], though the methodology
and experiments in the following are readily extended to other pri-
vate tuning algorithms [14]. Specifically, let θ = (k, b, λ) denote
a tuple of the tuning parameters. Given a space Θ = {θ1, . . . , θl},
Algorithm 3 gives the details of the tuning algorithm.

Algorithm 3 Private Tuning Algorithm for SGD

Input: Data S, space of tuning parameters Θ = {θ1, . . . , θl}, pri-
vacy parameters ε, δ.

1: function PrivatelyTunedSGD(S,Θ, ε, δ)
2: Divide S into l + 1 equal portions S1, . . . , Sl+1.
3: For each i ∈ [l], train a hypothesis wi using any algorithm

1 – 5 with training set Si and parameters θi, ε, δ and R = 1/λ
(if needed).

4: Compute the number of classification errors χi made bywi
on Sl+1.

5: Pick output hypothesis w = wi with probability

pi =
e−εχi/2∑l
j=1 e

−εχj/2
.

4.2 Integration with Bismarck
We now explain how we integrate private SGD algorithms in RDBMS.
To begin with, we note that the state-of-the-art way to do in-RDBMS
data analysis is via the User Defined Aggregates (UDA) offered by
almost all RDBMSes [20]. Using UDAs enables scaling to larger-
than-memory datasets seamlessly while still being fast.2 A well-
known open source implementation of the UDAs required is Bis-
marck [19]. Bismarck achieves high performance and scalability
through a unified architecture of in-RDBMS data analytics systems
using the permutation-based SGD.

Therefore, we use Bismarck to experiment with private SGD in-
side RDBMS. Specifically, we use Bismarck on top of PostgreSQL,
which implements the UDA for SGD in C to provide high runtime
efficiency. Our results carry over naturally to any other UDA-based
implementation of analytics in an RDBMS. The rest of this section
is organized as follows. We first describe Bismarck’s system archi-
tecture. We then compare the system extensions and the implemen-
tation effort needed for integrating our private PSGD algorithm as
well as SCS13 and BST14.

Dataset Table

Shuffle

Initialize

Transition

Terminate

Converged w w′

(A) → [Regular Bismarck]

No

Yes (B) Noise [Ours]

(C) Noise [SCS13, BST14]

Figure 1: (A) System architecture of regular Bismarck. (B) Exten-
sion to implement our algorithms. (C) Extension to implement any
of SCS13 and BST14.

Figure 1 (A) gives an overview of Bismarck’s architecture. The
dataset is stored as a table in PostgreSQL. Bismarck permutes the
table using an SQL query with a shuffling clause, viz., ORDER
2The MapReduce abstraction is similar to an RDBMS UDA [1]. Thus our implemen-
tation ideas apply to MapReduce-based systems as well.

BY RANDOM(). A pass (or epoch, which is used more often in
practice) of SGD is implemented as a C UDA and this UDA is
invoked with an SQL query for each epoch. A front-end con-
troller in Python issues the SQL queries and also applies the con-
vergence test for SGD after each epoch. The developer has to
provide implementations of three functions in the UDA’s C API:
initialize, transition, and terminate, all of which operate on
the aggregation state, which is the quantity being computed.

To explain how this works, we compare SGD with a standard
SQL aggregate: AVG. The state for AVG is the 2-tuple (sum, count),
while that for SGD is the model vector w. The function initialize
sets (sum, count) = (0, 0) for AVG, while for SGD, it sets w to
the value given by the Python controller (the previous epoch’s out-
put model). The function transition updates the state based on a
single tuple (one example). For example, given a tuple with value
x, the state update for AVG is as follows: (sum, count) += (x, 1).
For SGD, x is the feature vector and the update is the update rule
for SGD with the gradient on x. If mini-batch SGD is used, the
updates are made to a temporary accumulated gradient that is part
of the aggregation state along with counters to track the number of
examples and mini-batches seen so far. When a mini-batch is over,
the transition function updates w using the accumulated gradi-
ent for that mini-batch using an appropriate step size. The function
terminate computes sum/count and outputs it for AVG, while for
SGD, it simply returns w at the end of that epoch.

It is easy to see that our private SGD algorithm requires almost
no change to Bismarck – simply add noise to the final w output af-
ter all epochs, as illustrated in Figure 1 (B). Thus, our algorithm
does not modify any of the RDBMS-related C UDA code. In fact,
we were able to implement our algorithm in about 10 lines of code
(LOC) in Python within the front-end Python controller. In con-
trast, both SCS13 and BST14 require deeper changes to the UDA’s
transition function because they need to add noise at the end of
each mini-batch update. Thus, implementing them required adding
dozens of LOC in C to implement their noise addition procedure
within the transition function, as illustrated in Figure 1 (C). Fur-
thermore, Python’s scipy library already provides the sophisticated
distributions needed for sampling the noise (gamma and multivari-
ate normal), which our algorithm’s implementation exploits. But
for both SCS13 and BST14, we need to implement some of these
distributions in C so that it can be used in the UDA.3

4.3 Experimental Method and Datasets
We now describe our experimental method and datasets.
Test Scenarios. We consider four main scenarios to evaluate the
algorithms: (1) Convex, ε-differential privacy, (2) Convex, (ε, δ)-
differential privacy, (3) Strongly Convex, ε-differential privacy, and
finally (4) Strongly Convex, (ε, δ)-differential privacy. Note that
BST14 only supports (ε, δ)-differential privacy. Thus for tests (1)
and (3) we compare non-private algorithm, our algorithms, and
SCS13. For tests (2) and (4), we compare non-private algorithm,
our algorithms, SCS13 and BST14. For each scenario, we train
models on test datasets and measure the test accuracy of the re-
sulting models. We evaluate both logistic regression and Huber
support vector machine (Huber SVM) (due to lack of space, the
results on Huber SVM are put to Section B). We use the standard
logistic regression for the convex case (Tests (1) and (2)), and L2-
regularized logistic regression for the strongly convex case (Tests
(3) and (4)). We now give more details.
Datasets. We consider three standard benchmark datasets: MNIST4,

3One could use the Python-based UDAs in PostgreSQL but that incurs a significant
runtime performance penalty compared to C UDAs.
4http://yann.lecun.com/exdb/mnist/.

Dataset Task Train Size Test Size #Dimensions
MNIST 10 classes 60000 10000 784 (50) [∗]
Protein Binary 72876 72875 74
Forest Binary 498010 83002 54

Table 3: Datasets. Each row gives the name of the dataset, number
of classes in the classification task, sizes of training and test sets,
and finally the number of dimensions. [∗]: For MNIST, it originally
has 784 dimensions, which is difficult for ε-differential privacy as
sampling from (3) makes the magnitude of noise depends linearly
on the number of dimensions d. Therefore we randomly project it
to 50 dimensions. All data points are normalized to the unit sphere.

Protein5, and Forest Covertype6. MNIST is a popular dataset used
for image classification. MNIST poses a challenge to differential
privacy for three reasons: (1) Its number of dimensions is rela-
tively higher than others. To get meaningful test accuracy we thus
use Gaussian Random Projection to randomly project to 50 dimen-
sions. This random projection only incurs very small loss in test
accuracy, and thus the performance of non-private SGD on 50 di-
mensions will serve the baseline. (2) MNIST is of medium size
and differential privacy is known to be more difficult for medium
or small sized datasets. (3) MNIST is a multiclass classification
(there are 10 digits), we built “one-vs.-all” multiclass logitstic re-
gression models. This means that we need to construct 10 binary
models (one for each digit). Therefore, one needs to split the pri-
vacy budget across sub-models. We used the simplest composition
theorem [17], and divide the privacy budget evenly.

For Protein dataset, because its test dataset does not have labels,
we randomly partition the training set into halves to form train and
test datasets. Logistic regression models have very good test accu-
racy on it. Finally, Forest Covertype is a large dataset with 581012
data points, almost 6 times larger than previous ones. We split it
to have 498010 training points and 83002 test points. We use this
large dataset for two purposes: First, in this case, one may expect
that privacy will follow more easily. We test to what degree this
holds for different private algorithms. Second, since training on
such large datasets is time consuming, it is desirable to use it to
measure runtime overheads of various private algorithms.
Settings of Hyperparameters. The following describes how hy-
perparameters are set in our experiments. There are three classes
of parameters: Loss function parameters, privacy parameters, and
parameters for running stochastic gradient descent.
Loss Function Parameters. Given the loss function and L2 regu-
larization parameter λ, we can derive L, β, γ as described in Sec-
tion 2. We privately tune λ in {0.0001, 0.001, 0.01}.
Privacy Parameters. ε, δ are privacy parameters. We vary ε in
{0.1, 0.2, 0.5, 1, 2, 4} for MNIST, and in {0.01, 0.02, 0.05, 0.1, 0.2,
0.4} for Protein and Covertype (as they are binary classification
problems and we do not need to divide by 10). δ is set to be 1/m2

where m is the size of the training set size.
SGD Parameters. Now we consider ηt, b, and k.
Step Size ηt. Step sizes are derived from theoretical analyses of
SGD algorithms. In particular the step sizes only depend on the
loss function parameters and the time stamp t during SGD. Table 4
summarizes step sizes for different settings.
Mini-batch Size b. We are not aware of a first-principled way in
literature to set mini-batch size (note that convergence proofs hold
even for b = 1). In practice mini-batch size typically depends on
the system constraints (e.g. number of CPUs) and is set to some
number from 10 to 100. We set b = 50 in our experiments for fair

5http://osmot.cs.cornell.edu/kddcup/datasets.html.
6https://archive.ics.uci.edu/ml/datasets/Covertype.

http://yann.lecun.com/exdb/mnist/
http://osmot.cs.cornell.edu/kddcup/datasets.html
https://archive.ics.uci.edu/ml/datasets/Covertype

Non-private Ours SCS13 BST14
C + ε-DP 1√

m
1√
m

1√
t

×
C + (ε, δ)-DP 1√

m
1√
m

1√
t

Alg. 4
SC + ε-DP 1

γt
min(1

β
, 1
γt

) 1√
t

×
SC + (ε, δ)-DP 1

γt
min(1

β
, 1
γt

) 1√
t

Alg. 5
Table 4: Step Sizes for different settings. C: Convex, SC: Strongly
Convex. For SCS13 we follow in[35] and set step size to be 1/

√
t.

comparisons with SCS13 and BST14, which shows that our algo-
rithms enjoy both efficiency and substantially better test accuracy.

Note that increasing b could reduce noise but makes the gradient
step more expensive and might require more passes. In general, a
good practice is to set b to be reasonably large without hurting per-
formance too much. To assess the impact of this setting further, we
include an experiment on varying the batch size in Appendix D. We
leave for future work the deeper questions on formally identifying
the sweet spot among efficiency, noise, and accuracy.
Number of Passes k. For fair comparisons in the experiments be-
low with SCS13 and BST14, for all algorithms tested we privately
tune k in {5, 10}. However, for our algorithms there is a simpler
strategy to set k in the strongly convex case. Since our algorithms
run vanilla SGD as a black box, one can set a convergence toler-
ance threshold µ and set a large K as the threshold on the number
of passes. Since in the strongly convex case the noise injected in
our algorithms (Alg. 2) does not depend on k, we can run the vanilla
SGD until either the decrease rate of training error is smaller than
µ, or the number of passes reaches K, and inject noise at the end.

Note that this strategy does not work for SCS13 or BST14 be-
cause in either convex or strongly convex case, their noise injected
in each step depends on k, so they must have k fixed beforehand.
Moreover, since they inject noise at each SGD iteration, it is likely
that they will run out of the pass threshold.

The above discussion demonstrates an additional advantage of
our algorithms using output perturbation: In the strongly convex
case the number of passes k is oblivious to private SGD.
Radius R. Recall that for strongly convex optimization the hy-
pothesis space needs to a have bounded norm (due to the use of L2

regularization). We adopt the practices in [35] and set R = 1/λ.
Experimental Environment. All the experiments were run on a
machine with Intel Xeon E5-2680 2.50GHz CPUs (48-core) and
64GB RAM running Ubuntu 14.04.4.

4.4 Runtime Overhead and Scalability
Using output perturbation trivially addresses runtime and scalabil-
ity concerns. We confirm this experimentally in this section.
Runtime Overheads. We compare the runtime overheads of our
private SGD algorithms against the noiseless version and the other
algorithms. The key parameters that affect runtimes are the number
of epochs and the batch sizes. Thus, we vary each of these param-
eters, while fixing the others. The runtimes are the average of 4
warm-cache runs and all datasets fit in the buffer cache of Post-
greSQL. The error bars represent 90% confidence intervals. The
results are plotted in Figure 5 (a)–(c) and Figure 5 (d)–(f) (only the
results of strongly convex, (ε, δ)-differential privacy are reported;
the other results are similar and thus, we skip them here for brevity).

The first observation is that our algorithm incurs virtually no run-
time overhead over noiseless Bismarck, which is as expected be-
cause our algorithm only adds noise once at the end of all epochs.
In contrast, both SCS13 and BST14 incur significant runtime over-
heads in all settings and datasets. In terms of runtime performance
for 20 epochs and a batch size of 10, both SCS13 and BST14 are
between 2X and 3X slower than our algorithm. The gap grows

larger as the batch size is reduced: for a batch size of 1 and 1
epoch, both SCS13 and BST14 are up to 6X slower than our al-
gorithm. This is expected since these algorithms invoke expensive
random sampling code from sophisticated distributions for each
mini-batch. When the batch size is increased to 500, the runtime
gap between these algorithms practically disappears as the random
sampling code is invoked much less often. Overall, we find that our
algorithms can be significantly faster than the alternatives.
Scalability. We compare the runtimes of all the private SGD algo-
rithms as the datasets are scaled up in size (number of examples).
For this experiment, we use the data synthesizer available in Bis-
marck for binary classification. We produce two sets of datasets
for scalability: in-memory and disk-based (dataset does not fit in
memory). The results for both are presented in Figure 2. We ob-
serve linear increase in runtimes for all the algorithms compared in
both settings. As expected, when the dataset fits in memory, SCS13
and BST14 are much slower and in particular the runtime overhead
increases linearly as data size grows. This is primarily because
CPU costs dominate the runtime. Recall that these algorithms add
noise to each mini-batch, which makes them computationally more
expensive. We also see that all runtimes scale linearly with the
dataset size even in the disk-based setting. An interesting differ-
ence is that I/O costs, which are the same for all the algorithms
compared, dominate the runtime in Figure 2(b). Overall, these re-
sults demonstrate a key benefit of integrating our private SGD al-
gorithm into an RDBMS-based toolkit like Bismarck: scalability to
larger-than-memory data comes for free.

0 10 20 30 40 50
Number of examples (in millions)

0

1

2

3

4

5

R
u
n
ti

m
e
 (

in
 m

in
u
te

s)

Noiseless
Ours
SCS13
BST14

0 200 400 600 800 1000 1200
Number of examples (millions)

0

100

200

300

400

500

R
u
n
ti

m
e
 (

in
 m

in
u
te

s)

Noiseless
Ours
SCS13
BST14

Figure 2: Scalability of (ε, δ)-DP SGD algorithms in Bismarck:
(a) The dataset fits in memory. (b) The dataset is larger than
memory (on disk). The runtime per epoch for mini-batch size
= 1 is plotted. All datasets have d = 50 features. We fix ε = 0.1
and λ = 0.0001. The dataset sizes vary from 3.7 GB to 18.6 GB
in (a) and from 149 GB to 447 GB in (b).

4.5 Accuracy and Effects of Parameters
Finally, we report test accuracy and analyze the parameters.
Test Accuracy using Public Data. Figure 3 reports the test ac-
curacy results if one can tune parameters using public data. For
all tests our algorithms give significantly better accuracy, up to
4X better than SCS13 and BST14. Besides better absolute perfor-
mance, we note that our algorithms are more stable in the sense that
it converges more quickly to noiseless performance (at smaller ε).
Test Accuracy using a Private Tuning Algorithm. Figure 6 gives
the test accuracy results of MNIST, Protein and Covertype for all 4
test scenarios using a private tuning algorithm (Algorithm 3). For
all tests we see that our algorithms give significantly better accu-
racy, up to 3.5X better than BST14 and up to 3X better than SCS13.

SCS13 and BST14 exhibit much better accuracy on Protein than
on MNIST, since logistic regression fits well to the problem. Specif-
ically, BST14 has very close accuracy as our algorithms, though
our algorithms still consistently outperform BST14. The accuracy
of SCS13 decreases significantly with smaller ε.

For Covertype, even on this large dataset, SCS13 and BST14
give much worse accuracy compared to ours. The accuracy of our
algorithms is close to the baseline at around ε = 0.05. The ac-
curacy of SCS13 and BST14 slowly improves with more passes

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy
Noiseless
Ours
SCS13

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13
BST14

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13
BST14

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13
BST14

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13
BST14

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13
BST14

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13
BST14

Figure 3: Tuning using Public Data. Row 1 is MNIST, row 2 is Protein and row 3 is Forest Covertype. Each row gives the test accuracy
results of 4 tests: Test 1 is Convex, (ε, 0)-DP, Test 2 is Convex, (ε, δ)-DP, Test 3 is Strongly Convex, (ε, 0)-DP, and Test 4 is Strongly
Convex, (ε, δ)-DP. For Test 1 and 3, we compare Noiseless, our algorithm and SCS13. For Test 2 and 4, we compare all four algorithms. The
mini-batch size b = 50. For strongly convex optimization we set R = 1/λ, otherwise we report unconstrained optimization for the convex
case. Each point is the test accuracy of the model trained with 10 passes and λ = 0.0001, where applicable.

over the data. Specifically, the accuracy of BST14 approaches the
baseline only after ε = 0.4.
Number of Passes (Epochs). In the case of convex optimization,
more passes through the data indicates larger noise magnitude ac-
cording to our theory results. This translates empirically to worse
test accuracy as we perform more passes. Figure 4 (a) reports test
accuracy in the convex case as we run our algorithm 1 pass, 10
passes and 20 passes through the MNIST data. The accuracy drops
from 0.71 to 0.45 for ε = 4.0. One should contrast this with results
reported in Figure 4 (b) where doing more passes actually improves
the test accuracy. This is because in the strongly convex case more
passes will not introduce more noise for privacy while it can poten-
tially improve the convergence.
Mini-batch Sizes. We find that slightly enlarging the mini-batch
size can effectively reduce the noise and thus allow the private algo-
rithm to run more passes in the convex setting. This is useful since
it is very common in practice to adopt a mini-batch size at around
10 to 50. To illustrate the effect of mini-batch size we consider the
same test as we did above for measuring the effect of number of
passes: We run Test 1 with 20 passes through the data, but vary
mini-batch sizes in {1, 10, 50}. Figure 4 (c) reports the test accu-
racy for this experiment: As soon as we increase mini-batch size to
10 the test accuracy already improves drastically from 0.45 to 0.71.

4.6 Lessons from Our Experiments
The experimental results demonstrate that our private SGD algo-
rithms produce much more accurate models than prior work. Per-
haps more importantly, our algorithms are also more stable with
small privacy budgets, which is important for practical applications.

Our algorithms are also easier to tune in practice than SCS13
and BST14. In particular, the only parameters that one needs to
tune for our algorithms are mini-batch size b and L2 regularization
parameter λ; other parameters can either be derived from the loss
function or can be fixed based on our theoretical analysis. In con-
trast, SCS13 and BST14 require more attention to the number of
passes k. For b, we recommend setting it as a value between 50 and
200, noting that too large a value may make gradient steps more ex-
pensive and might require more passes. For λ, we recommend us-
ing private parameter tuning with candidates chosen from a typical
range of (10−5, 10−2) (e.g., choose {10−5, 10−4, 10−3, 10−2}).

From the larger perspective of building differentially private an-
alytics systems, however, we note that this paper addresses how to
answer one “query” privately and effectively; in some applications,
one might want to answer multiple such queries. Studying tradeoffs
such as how to split the privacy budget across multiple queries is
largely orthogonal to our paper’s focus although they are certainly
important. Our work can be plugged into existing frameworks that
attempt to address this requirement. That said, we think there is
still a large gap between theory and practice for differentially pri-
vate analytics systems.

5 Related Work
There has been much prior work on differentially private convex
optimization. There are three main styles of algorithms – output
perturbation [10, 13, 24, 33], objective perturbation [13, 27] and
online algorithms [10, 15, 24, 35]. Output perturbation works by
finding the exact convex minimizer and then adding noise to it,
while objective perturbation exactly solves a randomly perturbed
optimization problem. Unfortunately, the privacy guarantees pro-
vided by both styles often assume that the exact convex minimizer
can be found, which usually does not hold in practice.

There are also a number of online approaches. [24] provides an
online algorithm for strongly convex optimization based on a prox-
imal algorithm (e.g. Parikh and Boyd [30]), which is harder to
implement than SGD. They also provide an offline version (Algo-
rithm 6) for the strongly convex case that is similar to our approach.
SGD-style algorithms were provided by [10, 15, 24, 35]. There has
also been a recent work on deep learning (non-convex optimiza-
tion) with differential privacy [9]. Unfortunately, no convergence
result is known for private non-convex optimization, and they also
can only guarantee (ε, δ)-differential privacy due to the use of ad-
vanced composition of (ε, δ)-differential privacy.

Finally, our results are not directly comparable with systems
such as RAPPOR [18]. In particular, RAPPOR assumes a different
privacy model (local differential privacy) where there is no trusted
centralized agency who can compute on the entire raw dataset.

6 Conclusion and Future Work
Scalable and differentially private convex ERM have each received
significant attention in the past decade. Unfortunately, little pre-

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

1 pass
10 passes
20 passes

(a) Convex, Test 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Epsilon

0.0

0.2

0.4

0.6

0.8

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

1 pass
10 passes
20 passes

(b) Strongly Convex, Test 3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

mini-batch = 1
mini-batch = 10
mini-batch = 50

(c) Convex, Test 1
Figure 4: (a), (b) The effect of number of passes: We report the results on MNIST dataset. We contrast Test 1 (Convex ε-DP) using mini-
batch size 1, with Test 3 (Strongly Convex ε-DP) using mini-batch size 50. In the former case, more passes through the data introduces more
noise due to privacy and thus results in worse test accuracy. In the latter case, more passes improves the test accuracy as it helps convergence
while no more noise is needed for privacy. (c) The effect of mini-batch size. We run again Test 1 with 20 passes through the data, and vary
mini-batch size in {1, 10, 50}. As soon as mini-batch size increases to 10 the test accuracy drastically improves from 0.45 to 0.71.

0 5 10 15 20
Number of epochs

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

R
u
n
ti

m
e
 (

se
c)

Noiseless
Ours
SCS13
BST14

0 5 10 15 20
Number of epochs

0.0

0.5

1.0

1.5

2.0

2.5

R
u
n
ti

m
e
 (

se
c)

Noiseless
Ours
SCS13
BST14

0 5 10 15 20
Number of epochs

0

2

4

6

8

10

12

R
u
n
ti

m
e
 (

se
c)

Noiseless
Ours
SCS13
BST14

100 101 102 103

Batch size (in logscale)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
u
n
ti

m
e
 (

se
c;

 i
n
 l
o
g
sc

a
le

)

Noiseless
Ours
SCS13
BST14

100 101 102 103

Batch size (in logscale)

0.0

0.2

0.4

0.6

0.8

1.0

R
u
n
ti

m
e
 (

se
c;

 i
n
 l
o
g
sc

a
le

)

Noiseless
Ours
SCS13
BST14

100 101 102 103

Batch size (in logscale)

0

1

2

3

4

R
u
n
ti

m
e
 (

se
c;

 i
n
 l
o
g
sc

a
le

)

Noiseless
Ours
SCS13
BST14

Figure 5: Runtime of the implementations on Bismarck. Row 1 gives the runtime results of varying the number of epochs with mini-batch
size = 10, on MNIST, Protein and Forest Covertype, respectively. Row 2 gives the runtime results of Varying the mini-batch size for a single
epoch, on MNIST, Protein and Forest Covertype, respectively. Only the results of Strongly Convex, (ε, δ)-DP are reported, and other settings
have very similar trends. Noiseless is the regular mini-batch SGD in Bismarck. We fix ε = 0.1.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy Noiseless
Ours
SCS13
BST14

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy Noiseless
Ours
SCS13
BST14

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13
BST14

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13
BST14

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13
BST14

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13
BST14

Figure 6: Tuning using a Private Tuning Algorithm. Row 1 is MNIST, row 2 is Protein and row 3 is Forest Covertype. Each row gives
the test accuracy results of 4 tests: Test 1 is Convex, (ε, 0)-DP, Test 2 is Convex, (ε, δ)-DP, Test 3 is Strongly Convex, (ε, 0)-DP, and Test
4 is Strongly Convex, (ε, δ)-DP. For Test 1 and 3, we compare Noiseless, our algorithm and SCS13. For Test 2 and 4, we compare all four
algorithms. The mini-batch size b = 50. For strongly convex optimization we setR = 1/λ, otherwise we unconstrained optimization for the
convex case. The hyper-parameters were tuned using Algorithm 3 with a standard “grid search” with 2 values for k (5 and 10) and 3 values
for λ (0.0001, 0.001, 0.01), where applicable.

vious work has examined the private ERM problem in scalable
systems such as in-RDBMS analytics systems. This paper takes
a step to bridge this gap. There are many intriguing future direc-
tions to pursue. We need to better understand the convergence be-
havior of private SGD when only a constant number of passes can
be afforded. BST14 [10] provides a convergence bound for private
SGD when O(m) passes are made. SCS13 [35] does not provide
a convergence proof; however, the work of [15], which considers
local differential privacy, a privacy model where data providers do

not even trust the data collector, can be used to conclude conver-
gence for SCS13, though at a very slow rate. Finally, while our
method converges very well in practice with multiple passes, we
can only prove convergence with one pass. Can we prove conver-
gence bounds of our algorithms for multiple-passes and match the
bounds of BST14?

Acknowledgments
This work was supported by NSF under award 1253942 and by a
gift from Google.

7 References

[1] Apache Mahout. mahout.apache.org.
[2] Apache Spark. https://en.wikipedia.org/wiki/Apache_Spark.
[3] Grid Search.

http://scikit-learn.org/stable/modules/grid_search.html.
[4] Hinge Loss and Smoothed Variants.

https://en.wikipedia.org/wiki/Hinge_loss.
[5] How many secrets do you have? https://github.com/

frankmcsherry/blog/blob/master/posts/2017-02-08.md.
[6] Preprocessing data in machine learning.

http://scikit-learn.org/stable/modules/preprocessing.html.
[7] Random Projection.

https://en.wikipedia.org/wiki/Random_projection.
[8] random unit vector in multi-dimensional space.

http://stackoverflow.com/questions/6283080/
random-unit-vector-in-multi-dimensional-space.

[9] M. Abadi, A. Chu, I. J. Goodfellow, H. B. McMahan,
I. Mironov, K. Talwar, and L. Zhang. Deep learning with
differential privacy. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications
Security, Vienna, Austria, October 24-28, 2016, pages
308–318, 2016.

[10] R. Bassily, A. Smith, and A. Thakurta. Private empirical risk
minimization: Efficient algorithms and tight error bounds. In
FOCS, 2014.

[11] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, New York, NY, USA, 2004.

[12] S. Bubeck. Convex optimization: Algorithms and
complexity. Foundations and Trends in Machine Learning,
8(3-4):231–357, 2015.

[13] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate.
Differentially private empirical risk minimization. Journal of
Machine Learning Research, 12:1069–1109, 2011.

[14] K. Chaudhuri and S. A. Vinterbo. A stability-based
validation procedure for differentially private machine
learning. In NIPS, 2013.

[15] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Local
privacy and statistical minimax rates. In FOCS, 2013.

[16] C. Dwork, F. McSherry, K. Nissim, and A. Smith.
Calibrating noise to sensitivity in private data analysis. In
TCC, 2006.

[17] C. Dwork and A. Roth. The algorithmic foundations of
differential privacy. Foundations and Trends in Theoretical
Computer Science, 9(3-4):211–407, 2014.

[18] Ú. Erlingsson, V. Pihur, and A. Korolova. RAPPOR:
randomized aggregatable privacy-preserving ordinal
response. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security,
Scottsdale, AZ, USA, November 3-7, 2014, pages 1054–1067,
2014.

[19] X. Feng, A. Kumar, B. Recht, and C. Ré. Towards a unified
architecture for in-rdbms analytics. In SIGMOD, 2012.

[20] J. Gray et al. Data Cube: A Relational Aggregation Operator
Generalizing Group-By, Cross-Tab, and Sub-Totals. Data
Min. Knowl. Discov., 1(1):29–53, Jan. 1997.

[21] M. Hardt, B. Recht, and Y. Singer. Train faster, generalize
better: Stability of stochastic gradient descent. ArXiv
e-prints, Sept. 2015.

[22] M. Hay, A. Machanavajjhala, G. Miklau, Y. Chen, and
D. Zhang. Principled evaluation of differentially private

algorithms using dpbench. CoRR, abs/1512.04817, 2015.
[23] J. Hellerstein et al. The MADlib Analytics Library or MAD

Skills, the SQL. In VLDB, 2012.
[24] P. Jain, P. Kothari, and A. Thakurta. Differentially private

online learning. In COLT, 2012.
[25] P. Jain and A. Thakurta. Differentially private learning with

kernels. In ICML, 2013.
[26] R. Johnson and T. Zhang. Accelerating stochastic gradient

descent using predictive variance reduction. In NIPS, 2013.
[27] D. Kifer, A. D. Smith, and A. Thakurta. Private convex

optimization for empirical risk minimization with
applications to high-dimensional regression. In COLT, 2012.

[28] A. Nemirovsky and D. Yudin. Problem complexity and
method efficiency in optimization. 1983.

[29] Y. Nesterov. Introductory lectures on convex optimization : a
basic course. Applied optimization. Kluwer Academic Publ.,
2004.

[30] N. Parikh and S. P. Boyd. Proximal algorithms. Foundations
and Trends in Optimization, 1(3):127–239, 2014.

[31] B. T. Polyak. Introduction to optimization. Optimization
Software, 1987.

[32] N. L. Roux, M. W. Schmidt, and F. R. Bach. A stochastic
gradient method with an exponential convergence rate for
finite training sets. In NIPS, 2012.

[33] B. I. P. Rubinstein, P. L. Bartlett, L. Huang, and N. Taft.
Learning in a large function space: Privacy-preserving
mechanisms for SVM learning. CoRR, abs/0911.5708, 2009.

[34] O. Shamir. Without-Replacement Sampling for Stochastic
Gradient Methods: Convergence Results and Application to
Distributed Optimization. ArXiv e-prints, Mar. 2016.

[35] S. Song, K. Chaudhuri, and A. D. Sarwate. Stochastic
gradient descent with differentially private updates. In
GlobalSIP, 2013.

[36] J. Zhang, X. Xiao, Y. Yang, Z. Zhang, and M. Winslett.
Privgene: differentially private model fitting using genetic
algorithms. In SIGMOD, 2013.

[37] J. Zhang, Z. Zhang, X. Xiao, Y. Yang, and M. Winslett.
Functional mechanism: Regression analysis under
differential privacy. PVLDB, 2012.

[38] M. Zinkevich. Online convex programming and generalized
infinitesimal gradient ascent. In ICML, 2003.

APPENDIX
A Proofs
A.1 Proof of Lemma 6

PROOF. Let T = km, so we have in total T updates. Applying
Lemma 3, Growth Recursion Lemma (Lemma 4), and the fact that
the gradient operators are 1-expansive, we have:

δt ≤

δt−1 + 2Lηt

if t = i∗ + jm,

j = 0, . . . , k − 1

δt−1 otherwise.

(8)

Unrolling the recursion completes the proof.

A.2 Proof of Corollary 2
PROOF. We have that

sup
S∼S′

sup
r
‖A(r;S)−A(r;S′)‖ ≤ 4L

β

(
k−1∑
j=0

1

mc + jm+ 1

)
.

mahout.apache.org
https://en.wikipedia.org/wiki/Apache_Spark
http://scikit-learn.org/stable/modules/grid_search.html
https://en.wikipedia.org/wiki/Hinge_loss
https://github.com/frankmcsherry/blog/blob/master/posts/2017-02-08.md
https://github.com/frankmcsherry/blog/blob/master/posts/2017-02-08.md
http://scikit-learn.org/stable/modules/preprocessing.html
https://en.wikipedia.org/wiki/Random_projection
http://stackoverflow.com/questions/6283080/random-unit-vector-in-multi-dimensional-space
http://stackoverflow.com/questions/6283080/random-unit-vector-in-multi-dimensional-space

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy
Noiseless
Ours
SCS13

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13
BST14

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy Noiseless
Ours
SCS13
BST14

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13
BST14

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13
BST14

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13
BST14

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13
BST14

Figure 7: Tuning using a Private Tuning Algorithm for Huber SVM. Row 1 is MNIST, row 2 is Protein and row 3 is Forest Covertype.
Each row gives the test accuracy results for 4 tests: Test 1 is Convex, (ε, 0)-DP, Test 2 is Convex, (ε, δ)-DP, Test 3 is Strongly Convex,
(ε, 0)-DP, and Test 4 is Strongly Convex, (ε, δ)-DP. We compare Noiseless, our algorithms and SCS13 for tests 1 and 3, and compare all
four algorithms for tests 2 and 4. The mini-batch size b = 50, and h = 0.1 for the Huber loss. For strongly convex optimization, we set
R = 1/λ, otherwise we report unconstrained optimization in the convex case. The hyper-parameters were tuned using Algorithm 3 with a
standard “grid search” with 2 values for k (5 and 10) and 3 values for λ (0.0001, 0.001, 0.01), where applicable.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13
BST14

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13
BST14

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13
BST14

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13
BST14

Figure 8: More Accuracy Results of Tuning using Public Data. Row 1 is HIGGS, row 2 is KDDCup-99.

Therefore

4L

β

(
k−1∑
j=0

1

mc + jm+ 1

)
=

4L

β

(
1

mc + 1
+

k−1∑
j=1

1

mc + jm+ 1

)

≤ 4L

β

(
1

mc
+

1

m

k−1∑
j=1

1

j

)

≤ 4L

β

(
1

mc
+

ln k

m

)
as desired.

A.3 Proof of Lemma 7
PROOF. Let T = km, so we have in total T updates. We have

the following recursion

δt ≤

(1− ηγ)δt−1 + 2ηL

if t = i∗ + jm,

j = 0, 1, . . . , k − 1

(1− ηγ)δt−1 otherwise.

(9)

This is because at each pass different gradient update operators
are encountered only at position i∗ (corresponding to the time step
t = i∗ + jm), and so the two inequalities directly follow from the

growth recursion lemma (Lemma 4). Therefore, the contribution of
the differing entry in the first pass contributes 2ηL(1 − ηγ)T−i

∗
,

and generalizing this, the differing entry in the (j + 1)-th pass
(j = 0, 1, . . . , k − 1) contributes 2ηL(1 − ηγ)T−i

∗−jm. Sum-
ming up gives the first claimed bound.

For sensitivity, we note that for j = 1, 2, . . . , k, the j-th pass
can only contribute at most 2ηL · (1− ηγ)(k−j)m to δT . Summing
up gives the desired result.

A.4 Proof of Lemma 8
PROOF. From the Growth Recursion Lemma (Lemma 4) we

know that in the γ-strongly convex case, with appropriate step size,
in each iteration either we have a contraction of δt−1, or, we have
a contraction of δt−1 plus an additional additive term. In PSGD,
in each pass the differing data point will only be encountered once,
introducing an additive term, and is contracted afterwards.

Formally, let T be the number of updates, the differing data point
is at location i∗. Let ρt < 1 be the expansion factor at iteration t.
Then the first pass contributes δ∗1

∏T
t=i∗+1 ρt to δT , the second

pass contributes δ∗2
∏T
t=i∗+m+1 ρt to δT . In general pass j con-

tributes δ∗j
∏T
t=i∗+(j−1)m+1 ρt to δT .

Let ιj = δ∗j
∏T
t=i∗+(j−1)m+1 ρt be the contribution of pass j to

δT . We now figure out δ∗j and ρt. Consider ι1, we consider two

cases. If i∗ ≥ β
γ

, then ηt ≤ 1
γt
≤ 1

β
, and so Gt is (1 − ηtγ) =

(1− 1
t
) expansive. Thus if i∗ ≥ β

γ
then before i∗ the gap is 0 and

after i∗ we can apply expansiveness such that

2L

γt
·
km∏
i=t+1

(
1− 1

i

)
=

2L

γt
·
km∏
i=t+1

i− 1

i
=

2L

γkm
,

The remaining case is when i∗ ≤ β
γ
− 1. In this case we first have

1-expansiveness due to convexity that the step size is bounded by
1
β
< 2

β
. Moreover we have (1 − 1

t
)-expansiveness for Gt when

β
γ
≤ t ≤ m. Thus

2Lηi∗ ·
km∏
j= β

γ

(
1− 1

j

)
≤ 2Lηi∗β/γ

km
= 2L · 1

β
· β

γkm
=

2L

γkm
,

Therefore ι1 ≤ 2L
γkm

. Finally, for j = 2, . . . , k,

ιj ≤
2L

γ((j − 1)m+ i∗)
·

km∏
t=(j−1)m+i∗+1

t− 1

t
=

2L

γkm
.

Summing up gives the desired result.

A.5 Proof of Theorem 8
PROOF. The proof follows exactly the same argument as Theo-

rem 1 of Zinkevich [38], except we change the step size in the final
accumulation of errors.

A.6 Proof of Theorem 10
PROOF. The output of the private PSGD algorithm is w̃ = w̄T+

κ, where κ is distributed according to a Gamma distribution Γ(d, ∆2
ε

).
By Lemma 1, ∆2 ≤ 2Lη = 2R√

m
. Therefore by Lemma 11,

Eκ[LS(w̃) − LS(w̄m)] ≤ 2dR
ε
√
m

, where we use the fact that the

expectation of the Gamma distribution is d∆2
ε

. Summing up gives
the bound.

B Results with Huber SVM
In this section we report results on Huber SVM. The standard SVM
uses the hinge loss function, defined by `SVM(w, (x, y)) = max(0, 1−
y〈w, x〉), where x is the feature vector and y ∈ {±1} is the classi-
fication label. However, hinge loss is not differentiable and so our
results do not directly apply. Fortunately, it is possible to replace
hinge loss with a differentiable and smooth approximation, and it
works pretty well either in theory or in practice. Let z = y〈w, x〉,
we use the following definition from [13],

`Huber(w, (x, y)) =

0 if z > 1 + h
1

4h
(1 + h− z)2 if |1− z| ≤ h

1− z if z < 1− h

In this case one can show that (under the condition that all point are
normalized to unit sphere) L ≤ 1 and β ≤ 1

2h
for `Huber, and our

results thus apply.
Similar to the experiments with logistic regression, we use stan-

dard Huber SVM for the convex case, and Huber SVM regularized
by L2 regularizer for the strongly convex case. Figure 7 reports the
accuracy results in the case of tuning with a private tuning algo-
rithm. Similar to the accuracy results on logistic regression results,
in all test cases our algorithms produce significantly more accurate
models. In particular for MNIST our accuracy is up to 6X better
than BST14 and 2.5X better than SCS13.

C Test Accuracy Results on Additional Datasets
In this section we report test accuracy results on additional datasets:
HIGGS7, and KDDCup-998. The test accuracy results of logistic
regression are reported in Figure 8 for tuning with public data, and
in Figure 9 for private tuning. These results further illustrate the ad-
vantages of our algorithms: For large datasets differential privacy
comes for free with our algorithms. In particular, HIGGS is a very
large dataset with m = 10, 500, 000 training points, and this large
m reduces the noise to negligible for our algorithms, where we
achieve almost the same accuracy as noiseless algorithms. How-
ever, the test accuracy of SCS13 and BST14 are still notably worse
than that of the noiseless version, especially for small ε. We find
similar results for Huber SVM.

D Accuracy vs. Mini-batch Size
In Figure 10 we report more experimental results when we in-
crease mini-batch size from 50 to 200. Specifically we test for
four mini-batch sizes, 50, 100, 150, 200. We report the test accu-
racy on MNIST using the strongly convex optimization, and similar
results hold for other optimization and datasets. Encouragingly, we
achieve almost native accuracy as we increase the mini-batch size.
On the other hand, while the accuracy also increases for SCS13
and BST14 for larger mini-batch sizes, their accuracy is still signif-
icantly worse than our algorithms and noiseless algorithms.

E Sampling Laplace Noise
We discuss briefly how to sample from (3). We are given dimension
d, L2-sensitivity ∆ and privacy parameter ε. In the first step, we
sample a uniform vector in the unit ball, say v (this can be done, for
example, by a trick described in [8]). In the second step we sample
a magnitude l from Gamma distribution Γ(d,∆/ε), which can be
done, for example, via standard Python API (np.random.gamma).
Finally we output κ = lv. The same algorithm is used in [13].

F BST14 with Constant Number of Epochs
Algorithm 4 Convex BST14 with Constant Epochs

Require: `(·, z) is convex for every z, η ≤ 2/β.
Input: Data S, parameters k, ε, δ, d, L,R
1: function ConvexBST14ConstNpass(S, k, ε, δ, d, L,R)
2: m← |S|
3: T ← km
4: δ1← δ/km

5: ε1← Solution of ε = Tε1(eε1 − 1) +
√

2T ln(1/δ1)ε1

6: ε2←min(1,mε1/2)
7: σ2← 2 ln(1.25/δ1)/ε2

2

8: w← 0
9: for t = 1, 2, . . . , T do

10: it ∼ [m] and let (xit , yit) be the data point.
11: z ∼ N (0, σ2ιId) . ι = 1 for logistic regression,

and in general is the L2-sensitivity localized to an iteration; Id
is d-dimensional identity matrix.

12: w←
∏
W
(
w−ηt(∇`(w; (xit , yit)+z)

)
where ηt =

2R
G
√
t

and G =
√
dσ2 + b2L2.

13: return wT

7https://archive.ics.uci.edu/ml/datasets/HIGGS.
8https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

https://archive.ics.uci.edu/ml/datasets/HIGGS
https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy
Noiseless
Ours
SCS13

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13
BST14

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13
BST14

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13
BST14

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13
BST14

Figure 9: More Accuracy Results with Private Tuning. Row 1 is HIGGS, row 2 is KDDCup-99.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13
BST14

(a) b = 50

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13
BST14

(b) b = 100

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13
BST14

(c) b = 150

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless
Ours
SCS13
BST14

(d) b = 200
Figure 10: Mini-batch Size vs. Accuracy: More Results. We consider four mini-batch sizes 50, 100, 150, 200.

Algorithm 5 Strongly Convex BST14 with Constant Epochs

Input: Data S, parameters k, ε, δ, d, L,R
1: function StronglyConvexBST14ConstNpass(S, k, ε, δ, d, L,R)
2: m← |S|
3: T ← km
4: δ1← δ/km

5: ε1← Solution of ε = Tε1(eε1 − 1) +
√

2T ln(1/δ1)ε1

6: ε2←min(1,mε1/2)
7: σ2← 2 ln(1.25/δ1)/ε2

2

8: w← 0
9: for t = 1, 2, . . . , T do

10: it ∼ [m] and let (xit , yit) be the data point.
11: z ∼ N (0, σ2ιId)
12: w←

∏
W
(
w − ηt(∇`(w; (xit , yit) + z)

)
, ηt = 1

γt
.

13: return w

	Introduction
	Preliminaries
	Private SGD
	Algorithms
	Analysis
	Convex Optimization
	Strongly Convex Optimization
	Extensions
	Convergence of Optimization

	Implementation and Evaluation
	Implemented Algorithms
	Integration with Bismarck
	Experimental Method and Datasets
	Runtime Overhead and Scalability
	Accuracy and Effects of Parameters
	Lessons from Our Experiments

	Related Work
	Conclusion and Future Work
	References
	Proofs
	Proof of Lemma 6
	Proof of Corollary 2
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Theorem 8
	Proof of Theorem 10

	Results with Huber SVM
	Test Accuracy Results on Additional Datasets
	Accuracy vs. Mini-batch Size
	Sampling Laplace Noise
	BST14 with Constant Number of Epochs

