Experimental Study of Directed
Feedback Vertex Set Problem

Xi Wu
With Rudolf Fleischer and Liwei Yuan

Fudan University, Shanghai

Algorithm Engineering for DFVS

algorithm

engineering

[analysis

perf -

ded ui:ﬂan

" realistic

>
. models 1 “reql

* Inputs ! *
design - -
E —
falsifiable
7 hypotheses 5| experiments }0

Wmim
4

'
suoljesljdde «

implementation

QUEFEHTE‘E"E
L A

e

g

‘algorithm— | 6
,M_Iibraﬂ' es

ki

Peter Sanders, Festschrift Mehlhorn 60, 2009

Algorithm Engineering for DFVS

: " realistic
algtf"th"_' _models 1 “real
engineerin ' " -
g 9 * Inputs re i
design : | -
2 l =1
falsifiable O
[analysis 3 hypotheses £ | experiments }0— 1
, induction o
deduction 4 =
“pert 5 Chen's FPT >
pert.— algorithm -
guarantees) Y —
| | ‘algorithm— 6 .
libraries -

Peter Sanders, Festschrift Mehlhorn 60, 2009

Algorithm Engineering for DFVS

: " realistic
algtf"th"_' _models 1 | “redl
engineering - " —
g g * Inputs re i
design : | ~T
> | =1
falsifiable Exoor | o
[analysis 3 hypotheses g| SXPerimenta }— Q0
induction analysts =)
deduction 4 —_
- 'u Chen's FPT - e
PEIT— algorithm >
‘guarantees # Y —
| | ‘algorithm- | 6 >
libraries -

Peter Sanders, Festschrift Mehlhorn 60th, 2009

Algorithm Engineering for DFVS

: ' realistic
algtf"th"_' ~models 1 |
engineering ~ |~ |[red 7
New data
reduction rules
E —
falsifiable
3 hypotheses g

induction
4

ded ui:ﬂ on
- Chen's FPT

pertf— algorithm
EIQ uaraniees Y

‘algorithm— | 6
libraries

suoljesljdde «

-.__
L)

[analysis

Experimental
analysis

e

> 4

ki

Peter Sanders, Festschrift Mehlhorn 60th, 2009

Algorithm Engineering for DFVS

: " realistic
algtf"th"_' _models 1)
engineering 1 : red 7 @ — 8
New data IE_“"IIDL.IJ[E _ o
reduction rules | -0
7 ! =1
r falsifiable o
When helpful? Experimental M
When not? J h‘ljr'pﬂ’[helses 0 analysis } =
: induction O
dedul:ﬂan 4 —
“pert Chen's FPT - @
Pert— algorithm ~
‘guarantees | Y —
| | ‘algorithm— 6 >
libranes -
b ' -

Peter Sanders, Festschrift Mehlhorn 60th, 2009

Algorithm Engineering for DFVS

: " realistic
algtf"th"_' _models 1)
engineering 1 : red 7 @ — 8
New data IE_“"IIDL.IJ[E _ o
reduction rules 'l l %
2 ~
: falsifiable =3
When helpful? Experimental M
When not? J h‘ljr'pﬂ’[helses 0 analysis } —
- induction O
deduction —_
- w
“pert Implement -
Pert— these rules -
guarantees | Y —
| | ‘algorithm— 6 >
libranes -
b - -

Peter Sanders, Festschrift Mehlhorn 60th, 2009

Algorithm Engineering for DFVS

- " realistic
algtf"th"_' _models 1)
engineering 1 : red 7 @ — 8
New data Ix_|r"IFZJL.IJ[E : o
reduction rules | -
7~ | =1
- falsifiable =3
When helpful? Quantify the M
When not? 3 h?rpmhelses 0 benefits]‘ =
- induction O
dedul:ﬂan 4 —_
“pert Implement - @
PErt— these rules -
‘guarantees | Y —
| | ‘algorithm— 6 >
libranes -
b ' -

Peter Sanders, Festschrift Mehlhorn 60th, 2009

Algorithm Engineering for DFVS

- " realistic
algtf"th"_' _models 1)
engineerin ' J i —
9 9 Inputs ro s
Heuristics - | i . %
— | =1
- falsifiable o
When helpful? Quantify the M
When not? J h?rpmhelses 0 benefits } —
- induction O
dedul:ﬂan 4 —_
“pert Implement - @
PET.— these rules -
‘guarantees | Y —
| | ‘algorithm— 6 >
libranes -
b ' -

Peter Sanders, Festschrift Mehlhorn 60th, 2009

Algorithm Engineering for DFVS

: " realistic
algtf"th"_' _models 1)
engineerin '] i —
9 9 Inputs ro s
Heuristics - | i . %
7 — ! =1
- falsifiable o
When helpful? Quantify the M
When not? J h?rpmhelses 0 benefits } —
- induction O
dedul:ﬂan 4 —_
“pert Implement - @
PET.— heuristics ~
‘guarantees | Y —
| | ‘algorithm— 6 >
libranes -
b ' -

Peter Sanders, Festschrift Mehlhorn 60th, 2009

Algorithm Engineering for DFVS

- ‘realistic s ~N

algtf"th"_' _models 1)

engineerin ' J i N
9 9 Inputs ! |

Heuristics - | _—

N

falsifiable :
3 hypotheses 5 Quantify the }_ Deadlock

" When helpful?

When not? , , benefits recovery
- induction
ded ul:ﬂ on 4
Implement -
perf.— heuristics N
Quarantees | Y -._’
| | algorithm— 6
libraries N Y
L - _ -

Peter Sanders, Festschrift Mehlhorn 60th, 2009

Directed Feedback Vertex Set
(DFVS)

Find k vertices to destroy all cycles

1-FVS

Directed Feedback Vertex Set
(DFVS)

Find k vertices to destroy all cycles

What about this
one with k=8?

Directed Feedback Vertex Set

(DFVS)

Find k vertices to destroy all cycles

\ N AT =2l
© 't" \74;\9/4\(e
.“é&»é!ﬁ!;//y/’ 4!/’ e

X
N
S L2/ 7 =§4..'.,ﬂv_’/£‘l-----5—.‘:@'

p a—vo' &

What about this
one with k=8?

Minimum DFVS
iIs NP-hard

DFVS vs. Undirected Feedback
Vertex Set (UFVS)

Both NP-hard, but UFVS is better
understood

Approximation O(min{t*logT*loglogT™, T*logN 2-approximation

loglogN)-approximation [Bafna '1999]
[Even '98] (7* is the optimum
fractional solution

FPT algorithm O(k! 4k noW) O(4kk n)
[Chen STOC'2008] [Becker '2000]
Kernelization Polynomial kernel? Quadratic kernel
[Thomasse SODA'2008]

Our Work

« Test engine: random graph generator
Controlling various parameters

« Experimental study of Chen's FPT
algorithm for DFVS [Chen STOC'2008]

With various parameters

* Data reductions and heuristics
Quantify the benefits

 Application: deadlock recovery
DFVS not more helpful than cycle detection

Random Graph Generator

* Goal: difficult, random graphs

* Parameters controlled:
n: Number of nodes
k: Size of the minimum FVS
edge density: ed = #edges/n

* A nontrivial task...

A Non-trivial Task

* Spanning tree
Wilson's algorithm

« Conhnected DAG
Melancon's algorithm

 Control
solution size, overlapping cycles, edge density ...

Chen's Algorithm

K Iterative Compression /

4 N\

Chen's Algorithm

-~

K@

~

Iterative Compression /

Chen's Algorithm

-~

_

~

Iterative Compression

J

Chen's Algorithm

Compress into k-FVS

(k+1) -FVS H @

Iterative Compression /

Chen's Algorithm

(k+1) -FVS H @

K Iterative Compression /

Chen's Algorithm

ATRES

(k+1) -FVS H @

K Iterative Compression /

Chen's Algorithm

Gy

(k+1) -FVS H @

K Iterative Compression /

Chen's Algorithm

(k+1)-FVS H @

K Iterative Compression /

Start Configuration of Chen's
Algorithm

e Consider heuristic solution X:

— choose a k-subset Y of X
— start with S = (6 - (X - Y))

If X is good, then better performance

Chen's Original Algorithm

» Configuration
— n: from 40 to 200, step by 20
—k:in{2, 4,6, 8}
—edin{2.0,3.0,3.5,4.0}

* Generate 10 graphs for (n, k, ed)

Record max, min and average

* Timeout: 3 hours
Count as 3 hours

Runtime Performance

Logarithmic runtime (ed=3.5)

Logarithmic Runtime (Second, Base €e)

10 —_
—— K=2 'g
S K=4 o

8 - % K=6 S
[K=8 n 2
_ B ~
6 B g B)
. g £
4 * ¥ - - % R
Loy’ ()]
2 b I I
X g N
0 -) = - @
o - O
©
/.' =
2w 0
1 | | | | 1 | 1 | <

40 60 80 100 120 140 160 180 200

Number of Vertices (ed=3.5)

1000

800

600

400

200

o

Runtime (ed=3.5)

—— K=2

- K=4 [
| - k- K=6

L K=8

i
g

N D
- D‘ ,'I
40 60 80 100 120 140 160 180 200

Number of Vertices (ed=3.5)

Algorithm is slow, even with
small parameter k

Performance fluctuates
when n increases

Low Edge Density: High Runtime

Worst performance for n=40

~ 14 —f— K=2

= S K=4

S 12 K K=6

(%3 1 K=8

s 1 :

E 3 - SrrHeeg g B g

l—

5

= 6 oK ¥

) : ¥ x x

W 4 *oo- -k

Q

£ X

£ ‘T L I

S o I I e]
-2 1 1 1

40 60 80 100 120 140 160 180 200
Number of Vertices (ed=2.0)

Many Independent Cycles:
High Runtime

* An intuitive example: "Pyramid”

Many Independent Cycles:
High Runtime

* An intuitive example: "Pyramid”

Many Independent Cycles:
High Runtime

* An intuitive example: "Pyramid”

g The
for the first 3 layers
are the

Many Independent Cycles:
High Runtime

* An intuitive example: "Pyramid”

for the

whole graph is the

Reduction Rules

 Reduction: in polynomial time
—reduce (G, k) to (G, k)

— (6, k) is a YES-instance iff (G, k') is a YES-
iInstance

* Kernelization
— |&'| is bounded by f(k)
- k' <k

Reduction Rules I (Chen)

e Trivial rules:

— Self-loops: add node to DFVS

— Parallel-edge: delete multiple edges

Reduction Rule IT

* Dummy
— in-degree/out-degree = O;

| 5 Other part
of the
graph

delete u

Reduction Rules ITI

e Chain

— in-degree/out-degree = 1;

merge u and v

Reduction Rule IV

 Flower

— (k+1) vertex-independent cycles exactly
intfersecting on u: add u to DFVS

Other part of the graph

k=2
petal(u) = {x, vy, z} \\\ v

Reduction Rule V

 Shortcut
— petal(u) = {v}: bypass u

Reduction Rule V

 Shortcut
— petal(u) = {v}: bypass u

= oo

Remarks

* These rules do NOT give a kernelization

* We need rules when 2 < |petal(u)| < k

Non-Reducible Graphs

| petal(u) | = | petal(v) | = 2
u, v are useless

Non-Reducible Graphs

When can we safely reduce u, v, w?

Logarithmic Runtime (Second, Base €)

Runtime with Reductions
(n small, k small)

No reductions With reductions

10 ~ 10
—&— K=2 o —8— K=2
S K=4 2 ol S K=4
B x K=6 g XKoo
- K=8 05 - K=8
6 e B g B S 6r
4_ . ‘,%% --->|< @ 4_
¥ - IR SEEE o M, ol
; e c | e = R o
2 ¥ R, n::) 2 I Eé) E %
e w1 - W o
LXK o —- o 0 I — B~ s ___i-
_-—-.'______ . E %H - . % é - ____.__, .
0o - £ PR e
P = —B % 2 _X/ e
2 lm 5 =
1 1 1 1 1 1 1 1 I ~ -4 1 ! 1 I 1 1] 1 1
40 60 80 100 120 140 160 180 200 40 60 80 100 120 140 160 180 200

Number of Vertices (ed=3.5) Number of Vertices (ed=3.9)

4X ~ 140X speedup

Average Reduced Size

Reduced Size
(n large, k small)

ed=20 ed =30
200 = R _
— K221 90% nodes reduced | x 0T K
% K=8 ’ .GEJ ¥--K=8
| 0p)
150 % / o 150
‘ * 5
; @
100 2 100 +
, . , 0
* - >|< - ‘% . i)K : %
50 L * o o 50
>
. X ¥ <
N /\\ .
L P e A R PR ol ——w o w0y oy
400 600 800 1000 1200 1400 1600 1800 2000 400 600 800 1000 1200 1400 1600 1800 2000
Number of Vertices Number of Vertices

Many flowers found |

Preprocessing Time (Second)

N
o

—_
on

—_
o

(@]

o

Preprocessing Time

(n large, k small)

ed=2.0

\‘“T,J.—

Preprocessing Time (Second)
I~ (&)
o o

[0s]
o

ed=30

—— K=6
L K=8

-~
o

D
o
T

w
o
T

.
o
T

! ! ! ! 0 ‘i‘ I I

400

600

800 1000 1200 1400 1600 1800 2000
Number of Vertices

—
o
I
N

Number of Vertices

Scales linearly with n and ed

400 600 800 1000 1200 1400 1600 1800 2000

350

(%]
o
(en]

250

200

150

100

Average Reduced Size

8]
o

Reduced Size

(n large, k large)

ed=20

—+— K=60 ¥
| K=80 7
+
/ |
Sy
R < _x 7
- - ‘+J_// /_'
- //
/
//
\I.’/ L 1]]] 1 1 1

400 600 800 1000 1200 1400 1600 1800 2000

Number of Vertices

Average Reduced Size

900
800
700
600
500
400
300
200
100

ed =

R
L K=80 /
_ '..';'};,;, :

/;@/
/;f'/
| 7
+
| A7
| ,,gff
400 600 800 1000 1200 1400 1600 1800 2000

Number of Vertices

Now flower reduction does not work well

Which Rules are Powerful?

* n=1000 and ed = 3.0

Rules k = 4|k = 40
Chain 607 | 377

No flowers
found...

Dummy 785 | 679
Flower 996 | 10000
Chain+ Dummy 522 377
Chain—+ Flower 366 | 377
Dummy—+ Flower 151 | 377

Dummy+ Dummuy—+ Flower|| 0 377

Start Heuristics

 Three heuristics:

— Big-Degree

pick biggest total degree vertices until acyclic

— Even's Fractional Approximation
pick the most heavy weight set

— Even's Full Approximation
pick the approximation solution

—
(&)
o

Average Search Time (Second)

Evaluating Heuristics

No heuristic

200

100

(@)}
o
I

—H— K=8

7

@

20 25 30 35 40 45 50 55 60
Number of Vertices

200

—
(&)
o

100

Average Search Time (Second)
(&)
o

o

Evaluating Heuristics

No heuristic

—H— K=8 ||
[n |
Il |
."II Il‘ll'n ‘I{
|III II"- l
- II,‘ II'.‘ J"
|'II I‘I'. f
,"I I'ﬂl .-’f
L -
ﬁj I I I ! I ! I !
20 256 30 35 40 45 50 55 60

Number of Vertices

200

150

100

50

Fractional Approximation

20 25 30 35 40 45 50 55 60
Number of Vertices

200

—
(6]
o

100

Average Search Time (Second)
(&3]
o

o

Evaluating Heuristics

Big Degree

—=— K=8

- 4x-50x speedup

~

o
O. =
g P gy | T

I

N

0 25 30 35 40 45 50 55 60
Number of Vertices

Fractional Approximation

200 7 K=8
150 |
2
(o]
50 - o E/Z
(o]
.
0 1 1 1 1 1 1 1 1

20 25 30 35 40 45 50 55 60
Number of Vertices

Evaluating Heuristics

Big Degree Fractional Approximation

| —5— K=8

]
o
o

200 7 K=8

—
(6]
o

4x-50x speedup 150 |

| ST

(&)
o

Average Search Time (Second)

° T T o
0 E'E__ @E_—'E" — _'ﬂ/ I ‘?__q 0 ?) I I I I 1 I L
20 25 0 35 40 45 50 55 60 20 25 30 35 40 45 50 55 60
Number of Vertices Number of Vertices

Practical Scheme:
Preprocessing + Big-Degree + Chen's
algorithm --> further 2-3x speedup

Practical Application:
Deadlock Recovery

'!«q\@’

— 5 request
- - > grant

own

Practical Application:
Deadlock Recovery

— 5 request
- - > grant

S own

Practical Application:
Deadlock Recovery

Could DFVS help us for deadlock recovery?

— 5 request
- - > grant

S own

®
AR

Practical Application:
Deadlock Recovery

Could DFVS help us for deadlock recovery?

R1: one lock owned
by only one thread

R2: one thread can
wait on only one lock

Practical Application:
Deadlock Recovery

Could DFVS help us for deadlock recovery?

R1: one lock owned |No overlapping cycles
by only one thread

Cycle detection is enough

R2: one thread can
wait on only one lock

A Real System

* The Deadlock Immunity System

— OSDI '08 (top system conference)
— Use cycle detection to enable deadlock
immunity
— 10% overhead on average
* instrumentations, framework overhead, etc.

Conclusion

* Quantitative analysis of Chen's FPT
algorithm for DFVS

* New reduction rules
— With significant performance benefits
— Quantitative analysis

Open Problems

» Reduction rules when 2 < |[petal(u)| < k ?
|petal(u)| > (k+1), flower rule
|petal(u)| = 1, shortcut

» Kernelization for DFVS problem

* Better heuristics
Better approximation algorithm?

Thanks |

?

FPT search with different parameter

Qo
o

n —=— K=38

)] =l
o]
T

&)
o
T

Qo
o
T

E/Eﬁﬁ
{

Average Search Time (Second)
S

[~] =]
it e B
| |=

8 20 40 6 80 100
Parameter K (Optimum Size = 8)

(e}
N tar-}____'

Backup Slides

Skew Separator

< G - F:/ai/clic >

Skew Separator

G - F: Acyclic
Ol o

Skew Separator

- F: Acyclic
P —

Skew Separator

p— G - F: Acycllc
_ f

P (-

algorithm using
branching

Example of Applying Reductions

K=2. FVS:

Example of Applying Reductions

K=2. FVS:
Delete Parallel Edges

Example of Applying Reductions

K=2. FVS:
Delete Parallel Edges

Example of Applying Reductions

K=2. FVS:
Delete Parallel Edges

Example of Applying Reductions

K=2. FVS:
Delete Parallel Edges

Delete Self Loops

Example of Applying Reductions

K=2. FVS:
Delete Parallel Edges

Delete Self Loops

Example of Applying Reductions

K=2. FVS:
Delete Parallel Edges

Delete Self Loops

Example of Applying Reductions

K=2. FVS:
Delete Parallel Edges
Delete Self Loops

K=1

Example of Applying Reductions
K=2. FVS: ‘

Delete Parallel Edges

Delete Self Loops
K=1

Example of Applying Reductions
K=2. FVS: ‘

Delete Parallel Edges

Delete Self Loops
K=1

Delete Dummy

Example of Applying Reductions
K=2. FVS: ‘

Delete Parallel Edges

Delete Self Loops
K=1

Delete Dummy

Example of Applying Reductions
K=2. FVS: ‘

Delete Parallel Edges

Delete Self Loops
K=1

Delete Dummy

Example of Applying Reductions
K=2. FVS: ‘

Delete Parallel Edges

Delete Self Loops
K=1

Delete Dummy

Find a Flower

Example of Applying Reductions
K=2. FVS: ‘

Delete Parallel Edges

Delete Self Loops
K=1

Delete Dummy

Find a Flower

Example of Applying Reductions
K=2. FVS: ‘

Delete Parallel Edges |
Delete Self Loops
K=1

Delete Dummy

Find a Flower

Example of Applying Reductions
K=2. FVS: ‘ ‘

Delete Parallel Edges
Delete Self Loops
K=1

Delete Dummy

Find a Flower

Example of Applying Reductions
K=2. FVS: ‘ ‘

Delete Parallel Edges
Delete Self Loops
K=1

Delete Dummy

Find a Flower
K = 0 and Acyclic

Done

Generation strategy
— The edges of connected DAG are % of the
total edge bound

— Each cycle has at most ¢ of nodes

— Generate cycles until reaching the edge bound

	Experimental Study of Directed Feedback Vertex Set Problem
	Algorithm Engineering for DFVS
	Algorithm Engineering for DFVS
	Algorithm Engineering for DFVS
	Algorithm Engineering for DFVS
	Algorithm Engineering for DFVS
	Algorithm Engineering for DFVS
	Algorithm Engineering for DFVS
	Algorithm Engineering for DFVS
	Algorithm Engineering for DFVS
	Algorithm Engineering for DFVS
	Directed Feedback Vertex Set�(DFVS)
	Directed Feedback Vertex Set�(DFVS)
	Directed Feedback Vertex Set�(DFVS)
	�DFVS vs. Undirected Feedback Vertex Set (UFVS)�
	Our Work
	Random Graph Generator
	A Non-trivial Task
	Chen’s Algorithm
	Chen’s Algorithm
	Chen’s Algorithm
	Chen’s Algorithm
	Chen’s Algorithm
	Chen’s Algorithm
	Chen’s Algorithm
	Chen’s Algorithm
	Start Configuration of Chen’s Algorithm
	Chen’s Original Algorithm
	Runtime Performance
	Low Edge Density: High Runtime
	Many Independent Cycles: �High Runtime
	Many Independent Cycles: �High Runtime
	Many Independent Cycles: �High Runtime
	Many Independent Cycles: �High Runtime
	Reduction Rules
	Reduction Rules I (Chen)
	Reduction Rule II
	Reduction Rules III
	Reduction Rule IV
	Reduction Rule V
	Reduction Rule V
	Remarks
	Non-Reducible Graphs
	Non-Reducible Graphs
	Runtime with Reductions�(n small, k small)
	Reduced Size �(n large, k small)
	Preprocessing Time �(n large, k small)
	Reduced Size �(n large, k large)
	Which Rules are Powerful?
	Start Heuristics
	Evaluating Heuristics
	Evaluating Heuristics
	Evaluating Heuristics
	Evaluating Heuristics
	Practical Application:�Deadlock Recovery
	Practical Application:�Deadlock Recovery
	Practical Application:�Deadlock Recovery
	Practical Application:�Deadlock Recovery
	Practical Application:�Deadlock Recovery
	A Real System
	Conclusion
	Open Problems
	Thanks !
	FPT search with different parameter k
	Backup Slides
	Skew Separator
	Skew Separator
	Skew Separator
	Skew Separator
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Generation Strategy

