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What about this
one with k=8?

Minimum DFVS
iIs NP-hard



DFVS vs. Undirected Feedback
Vertex Set (UFVS)

Both NP-hard, but UFVS is better
understood

Approximation O(min{t*logT*loglogT™, T*logN 2-approximation

loglogN)-approximation [Bafna '1999]
[Even '98] (7* is the optimum
fractional solution

FPT algorithm  O(k! 4k noW) O(4kk n)
[Chen STOC'2008] [Becker '2000]
Kernelization  Polynomial kernel? Quadratic kernel
[Thomasse SODA'2008]




Our Work

« Test engine: random graph generator
Controlling various parameters

« Experimental study of Chen's FPT
algorithm for DFVS [Chen STOC'2008]

With various parameters

* Data reductions and heuristics
Quantify the benefits

 Application: deadlock recovery
DFVS not more helpful than cycle detection



Random Graph Generator

* Goal: difficult, random graphs

* Parameters controlled:
n: Number of nodes
k: Size of the minimum FVS
edge density: ed = #edges/n

* A nontrivial task...



A Non-trivial Task

* Spanning tree
Wilson's algorithm

« Conhnected DAG
Melancon's algorithm

 Control
solution size, overlapping cycles, edge density ...



Chen's Algorithm
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Chen's Algorithm

Compress into k-FVS
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Chen's Algorithm
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Start Configuration of Chen's
Algorithm

e Consider heuristic solution X:

— choose a k-subset Y of X
— start with S = (6 - (X - Y))

If X is good, then better performance




Chen's Original Algorithm

» Configuration
— n: from 40 to 200, step by 20
—k:in{2, 4,6, 8}
—edin{2.0,3.0,3.5,4.0}

* Generate 10 graphs for (n, k, ed)

Record max, min and average

* Timeout: 3 hours
Count as 3 hours



Runtime Performance

Logarithmic runtime (ed=3.5)

Logarithmic Runtime (Second, Base €e)
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Low Edge Density: High Runtime

Worst performance for n=40
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Many Independent Cycles:
High Runtime

* An intuitive example: "Pyramid”
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* An intuitive example: "Pyramid”
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Many Independent Cycles:
High Runtime

* An intuitive example: "Pyramid”

for the

whole graph is the




Reduction Rules

 Reduction: in polynomial time
—reduce (G, k) to (G, k)

— (6, k) is a YES-instance iff (G, k') is a YES-
iInstance

* Kernelization
— |&'| is bounded by f(k)
- k' <k



Reduction Rules I (Chen)

e Trivial rules:

— Self-loops: add node to DFVS

— Parallel-edge: delete multiple edges



Reduction Rule IT

* Dummy
— in-degree/out-degree = O;

| 5 Other part
of the
graph

delete u



Reduction Rules ITI

e Chain

— in-degree/out-degree = 1;

merge u and v



Reduction Rule IV

 Flower

— (k+1) vertex-independent cycles exactly
intfersecting on u: add u to DFVS

Other part of the graph

k=2
petal(u) = {x, vy, z} \\\ v




Reduction Rule V

 Shortcut
— petal(u) = {v}: bypass u




Reduction Rule V

 Shortcut
— petal(u) = {v}: bypass u

= oo




Remarks

* These rules do NOT give a kernelization

* We need rules when 2 < |petal(u)| < k



Non-Reducible Graphs

| petal(u) | = | petal(v) | = 2
u, v are useless



Non-Reducible Graphs

When can we safely reduce u, v, w?



Logarithmic Runtime (Second, Base €)

Runtime with Reductions
(n small, k small)
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Average Reduced Size

Reduced Size
(n large, k small)
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Preprocessing Time (Second)
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Which Rules are Powerful?

* n=1000 and ed = 3.0

Rules k = 4|k = 40
Chain 607 | 377

No flowers
found...

Dummy 785 | 679
Flower 996 | 10000
Chain+ Dummy 522 377
Chain—+ Flower 366 | 377
Dummy—+ Flower 151 | 377

Dummy+ Dummuy—+ Flower|| 0 377




Start Heuristics

 Three heuristics:

— Big-Degree

pick biggest total degree vertices until acyclic

— Even's Fractional Approximation
pick the most heavy weight set

— Even's Full Approximation
pick the approximation solution
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Evaluating Heuristics

Big Degree Fractional Approximation
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Practical Scheme:
Preprocessing + Big-Degree + Chen's
algorithm --> further 2-3x speedup




Practical Application:
Deadlock Recovery
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Practical Application:
Deadlock Recovery

Could DFVS help us for deadlock recovery?
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Practical Application:
Deadlock Recovery

Could DFVS help us for deadlock recovery?

R1: one lock owned
by only one thread

R2: one thread can
wait on only one lock




Practical Application:
Deadlock Recovery

Could DFVS help us for deadlock recovery?

R1: one lock owned |No overlapping cycles
by only one thread

Cycle detection is enough

R2: one thread can
wait on only one lock



A Real System

* The Deadlock Immunity System

— OSDI '08 (top system conference)
— Use cycle detection to enable deadlock
immunity
— 10% overhead on average
* instrumentations, framework overhead, etc.



Conclusion

* Quantitative analysis of Chen's FPT
algorithm for DFVS

* New reduction rules
— With significant performance benefits
— Quantitative analysis



Open Problems

» Reduction rules when 2 < |[petal(u)| < k ?
|petal(u)| > (k+1), flower rule
|petal(u)| = 1, shortcut

» Kernelization for DFVS problem

* Better heuristics
Better approximation algorithm?



Thanks |

?




FPT search with different parameter
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Backup Slides



Skew Separator
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Example of Applying Reductions

K=2. FVS:




Example of Applying Reductions

K=2. FVS:
Delete Parallel Edges
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K=2. FVS: ‘

Delete Parallel Edges |
Delete Self Loops
K=1

Delete Dummy

Find a Flower




Example of Applying Reductions
K=2. FVS: ‘ ‘

Delete Parallel Edges
Delete Self Loops
K=1

Delete Dummy
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Example of Applying Reductions
K=2. FVS: ‘ ‘

Delete Parallel Edges
Delete Self Loops
K=1

Delete Dummy

Find a Flower
K = 0 and Acyclic

Done




Generation strategy
— The edges of connected DAG are % of the
total edge bound

— Each cycle has at most ¢ of nodes

— Generate cycles until reaching the edge bound
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