A Formal Study of Model Inversion Attacks

Xi Wu xiwu@cs.wisc.edu

Joint work with Matt Fredrikson, Somesh Jha and Jeffrey F. Naughton

November 9, 2016

Xi Wu Formalizing Model Inversion Attacks 1 / 23 AM 2012 1/23

• Model Inversion Attacks

- Model Inversion Attacks
	- A kind of privacy attacks which try to "back out" sensitive data.

- Model Inversion Attacks
	- A kind of privacy attacks which try to "back out" sensitive data.
- Main Results to Discuss

- Model Inversion Attacks
	- A kind of privacy attacks which try to "back out" sensitive data.
- Main Results to Discuss
	- The connection between model inversion and Boolean analysis.

Xi Wu Formalizing Model Inversion Attacks 2 / 23 AM 2021 23 AM 2022 23 AM 2022 23 AM 2022 23 AM 2022 23 AM 202

- Model Inversion Attacks
	- A kind of privacy attacks which try to "back out" sensitive data.

• Main Results to Discuss

- The connection between model inversion and Boolean analysis.
- Found major applications in complexity theory.

• Going from dosage and background to the genetic marker.

• Recover image from name:

• Recover image from name: Not good if one only knows the name..

• Recovery is sensible if softmax probabilities are known.

• Recovery is sensible if softmax probabilities are known.

Other Attempts in Inverting Models

Actually, many previous attempts. (not necessarily under "data privacy.")

Other Attempts in Inverting Models

Actually, many previous attempts. (not necessarily under "data privacy.")

- Inverting feedforward neural networks using linear and nonlinear programming. Lu et al., 1999
- Image Reconstruction from Bag-of-Visual-Words Kato and Harada, CVPR 2014.
- Image reconstruction based on local feature descriptors Maryam Daneshi, JQ Guo, 2011
- From Bits to Images: Inversion of Local Binary Descriptors d'Angelo et al. arXiv 2012

Other Attempts in Inverting Models

Actually, many previous attempts. (not necessarily under "data privacy.")

- Inverting feedforward neural networks using linear and nonlinear programming. Lu et al., 1999
- Image Reconstruction from Bag-of-Visual-Words Kato and Harada, CVPR 2014.
- Image reconstruction based on local feature descriptors Maryam Daneshi, JQ Guo, 2011
- From Bits to Images: Inversion of Local Binary Descriptors d'Angelo et al. arXiv 2012
- Essence: Sensible recovery from highly compressed information.

We study:

We study:

• Black-box model inversion attacks for Boolean models.

We study:

- Black-box model inversion attacks for Boolean models.
- Formulate noiseless and noisy models and study their "invertibility."

We study:

- Black-box model inversion attacks for Boolean models.
- Formulate noiseless and noisy models and study their "invertibility."
- Connect invertibility to notions in Boolean analysis.

Xi Wu Formalizing Model Inversion Attacks 8 / 23 AM Annualizing Model Inversion Atta

- The general framework to study model inversion attacks.
	- E.g. framework to model white-box attacks.
	- Section 2.

- The general framework to study model inversion attacks.
	- E.g. framework to model white-box attacks.
	- Section 2.
- Special structure of machine learning models in white-box attacks.
	- Sequential compositions in a model as "communication games."
	- Section 5.A.

- The general framework to study model inversion attacks.
	- E.g. framework to model white-box attacks.
	- Section 2.
- Special structure of machine learning models in white-box attacks.
	- Sequential compositions in a model as "communication games."
	- Section 5.A.
- Computational power of restricted communication games.
	- Very limited communication channel can leak "everything."
	- Section 5.B.

- The general framework to study model inversion attacks.
	- E.g. framework to model white-box attacks.
	- Section 2.
- Special structure of machine learning models in white-box attacks.
	- Sequential compositions in a model as "communication games."
	- Section 5.A.
- Computational power of restricted communication games.
	- Very limited communication channel can leak "everything."

Xi Wu Formalizing Model Inversion Attacks 8 / 23 AM Annualizing Model Inversion Atta

• Section 5.B.

Please refer to the paper.

Boolean Analysis (1/2)

- Studies Boolean functions $f: \{-1, 1\}^n \mapsto \{-1, 1\}.$
	- $b \in \{0, 1\} \mapsto (-1)^b$.
	- Found many applications in theoretical computer science (circuit complexity, learning theory, cryptography, …).

Boolean Analysis (1/2)

- Studies Boolean functions $f: \{-1, 1\}^n \mapsto \{-1, 1\}.$
	- $b \in \{0, 1\} \mapsto (-1)^b$.
	- Found many applications in theoretical computer science (circuit complexity, learning theory, cryptography, …).

Definition (Difference Operator)

D*i* is a linear operator applied to a Boolean function *f* such that $f(x^{i\to 1}) - f(x^{i\to -1})$ $\frac{f(x)}{2}$.

Intuition: Discrete "derivative."

Boolean Analysis (1/2)

- Studies Boolean functions $f: \{-1, 1\}^n \mapsto \{-1, 1\}.$
	- $b \in \{0, 1\} \mapsto (-1)^b$.
	- Found many applications in theoretical computer science (circuit complexity, learning theory, cryptography, …).

Definition (Difference Operator)

D*i* is a linear operator applied to a Boolean function *f* such that $f(x^{i\to 1}) - f(x^{i\to -1})$ $\frac{f(x)}{2}$.

Intuition: Discrete "derivative."

Definition (Influence)

$$
\text{Inf}_i[f] = \Pr_{x \sim \{-1,1\}^n} [f(x^{i \to 1}) \neq f(x^{i \to -1})]
$$

Intuition: Fraction of input that *xⁱ* has influence.

Xi Wu Formalizing Model Inversion Aacks 9 / 23

Boolean Analysis (2/2)

•
$$
N_{\rho}(x)
$$
. $\widetilde{x} \sim N_{\rho}(x)$ if

$$
\widetilde{x}_j = \begin{cases} x_j & \text{w.p. } \frac{1+\rho}{2} \\ 1 - x_j & \text{w.p. } \frac{1-\rho}{2} \end{cases}
$$

Boolean Analysis (2/2)

•
$$
N_{\rho}(x)
$$
. $\widetilde{x} \sim N_{\rho}(x)$ if

$$
\widetilde{x}_j = \begin{cases} x_j & \text{w.p. } \frac{1+\rho}{2} \\ 1 - x_j & \text{w.p. } \frac{1-\rho}{2} \end{cases}
$$

Definition (Noise Stability)

 $\textsf{Let } -1 \leq \rho \leq 1$. $\textsf{Stab}_{\rho}[f] = \mathbb{E}_{x \sim \{-1,1\}^n}$ *y∼Nρ*(*x*) $[f(x)f(y)]$.

Xi Wu Formalizing Model Inversion Attacks 10 / 23 / 23 / 23 / 23 / 23 / 23 / 24 / 25 / 26 / 27 / 28 / 29 / 29

Intuition: Measure the change of *f* under noise.

Boolean Analysis (2/2)

•
$$
N_{\rho}(x)
$$
. $\widetilde{x} \sim N_{\rho}(x)$ if

$$
\widetilde{x}_j = \begin{cases} x_j & \text{w.p. } \frac{1+\rho}{2} \\ 1 - x_j & \text{w.p. } \frac{1-\rho}{2} \end{cases}
$$

Definition (Noise Stability)

 $\textsf{Let } -1 \leq \rho \leq 1$. $\textsf{Stab}_{\rho}[f] = \mathbb{E}_{x \sim \{-1,1\}^n}$ *y∼Nρ*(*x*) $[f(x)f(y)]$.

Intuition: Measure the change of *f* under noise.

Definition (Stable Influence)

 $\mathsf{Let}\ 0 \leq \rho \leq 1.$ $\mathsf{Inf}_i^{(\rho)}[f] = \mathsf{Stab}_{\rho}[\mathsf{D}_i\, f] = \mathbb{E}_{x \sim \{-1,1\}^n}$ *y∼Nρ*(*x*) $[D_i f(x) D_i f(y)].$

Intuition: Measure the change of influence of x_i under noise. Note: when $\rho = 1$, this reduces to **Inf**_{*i*}[f].

Setup:

Setup:

• $f: {\{-1, 1\}}^n \mapsto {\{-1, 1\}}.$

Setup:

- $f: {\{-1, 1\}}^n \mapsto {\{-1, 1\}}.$
- $\textbf{\textit{·}}\,\,i \in [n]$ be the target feature to invert.

Setup:

- $f: {\{-1, 1\}}^n \mapsto {\{-1, 1\}}.$
- $\textbf{\textit{·}}\,\,i \in [n]$ be the target feature to invert.
- *S ⊆ {−*1*,* 1*} ⁿ × {−*1*,* 1*}* training set used to learn *f*.

Setup:

- $f: {\{-1, 1\}}^n \mapsto {\{-1, 1\}}.$
- $\textbf{\textit{·}}\,\,i \in [n]$ be the target feature to invert.
- *S ⊆ {−*1*,* 1*} ⁿ × {−*1*,* 1*}* training set used to learn *f*.

The MI-Attack World The Simulated World

Setup:

- $f: {\{-1, 1\}}^n \mapsto {\{-1, 1\}}.$
- $\textbf{\textit{·}}\,\,i \in [n]$ be the target feature to invert.
- *S ⊆ {−*1*,* 1*} ⁿ × {−*1*,* 1*}* training set used to learn *f*.

Setup:

- $f: {\{-1, 1\}}^n \mapsto {\{-1, 1\}}.$
- $\textbf{\textit{·}}\,\,i \in [n]$ be the target feature to invert.
- *S ⊆ {−*1*,* 1*} ⁿ × {−*1*,* 1*}* training set used to learn *f*.

Xi Wu Formalizing Model Inversion Attacks 11 / 23 AM 2012 11 / 23 AM 2012 11 / 23

Setup:

- $f: {\{-1, 1\}}^n \mapsto {\{-1, 1\}}.$
- $\textbf{\textit{·}}\,\,i \in [n]$ be the target feature to invert.
- *S ⊆ {−*1*,* 1*} ⁿ × {−*1*,* 1*}* training set used to learn *f*.

Xi Wu Formalizing Model Inversion Attacks 11 / 23 AM 2012 11 / 23 AM 2012 11 / 23

Setup:

- $f: {\{-1, 1\}}^n \mapsto {\{-1, 1\}}.$
- $\textbf{\textit{·}}\,\,i \in [n]$ be the target feature to invert.
- *S ⊆ {−*1*,* 1*} ⁿ × {−*1*,* 1*}* training set used to learn *f*.

Xi Wu Formalizing Model Inversion Attacks 11 / 23 AM 2012 11 / 23 AM 2012 11 / 23

Setup:

- $f: {\{-1, 1\}}^n \mapsto {\{-1, 1\}}.$
- $\textbf{\textit{·}}\,\,i \in [n]$ be the target feature to invert.
- *S ⊆ {−*1*,* 1*} ⁿ × {−*1*,* 1*}* training set used to learn *f*.

 $Adv(A, A^*)$ = $Pr_{z \sim S}[A^f(x_{-i}, y) = x_i] - Pr_{z \sim S}[A^*(x_{-i}) = x_i]$

Idea: Measure the additional invertibility (advantage) of being able to access the model with model output.

Noiseless is Easy

• As x_i is uniformly random, so $\mathbb{E}_{x \sim \{-1,1\}^n} [A^*(x_{-i}) - x_i] - \frac{1}{2}$.

Noiseless is Easy

- As x_i is uniformly random, so $\mathbb{E}_{x \sim \{-1,1\}^n} [A^*(x_{-i}) x_i] \frac{1}{2}$.
- For E*^x∼{*-1*,*1*} ⁿ* [*A^f* (*x−ⁱ , y*) = *xi*], consider

Noiseless is Easy

- As x_i is uniformly random, so $\mathbb{E}_{x \sim \{-1,1\}^n} [A^*(x_{-i}) x_i] \frac{1}{2}$.
- For E*^x∼{*-1*,*1*} ⁿ* [*A^f* (*x−ⁱ , y*) = *xi*], consider

Algorithm 3 Algorithm *A*#

Input: $x_{-i}, y \in \{-1, 1\}$. Oracle access to f . 1: **function** A _#(x _{−*i*}, y)

- 2: Compute $y' = f(x_1, \ldots, x_{i-1}, -1, x_{i+1}, \ldots, x_n)$
- 3: **return** (*−*1)¹[*^y ′* =*y*]

Analysis of $A_{#}$

Xi Wu Formalizing Model Inversion Aacks 13 / 23

Analysis of $A_{\#}$

• The recovery is correct when $f(x^{i\rightarrow 1}) \neq f(x^{i\rightarrow -1})$ *.*

Analysis of $A_{\rm \#}$

- The recovery is correct when $f(x^{i\rightarrow 1}) \neq f(x^{i\rightarrow -1})$ *.*
- Otherwise, no additional information is obtained.

Analysis of $A_{\rm \#}$

- The recovery is correct when $f(x^{i\rightarrow 1}) \neq f(x^{i\rightarrow -1})$ *.*
- Otherwise, no additional information is obtained.

• Let
$$
p = Pr_{x \sim \{-1,1\}^n} [f(x^{i \to 1}) \neq f(x^{i \to -1})]
$$
, then
\n
$$
\Pr_{x \sim \{-1,1\}^n} [A^f_*(x_{-i}, y) = x_i] = (1-p) \cdot \frac{1}{2} + p \cdot 1 = \frac{1}{2} + \frac{p}{2}
$$

Xi Wu Formalizing Model Inversion Aacks 13 / 23

Analysis of $A_{\rm \#}$

- The recovery is correct when $f(x^{i\rightarrow 1}) \neq f(x^{i\rightarrow -1})$ *.*
- Otherwise, no additional information is obtained.

• Let
$$
p = Pr_{x \sim \{-1,1\}^n} [f(x^{i \to 1}) \neq f(x^{i \to -1})]
$$
, then
\n
$$
Pr_{x \sim \{-1,1\}^n} [A^f_*(x_{-i}, y) = x_i] = (1-p) \cdot \frac{1}{2} + p \cdot 1 = \frac{1}{2} + \frac{p}{2}
$$

Theorem $(\forall A^*) \; Adv(A_*, A^*) = \frac{\ln f_i[f]}{2}.$

Analysis of $A_{\text{\#}}$

- The recovery is correct when $f(x^{i\rightarrow 1}) \neq f(x^{i\rightarrow -1})$ *.*
- Otherwise, no additional information is obtained.

• Let
$$
p = Pr_{x \sim \{-1,1\}^n} [f(x^{i \to 1}) \neq f(x^{i \to -1})]
$$
, then
\n
$$
Pr_{x \sim \{-1,1\}^n} [A^f_*(x_{-i}, y) = x_i] = (1-p) \cdot \frac{1}{2} + p \cdot 1 = \frac{1}{2} + \frac{p}{2}
$$

Theorem

 $(\forall A^*) \; Adv(A_*, A^*) = \frac{\ln f_i[f]}{2}.$

• This is in fact *optimal* given the information the adversary has.

Theorem $(\forall A, \forall A^*) A d\upsilon(A, A^*) \leq \frac{\ln f_i[f]}{2}.$

The MI-Attack World **The Simulated World**

Key: The auxiliary information is noisy – the adversary gets $\widetilde{x}_{-i}.$

Key: The auxiliary information is noisy – the adversary gets $\widetilde{x}_{-i}.$

What is model invertibility then?

A# Again

• Consider the same algorithm $A_{#}$ again

Algorithm 4 Algorithm *A*#

Input: $\widetilde{x}_{-i}, y \in \{-1, 1\}$. Oracle access to *f*. 1: **function** $A^#(\widetilde{x}_{-i}, y)$ 2: Compute $y' = f(\widetilde{x}_1, ..., \widetilde{x}_{i-1}, -1, \widetilde{x}_{i+1}, ..., \widetilde{x}_n)$
3: **return** $(-1)^{1[y'-y]}$

Instead of receiving x_{-i} , it gets now \widetilde{x}_{-i} .

Xi Wu Formalizing Model Inversion Attacks 15 / 23 / 23 / 23 / 23 / 23 / 23 / 24 / 25 / 25 / 25 / 25 / 25 / 25

Invertibility of $A_{\text{#}}$

• Invertibility becomes "stable influence."

Invertibility of $A_{\text{#}}$

• Invertibility becomes "stable influence."

• Recall that

Definition (Stable Influence)

Let $0 \leq \rho \leq 1.$ The ρ -stable influence of f at i , denoted as $\mathbf{Inf}_i^{(\rho)}[f],$ is $\textsf{defined to be }\textsf{Inf}_i^{(\rho)}[f]=\textsf{Stab}_{\rho}[\textsf{D}_i\, f]=\mathbb{E}_{x\sim\{-1,1\}^n}$ *y∼Nρ*(*x*) $[D_i f(x) D_i f(y)].$

Xi Wu Formalizing Model Inversion Attacks 16 / 23 / 23 / 23 / 23 / 23 / 23 / 24 / 25 / 26 / 27 / 28 / 29 / 29 /

Let $\widetilde{x} \sim N_\rho(x)$. For $A_\#$, intuitively, there are three cases:

Let $\widetilde{x} \sim N_\rho(x)$. For $A_\#$, intuitively, there are three cases:

1. $D_i f(x) D_i f(\tilde{x}) > 0$: "Good," $A_{\#}$ infers x_i correctly as before.

- Let $\tilde{x} \sim N_{\rho}(x)$. For $A_{#}$, intuitively, there are three cases:
	- 1. $D_i f(x) D_i f(\tilde{x}) > 0$: "Good," $A_{\#}$ infers x_i correctly as before.
	- 2. $D_i f(x) D_i f(\tilde{x}) = 0$: "Random guessing," the information is "erased," and $A_{\#}$ is "essentially" doing random guessing.

- Let \tilde{x} ∼ $N_\rho(x)$. For $A_{\#}$, intuitively, there are three cases:
	- 1. $D_i f(x) D_i f(\tilde{x}) > 0$: "Good," $A_{\#}$ infers x_i correctly as before.
	- 2. $D_i f(x) D_i f(\tilde{x}) = 0$: "Random guessing," the information is "erased," and $A_{\#}$ is "essentially" doing random guessing.
	- 3. $D_i f(x) D_i f(\tilde{x}) < 0$: "Bad," the information is "reversed," $A_{\#}$ always gets it wrong!

- Let \tilde{x} ∼ $N_\rho(x)$. For $A_{\#}$, intuitively, there are three cases:
	- 1. $D_i f(x) D_i f(\tilde{x}) > 0$: "Good," $A_{\#}$ infers x_i correctly as before.
	- 2. $D_i f(x) D_i f(\tilde{x}) = 0$: "Random guessing," the information is "erased," and $A_{\#}$ is "essentially" doing random guessing.
	- 3. $D_i f(x) D_i f(\tilde{x}) < 0$: "Bad," the information is "reversed," $A_{\#}$ always gets it wrong!

For the same $A_{\#}$, $(\forall A^*)$ $Adv(A_{\#}, A^*) \leq \frac{\mathbf{Inf}_{i}^{(\rho)}[f]}{2}$ $\frac{[J]}{2}$.

Theorem

- Let \tilde{x} ∼ $N_\rho(x)$. For $A_{\#}$, intuitively, there are three cases:
	- 1. $D_i f(x) D_i f(\tilde{x}) > 0$: "Good," $A_{\#}$ infers x_i correctly as before.
	- 2. $D_i f(x) D_i f(\tilde{x}) = 0$: "Random guessing," the information is "erased," and $A_{\#}$ is "essentially" doing random guessing.
	- 3. $D_i f(x) D_i f(\tilde{x}) < 0$: "Bad," the information is "reversed," $A_{\#}$ always gets it wrong!

Theorem

For the same $A_{\#}$, $(\forall A^*)$ $Adv(A_{\#}, A^*) \leq \frac{\mathbf{Inf}_{i}^{(\rho)}[f]}{2}$ $\frac{[J]}{2}$.

Is $A_{#}$ optimal (as in the noiseless case)?

• Subtlety: If $D_i f(x) D_i f(\tilde{x}) = 0$, $A_{\#}$ essentially does random guessing, but one can do better..

- Subtlety: If $D_i f(x) D_i f(\tilde{x}) = 0$, $A_{\#}$ essentially does random guessing, but one can do better..
- For example, consider $\text{OR}_n(x_1, \ldots, x_n) = \bigvee_{i=1}^n x_i$. • The value is *−*1 if any input bit is *−*1.

- Subtlety: If $D_i f(x) D_i f(\tilde{x}) = 0$, $A_{\#}$ essentially does random guessing, but one can do better..
- For example, consider $\text{OR}_n(x_1, \ldots, x_n) = \bigvee_{i=1}^n x_i$. • The value is *−*1 if any input bit is *−*1.
- If we "see" that $y = 1$, then $x = 1$.

- Subtlety: If $D_i f(x) D_i f(\tilde{x}) = 0$, $A_{\#}$ essentially does random guessing, but one can do better..
- For example, consider $\text{OR}_n(x_1, \ldots, x_n) = \bigvee_{i=1}^n x_i$. • The value is *−*1 if any input bit is *−*1.
- If we "see" that $y = 1$, then $x = 1$.
- That is, one can use the structure of the model *f* to "denoise."

- Subtlety: If $D_i f(x) D_i f(\tilde{x}) = 0$, $A_{\#}$ essentially does random guessing, but one can do better..
- For example, consider $\text{OR}_n(x_1, \ldots, x_n) = \bigvee_{i=1}^n x_i$. • The value is *−*1 if any input bit is *−*1.
- If we "see" that $y = 1$, then $x = 1$.
- That is, one can use the structure of the model *f* to "denoise."
- $\boldsymbol{\cdot}$ In fact for OR $_n$, in noisy model one can always achieve advantage $\frac{\text{Inf}_i[OR_n]}{2} = 2^{-n}$, while $\frac{\text{Inf}_i^{(\rho)}[OR_n]}{2}$ $\frac{1}{2}$ ^{*OR_n*}</sub> $= \rho^{n-1} 2^{-n}$ *.*

Open Question

Open Question

For any *A′ , A[∗]* ,

 $Adv(A', A^*) \le Adv(A_{\#}, A^*) + o_n(1)$?

• As $\rho \rightarrow 0$, $\mathbf{Inf}_i^{(\rho)}[\mathsf{OR}_n]$ is exponentially smaller than $\mathbf{Inf}_i[\mathsf{OR}_n].$

- As $\rho \rightarrow 0$, $\mathbf{Inf}_i^{(\rho)}[\mathsf{OR}_n]$ is exponentially smaller than $\mathbf{Inf}_i[\mathsf{OR}_n].$
- But **Inf***ⁱ* [OR*n*] is "exponentially small:" 2 ¹*−ⁿ*. Not very interesting…

- As $\rho \rightarrow 0$, $\mathbf{Inf}_i^{(\rho)}[\mathsf{OR}_n]$ is exponentially smaller than $\mathbf{Inf}_i[\mathsf{OR}_n].$
- But **Inf***ⁱ* [OR*n*] is "exponentially small:" 2 ¹*−ⁿ*. Not very interesting…
- A more interesting phenomenon termed "invertibility interference."

• Consider the parity function $\chi_n(x) = \prod_{i=1}^n x_i$.

- Consider the parity function $\chi_n(x) = \prod_{i=1}^n x_i$.
- $\mathsf{Inf}_i[\chi_n]$ = 1 most "invertible" in the noiseless model.

- Consider the parity function $\chi_n(x) = \prod_{i=1}^n x_i$.
- $\mathsf{Inf}_i[\chi_n]$ = 1 most "invertible" in the noiseless model.
- **Inf**^{(ρ}) $[\chi_n] = \rho^{n-1}$ highly "non-invertible" in the noisy model.

- Consider the parity function $\chi_n(x) = \prod_{i=1}^n x_i$.
- $\mathsf{Inf}_i[\chi_n]$ = 1 most "invertible" in the noiseless model.
- **Inf**^{(ρ}) $[\chi_n] = \rho^{n-1}$ highly "non-invertible" in the noisy model.
- Why? "Influential" coordinates interfere with each other to render the model "non-invertible" when little noise present.

Theorem

Suppose that $h: \{-1, 1\}^n \mapsto \{-1, 1\}$ has *t* coordinates with influence 1. Let $0 < \rho \leq 1$, then for any $i \in [n]$, $\mathsf{Inf}_i^{(\rho)}[h] \leq \rho^{t-1} \mathsf{Inf}_i[h].$

Theorem

Suppose that $h: \{-1, 1\}^n \mapsto \{-1, 1\}$ has *t* coordinates with influence 1. Let $0 < \rho \leq 1$, then for any $i \in [n]$, $\mathsf{Inf}_i^{(\rho)}[h] \leq \rho^{t-1} \mathsf{Inf}_i[h].$

Open Question

If, instead of having coordinates of influence 1, we are only guaranteed that individual influence is lower bounded by $1 - \delta$ for some $\delta > 0$, how fast will the stable influence decay with respect to *δ*?

Xi Wu Formalizing Model Inversion Attacks 22 / 23 AM 22

Thanks!

?

Xi Wu Formalizing Model Inversion Aacks 23 / 23