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Theme of the Talk

• Model Inversion Aacks

• A kind of privacy aacks which try to “back out” sensitive data.

• Main Results to Discuss

• The connection between model inversion and Boolean analysis.
• Found major applications in complexity theory.
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Model Inversion Aack 1 (Fredrikson et al., USENIX 2014)

..background . gene.

a linear regression model

.

dosage

• Going from dosage and background to the genetic marker.
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Model Inversion Aack 2 (Fredrikson et al., CCS 2015)

..............

Somax Prob.

.

name

• Recover image from name:

Not good if one only knows the name..
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Other Aempts in Inverting Models

Actually, many previous aempts. (not necessarily under “data privacy.”)

• Inverting feedforward neural networks using linear and nonlinear
programming. Lu et al., 1999

• Image Reconstruction from Bag-of-Visual-Words Kato and Harada, CVPR
2014.

• Image reconstruction based on local feature descriptors Maryam Daneshi,
JQ Guo, 2011

• From Bits to Images: Inversion of Local Binary Descriptors d’Angelo et al.
arXiv 2012

• Essence: Sensible recovery from highly compressed information.
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In the Rest of the Talk

We study:

• Black-box model inversion aacks for Boolean models.

• Formulate noiseless and noisy models and study their “invertibility.”

• Connect invertibility to notions in Boolean analysis.
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Things We Skip

• The general framework to study model inversion aacks.
• E.g. framework to model white-box aacks.
• Section 2.

• Special structure of machine learning models in white-box aacks.
• Sequential compositions in a model as “communication games.”
• Section 5.A.

• Computational power of restricted communication games.
• Very limited communication channel can leak “everything.”
• Section 5.B.

Please refer to the paper.
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Boolean Analysis (1/2)

• Studies Boolean functions f : {-1, 1}n 7→ {-1, 1}.
• b ∈ {0, 1} 7→ (−1)b.
• Found many applications in theoretical computer science (circuit

complexity, learning theory, cryptography, …).

Definition (Difference Operator)

Di is a linear operator applied to a Boolean function f such that

(Di f)(x) =
f(xi→1)− f(xi→−1)

2
.

Intuition: Discrete “derivative.”

Definition (Influence)

Infi[f ] = Pr
x∼{-1,1}n

[f(xi→1) ̸= f(xi→−1)]

Intuition: Fraction of input that xi has influence.
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Boolean Analysis (2/2)

• Nρ(x). x̃ ∼ Nρ(x) if

x̃j =

{
xj w.p. 1+ρ

2

1− xj w.p. 1−ρ
2

Definition (Noise Stability)

Let −1 ≤ ρ ≤ 1. Stabρ[f ] = Ex∼{-1,1}n

y∼Nρ(x)

[f(x)f(y)] .

Intuition: Measure the change of f under noise.

Definition (Stable Influence)
Let 0 ≤ ρ ≤ 1. Inf(ρ)i [f ] = Stabρ[Di f ] = Ex∼{-1,1}n

y∼Nρ(x)

[Di f(x)Di f(y)] .

Intuition: Measure the change of influence of xi under noise.
Note: when ρ = 1, this reduces to Infi[f ].
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Noiseless Model

Setup:

• f : {-1, 1}n 7→ {-1, 1}.
• i ∈ [n] be the target feature to invert.
• S ⊆ {−1, 1}n × {−1, 1} training set used to learn f .

The MI-Aack World The Simulated World
Goal: recover xi Goal: recover xi

Nature samples (x, bx) ∼ S Nature samples (x, bx) ∼ S

Nature presents x−i, y = f(x) Nature presents x−i

Adversary: Af (x−i, y) Adversary: A∗(x−i)

Adv(A,A∗) = Prz∼S [A
f (x−i, y) = xi]− Prz∼S [A

∗(x−i) = xi]

Idea: Measure the additional invertibility (advantage) of being able to
access the model with model output.
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Noiseless is Easy

• As xi is uniformly random, so Ex∼{-1,1}n [A∗(x−i) = xi] = 1
2 .

• For Ex∼{-1,1}n [Af (x−i, y) = xi], consider

Algorithm 1 Algorithm A#

Input: x−i, y ∈ {−1, 1}. Oracle access to f .
1: function A#(x−i, y)
2: Compute y′ = f(x1, . . . , xi−1,−1, xi+1, . . . , xn)
3: return (−1)1[y

′=y]
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Analysis of A#

• The recovery is correct when f(xi→1) ̸= f(xi→−1).

• Otherwise, no additional information is obtained.

• Let p = Prx∼{-1,1}n [f(xi→1) ̸= f(xi→−1)], then

Pr
x∼{-1,1}n

[Af
# (x−i, y) = xi] = (1− p) · 1

2
+ p · 1 =

1

2
+
p

2

Theorem
(∀A∗) Adv(A#, A

∗) = Infi[f ]
2 .

• This is in fact optimal given the information the adversary has.

Theorem
(∀A,∀A∗) Adv(A,A∗) ≤ Infi[f ]

2 .
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Noisy Case: ρ-Independent Perturbation Model

The MI-Aack World The Simulated World

Goal: recover xi Goal: recover xi

Nature samples (x, bx) ∼ S, x̃ ∼ Nρ(x) Nature samples (x, bx) ∼ S, x̃ ∼ Nρ(x)

Nature presents x̃−i, y = f(x) Nature presents x̃−i

Adversary: Af (x̃−i, y) Adversary: A∗(x̃−i)

Key: The auxiliary information is noisy – the adversary gets x̃−i.

What is model invertibility then?
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A# Again

• Consider the same algorithm A# again

Algorithm 4 Algorithm A#

Input: x̃−i, y ∈ {−1, 1}. Oracle access to f .
1: function A#(x̃−i, y)
2: Compute y′ = f(x̃1, . . . , x̃i−1,−1, x̃i+1, . . . , x̃n)
3: return (−1)1[y

′=y]

Instead of receiving x−i, it gets now x̃−i.

Xi Wu Formalizing Model Inversion Aacks 15 / 23



Invertibility of A#

• Invertibility becomes “stable influence.”

• Recall that

Definition (Stable Influence)
Let 0 ≤ ρ ≤ 1. The ρ-stable influence of f at i, denoted as Inf(ρ)i [f ], is
defined to be Inf(ρ)i [f ] = Stabρ[Di f ] = Ex∼{-1,1}n

y∼Nρ(x)

[Di f(x)Di f(y)] .
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Why Stable Influence is the Answer?

Let x̃ ∼ Nρ(x). For A#, intuitively, there are three cases:

1. Di f(x)Di f(x̃) > 0: “Good,” A# infers xi correctly as before.

2. Di f(x)Di f(x̃) = 0: “Random guessing,” the information is “erased,”
and A# is “essentially” doing random guessing.

3. Di f(x)Di f(x̃) < 0: “Bad,” the information is “reversed,” A# always
gets it wrong!

Theorem
For the same A#, (∀A∗) Adv(A#, A

∗) ≤ Inf(ρ)i [f ]

2 .

Is A# optimal (as in the noiseless case)?
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Answer: No

• Subtlety: If Di f(x)Di f(x̃) = 0, A# essentially does random guessing,
but one can do beer..

• For example, consider ORn(x1, . . . , xn) =
∨n

i=1 xi.
• The value is −1 if any input bit is −1.

• If we “see” that y = 1, then x = 1.

• That is, one can use the structure of the model f to “denoise.”

• In fact for ORn, in noisy model one can always achieve advantage
Infi[ORn]

2 = 2−n, while Inf(ρ)i [ORn]

2 = ρn−12−n.

Xi Wu Formalizing Model Inversion Aacks 18 / 23



Answer: No

• Subtlety: If Di f(x)Di f(x̃) = 0, A# essentially does random guessing,
but one can do beer..

• For example, consider ORn(x1, . . . , xn) =
∨n

i=1 xi.
• The value is −1 if any input bit is −1.

• If we “see” that y = 1, then x = 1.

• That is, one can use the structure of the model f to “denoise.”

• In fact for ORn, in noisy model one can always achieve advantage
Infi[ORn]

2 = 2−n, while Inf(ρ)i [ORn]

2 = ρn−12−n.

Xi Wu Formalizing Model Inversion Aacks 18 / 23



Answer: No

• Subtlety: If Di f(x)Di f(x̃) = 0, A# essentially does random guessing,
but one can do beer..

• For example, consider ORn(x1, . . . , xn) =
∨n

i=1 xi.
• The value is −1 if any input bit is −1.

• If we “see” that y = 1, then x = 1.

• That is, one can use the structure of the model f to “denoise.”

• In fact for ORn, in noisy model one can always achieve advantage
Infi[ORn]

2 = 2−n, while Inf(ρ)i [ORn]

2 = ρn−12−n.

Xi Wu Formalizing Model Inversion Aacks 18 / 23



Answer: No

• Subtlety: If Di f(x)Di f(x̃) = 0, A# essentially does random guessing,
but one can do beer..

• For example, consider ORn(x1, . . . , xn) =
∨n

i=1 xi.
• The value is −1 if any input bit is −1.

• If we “see” that y = 1, then x = 1.

• That is, one can use the structure of the model f to “denoise.”

• In fact for ORn, in noisy model one can always achieve advantage
Infi[ORn]

2 = 2−n, while Inf(ρ)i [ORn]

2 = ρn−12−n.

Xi Wu Formalizing Model Inversion Aacks 18 / 23



Answer: No

• Subtlety: If Di f(x)Di f(x̃) = 0, A# essentially does random guessing,
but one can do beer..

• For example, consider ORn(x1, . . . , xn) =
∨n

i=1 xi.
• The value is −1 if any input bit is −1.

• If we “see” that y = 1, then x = 1.

• That is, one can use the structure of the model f to “denoise.”

• In fact for ORn, in noisy model one can always achieve advantage
Infi[ORn]

2 = 2−n, while Inf(ρ)i [ORn]

2 = ρn−12−n.

Xi Wu Formalizing Model Inversion Aacks 18 / 23



Answer: No

• Subtlety: If Di f(x)Di f(x̃) = 0, A# essentially does random guessing,
but one can do beer..

• For example, consider ORn(x1, . . . , xn) =
∨n

i=1 xi.
• The value is −1 if any input bit is −1.

• If we “see” that y = 1, then x = 1.

• That is, one can use the structure of the model f to “denoise.”

• In fact for ORn, in noisy model one can always achieve advantage
Infi[ORn]

2 = 2−n, while Inf(ρ)i [ORn]

2 = ρn−12−n.

Xi Wu Formalizing Model Inversion Aacks 18 / 23



Open estion

Open estion

For any A′, A∗,
Adv(A′, A∗) ≤ Adv(A#, A

∗) + on(1) ?
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Invertibility Interference (1/3)

Noiseless Noisy Model
Invertibility Influence Stable Influence

• As ρ → 0, Inf(ρ)i [ORn] is exponentially smaller than Infi[ORn].

• But Infi[ORn] is “exponentially small:” 21−n. Not very interesting…

• A more interesting phenomenon termed “invertibility interference.”
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Invertibility Interference (2/3)

• Consider the parity function χn(x) =
∏n

i=1 xi.

• Infi[χn] = 1 — most “invertible” in the noiseless model.

• Inf(ρ)i [χn] = ρn−1 — highly “non-invertible” in the noisy model.

• Why? “Influential” coordinates interfere with each other to render
the model “non-invertible” when lile noise present.
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Invertibility Interference (3/3)

Theorem
Suppose that h : {-1, 1}n 7→ {-1, 1} has t coordinates with influence 1. Let
0 < ρ ≤ 1, then for any i ∈ [n], Inf(ρ)i [h] ≤ ρt−1 Infi[h].

Open estion

If, instead of having coordinates of influence 1, we are only guaranteed that
individual influence is lower bounded by 1− δ for some δ > 0, how fast will
the stable influence decay with respect to δ?
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Thanks!

?
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