A Formal Study of Model Inversion Attacks

Xi Wu

xiwu@cs.wisc.edu

Joint work with Matt Fredrikson, Somesh Jha and Jeffrey F. Naughton

November 9, 2016

Model Inversion Attacks

- Model Inversion Attacks
 - A kind of privacy attacks which try to "back out" sensitive data.

- Model Inversion Attacks
 - A kind of privacy attacks which try to "back out" sensitive data.

· Main Results to Discuss

- Model Inversion Attacks
 - A kind of privacy attacks which try to "back out" sensitive data.

- Main Results to Discuss
 - The connection between model inversion and Boolean analysis.

- Model Inversion Attacks
 - A kind of privacy attacks which try to "back out" sensitive data.

- Main Results to Discuss
 - The connection between model inversion and Boolean analysis.
 - · Found major applications in complexity theory.

• Going from dosage and background to the genetic marker.

· Recover image from name:

· Recover image from name: Not good if one only knows the name..

· Recovery is sensible if softmax probabilities are known.

· Recovery is sensible if softmax probabilities are known.

Actually, many previous attempts. (not necessarily under "data privacy.")

Actually, many previous attempts. (not necessarily under "data privacy.")

- Inverting feedforward neural networks using linear and nonlinear programming. Lu et al., 1999
- *Image Reconstruction from Bag-of-Visual-Words* Kato and Harada, CVPR 2014.
- *Image reconstruction based on local feature descriptors* Maryam Daneshi, JQ Guo, 2011
- From Bits to Images: Inversion of Local Binary Descriptors d'Angelo et al. arXiv 2012

Actually, many previous attempts. (not necessarily under "data privacy.")

- Inverting feedforward neural networks using linear and nonlinear programming. Lu et al., 1999
- *Image Reconstruction from Bag-of-Visual-Words* Kato and Harada, CVPR 2014.
- *Image reconstruction based on local feature descriptors* Maryam Daneshi, JQ Guo, 2011
- From Bits to Images: Inversion of Local Binary Descriptors d'Angelo et al. arXiv 2012
- Essence: Sensible recovery from highly compressed information.

• Black-box model inversion attacks for Boolean models.

- Black-box model inversion attacks for Boolean models.
- · Formulate noiseless and noisy models and study their "invertibility."

- Black-box model inversion attacks for Boolean models.
- · Formulate noiseless and noisy models and study their "invertibility."
- Connect invertibility to notions in Boolean analysis.

- The general framework to study model inversion attacks.
 - E.g. framework to model white-box attacks.
 - Section 2.

- The general framework to study model inversion attacks.
 - E.g. framework to model white-box attacks.
 - Section 2.
- Special structure of machine learning models in white-box attacks.
 - · Sequential compositions in a model as "communication games."
 - Section 5.A.

- The general framework to study model inversion attacks.
 - E.g. framework to model white-box attacks.
 - Section 2.
- Special structure of machine learning models in white-box attacks.
 - · Sequential compositions in a model as "communication games."
 - Section 5.A.
- · Computational power of restricted communication games.
 - · Very limited communication channel can leak "everything."
 - Section 5.B.

- The general framework to study model inversion attacks.
 - E.g. framework to model white-box attacks.
 - Section 2.
- Special structure of machine learning models in white-box attacks.
 - · Sequential compositions in a model as "communication games."
 - Section 5.A.
- · Computational power of restricted communication games.
 - · Very limited communication channel can leak "everything."
 - Section 5.B.

Please refer to the paper.

Boolean Analysis (1/2)

- Studies Boolean functions $f : \{-1, 1\}^n \mapsto \{-1, 1\}$.
 - $b \in \{0,1\} \mapsto (-1)^b$.
 - Found many applications in theoretical computer science (circuit complexity, learning theory, cryptography, ...).

Boolean Analysis (1/2)

- Studies Boolean functions $f : \{-1, 1\}^n \mapsto \{-1, 1\}$.
 - $b \in \{0,1\} \mapsto (-1)^b$.
 - Found many applications in theoretical computer science (circuit complexity, learning theory, cryptography, ...).

Definition (Difference Operator)

 D_i is a linear operator applied to a Boolean function f such that $(\mathsf{D}_i\,f)(x) = \frac{f(x^{i\to 1}) - f(x^{i\to -1})}{2}.$

Intuition: Discrete "derivative."

Boolean Analysis (1/2)

- Studies Boolean functions $f : \{-1, 1\}^n \mapsto \{-1, 1\}$.
 - $b \in \{0,1\} \mapsto (-1)^b$.
 - Found many applications in theoretical computer science (circuit complexity, learning theory, cryptography, ...).

Definition (Difference Operator)

 D_i is a linear operator applied to a Boolean function f such that $(\mathsf{D}_i\,f)(x) = \frac{f(x^{i\to 1}) - f(x^{i\to -1})}{2}.$

Intuition: Discrete "derivative."

Definition (Influence)

$$\mathbf{Inf}_i[f] = \Pr_{x \sim \{\text{-}1,1\}^n}[f(x^{i \to 1}) \neq f(x^{i \to -1})]$$

Intuition: Fraction of input that x_i has influence.

Xi Wu

Boolean Analysis (2/2)

•
$$N_{\rho}(x)$$
. $\widetilde{x} \sim N_{\rho}(x)$ if
 $\widetilde{x}_j = \begin{cases} x_j & \text{w.p. } \frac{1+\rho}{2} \\ 1-x_j & \text{w.p. } \frac{1-\rho}{2} \end{cases}$

Boolean Analysis (2/2)

•
$$N_{\rho}(x)$$
. $\tilde{x} \sim N_{\rho}(x)$ if
 $\tilde{x}_j = \begin{cases} x_j & \text{w.p. } \frac{1+\rho}{2} \\ 1-x_j & \text{w.p. } \frac{1-\rho}{2} \end{cases}$

Definition (Noise Stability)

$$\begin{array}{l} \operatorname{Let} -1 \leq \rho \leq 1. \; \operatorname{Stab}_{\rho}[f] = \mathbb{E}_{\substack{x \sim \{\text{-}1,1\}^n \\ y \sim N_{\rho}(x)}} \left[f(x) f(y) \right]. \end{array}$$

Intuition: Measure the change of f under noise.

Boolean Analysis (2/2)

•
$$N_{\rho}(x)$$
. $\widetilde{x} \sim N_{\rho}(x)$ if

$$\widetilde{x}_{j} = \begin{cases} x_{j} & \text{w.p. } \frac{1+\rho}{2} \\ 1-x_{j} & \text{w.p. } \frac{1-\rho}{2} \end{cases}$$

Definition (Noise Stability)

$$\begin{array}{l} \operatorname{Let} -1 \leq \rho \leq 1. \; \operatorname{Stab}_{\rho}[f] = \mathbb{E}_{\substack{x \sim \{\text{-}1,1\}^n \\ y \sim N_{\rho}(x)}} \left[f(x) f(y) \right]. \end{array}$$

Intuition: Measure the change of f under noise.

Definition (Stable Influence)

Let
$$0 \leq \rho \leq 1$$
. $\operatorname{Inf}_{i}^{(\rho)}[f] = \operatorname{Stab}_{\rho}[\operatorname{D}_{i} f] = \mathbb{E}_{x \sim \{-1,1\}^{n}} [\operatorname{D}_{i} f(x) \operatorname{D}_{i} f(y)].$
 $y \sim N_{\rho}(x)$

Intuition: Measure the change of influence of x_i under noise. Note: when $\rho = 1$, this reduces to $lnf_i[f]$.

Setup:

Setup:

• $f: \{-1, 1\}^n \mapsto \{-1, 1\}.$

Setup:

- $f: \{-1, 1\}^n \mapsto \{-1, 1\}.$
- + $i\in [n]$ be the target feature to invert.

Setup:

- $f: \{-1, 1\}^n \mapsto \{-1, 1\}.$
- $i \in [n]$ be the target feature to invert.
- + $S\subseteq\{-1,1\}^n\times\{-1,1\}$ training set used to learn f.

Setup:

- $f: \{-1, 1\}^n \mapsto \{-1, 1\}.$
- $i \in [n]$ be the target feature to invert.
- + $S \subseteq \{-1,1\}^n \times \{-1,1\}$ training set used to learn f.

The MI-Attack World

The Simulated World

Setup:

- $f: \{-1, 1\}^n \mapsto \{-1, 1\}.$
- $i \in [n]$ be the target feature to invert.
- + $S\subseteq\{-1,1\}^n\times\{-1,1\}$ training set used to learn f.

The MI-Attack World	The Simulated World
Goal: recover x_i	Goal: recover x_i

Setup:

- $f: \{-1, 1\}^n \mapsto \{-1, 1\}.$
- $i \in [n]$ be the target feature to invert.
- + $S\subseteq\{-1,1\}^n\times\{-1,1\}$ training set used to learn f.

The MI-Attack World	The Simulated World
	Goal: recover x_i
Nature samples $(x, b_x) \sim S$	Nature samples $(x, b_x) \sim S$

Setup:

- $f: \{-1, 1\}^n \mapsto \{-1, 1\}.$
- $i \in [n]$ be the target feature to invert.
- + $S\subseteq\{-1,1\}^n\times\{-1,1\}$ training set used to learn f.

The MI-Attack World	The Simulated World
Goal: recover x_i	Goal: recover x_i
Nature samples $(x, b_x) \sim S$	Nature samples $(x, b_x) \sim S$
Nature presents x_{-i} , $y = f(x)$	Nature presents x_{-i}

Setup:

- $f: \{-1, 1\}^n \mapsto \{-1, 1\}.$
- $i \in [n]$ be the target feature to invert.
- + $S\subseteq\{-1,1\}^n\times\{-1,1\}$ training set used to learn f.

The MI-Attack World	The Simulated World
Goal: recover x_i	Goal: recover x_i
Nature samples $(x, b_x) \sim S$	Nature samples $(x, b_x) \sim S$
Nature presents x_{-i} , $y = f(x)$	Nature presents x_{-i}
Adversary: $A^f(x_{-i}, y)$	Adversary: $A^*(x_{-i})$

Setup:

- $f: \{-1, 1\}^n \mapsto \{-1, 1\}.$
- $i \in [n]$ be the target feature to invert.
- + $S\subseteq\{-1,1\}^n\times\{-1,1\}$ training set used to learn f.

The MI-Attack World	The Simulated World
Goal: recover x_i	Goal: recover x_i
Nature samples $(x, b_x) \sim S$	Nature samples $(x, b_x) \sim S$
Nature presents x_{-i} , $y = f(x)$	Nature presents x_{-i}
Adversary: $A^f(x_{-i}, y)$	Adversary: $A^*(x_{-i})$

$$Adv(A, A^*) = \Pr_{z \sim S}[A^f(x_{-i}, y) = x_i] - \Pr_{z \sim S}[A^*(x_{-i}) = x_i]$$

Idea: Measure the additional invertibility (advantage) of being able to access the model with model output.

• As x_i is uniformly random, so $\mathbb{E}_{x \sim \{-1,1\}^n} [A^*(x_{-i}) = x_i] = \frac{1}{2}$.

- As x_i is uniformly random, so $\mathbb{E}_{x \sim \{-1,1\}^n}[A^*(x_{-i}) = x_i] = \frac{1}{2}$.
- For $\mathbb{E}_{x \sim \{-1,1\}^n}[A^f(x_{-i}, y) = x_i]$, consider

Noiseless is Easy

- As x_i is uniformly random, so $\mathbb{E}_{x \sim \{-1,1\}^n} [A^*(x_{-i}) = x_i] = \frac{1}{2}$.
- For $\mathbb{E}_{x \sim \{-1,1\}^n}[A^f(x_{-i}, y) = x_i]$, consider

Algorithm 3 Algorithm A_#

Input:
$$x_{-i}, y \in \{-1, 1\}$$
. Oracle access to f .
1: function $A_{\#}(x_{-i}, y)$
2: Compute $y' = f(x_1, ..., x_{i-1}, -1, x_{i+1}, ..., x_n)$
3: return $(-1)^{1[y'=y]}$

- The recovery is correct when $f(x^{i \to 1}) \neq f(x^{i \to -1})$.

- The recovery is correct when $f(x^{i \to 1}) \neq f(x^{i \to -1})$.
- Otherwise, no additional information is obtained.

- The recovery is correct when $f(x^{i \to 1}) \neq f(x^{i \to -1})$.
- Otherwise, no additional information is obtained.

• Let
$$p = \Pr_{x \sim \{-1,1\}^n} [f(x^{i \to 1}) \neq f(x^{i \to -1})]$$
, then

$$\Pr_{x \sim \{-1,1\}^n} [A^f_{\#}(x_{-i}, y) = x_i] = (1-p) \cdot \frac{1}{2} + p \cdot 1 = \frac{1}{2} + \frac{p}{2}$$

- The recovery is correct when $f(x^{i \to 1}) \neq f(x^{i \to -1})$.
- Otherwise, no additional information is obtained.

• Let
$$p = \Pr_{x \sim \{-1,1\}^n} [f(x^{i \to 1}) \neq f(x^{i \to -1})]$$
, then

$$\Pr_{x \sim \{-1,1\}^n} [A^f_{\#}(x_{-i}, y) = x_i] = (1-p) \cdot \frac{1}{2} + p \cdot 1 = \frac{1}{2} + \frac{p}{2}$$

Theorem

$$(\forall A^*) Adv(A_{\#}, A^*) = \frac{\ln \mathbf{f}_i[f]}{2}.$$

- The recovery is correct when $f(x^{i \to 1}) \neq f(x^{i \to -1})$.
- Otherwise, no additional information is obtained.

• Let
$$p = \Pr_{x \sim \{-1,1\}^n} [f(x^{i \to 1}) \neq f(x^{i \to -1})]$$
, then

$$\Pr_{x \sim \{-1,1\}^n} [A^f_{\#}(x_{-i}, y) = x_i] = (1-p) \cdot \frac{1}{2} + p \cdot 1 = \frac{1}{2} + \frac{p}{2}$$

Theorem

$$(\forall A^*) Adv(A_{\#}, A^*) = \frac{\ln \mathbf{f}_i[f]}{2}.$$

• This is in fact *optimal* given the information the adversary has.

Theorem
$$(\forall A, \forall A^*) \ Adv(A, A^*) \leq \frac{\ln f_i[f]}{2}.$$

Noisy Case: ρ -Independent Perturbation Model

The MI-Attack World

The Simulated World

Noisy Case: ρ -Independent Perturbation Model

The MI-Attack World	The Simulated World
Goal: recover x_i	Goal: recover x_i

The MI-Attack World	The Simulated World
Goal: recover x_i	Goal: recover x_i
Nature samples $(x, b_x) \sim S, \widetilde{x} \sim N_{\rho}(x)$	Nature samples $(x, b_x) \sim S, \widetilde{x} \sim N_{\rho}(x)$

The MI-Attack World	The Simulated World
Goal: recover x_i	Goal: recover x_i
Nature samples $(x, b_x) \sim S, \widetilde{x} \sim N_{ ho}(x)$	Nature samples $(x, b_x) \sim S, \widetilde{x} \sim N_{\rho}(x)$
Nature presents \widetilde{x}_{-i} , $y = f(x)$	Nature presents \widetilde{x}_{-i}

The MI-Attack World	The Simulated World
Goal: recover x_i	Goal: recover x_i
Nature samples $(x,b_x)\sim S, \widetilde{x}\sim N_ ho(x)$	Nature samples $(x, b_x) \sim S, \widetilde{x} \sim N_{\rho}(x)$
Nature presents $\widetilde{x}_{-i}, \ y = f(x)$	Nature presents \widetilde{x}_{-i}
Adversary: $A^f(\widetilde{x}_{-i}, y)$	Adversary: $A^*(\widetilde{x}_{-i})$

The MI-Attack World	The Simulated World
Goal: recover x_i	Goal: recover x_i
Nature samples $(x, b_x) \sim S, \widetilde{x} \sim N_{ ho}(x)$	Nature samples $(x, b_x) \sim S, \widetilde{x} \sim N_{\rho}(x)$
Nature presents $\widetilde{x}_{-i}, \ y = f(x)$	Nature presents \widetilde{x}_{-i}
Adversary: $A^f(\widetilde{x}_{-i}, y)$	Adversary: $A^*(\widetilde{x}_{-i})$

Key: The auxiliary information is noisy – the adversary gets \tilde{x}_{-i} .

The MI-Attack World	The Simulated World
Goal: recover x_i	Goal: recover x_i
Nature samples $(x,b_x)\sim S, \widetilde{x}\sim N_ ho(x)$	Nature samples $(x, b_x) \sim S, \widetilde{x} \sim N_{\rho}(x)$
Nature presents \widetilde{x}_{-i} , $y = f(x)$	Nature presents \widetilde{x}_{-i}
Adversary: $A^f(\widetilde{x}_{-i}, y)$	Adversary: $A^*(\widetilde{x}_{-i})$

Key: The auxiliary information is noisy – the adversary gets \tilde{x}_{-i} .

What is model invertibility then?

• Consider the same algorithm $A_{\#}$ again

Algorithm 4 Algorithm A_#

Input:
$$\widetilde{x}_{-i}, y \in \{-1, 1\}$$
. Oracle access to f .
1: function $A^{\#}(\widetilde{x}_{-i}, y)$
2: Compute $y' = f(\widetilde{x}_1, \dots, \widetilde{x}_{i-1}, -1, \widetilde{x}_{i+1}, \dots, \widetilde{x}_n)$
3: return $(-1)^{\mathbb{I}[y'=y]}$

Instead of receiving x_{-i} , it gets now \tilde{x}_{-i} .

• Invertibility becomes "stable influence."

- Invertibility becomes "stable influence."
- · Recall that

Definition (Stable Influence)

Let $0 \le \rho \le 1$. The ρ -stable influence of f at i, denoted as $\operatorname{Inf}_{i}^{(\rho)}[f]$, is defined to be $\operatorname{Inf}_{i}^{(\rho)}[f] = \operatorname{Stab}_{\rho}[\operatorname{D}_{i} f] = \mathbb{E}_{x \sim \{-1,1\}^{n}} \left[\operatorname{D}_{i} f(x) \operatorname{D}_{i} f(y)\right].$ $y \sim N_{\rho}(x)$

Let $\widetilde{x} \sim N_{\rho}(x)$. For $A_{\#}$, intuitively, there are three cases:

Let $\widetilde{x} \sim N_{\rho}(x)$. For $A_{\#}$, intuitively, there are three cases:

1. $D_i f(x) D_i f(\tilde{x}) > 0$: "Good," $A_{\#}$ infers x_i correctly as before.

Let $\widetilde{x} \sim N_{\rho}(x)$. For $A_{\#}$, intuitively, there are three cases:

- 1. $D_i f(x) D_i f(\tilde{x}) > 0$: "Good," $A_{\#}$ infers x_i correctly as before.
- 2. $D_i f(x) D_i f(\tilde{x}) = 0$: "Random guessing," the information is "erased," and $A_{\#}$ is "essentially" doing random guessing.

Let $\widetilde{x} \sim N_{\rho}(x)$. For $A_{\#}$, intuitively, there are three cases:

- 1. $D_i f(x) D_i f(\tilde{x}) > 0$: "Good," $A_{\#}$ infers x_i correctly as before.
- 2. $D_i f(x) D_i f(\tilde{x}) = 0$: "Random guessing," the information is "erased," and $A_{\#}$ is "essentially" doing random guessing.
- 3. $D_i f(x) D_i f(\tilde{x}) < 0$: "Bad," the information is "reversed," $A_{\#}$ always gets it wrong!

Let $\widetilde{x} \sim N_{\rho}(x)$. For $A_{\#}$, intuitively, there are three cases:

- 1. $D_i f(x) D_i f(\tilde{x}) > 0$: "Good," $A_{\#}$ infers x_i correctly as before.
- 2. $D_i f(x) D_i f(\tilde{x}) = 0$: "Random guessing," the information is "erased," and $A_{\#}$ is "essentially" doing random guessing.
- 3. $D_i f(x) D_i f(\tilde{x}) < 0$: "Bad," the information is "reversed," $A_{\#}$ always gets it wrong!

Theorem

For the same
$$A_{\#}$$
, $(\forall A^*)$ $Adv(A_{\#}, A^*) \leq \frac{\ln \mathbf{f}_i^{(p)}[f]}{2}$.

Let $\widetilde{x} \sim N_{\rho}(x)$. For $A_{\#}$, intuitively, there are three cases:

- 1. $D_i f(x) D_i f(\tilde{x}) > 0$: "Good," $A_{\#}$ infers x_i correctly as before.
- 2. $D_i f(x) D_i f(\tilde{x}) = 0$: "Random guessing," the information is "erased," and $A_{\#}$ is "essentially" doing random guessing.
- 3. $D_i f(x) D_i f(\tilde{x}) < 0$: "Bad," the information is "reversed," $A_{\#}$ always gets it wrong!

Theorem

For the same $A_{\#}$, $(\forall A^*) Adv(A_{\#}, A^*) \leq \frac{\ln \mathbf{f}_i^{(\rho)}[f]}{2}$.

Is $A_{\#}$ optimal (as in the noiseless case)?

- Subtlety: If $D_i f(x) D_i f(\tilde{x}) = 0$, $A_{\#}$ essentially does random guessing, but one can do better..

- Subtlety: If $D_i f(x) D_i f(\tilde{x}) = 0$, $A_{\#}$ essentially does random guessing, but one can do better..
- For example, consider $OR_n(x_1, \ldots, x_n) = \bigvee_{i=1}^n x_i$.
 - The value is -1 if any input bit is -1.

- Subtlety: If $D_i f(x) D_i f(\tilde{x}) = 0$, $A_{\#}$ essentially does random guessing, but one can do better..
- For example, consider $OR_n(x_1, \ldots, x_n) = \bigvee_{i=1}^n x_i$.
 - The value is -1 if any input bit is -1.
- If we "see" that y = 1, then x = 1.

- Subtlety: If $D_i f(x) D_i f(\tilde{x}) = 0$, $A_{\#}$ essentially does random guessing, but one can do better..
- For example, consider $OR_n(x_1, \ldots, x_n) = \bigvee_{i=1}^n x_i$.
 - The value is -1 if any input bit is -1.
- If we "see" that y = 1, then x = 1.
- That is, one can use the structure of the model *f* to "denoise."

- Subtlety: If $D_i f(x) D_i f(\tilde{x}) = 0$, $A_{\#}$ essentially does random guessing, but one can do better..
- For example, consider $OR_n(x_1, \ldots, x_n) = \bigvee_{i=1}^n x_i$.
 - The value is -1 if any input bit is -1.
- If we "see" that y = 1, then x = 1.
- That is, one can use the structure of the model *f* to "denoise."
- In fact for OR_n, in noisy model one can always achieve advantage $\frac{\ln f_i[\text{OR}_n]}{2} = 2^{-n}, \text{ while } \frac{\ln f_i^{(\rho)}[\text{OR}_n]}{2} = \rho^{n-1}2^{-n}.$

Open Question

Open Question

For any A', A^* , $Adv(A', A^*) \le Adv(A_{\#}, A^*) + o_n(1)$?

	Noiseless	Noisy Model
Invertibility	Influence	Stable Influence

	Noiseless	Noisy Model
Invertibility	Influence	Stable Influence

• As $\rho \to 0$, $\mathbf{Inf}_i^{(\rho)}[\mathsf{OR}_n]$ is exponentially smaller than $\mathbf{Inf}_i[\mathsf{OR}_n]$.

	Noiseless	Noisy Model
Invertibility	Influence	Stable Influence

- As $\rho \to 0$, $\inf_{i}^{(\rho)}[OR_n]$ is exponentially smaller than $\inf_{i}[OR_n]$.
- But $Inf_i[OR_n]$ is "exponentially small:" 2^{1-n} . Not very interesting...

	Noiseless	Noisy Model
Invertibility	Influence	Stable Influence

- As $\rho \to 0$, $\ln \mathbf{f}_i^{(\rho)}[OR_n]$ is exponentially smaller than $\ln \mathbf{f}_i[OR_n]$.
- But $Inf_i[OR_n]$ is "exponentially small:" 2^{1-n} . Not very interesting...
- A more interesting phenomenon termed "invertibility interference."

• Consider the parity function $\chi_n(x) = \prod_{i=1}^n x_i$.

- Consider the parity function $\chi_n(x) = \prod_{i=1}^n x_i$.
- $\ln \mathbf{f}_i[\chi_n] = 1 \text{most "invertible" in the noiseless model.}$

- Consider the parity function $\chi_n(x) = \prod_{i=1}^n x_i$.
- $\ln \mathbf{f}_i[\chi_n] = 1 \text{most "invertible" in the noiseless model.}$
- $\ln \mathbf{f}_i^{(\rho)}[\chi_n] = \rho^{n-1} \text{highly "non-invertible" in the noisy model.}$

- Consider the parity function $\chi_n(x) = \prod_{i=1}^n x_i$.
- $\ln f_i[\chi_n] = 1 most$ "invertible" in the noiseless model.
- $\ln \mathbf{f}_i^{(\rho)}[\chi_n] = \rho^{n-1} \text{highly "non-invertible" in the noisy model.}$
- Why? "Influential" coordinates interfere with each other to render the model "non-invertible" when little noise present.

Theorem

Suppose that $h : \{-1, 1\}^n \mapsto \{-1, 1\}$ has t coordinates with influence 1. Let $0 < \rho \leq 1$, then for any $i \in [n]$, $\inf_i^{(\rho)}[h] \leq \rho^{t-1} \inf_i[h]$.

Theorem

Suppose that $h : \{-1, 1\}^n \mapsto \{-1, 1\}$ has t coordinates with influence 1. Let $0 < \rho \leq 1$, then for any $i \in [n]$, $\inf_i^{(\rho)}[h] \leq \rho^{t-1} \inf_i[h]$.

Open Question

If, instead of having coordinates of influence 1, we are only guaranteed that individual influence is lower bounded by $1 - \delta$ for some $\delta > 0$, how fast will the stable influence decay with respect to δ ?

Thanks!

?

