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Theme of the Talk

« Model Inversion Attacks

« A kind of privacy attacks which try to “back out” sensitive data.

« Main Results to Discuss

+ The connection between model inversion and Boolean analysis.
+ Found major applications in complexity theory.

Analysis of
Boolean Functions

RYAN O'DONNELL
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[ a linear regression model ]

+ Going from dosage and background to the genetic marker.
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Actually, many previous attempts. (not necessarily under “data privacy.”)

« Inverting feedforward neural networks using linear and nonlinear
programming. Lu et al., 1999

« Image Reconstruction from Bag-of-Visual-Words Kato and Harada, CVPR
2014.

« Image reconstruction based on local feature descriptors Maryam Daneshi,
JQ Guo, 2011

« From Bits to Images: Inversion of Local Binary Descriptors d’Angelo et al.
arXiv 2012

« Essence: Sensible recovery from highly compressed information.
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We study:

« Black-box model inversion attacks for Boolean models.

« Formulate noiseless and noisy models and study their “invertibility”

+ Connect invertibility to notions in Boolean analysis.
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+ The general framework to study model inversion attacks.

- E.g. framework to model white-box attacks.
« Section 2.

« Special structure of machine learning models in white-box attacks.

+ Sequential compositions in a model as “communication games.”
« Section 5.A.

« Computational power of restricted communication games.

« Very limited communication channel can leak “everything”
« Section 5.B.

Please refer to the paper.
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« Studies Boolean functions f : {-1,1}"" — {-1,1}.
cbe{0,1} — (—1)°
+ Found many applications in theoretical computer science (circuit
complexity, learning theory, cryptography, ...).

Definition (Difference Operator)

D; is a linear operator applied to a Boolean function f such that

O, @) - LEIETT)

2
Intuition: Discrete “derivative”

Definition (Influence)

lnfl[f] _ Pr [f(xz—ﬂ) 7/f(xz—>—l)]

o~ {-1,1}"

Intuition: Fraction of input that z; has influence.
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Definition (Noise Stability)
Let -1 <p< 1 Stabp[f] = ]Eacw{—TJ}" [f(@) f(y)]-

y~N,(z)
Intuition: Measure the change of f under noise.

Definition (Stable Influence)

Let 0 < p < 1. Inf”)[f] = Stab,,[D; f] = By 11y~ [Di f(2) Di f(y)]-
yNNp(z)

Intuition: Measure the change of influence of z; under noise.
Note: when p = 1, this reduces to Inf;[f].




Noiseless Model

Setup:




Noiseless Model

Setup:
c [ e {1




Noiseless Model

Setup:
c [ e {1

« i € [n] be the target feature to invert.




Noiseless Model

Setup:
c [ e {1

« i € [n] be the target feature to invert.
« S C{-1,1}" x {—1, 1} training set used to learn f.




Noiseless Model

Setup:
c [ e {1

« i € [n] be the target feature to invert.
« S C{-1,1}" x {—1, 1} training set used to learn f.

The MI-Attack World ‘ The Simulated World




Noiseless Model

Setup:
c [ e {1

« i € [n] be the target feature to invert.
« S C{-1,1}" x {—1, 1} training set used to learn f.

The MI-Attack World

The Simulated World

Goal: recover z;

Goal: recover x;




Noiseless Model

Setup:
c [ e {1

« i € [n] be the target feature to invert.
« S C{-1,1}" x {—1, 1} training set used to learn f.

The MI-Attack World The Simulated World

Goal: recover z; Goal: recover x;
Nature samples (z,b;) ~ S Nature samples (z,b,) ~ S




Noiseless Model

Setup:
c [ e {1

« i € [n] be the target feature to invert.

« S C{-1,1}" x {—1, 1} training set used to learn f.

The MI-Attack World

The Simulated World

Goal: recover z;
Nature samples (z,b;) ~ S

Nature presents z_;,|y = f(z)

Goal: recover x;
Nature samples (z,b,) ~ S

Nature presents x_;




Noiseless Model

Setup:
c [ e {1

« i € [n] be the target feature to invert.

« S C{-1,1}" x {—1, 1} training set used to learn f.

The MI-Attack World

The Simulated World

Goal: recover z;
Nature samples (z,b;) ~ S

Nature presents z_;,|y = f(z)

Adversary: Af(z_;,y)

Goal: recover x;

Nature samples (z,b,) ~ S
Nature presents x_;
Adversary: A*(x_;)




Noiseless Model

Setup:
c [ e {1
« i € [n] be the target feature to invert.
« S C{-1,1}" x {—1, 1} training set used to learn f.

The MI-Attack World The Simulated World
Goal: recover z; Goal: recover x;

Nature samples (z,b;) ~ S Nature samples (z,b,) ~ S
Nature presents x,i,m Nature presents x_;
Adversary: Af(z_;,y) Adversary: A*(x_;)

Adv(A, A*) = Pr,s[AT (x4, y) = 2] — Prous[A*(z_;) = 2]

Idea: Measure the additional invertibility (advantage) of being able to
access the model with model output.
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« As x; is uniformly random, so By (g 13 [A% (2 ;) = 2] =

« For B, g1y [A7 (z—i, y) = x;], consider

Algorithm 3 Algorithm A,

Input: z_;,y € {—1,1}. Oracle access to f.
1: function Ay(x_;,y)
2 Compute t/ = f(21,...,2i-1,— 1,441, , Tn)
3 return (—1)1¥'=Y]
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+ The recovery is correct when f(xiﬁl) %f(xiﬁfl)'

« Otherwise, no additional information is obtained.

+ Letp = Pro e [f(2771) # f(2'7 1)), then

1 1
Pr [Al(e iy)=m]=(1=p) 5+p-1=3
P Al sl - () g1 g

(VA*) Adv(A,, A*) = flA
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Analysis of A

+ The recovery is correct when f(xiﬁl) %f(xiﬁfl)'

« Otherwise, no additional information is obtained.

s Letp= Pl‘zw{,171}n [f(ml—ﬂ) 7/f(xi_>_1)]’then
1 1 p

Af o =1l =(1— - 1oz P

P A @sy) =@l = (1=p) - gap-l= 547

(VA*) Adv(As, A*) = 'm0l

- This is in fact optimal given the information the adversary has.

(VA,VA*) Ado(A, A*) < &L




Noisy Case: p-Independent Perturbation Model

The MI-Attack World The Simulated World




Noisy Case: p-Independent Perturbation Model

The MI-Attack World The Simulated World

Goal: recover z; Goal: recover z;




Noisy Case: p-Independent Perturbation Model

The MI-Attack World

The Simulated World

Goal: recover z;

Nature samples (z,b;) ~ S, T ~ N,(x)

Goal: recover z;
Nature samples (z,b;) ~ S, T ~ N,(x)




Noisy Case: p-Independent Perturbation Model

The MI-Attack World

The Simulated World

Goal: recover z;
Nature samples (z,b;) ~ S, T ~ N,(x)

Nature presents Z_;, |y = f(x)

Goal: recover z;

Nature samples (z,b;) ~ S, T ~ N,(x)

Nature presents Z_;




Noisy Case: p-Independent Perturbation Model

The MI-Attack World

The Simulated World

Goal: recover z;
Nature samples (z,b;) ~ S, T ~ N,(x)

Nature presents Z_;, |y = f(x)

Adversary: AT (Z_;,y)

Goal: recover z;

Nature samples (z,b;) ~ S, T ~ N,(x)
Nature presents Z_;

Adversary: A*(T_;)




Noisy Case: p-Independent Perturbation Model

The MI-Attack World

The Simulated World

Goal: recover z;
Nature samples (z,b;) ~ S, T ~ N,(x)

Nature presents Z_;, |y = f(x)

Adversary: AT (Z_;,y)

Goal: recover z;

Nature samples (z,b;) ~ S, T ~ N,(x)
Nature presents Z_;

Adversary: A*(T_;)

Key: The auxiliary information is noisy — the adversary gets z_;.




Noisy Case: p-Independent Perturbation Model

The MI-Attack World

The Simulated World

Goal: recover z;
Nature samples (z,b;) ~ S, T ~ N,(x)

Nature presents Z_;, |y = f(x)

Adversary: AT (Z_;,y)

Goal: recover z;

Nature samples (z,b;) ~ S, T ~ N,(x)
Nature presents Z_;

Adversary: A*(T_;)

Key: The auxiliary information is noisy — the adversary gets z_;.

What is model invertibility then?




+ Consider the same algorithm A, again

Algorithm 4 Algorithm A,

Input: Z_;,y € {—1,1}. Oracle access to f.
1: function A*(Z_;, 1)
2 Compute y =f(ffh...,52‘,1,—1,5i+1,...,%n)
3: return (—1)v'-Y]

Instead of receiving x_;, it gets now T_;.
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« Invertibility becomes “stable influence.”

+ Recall that

Definition (Stable Influence)
Let 0 < p < 1. The p-stable influence of f at ¢, denoted as lnfgp) [f], is

defined to be lnfz(»p) [f] = Stab,[D; f] = By g1y [Di f(x) Di f(y)] -
y’\’Np($)
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Let Z ~ N,(x). For Ay, intuitively, there are three cases:

1. D; f(z) D; f(ZT) > 0: “Good,” Ay infers x; correctly as before.

2. D; f(z) D; f(Z) = 0: “Random guessing,” the information is “erased,’
and A is “essentially” doing random guessing.

3. D; f(x) D; f(Z) < 0: “Bad,” the information is “reversed,” A; always
gets it wrong!

(p)
For the same Ay, (VA*) Adv(Ay, A*) < lnfi2 (71

Is A: optimal (as in the noiseless case)?
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Answer: No

Subtlety: If D; f(x) D; f(Z) = 0, A4 essentially does random guessing,
but one can do better..

« For example, consider OR,, (1, ... ,2,) = /1., @;.
+ The value is —1 if any input bit is —1.

« If we “see” that y = 1, then = = 1.
« That is, one can use the structure of the model f to “denoise”

+ In fact for OR,,, in noisy model one can always achieve advantage

INfi[ORs] _ 9—n \yhile M IOR:] _ n—19—n
, | .

2




Open Question

For any A’, A*,

Adv(A', A*) < Adv(As, A*) +0,(1) 7
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Noiseless

Noisy Model

Invertibility

Influence

Stable Influence

« Asp — 0, lnfz(-p) [OR,,] is exponentially smaller than Inf;[OR,,].

- But Inf;[OR,,] is “exponentially small:” 21", Not very interesting...

+ A more interesting phenomenon termed “invertibility interference”
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« Consider the parity function x,,(z) = [[}_, z;.
« Inf;[xn] = 1 — most “invertible” in the noiseless model.
n—1

. lnfz(-p) [xn] = p"~' — highly “non-invertible” in the noisy model.

« Why? “Influential” coordinates interfere with each other to render
the model “non-invertible” when little noise present.
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Invertibility Interference (3/3)

Suppose that b : {-1,1}" + {-1,1} has t coordinates with influence 1. Let
0 < p < 1, then for any i € [n], lnfl(-p) [h] < p'~1 Inf;[h).

If, instead of having coordinates of influence 1, we are only guaranteed that
individual influence is lower bounded by 1 — 0 for some § > 0, how fast will
the stable influence decay with respect to 6?

Open Question







