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Theme of the Talk

• Beer differentially private Stochastic Gradient Descent (SGD).
• SGD is a popular optimization algorithm for machine learning.
• Differential privacy is the de facto standard in formalizing privacy.

• Improve private SGD on the following aspects simultaneously:
• Easier to implement: “Bolt on” with an existing implementation.
• Run faster,
• Beer convergence/accuracy and
• Support a stronger privacy model.

• Essence behind the “all-win” improvements: A novel analysis of the
L2-sensitivity of SGD.

Xi Wu Bolt-on Differential Privacy for SGD 2 / 27



Background: Differential Privacy

• [Dwork, McSherry, Nissim and Smith, TCC 2006]
• A formal notion on how to anonymize participation.
• Gödel Prize 2017. ..

• Intuition for differential privacy:
• Participation is anonymized if it causes lile change to the output.

• Has become the de-facto standard of protecting data privacy.
• Differential privacy will be in your pocket (iOS 10)!
• Google’s RAPPOR.
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Background: More Differential Privacy (1/2)

• ε-differentially privacy
• A stability property of a randomized algorithm M.
• For any neighboring S ∼ S′, and any event E,

S′ = {z1, . . . , zi−1,z
′
i, zi+1, . . . , zm}

S = {z1, . . . , zi−1,zi, zi+1, . . . , zm}
Pr[M(S) ∈ E] ≤ eε · Pr[M(S′) ∈ E]

• (ε, δ)-differential privacy: A relaxation.
• Pr[M(S) ∈ E] ≤ eε Pr[M(S′) ∈ E]+δ
• alitatively weaker privacy model.
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Background: More Differential Privacy (2/2)

• ε is a ratio bound that measures the strength of privacy.
• Smaller ε, stronger privacy.

• We inject random noise to ensure privacy.
• Typically: Smaller ε ↔ More noise ↔ Less accurate statistics.

• The “game” of finding beer differentially private algorithms:
• For the same ε we want less noise and beer accuracy.
• The key challenge: How to inject noise?
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Background: Optimization and Machine Learning

• Setup:
• Z = X × Y : a sample space.
• Let S = {(xi, yi) : i ∈ [m]}, a training set.
• W ⊆ Rd, a hypothesis space.
• ℓ : W ×Z 7→ R, a loss function.

• Empirical Risk Minimization (ERM): Find w ∈ W that minimizes:
1

m

m∑
i=1

ℓ(w, (xi, yi))

m: training set size.
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Stochastic Gradient Descent

• A fundamental algorithm for ERM,

• An iterative procedure: At iteration t, sample it ∼ [m], and

wt+1 = wt − ηt∇ℓit(wt).

• Problem Statement: How to inject noise for SGD to get both private
and accurate models?

• Focus on convex optimization (ℓi is convex).
• Some remarks on non-convex optimization in the backup slides.
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A Remark: Why Differentially Private SGD?

• SGD is fundamental for training machine learning models.
• In particular on large scale datasets.
• Private SGD implies automatic privacy for all these models.

• More robust privacy guarantees
• Many previous work on private ERM requires assumptions in finding

the exact minimizer, which is too idealistic.
• Making SGD private avoids any such assumption.
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Previous Private SGD

A common paradigm: Inject noise at each iteration.
• Each step locally private, global privacy follows from composition.

[+]: Pros, [-]: Cons.
• [Song, Chaudhuri and Sarwate (GlobalSIP 2013)]

• [-] A lot of noise for each iteration, very “inaccurate” model.

• [Bassily, Smith and Thakurta (STOC 2014)]
• [+] Reduces noise for each iteration, and improves composition.
• [-] The composition only works for (ε, δ)-differential privacy.
• [-] (Their proo) needs Θ(m2) iterations to converge.

• Both approaches
• [-] Relatively hard to implement.
• [-] Large runtime overhead.
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Our Proposal

• Use the classic “output perturbation” method.
• Inject noise only at the end to the result of non-private SGD.

• Analyze “global stability” of SGD:

L2-sensitivity : ∆2 = max
S,S′,r,r′

∥∥SGD(r, S)− SGD(r′, S′)
∥∥
2

[Challenge] Upper bound ∆2 by a small quantity.

• [Our Contribution] Address the challenge by a novel analysis of∆2.

• Automatic benefits
• [+] Easier to implement: “Bolt on” with an existing implementation.
• [+] Low runtime overhead.
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Our Algorithms: The New Part is How to Set ∆2
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Theoretical Guarantees of Our Algorithms

With output perturbation…

Theorem (Informal)
There is a private SGD algorithm based on output perturbation that gives
both ε-differential privacy and convergence, even for 1 epoch over the data.

Intuition: Convergence with stronger privacy model (ε-DP).

Theorem (Informal)
For (ε, δ)-differential privacy and constant epochs, there is a private SGD
algorithm based on output perturbation that gives (logm)O(1)-factor
improvement in excess empirical risk over BST14.

Intuition: Beer convergence for O(1) passes and (ε, δ)-DP.
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Empirical Study

• Datasets: MNIST (for this talk).
• Recognize digits in images.
• More datasets in the paper: KDDCup-2004 Protein, Forest Covertype.

• Model: Build logistic regression models (using SGD).

• Key Experimental Results:
• Much faster running time.
• Substantially beer model accuracy.
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Implementation

• Implemented using Bismarck ..
• An in-RDBMS analytics system.
• [Feng, Kumar, Recht and Re (SIGMOD 2012)].
• Using Permutation-based SGD to unify in-RDBMS analytics.

• Integration effort.
• Our algorithms: Trivial to integrate.
• SCS13, BST14: Needs to re-implement sampling functions inside

Bismarck core.
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Experimental Results: Running Time

Much faster when CPU cost dominates the runtime:
• Negligible overhead compared to the noiseless version.
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Experimental Results: ε-Differential Privacy

More accurate for the same privacy guarantee (ε):
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Figure : Convex case. Mini-batch size is 50, 10 epochs
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Experimental Results: (ε, δ)-Differential Privacy

Up to 4X beer test accuracy:
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Figure : Convex case. δ = 1/m2. Mini-batch size is 50, 10 epochs
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Very Roughly: How the Theory Works

• Sharpen and combine two recent theory advancements:
• Stability of SGD in expectation: [Hardt, Recht and Singer, ICML 2016].

• Convergence of Permutation-based SGD (PSGD): [Shamir, NIPS 2016].

• Part 1: From “stability in expectation” to ε-differential privacy.
• Have to use PSGD.
• Key: If the randomness does not depend on S, then it suffices to bound

max
S,S′,r

∥∥SGD(r, S)− SGD(r, S′)
∥∥.

• Differential privacy is really a notion of worst-case stability.

• Part 2: Convergence of private PSGD.
• Convergence of PSGD is poorly understood in theory.
• We mitigate this issue using Shamir’s results.
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Important Details that We Do Not Cover

• Please refer to the paper for the following important details:

• Proofs.

• How batch sizes improve accuracy under the same privacy guarantee.

• How to set hyperparameters.

• How to do private parameter tuning.

• Reduce dimensionality via random projection.

• More lessons we learned (e.g. Our algorithms are easier to tune).

• More implementation details (differential privacy can be very subtle).

• More experimental results.

• …
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Summary and Future Directions

• Beer differentially private stochastic gradient descent
• Bolt-on implementation, more efficient, produces more accurate models

and supports a stronger privacy model.

• Many interesting things to do:

• Beer understanding of convergence of constant-epoch private SGD.

• Principled ways to set batch size for private SGD?

• Systematic comparison of different approaches to private ERM.

• How does our work fit into the larger context of implementing a
differential privacy system?

• …
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Thanks!

?
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Backup Slides
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Beer Analysis of L2-Sensitivity of SGD

• Denote A the non-private SGD algorithm.
• A(r, S) : r the randomness part, S the input training set.
• R : random variable where r is sampled from.

• Step 1: Reduce to the “same randomness” case.
• In general, we need to bound

max
S,S′,r,r′

∥A(r, S)−A(r′, S′)∥.

• Key: If the random variable R does not depend on S, then we can bound

max
S,S′,r

∥A(r, S)−A(r, S′)∥.
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“Same Randomness”
⇒ “Almost Identical Gradient Updates”

• Step 2: Analyze the “same randomness” case:
• Permutation-based SGD (PSGD): We sample a random permutation r of
[m], and cycle through S according to r.

• We have the following diagram (Gi are functions)

S : w0
G1−→w1

G2−→· · · Gt−→wt
Gt+1−→ · · · GT−→wT

↑
δt = ∥wt − w′

t∥
↓

S′ : w′
0

G′
1−→w′

1

G′
2−→· · ·

G′
t−→w′

t

G′
t+1−→ · · ·

G′
T−→w′

T

• Key: Due to “same randomness,” in each pass we only encounter once
the differing gradient update function Gt∗ ̸= G′

t∗ .
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Expansion Properties of Gradient Operators

[Key antity] δt = ∥wt − w′
t∥

Definition (Expansiveness)

An operator G : W 7→ W is ρ-expansive if supw,w′
∥G(w)−G(w′)∥

∥w−w′∥ ≤ ρ.

Intuition: Measure how δt gets stretched/contracted.

Lemma (Nesterov, Polyak)
Assume that ℓ is β-smooth. Then, the following hold.

1. If ℓ is convex, then for any η ≤ 2/β, Gℓ,η is 1-expansive.

2. If ℓ is γ-strongly convex, then for η ≤ 2
β+γ , Gℓ,η is (1− 2ηβγ

β+γ )-expansive.

Intuition: δt is either unchanged or is shrinking!
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Our Results on Bounding δT

• Step 3: Using the expansion properties, and that most of the time we
are contracting or unchanged (thanks to “same randomness!”),

Theorem (Convex)
Consider k-passes PSGD for L-Lipschitz, convex and β-smooth optimization.
Let η1 = η2 = · · · = ηT = η ≤ 2

β . Then supS∼S′ supr δT ≤ 2kLη.

Intuition: δT = O(kη).

Theorem (Strongly Convex)

Consider k-passes PSGD for L-Lipschitz, γ-strongly convex and β-smooth
optimization. Let ηt = min( 1

γt ,
1
β ). Then supS∼S′ supr δT ≤ 2L

γm .

Intuition: δT = O( 1
m ).
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More Remarks on Implications of Our Results

• A recent paper [Zhang, Zheng, Mou and Wang, ArXiv 2017]

• Batch size m can lead to optimal excess empirical risk:
• Note that this is nothing but Gradient Descent.
• No need of Shamir’s results as no randomness in gradient steps.

• Non-convex Optimization:
• Basically, by choosing a “random” starting point and then SGD, one can

get (ε, δ)-differential privacy with convergence to a stationary point.
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