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Theme of the Talk

« Better differentially private Stochastic Gradient Descent (SGD).

« SGD is a popular optimization algorithm for machine learning.
- Differential privacy is the de facto standard in formalizing privacy.

+ Improve private SGD on the following aspects simultaneously:
« Easier to implement: “Bolt on” with an existing implementation.
- Run faster,
- Better convergence/accuracy and
« Support a stronger privacy model.

« Essence behind the “all-win” improvements: A novel analysis of the
Lo-sensitivity of SGD.




Background: Differential Privacy

+ [Dwork, McSherry, Nissim and Smith, TCC 2006]

+ A formal notion on how to anonymize participation.
« Godel Prize 2017.

« Intuition for differential privacy:

- Participation is anonymized if it causes little change to the output.

+ Has become the de-facto standard of protecting data privacy.
- Differential privacy will be in your pocket (i0OS 10)!
+ Google’s RAPPOR.
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Background: More Differential Privacy (1/2)

- e-differentially privacy

- A stability property of a randomized algorithm M.
- For any neighboring S ~ S’, and any event F,

! ’
S = {21,y Zim1,20y Zisly ooy Zm )
S = {Z1,. vy Ri—1,%0y Zi+ly e - .,Zm}

PrIM(S) € E] < e - Pr[M(S’) € E]

+ (g, 0)-differential privacy: A relaxation.
« Pr[M(S) € E] < e® Pr[M(S') € E]+6

+ Qualitatively weaker privacy model.




Background: More Differential Privacy (2/2)

« ¢ is a ratio bound that measures the strength of privacy.

+ Smaller ¢, stronger privacy.

+ We inject random noise to ensure privacy.

+ Typically: Smaller € <> More noise <+ Less accurate statistics.

« The “game” of finding better differentially private algorithms:

+ For the same € we want less noise and better accuracy.
+ The key challenge: How to inject noise?




Background: Optimization and Machine Learning

« Setup:
« Z =X xY:asample space.
- Let S = {(zi,y:) : i € [m]}, atraining set.
< W C R% a hypothesis space.
« 0 : W xZ — R, aloss function.

« Empirical Risk Minimization (ERM) Find w € W that minimizes:

*Zé xzvyz

m: training set size.




Stochastic Gradient Descent

+ A fundamental algorithm for ERM,

« An iterative procedure: At iteration ¢, sample i; ~ [m], and

W1 = Wy — NV, (wy).

+ Problem Statement: How to inject noise for SGD to get both private
and accurate models?

+ Focus on convex optimization (¢; is convex).
+ Some remarks on non-convex optimization in the backup slides.




A Remark: Why Differentially Private SGD?

+ SGD is fundamental for training machine learning models.

+ In particular on large scale datasets.
+ Private SGD implies automatic privacy for all these models.

+ More robust privacy guarantees

+ Many previous work on private ERM requires assumptions in finding
the exact minimizer, which is too idealistic.

+ Making SGD private avoids any such assumption.




Previous Private SGD

A common paradigm: Inject noise at each iteration.

« Each step locally private, global privacy follows from composition.




Previous Private SGD

A common paradigm: Inject noise at each iteration.

« Each step locally private, global privacy follows from composition.

[+]: Pros, [-]: Cons.
+ [Song, Chaudhuri and Sarwate (GlobalSIP 2013)]

+ [-] A lot of noise for each iteration, very “inaccurate” model.

+ [Bassily, Smith and Thakurta (STOC 2014)]

+ [+] Reduces noise for each iteration, and improves composition.
+ [-] The composition only works for (e, §)-differential privacy.
« [-] (Their proof) needs ©(m?) iterations to converge.

+ Both approaches

+ [-] Relatively hard to implement.
+ [-] Large runtime overhead.




Our Proposal

« Use the classic “output perturbation” method.

+ Inject noise only at the end to the result of non-private SGD.

+ Analyze “global stability” of SGD:

Lo-sensitivity : Ag = Jmax |SGD(r,S) — SGD(r’, S/)Hz

k) 77.77.

[Challenge] Upper bound Ay by a small quantity.
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Our Proposal

« Use the classic “output perturbation” method.
+ Inject noise only at the end to the result of non-private SGD.

+ Analyze “global stability” of SGD:
Lo-sensitivity : Ay = max ||SGD(r,S) — SGD(r', "),
S,S’r,r!
[Challenge] Upper bound Ay by a small quantity.
+ [Our Contribution] Address the challenge by a novel analysis of As.

+ Automatic benefits
« [+] Easier to implement: “Bolt on” with an existing implementation.

+ [+] Low runtime overhead.




Our Algorithms: The New Part is How to Set Ay

Algorithm 1 Private Convex Permutation-based SGD

Require: /(-, z) is convex for every z,n < 2/f.
Input: Data S, parameters k, 7,

1: function PrivateConvexPSGD(S, k, £, 1)

2: w < PSGD(S) with k passes and n, =1
Ag <+ 2kLn

3:
4: Sample noise vector « according to (3).
5: return w + K
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Algorithm 1 Private Convex Permutation-based SGD

Require: /(-, z) is convex for every z,n < 2/f.
Input: Data S, parameters k, 7,
1: function PrivateConvexPSGD(S, k, £, 1)

2: w < PSGD(S) with k passes and n, =1
: Ag <+ 2kLn

3
4: Sample noise vector « according to (3).
5 return w + K

Algorithm 2 Private Strongly Convex Permutation-based SGD

Require: (-, z) is y-strongly convex for every z
Input: Data S, parameters k, &
1: function PrivateStronglyConvexPSGD(S, k, €)
2: w <— PSGD(S) with k passes and 7; = min(% 3 ﬂ)
4: ample noise vector x according to (3).
S: return w + K




Theoretical Guarantees of Our Algorithms

With output perturbation...

Theorem (Informal)

There is a private SGD algorithm based on output perturbation that gives
both e-differential privacy and convergence, even for 1 epoch over the data.

Intuition: Convergence with stronger privacy model (s-DP).




Theoretical Guarantees of Our Algorithms

With output perturbation...

Theorem (Informal)

There is a private SGD algorithm based on output perturbation that gives
both e-differential privacy and convergence, even for 1 epoch over the data.

Intuition: Convergence with stronger privacy model (s-DP).

Theorem (Informal)

For (g, 0)-differential privacy and constant epochs, there is a private SGD
algorithm based on output perturbation that gives (log m)°™") -factor
improvement in excess empirical risk over BST14.

Intuition: Better convergence for O(1) passes and (e, §)-DP.




Empirical Study

« Datasets: MNIST (for this talk).
+ Recognize digits in images.
+ More datasets in the paper: KDDCup-2004 Protein, Forest Covertype.

+ Model: Build logistic regression models (using SGD).

+ Key Experimental Results:

+ Much faster running time.
+ Substantially better model accuracy.




Implementation

+ Implemented using Bismarck

+ An in-RDBMS analytics system.
+ [Feng, Kumar, Recht and Re (SIGMOD 2012)].
+ Using Permutation-based SGD to unify in-RDBMS analytics.

« Integration effort.

+ Our algorithms: Trivial to integrate.
« SCS13, BST14: Needs to re-implement sampling functions inside
Bismarck core.




Experimental Results: Running Time

Much faster when CPU cost dominates the runtime:

+ Negligible overhead compared to the noiseless version.
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Experimental Results: e-Differential Privacy

More accurate for the same privacy guarantee (¢):
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Figure : Convex case. Mini-batch size is 50, 10 epochs




Experimental Results: (g, 0)-Differential Privacy

Up to 4X better test accuracy:
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Figure : Convex case. § = 1/m?. Mini-batch size is 50, 10 epochs




Very Roughly: How the Theory Works

+ Sharpen and combine two recent theory advancements:
- Stability of SGD in expectation: [Hardt, Recht and Singer, ICML 2016].
- Convergence of Permutation-based SGD (PSGD): [Shamir, NIPS 2016].
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+ Key: If the randomness does not depend on S, then it suffices to bound
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- Differential privacy is really a notion of worst-case stability.
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+ Sharpen and combine two recent theory advancements:
- Stability of SGD in expectation: [Hardt, Recht and Singer, ICML 2016].
- Convergence of Permutation-based SGD (PSGD): [Shamir, NIPS 2016].

« Part 1: From “stability in expectation” to e-differential privacy.

+ Have to use PSGD.
+ Key: If the randomness does not depend on S, then it suffices to bound

[max |SGD(r,S) — SGD(r,5")||.
- Differential privacy is really a notion of worst-case stability.

« Part 2: Convergence of private PSGD.

+ Convergence of PSGD is poorly understood in theory.
+ We mitigate this issue using Shamir’s results.




Important Details that We Do Not Cover

+ Please refer to the paper for the following important details:

+ Proofs.

« How batch sizes improve accuracy under the same privacy guarantee.
+ How to set hyperparameters.

+ How to do private parameter tuning.

+ Reduce dimensionality via random projection.

+ More lessons we learned (e.g. Our algorithms are easier to tune).

+ More implementation details (differential privacy can be very subtle).

+ More experimental results.




Summary and Future Directions

- Better differentially private stochastic gradient descent
+ Bolt-on implementation, more efficient, produces more accurate models
and supports a stronger privacy model.

+ Many interesting things to do:
« Better understanding of convergence of constant-epoch private SGD.

+ Principled ways to set batch size for private SGD?

- Systematic comparison of different approaches to private ERM.

+ How does our work fit into the larger context of implementing a
differential privacy system?







Backup Slides




Better Analysis of Ly-Sensitivity of SGD

+ Denote A the non-private SGD algorithm.

« A(r,S) : r the randomness part, S the input training set.
+ R : random variable where r is sampled from.

« Step 1: Reduce to the “same randomness” case.

+ In general, we need to bound

A —A(', 8.
s’gﬂ,?;fr,ll (r,S) =A@, S)|l

+ Key: If the random variable R does not depend on S, then we can bound

A — A(r, 8]
srf"sé’fr” (r,S) — A(r, S|




“Same Randomness”

= “Almost Identical Gradient Updates”

« Step 2: Analyze the “same randomness” case:

+ Permutation-based SGD (PSGD): We sample a random permutation r of
[m], and cycle through S according to r.
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= “Almost Identical Gradient Updates”

« Step 2: Analyze the “same randomness” case:

+ Permutation-based SGD (PSGD): We sample a random permutation r of
[m], and cycle through S according to r.

+ We have the following diagram (G; are functions)
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“Same Randomness”

= “Almost Identical Gradient Updates”

« Step 2: Analyze the “same randomness” case:

+ Permutation-based SGD (PSGD): We sample a random permutation r of
[m], and cycle through S according to r.

+ We have the following diagram (G; are functions)

G G G e} Gr
S wo —Bw; =2 L~ Dy

)
61 = llwe - i
1

;G G Gt 1 G G

S wy B wy - =S w, 23 D wh

+ Key: Due to “same randomness,” in each pass we only encounter once
the differing gradient update function G+ # G




Expansion Properties of Gradient Operators

[Key Quantity] d; = [Jw; — w}|

Definition (Expansiveness)

G (w) =G| < p.

llw—w]|

An operator G : W — W is p-expansive if sup,,, .

Intuition: Measure how d; gets stretched/contracted.
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Our Results on Bounding o7

+ Step 3: Using the expansion properties, and that most of the time we
are contracting or unchanged (thanks to “same randomness!”),

Theorem (Convex)

Consider k-passes PSGD for L-Lipschitz, convex and [3-smooth optimization.
Letny =ng=---=np=n< % Then supg,_ g, sup, 07 < 2kLn.

Intuition: d7 = O(kn).

Theorem (Strongly Convex)

Consider k-passes PSGD for L-Lipschitz, v-strongly convex and [3-smooth

optimization. Letmn; = min(%, %) Thensupg,_ g, sup, o7 < 5—fn

Intuition: dp = O(%)




More Remarks on Implications of Our Results

+ A recent paper [Zhang, Zheng, Mou and Wang, ArXiv 2017]
« Batch size m can lead to optimal excess empirical risk:

+ Note that this is nothing but Gradient Descent.
+ No need of Shamir’s results as no randomness in gradient steps.

» Non-convex Optimization:

« Basically, by choosing a “random” starting point and then SGD, one can
get (e, §)-differential privacy with convergence to a stationary point.




