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Abstract

miniKanren is a family of embedded, domain-specific, rela-
tional (logic) programming languages. The microKanren
approach implementing a miniKanren language—a small
functional “kernel language” extended with straightforward
macros—has been well received. The original microKanren
spawned more than 50 implementations in more than 25 lan-
guages. Adding constraints beyond equality to a miniKan-
ren language, however, has remained a complicated task. In
recent implementations, adding a handful of additional con-
straints vastly increases the code’s size and complexity. We
describe instead the microKanren approach to adding con-
straints and present the Constraint microKanren framework
for building constraint systems.

Categories and Subject Descriptors D.3.2 [Language
Classifications]: Applicative (functional) languages, Con-
straint and logic languages

Keywords miniKanren, microKanren, constraint logic
programming, relational programming, Racket

1. Introduction

Logic programming has proven to be a highly declarative
approach to problem solving widely applicable to a broad
class of problems [22]. The miniKanren family of languages
is a group of embedded, domain-specific relational (logic)
programming languages first presented in The Reasoned
Schemer [10]. The miniKanren language has grown in pop-
ularity [33] and has found use both in academia and indus-
try [3-5, 11, 28, 30].

In order to clarify the meaning and behavior of miniKan-
ren programs, Hemann and Friedman introduced microKan-
ren, a “kernel language” over which one can layer sim-
ple macros to develop a full miniKanren implementa-
tion [12]. One can program directly in microKanren, and
at only 55 lines its implementation can serve as an ob-
ject of study. Our original implementation has spawned at
least 50 others in more than 25 languages, all of which
can be found on miniKanren.org. Here, our aim is a
similar kernel language augmented with a framework for
constraints. This new implementation can be found at
github.com/jasonhemann/constraint-microKanren.

The original miniKanren implementation contained only
one constraint—equality (== in miniKanren). In recent im-
plementations adding a handful of additional constraints
vastly increased the code’s size and complexity. The ma-
jority of that increase is due to the constraint management
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itself, including checking for violations, as well as constraint
minimization and the presentation of constraints in answers
(the latter have been termed “reification” in our implemen-
tations). Moreover, the constraint management is commin-
gled with the flow of control, making such implementations
more difficult to follow and diminishing their value as objects
of study. The canonical Racket miniKanren implementation
with these constraints is upwards of a thousand lines [27].

Here, we present the microKanren approach to adding
constraints. We separate the control flow and variable in-
troduction from the constraint management. We construct a
framework in which to explore and add constraints, in which
equality is but one (special) constraint. The control flow and
variable introduction amounts to only 22 lines, and an entire
implementation with the common miniKanren constraints
beyond equality amounts to just over 100 lines. Briefly sum-
marized, our contributions are:

* A new microKanren framework for constraints

* The clearest-yet-developed implementation of the typical
miniKanren constraints

* An implementation of a constraint logic programming
language still small enough to fit in your pocket.

In Section 2, we reintroduce miniKanren (microKanren)
programming and the utility of constraints therein. In Sec-
tion 3 we informally specify the responsibilities of the con-
straint architect. In Sections 4 and 5 we describe the con-
straints framework and implement typical miniKanren con-
straints. We also provide evidence of the robustness of our
approach by implementing two new constraints booleano and
listo. Finally, in Sections 6 and 7 we discuss related work
and conclude.

2. miniKanren programming

We next briefly introduce miniKanren programming. The
interested reader can find a more thorough explanation of
miniKanren, defined in terms of microKanren, in Hemann
and Friedman [12] and an introduction of an altogether
different flavor in The Reasoned Schemer [10].

When programming in miniKanren, we describe the form
of the solution; the implementation searches for terms or
collections of terms satisfying the program’s requirements.
These requirements come in the form of constraints. This
stands in contrast to programming directly in Scheme. Take
for instance the member function. It expects a term x and a
list 1s and returns 1s’s first sublist whose car is equal to x.

> (member 'x '(a x c))
"(x ¢)
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The definition of the membero relation below is intended to
approximate the behavior of the member function. The syntax
we use here is a variation on that presented in The Reasoned
Schemer.

(define-relation (membero x 1s o)
(fresh (a d)
= "(,a .
(conde
((==x a) (== 1s o))
((membero x d 0)))))

,d) 1s)

In the body of the goal constructor, we create two fresh
variables, a and d, and ensure that 1s is a pair. We also
mandate that either of two situations hold: the first, in
which both x is a and ls is o, or the second, in which
(membero x d o) holds.

Programs in miniKanren are essentially the conjunction
and disjunction of constraints which express requirements
on, and relationships between, terms. At times auxiliary
variables are needed to express these requirements. For
instance, (== “(,a . ,d) ls) expresses a requirement that
1s be some pair. The run and run* forms execute the program
and process the answers. Our programs can have multiple
answers, and so results are always presented in a list.

This implementation of membero acts as expected for the
below translation of the previous invocation. The run* form
returns all answers to a query.

> (run* (gq) (membero 'x '(a x c) q))
"((x ¢c))

Though our definition of membero only makes use of ==,
much recent research carried out in miniKanren relies on
constraints beyond equality. Examples include a relational
interpreter that doubles as a quine generator, a theorem
prover that doubles as a proof assistant, and a type checker
that doubles as a type inhabiter [4, 5, 28]. miniKanren with
only the language forms used above is Turing complete, so in
principle we could have computed the same functions with-
out additional constraints. By saying research “relies” on
these additional constraints, we mean that they allow the
programmer to write interpreters, type checkers, etc. via
a transformation from their functional implementations. In
general, constraints enable more straightforward reasoning
about the particular domain of the problem and thus facili-
tate clear code [16].

Quine generators and type inhabiters beautifully illus-
trate the benefits of additional constraints, but this is also
clear with even a simple example. In the following call to
membero, we receive an unexpected result. Where the member
function returns the first sublist whose car matches the ele-
ment, here we return all such sublists.

> (run* (q) (membero

"((x x) (x))

x '(a x x) q))

To mirror the function’s behavior using only the equality
constraint, we must either resort to using some of the impure
operators of miniKanren (such as conda or condu), adding
some mechanism to perform assert and retract (& la Prolog)
or else settle for the behavior of a run 1 (run takes a
parameter for the maximum number of answers to return).

To instead retain the function’s behavior while remain-
ing purely relational and maintaining the ability to run for
multiple answers, we extend the language of miniKanren
with disequality constraints. In miniKanren disequality con-
straints are introduced with the =/= operator and they be-
have similar to the dif/2 constraint of various Prologs [35].

We modify the definition of membero and get the behavior we
desire for the last query.

(define-relation (membero x 1s o)
(fresh (a d)
= "(,a .
(conde
((==x a) (== 1s o))
((=/= x a) (membero x d 0)))))

,d) 1s)

> (run* (gq) (membero 'x '(a x x) q))
"((x x))

We get more interesting behavior as well. The next run*
returns a list of two answers. Either the variable y is the
symbol x, in which case z is (x x), or it is some miniKanren
term distinct from x, in which case z is (x). In this second
answer, .0 represents an arbitrary miniKanren term. When
printed with the constraint (=/= ((_.0 x))), the second an-
swer means the variable y represents an arbitrary term other
than x.

> (run* (q)
(fresh (y z)
(==a "(y ,2))
(membero 'x “(a ,y x) z)))
"((x (x x))
((_.0 (x)) (=/= ((_.0 x)))))

In constraint logic programming, answers are a collec-
tion of constraints. The analog to the most general unifier
from logic programming is the most general collection of con-
straints. In miniKanren, the answers have been minimized
and presented with respect to the query variable.

Constraints increase expressiveness in several important
ways. Constraints provide a clear way for users to express the
form of answers, as in the example above. Further, together
with other features of logic programming languages, con-
straints can also help dramatically reduce the search space
for possible solutions [26].

In addition, constraints compress what would be multiple
answers (potentially infinitely many) into a single finite rep-
resentation. Consider for instance, the absento constraint.
An absento constraint holds between two terms x and y when
x is neither equal to, nor a subterm of y. With just =/= con-
straints this relationship would be expressible, in general,
only in the limit. This relationship is expressible only as an
infinite conjunction of =/= constraints between y and terms
from which x is absent. Adding absento as a constraint allows
this relationship to be expressed finitely.

Researchers using miniKanren have developed constraints
as needed. In addition to those mentioned above, other com-
mon constraints include the domain constraints symbolo,
numbero, and not-pairo. These declare the constrained term
to be a symbol, a number, or a non-pair respectively.

3. Constraint framework restrictions

Constraint microKanren is a framework for designing con-
straints and consequently constraint systems. It is similar
to other CLP “shells” [25]. The constraint architect must
specify if constraints are violated. The architect provides
constraint-violation predicates to test for invalid sets of
constraints. The architect must also provide the constraint
names. From these, the framework will generate the mi-
croKanren (miniKanren) constraint operators and a con-
straint system automatically.

We fix the constraint domain to that of the miniKanren
term language: symbols, logic variables, booleans, (), and



cons pairs of the above. In the interest of simplicity we
reserve numbers as logic variables. We could have instead
implemented variables using other data structures.

We demand that ==, representing syntactic first-order
equality, be a constraint of the system. It should be im-
plemented by unification with the occurs? check. All con-
straints must be applicable over the entire term language,
and must operate in all modes.

We also place restrictions on the constraint-violation
predicates. Each should handle one category of violations.
The predicates should be defined independently of the order
in which they are invoked. That is, the predicates should be
defined so that they may be tested in any order. Constraint-
violation predicates, by definition, must be total functions.
As such, the solver for the constraint system (invalid?,
defined in Section 4) is also total.

The resultant constraint solver must be well-behaved [19].
This means it must be logical—that is, it gives the same an-
swer for any representation of the same constraint informa-
tion (i.e., regardless of order, redundancy, etc). It also must
be monotonic—that is, for any set of constraints, if the solver
reports that it is invalid, adding constraints cannot pro-
duce a valid set. Therefore, when adding a new constraint-
violation predicate, a constraint architect is not required to
redesign older ones. Doing so may, however, lead to clearer
descriptions of the violations. Presently, all of the preceding
restrictions are unchecked.

For us, the definition of a constraint system is the set
of constraint interactions that are considered invalid. To
specify these interactions via predicates in some sense is to
define the constraints themselves.

Constraint violation is separate from constraint mini-
mization. Here, we concern ourselves only with the former.
Constraint microKanren performs no constraint minimiza-
tion or answer projection [18]. In future work, we will use
a similar approach for the minimization of the constraint
store, answer projection, and the presentation of answers.

4. Constraints framework implementation

In this section we describe the implementation of Constraint
microKanren’s constraint framework. We model the con-
straint store with a persistent hash table. To install a new
constraint in the store is to create a field in the hash table.
Constraint microKanren uses the constraint’s name as the
key for its field in the store. The initial-state is constructed
with something akin to make-call/initial-state below:

(define-syntax-rule (make-call/initial-state cid ...)
(define SO (make-immutable-hasheqv '((==) (cid) ...))))

Given a sequence of constraint identifiers, the posited
new syntactic form make-call/initial-state would build a
store with == and the other constraints, each associated
with an empty list. Constraint identifiers must be unique,
so each field has a distinct key. The different fields can
also be seen as individual, distinct constraint stores; this
is a common approach [34]. We use something like make-
call/initial-state to construct the initial state when we
make a constraint system.

Constraint goal constructors are created by invoking
make-constraint-goal-constructor with the key of the con-
straint’s corresponding field in the store. The function make-
constraint-goal-constructor takes a field in the store, and
returns a goal constructor.

(define (((make-constraint-goal-constructor key) . terms) S/c)
(let ((S (ext-S (car S/c) key terms)))

(if (invalid? S) '() (list “(,S . ,(cdr S/c))))))

The functions ext-S and invalid? are explained below.
To construct the constraint itself, we globally define the
constraint name as the result of invoking make-constraint-
goal-constructor.

> (define == (make-constraint-goal-constructor '==))
> (define =/= (make-constraint-goal-constructor '=/=))

> (define symbolo (make-constraint-goal-constructor 'symbolo))
> (define absento (make-constraint-goal-constructor 'absento))

To constrain a term(s) during the execution of a program
is to add the constrained term(s) to the corresponding field
of the store. The ext-S function takes the store, the key, and
the list of terms. The function adds those terms, as a data
structure, to a list of such structures. The data structure is
created by consing all of the terms together.

(define (ext-S S key terms)
(hash-update S key ((curry cons) (apply list* terms))))

If the constraint store is consistent, we return a stream
of a single state; if not, we return the empty stream. Once
added, constraints are not removed from the store. This
decision means the size of the constraint store and the cost
of checking constraints grows with the number of times a
particular constraint is encountered in the execution of a
program. There are many ways to improve this approach.

Checking constraints takes place in invalid?. We use
make-invalid? to build the definition of invalid?. The ar-
chitect must provide a list containing a sequence of the
constraint identifiers (except ==). The architect must also
provide a sequence of predicates that check for constraint
violations. Each predicate should accept a substitution as
an argument and return true if a violation is detected. The
constraint identifiers should be free variables in the pred-
icates. These variables will be bound in the expansion of
make-invalid?. The result of make-invalid? is a predicate
that tests if a store is invalid.

(define-syntax-rule (make-invalid? (cid ...) p ...)
(A (S)
(let ((cid (hash-ref S 'cid)) ...)
(cond
((valid-== (hash-ref S '==))
=> (A (s) (or (ps) ...)))
(else #t)))))

The first constraint we check is ==. If this constraint is
consistent, the result is a substitution. The substitution will
be passed to each provided predicate when it is checked.

‘We used the phrase “something akin to” when describing
make-call/initial-state. This is the main syntactic form for
building constraint systems. The entire constraint system is
built from one invocation of make-constraint-system. This
new syntactic form takes the same parameters as does make-
invalid?. It builds invalid?, the initial-state, and all of the
constraints themselves. The result is a constraint system; to-
gether with microKanren’s control infrastructure, this yields
a full microKanren implementation (see Appendix).

The definition below uses Racket’s syntax-parse [7]. We
use syntax-local-introduce to introduce three new identi-
fiers into lexical scope; the remaining constraint identifiers
are already scoped.



(define-syntax (make-constraint-system stx)
(syntax-parse stx
[(_ (cid:id ...) p ...)
(with-syntax
([invalid? (syntax-local-introduce #'invalid?)]
[SO (syntax-local-introduce #'S0)]
[== (syntax-local-introduce #'==)])

#' (begin
(define invalid? (make-invalid? (cid ...) p ...))
(define SO
(make-immutable-hasheqv '((==) (cid) ...)))
(define == (make-constraint-goal-constructor '==))

(define cid (make-constraint-goal-constructor 'cid))
N1

5. Implementing a constraint system

Next, we implement a series of constraint-violation pred-
icates, and their associated help functions, that together
comprise a microKanren constraint system for a typical set
of miniKanren constraints. We discuss these constraints and
their predicates, one at a time.

The constraint == is included in every constraint system
and is provided as part of the framework. The valid-==
function below, and its associated help functions, is also
included with the framework. The function expects a list
of cons pairs of terms to be unified with each other. The
definition of unify is provided in the Appendix.

(define (valid-== ==
(foldr
(A (pr s)
(and s (unify (car pr) (cdr pr) s)))
")
==))

The == constraint is special because when deciding if
constraints are violated, we treat terms of the language as
classes quotiented by their meaning under the substitution.
Assuming this field is valid, the resulting substitution is
passed as an argument to the constraint-violation predi-
cates. To construct a microKanren with just this constraint,
the constraint architect should invoke make-constraint-
system with an empty list of constraint identifiers and no
constraint-violation predicates.

> (make-constraint-system
)

Beyond ==, our system contains four other constraints:
=/=, absento, symbolo, and not-pairo. We discuss the predi-
cates required to implement these constraints one at a time.

The first predicate tests for a violated =/= constraint. It
searches for an instance where, with respect to the current
substitution, two terms under a =/= constraint already unify.
In that case, the =/= constraint has been violated.

> (make-constraint-system
(=/= absento symbolo not-pairo)
(A (s)
(ormap
(A (pr) (same-s? (car pr) (cdr pr) s))
=/=))
o)

It is implemented in terms of a help predicate same-s?.
If the result of unifying two terms in the substitution is
the same as the original substitution, then those terms were
already equal relative to that substitution. We could have
instead implemented same-s? by first checking to see if the

call to unify has succeeded, and if so comparing the lengths
of the substitutions.

#| Term x Term x Subst — Bool [#
(define (same-s? u v s) (equal? (unify u v s) s))

The next predicate checks for violated absento con-
straints, using the auxiliary predicate mem?. The predicate
searches for an instance where, with respect to the substitu-
tion, the first term of a pair already unifies with (a subterm
of) the second term. In that case, the absento constraint has
been violated.

> (make-constraint-system
(=/= absento symbolo not-pairo)
(A (s)
(ormap
(A (pr) (mem? (car pr) (cdr pr) s))
absento))

)

The predicate mem? checks if a term u is already equivalent
to any subterm of a term v under a substitution s. It makes
use of same-s? in the check. If the result of unifying u and v
is the same as the substitution s itself, then the two terms
are equivalent.

#| Term x Term x Subst — Bool |#
(define (mem? u v s)
(let ((v (walk v s)))
(or (same-s? u v s)
(and (pair? v)
(or (mem? u (car v) s)
(mem? u (cdr v) s))))))

We write a third constraint-violation predicate to search
for a violated symbolo constraint. For each term under a
symbolo constraint, we look if that term, relative to the
substitution, is anything but a symbol or a variable. If
so, that term violates the constraint. The function walk is
defined in the Appendix.

> (make-constraint-system
(=/= absento symbolo not-pairo)

(A (s)

(ormap
(A (y)
(let ((t (walk y s)))
(not (or (symbol? t) (var? t)))))
symbolo))

)

The predicate that checks for not-pairo violations works
in a similar fashion. If any term with a not-pairo constraint,
relative to the substitution, is a non-pair, non-variable term,
then that term violates the constraint.

> (make-constraint-system
(=/= absento symbolo not-pairo)
(A (s)
(ormap
(A (n)
(let ((t (walk n s)))
(not (or (not (pair? t)) (var? t)))))
not-pairo)))

This completes the definition of the standard miniKanren
constraints. When layering a miniKanren implementation
over microKanren, the constraint operators are carried over



unchanged. To implement a complete microKanren with
constraints, we would still need functions to minimize and
present answers. This remains as future work.

Below is the execution of an example microKanren pro-
gram that uses all of the constraints we have created. The
result of invoking this program is a stream containing a sin-
gle state. We can see that all the constraints are present in
the constraint store, and we can read off each constraint.
The #hasheqv(...) is the printed representation of the hash
table, whose elements are the key/value pairs. For instance,
the =/= field, (=/= . ((c . 0) (0 . b))), contains the pairs
(c . 0)and (0 . b). These are the =/= constraints that have
been added.

> (call/initial-state 1
(call/fresh
(lambda (x)
(conj
== 'a Xx)
(conj
(=/=x 'b)
(conj
(absento 'b " (,x))
(conj
(not-pairo x)
(conj
(symbolo x)
(=/="c x)))))))))
' ((#hasheqv((== . ((a . 0)))
(=/=. ((c . 0) (6 .b)))
(absento . ((b 0)))
(symbolo . (0))
(not-pairo . (0)))

1))
5.1 Adding new constraints

To demonstrate the generality of this approach, we imple-
ment two constraints new for miniKanren: booleano and
listo. The first mandates that the constrained term be a
boolean, and the second a proper list. These constraints have
more significant interactions than do the previous ones. As
a result, we need several new predicates to support the im-
plementation of these constraints.

These new constraints are interesting both because of
their additional complexity, and also their utility. They can
be used to improve the implementations of relational inter-
preters [5], an archetypal example of miniKanren program-
ming. Consider the partially-completed miniKanren defini-
tion of the relational interpreter val-ofo below. This relation
is intended to hold between an expression, an environment,
and a value when that expression evaluates to the value in
the environment.

(define-relation (val-ofo e env o)
(conde
((symbolo e) (lookupo e env 0))
((booleano e) (== e o) (listo env))
ced))

If e is a variable, o is its value in the environment. We
implement lookupo as a recursively-defined three-place re-
lation. When the variable is found in the environment, we
return its value. In prior implementations of relational in-
terpreters, the remainder of the environment is left uncon-
strained. Without the listo constraint, the only way to en-
sure our environments are proper lists requires a recursive
relation. This amounts to enumerating proper lists of all
given lengths.

(define-relation (lookupo x 1ls o)
(fresh (aa da d)
(==1s “((,aa . ,da) . ,d))
(conde
((== aa x) (== da o) (listo d))
((=/= aa x) (lookupo x d 0)))))

Instead, we can now express infinitely many answers with
a single listo constraint. We have also more tightly con-
strained the implementation of lookupo, which results in
more precise answers.

In prior definitions of val-ofo, rather than using a
booleano constraint, we equated the term first with #t, and
then separately with #f. This generates near-duplicate pro-
grams that differ in their placement of #t and #f. By in-
stead “compressing” the booleans into one, we ensure the
programs we generate have a more interesting variety.

5.1.1 Implementing booleano

There are precisely two booleans, and this makes booleano
more involved than other domain constraints. The first pred-
icate checks that we haven’t forbid a term from being #t
and #f while demanding that it be a boolean. We also need
a predicate to check for a booleano-constrained term that is
a non-variable, non-boolean. Finally since the booleano do-
main constraint is incompatible with symbolo, the last pred-
icate checks for terms constrained by both.

> (make-constraint-system
(=/= absento symbolo not-pairo booleano)

(let ((not-b

(A (s)

(or (ormap
(A (pr) (same-s? (car pr) (cdr pr) s))
=/=)

(ormap
(A (pr) (mem? (car pr) (cdr pr) s))
absento)))))
(A (s)
(ormap
(A (b)

(let ((s1l (unify b #t s)) (s2 (unify b #t s)))
(and s1 s2 (not-b sl1) (not-b s2))))
booleano)))
(A (s)
(ormap
(A (b)
(let ((b (walk b s)))
(not (or (var? b) (boolean? b)))))
booleano))
(A (s)
(ormap
(A (b)
(ormap
(A (y) (same-s? y b s))
symbolo))
booleano)))

Below is an example of its use.

> (call/initial-state 1
(call/fresh
(lambda (x)
(conj (=/= #f x) (conj (=/= #t x) (booleano x))))))
()

5.1.2 Implementing listo

The listo constraint is more involved even than booleano,
and consequently some of the constraint-violation predicates



are also more complex. We add four independent predicates
to properly implement listo.

In the first of these, we look for an instance in which the
end of something labeled a proper list is required to be a
symbol. The function walk-to-end recursively walks the cdr
of a term x in a substitution s and returns the final cdr of
x relative to s. We use it in constraint-violation predicates
related to the listo constraint.

#| Term x Subst — Bool |#
(define (walk-to-end x s)
(let ((x (walk x s)))
(if (pair? x) (walk-to-end (cdr x) s) x)))

The second predicate is similar to the first, except it checks
for a boolean instead.

> (make-constraint-system
(=/= absento symbolo not-pairo booleano listo)
(A (s)
(ormap
(A (V)
(let ((end (walk-to-end 1 s)))
(ormap
(A (y) (same-s? y end s))
symbolo)))
listo))
(A (s)
(ormap
(A (1)
(let ((end (walk-to-end 1 s)))
(ormap
(A (b) (same-s? b end s))
booleano)))
listo))
(A (s)
(ormap
(A (V)
(let ((end (walk-to-end 1 s)))
(let ((s™ (unify end '() s)))

(and s”
(ormap
(A (n) (same-s? end n s))
not-pairo)
(or
(ormap
(A (pr) (same-s? (car pr) (cdr pr) s™))
=/=)
(ormap

(A (pr) (mem? (car pr) (cdr pr) s™))
absento))))))

listo))
(A (s)
(ormap
(A (1)
(let ((end (walk-to-end 1 s)))
(ormap
(A (pr)
(and
(null? (walk (car pr) s))
(mem? end (cdr pr) s)))
absento)))
listo))

)

In the third, we check for a proper list that must have a
definite fixed last cdr (the end) under the substitution. This
means either end already is (), or a not-pairo constrains
end. If, in addition, either =/= or absento constraints forbid
end from being (), then that is a violation. An example is
presented below.

> (call/initial-state 1
(call/fresh
(lambda (x)
(conj
(listo x)
(conj
(not-pairo x)
(disj
(=/="() x)
(absento x '())))))))
()

In the last predicate required to correctly implement
listo, end can be a proper list of unknown length. An
absento constraint forbidding () from occurring in a term
containing end, however, causes a violation. The constraint
must precisely forbid () from occurring in a term containing
end to cause the violation.

> (call/initial-state 1
(call/fresh
(lambda (x)
(conj
(listo x)
(absento '() x)))))
()

These constraint-violation predicates are somewhat in-
volved. But this is of necessity. Defining constraints requires
domain-specific knowledge on the part of the constraint ar-
chitect. In any implementation of constraints, information
of this complexity must be included in the system, and its
exact nature changes based on the constraints involved. We
have ensured that constraint violations can each be treated
independently and that they comprise the entirety of the
constraint domain knowledge required. Furthermore, by re-
quiring that our solver be monotonic and logical, we have
ensured that adding new constraints can never require mod-
ifying old predicates.

6. Related work

miniKanren is a family of related languages with an over-
lapping set of operators and a common design philosophy.
The seminal implementation, also named “miniKanren”,
was first presented in The Reasoned Schemer, and since then
there has been a great profusion of miniKanren languages.
These have included both additional constraints and control
operators.

As the “mini-” and “micro-" modifiers suggest, there was
an earlier language Kanren [9]. Kanren, from the Japanese
meaning “relation”, is also a programming language based
on relation composition and relation extension in the way
many functional languages are based on the extension and
composition of functions. miniKanren is named with respect
to the earlier Kanren, but the languages have distinct syn-
tax, semantics, and design goals. miniKanren is “mini-” in
the sense that as a language it makes more demands of the
users and less automation on the part of the implementa-
tion.

There exists a close connection between microKanren
(and thus also miniKanren) and a subset of Prolog. Modulo
differences in syntax, a microKanren relation is essentially
a completed predicate, & la Clark [6]. Spivey and Seres’s
work on a Haskell embedding of Prolog [31], Kiselyov’s
“Taste of Logic Programming” [20], Kiselyov et. al’s Logic
monad [21], and of course Ralf Hinze’s extensive work on
implementations of Prolog-style backtracking [13-15] are all
closely related to our microKanren as well.



CLP is, in differing senses, both an extension and a gen-
eralization of traditional logic programming. It was seen as a
way to extend logic programming with other constraints [17].
Simultaneously, it makes clear that pure logic programming
is but one particular instance of CLP, in which unification
is itself the solver.

Programming with constraints had been investigated well
before the emergence of widespread interest in constraint
logic programming [2, 32]. Modern development of CLP
languages begins in the mid 1980s with groups in three
places: Jaffar et. al in Melbourne, Colmerauer at Marseilles,
and with the ECRC in Munich [26].

Lim and Stuckey’s “A constraint logic programming
shell” provides a framework similar to Constraint microKan-
ren for developing constraints [25]. Jaffar and Lassez’s CLP
Scheme is the theoretical model into which our Constraint
microKanren fits [16].

Schrijvers et al. also separate their constraint-solving
mechanism from the implementation of their search [29].
Their emphasis is on implementing different search strate-
gies via monad transformers over basic search monads. It’s
not yet clear where microKanren’s search sits in their frame-
work, though this is a topic we are currently investigating.

There exists a different sort of CLP paradigm based on
research in constraint satisfaction problems and constraint
propagation to reduce the search space. Le Provost and
Wallace [24], in their “Generalized Propagation over the
CLP Scheme” describe a merger of the two models.

cKanren, an earlier miniKanren for CLP, takes a differ-
ent approach than constraint microKanren, using domain
restriction and constraint propagation [1]. Alvis et. al take
as their primary example finite domains. cKanren returns
as answers ground instances that satisfy the program’s con-
straints. Unlike Constraint microKanren’s framework, they
provide constraint minimization and an answer-formatter in
their implementation.

7. Conclusion

We have presented a constraint logic programming version
of microKanren. We have provided a framework for im-
plementing constraints and constraint systems. Decoupling
constraints from the control flow has further clarified the
implementation of the constraints framework. We have im-
plemented customary miniKanren constraints, as well as in-
teresting and useful new ones.

We have tried to eschew all possible sophistication in the
implementation. We expect Constraint microKanren will be
slower than current miniKanren implementations. It will be
less efficient than state-of-the-art CLP languages. Rather
than efficiency, our aim is a simple, generic framework for
implementing constraints in microKanren. We also envision
Constraint microKanren as a lightweight, quick prototyping
tool for implementing constraint systems. Constraint archi-
tects can experiment with and test both constraints and
answers that result without building or modifying a compli-
cated and efficient dedicated solver.

Though efficiency isn’t a concern, it might still be inter-
esting to see the performance impacts of various simple opti-
mizations. These might include incremental constraint solv-
ing, early projection [8], attributed variables [23], or calling
out to a dedicated constraint solver where easily applicable.

Also future work is a generic, extensible constraint min-
imization routine similar to invalid?. The architect should
be able to specify the constraints minimizations individually
and allow the framework to produce a minimizer.

We also seek to establish a more rigorous definition of
a constraint-violation category. Describing precisely what
violations should be checked by a single predicate would
better clarify the constraint architect’s responsibilities. We
hope also to formalize the connection of the Constraint
microKanren framework to the CLP Scheme.

We believe that we achieve a simple, portable, and under-
standable model of CLP. Further, we believe that constraint
microKanren lays the foundations for continued future work
in designing constraint systems.
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Appendix: microKanren

#| Nat - Var |#
(define (var n) n)
#| Term — Bool |#
(define (var? n) (number? n))
#| Var x Term x Subst — Bool |#
(define (occurs? x v s)
(let ((v (walk v s)))
(cond
((var? v) (eqv? x v))
((pair? v) (or (occurs? x (car v) s)
(occurs? x (cdr v) s)))
(else #f))))
#| Var x Term x Subst — Maybe Subst |#
(define (ext-s x v s)

(cond
((occurs? x v s) #f)
(else “((,x . ,v) . ,s))))

#| Term x Subst — Term |#
(define (walk u s)
(let ((pr (assv u s)))
(if pr (walk (cdr pr) s) u)))
#| Term x Term x Subst - Maybe Subst |#
(define (unify u v s)
(let ((u (walk u s)) (v (walk v s)))
(cond
((eqv? u v) s)
((var? u) (ext-s u v s))
((var? v) (ext-s v u s))
((and (pair? u) (pair? v))
(let ((s (unify (car u) (car v) s)))
(and s (unify (cdr u) (cdr v) s))))
(else #f))))
#| (Var - Goal) — State — Stream |#
(define ((call/fresh f) S/c)
(let ((S (car S/c)) (c (cdr S/c)))
((f (var ¢)) “(,S . ,(+10)))))
#| Stream — Stream — Stream |#
(define ($append $1 $2)
(cond
((null? $1) $2)
((promise? $1) (delay/name ($append $2 (force $1))))
(else (cons (car $1) ($append (cdr $1) $2)))))
#| Goal — Stream — Stream |#
(define ($append-map g $)
(cond
((null? $) “())
((promise? $) (delay/name ($append-map g (force $))))
(else ($append (g (car $)) ($append-map g (cdr $))))))
#| Goal - Goal - Goal |#
(define ((disj gl g2) S/c) ($append (gl S/c) (g2 S/c)))
#| Goal — Goal — Goal |#
(define ((conj gl g2) S/c) ($append-map g2 (gl S/c)))
#| Stream — Mature Stream |#
(define (pull $) (if (promise? $) (pull (force $)) $))
#| Maybe Nat* x Mature — List State |#
(define (take n $)
(cond
((null? $) '())
((and n (zero? (- n 1))) (list (car (pull $))))
(else (cons (car $)
(take (and n (- n 1)) (pull (cdr $)))))))
#| Maybe Nat* x Goal — List State |#
(define (call/initial-state n g)
(take n (pull (g “(,S0 . 0)))))
(define-syntax-rule (define-relation (rid
(define ((rid .

. args) g)
args) S/c) (delay/name (g S/c))))
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