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ON THE THEORY OF AUTOMISERS IN FINITE GROUPS

By

M. NIEMENMAA
Department of Mathematics, University of Outu, Finland

{ Received March &, 1951)

Let G be a finite group and H a subgroup of . We say that the factor
group N (H)/C; (H) is the automiser of H in G. We define

g (H) = Ng (H)[Cq (H).

If Ng(H) = C;(H), then we write a,(H) = | and we say that a, (H) is
trivial. The concept of an automiser is introduced in [1] (p. 596), where a
class of simple groups is characterized with the aid of automisers.

In the present paper we show that this concept is useful in the case of
norn-simple groups, too. We study the effect on a finite group & of certain
conditions imposed on the automisers of the subgroups of G.

Our notation is generally the same as in [3]. However, we write O{G)
to mean the order of a group G. We also write N(H), C(H) and a(H) for
Ng(H), Cz(H) and ag (H) if there is no danger of confusion.

We first introduce the following classical result which describes the
structure of minimal non-abelian groups (that is, non-abeiian groups which
have only abelian subgroups). We call these groups REDEI groups.

Tueorem 1. Let G be a non-primary Rédei group, then G = PQ, where P
is an elementary abeiian minimal normal Sylow subgroup of G and Q is o
cyclic non-normal Sylow subgroup of G.

For the proof, see [3). For a modern treatment, see [4], chapter III,

section 3.
If a(H) = 1 for all the proper subgroups H of (¢, then, clearly, G is abelian.
The following theorem shows us the effect of cyclic automisers on G.

THEOREM 2. Let G be a nen-abelian group such that a(H) is cyclic for all
the proper subgroups H of G. Then G is a Rédei group and conversely.

Proor. Suppose that G is non-abelian and a{H) is cyclic for all H<G.
Let A be a maximal subroup of G. Now AfZ(A) is cyclic, so A is abelian.
Thus all the proper subroups of G are abelian.

1%
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Then suppose that G is a Rédei group. Let G be primary, that is,
O(G) = pr. If H=0, then H 5 contained in a maximal subgroup A of G.
Since N(H)=C(H)= A, we conclude that a(//) is cyclic. If is ¢ non-primary,
then & has the structure described in theoremn 1. The non-normal Sylow sub-
group ¢ is maximal in G, so N(Q) = C(Q) = Q. Furthermore, if K<, then
K= Z((). Now it is easy to see that a(H) is cyclic for all H = 0.

In the case of non-primary Rédei groups we gain a slight refinement of
theorem 2 by proving

THEOREM 2. Let G be a non-nilpotent group. If o(H) is nilpoient for all
the proper subgroups I of G, then G is o Rédei group.

Proor. Suppose that G is non-nilpotent and let o(H) be nilpotent for all
H=G. If Aisamaximal subgroup of G, then A/Z(A) is nilpotent, hence A
is nilpotent, too. Thus all the proper subgroups of G are nilpotent.

Since G is non-nilpotent, it tollows that G = PQ, where P is a nermal
Sylow subgroup of G and @ is a non-normal cyclic Sylow subgroup of G.
Furthermore, the maximal subgroup D of @ is contained in Z{(), (see [4],
p. 281).

Now @ is not contained in Cg; (P). Thas

Cu(P)=2Z(P)D.

Suppose that Z(P)< P. Then Z{(MQ is nilpotent and thus all the elements
of Z{(F) commute with all the elements of Q. Thus Z(#?)y~ Z(G), hence
Z(PYyD-=Z{(G). On the other hand,

Co(P)=C5(G) = 2(0),
so Cg (P) = Z((). Now

Ng (P){Cs (PP) = GIZ(G)
is nilpotent, so ( is nilpotent, too. This is a contradiction and we conclude
that Z{P) = . Thus ali the proper subgroups of (G are abelian and G is
a Redei group.

By theorems 2 and 2’ il is easy to see that if G is non-nilpotent and a(/7)
is nilpotent for all 7§ =G, then, in fact, a({f) is cyclic for all H =G.

We shall now study the structure of groups G in which the proper sub-
groups are either normal in & or have frivial automisers in & but can not
have both properties. We call these groups T-groups. As an obvious coin-
sequence of the definition of T-groups we conclude that Z(G) = 1 for all 7-
groups (.

The following theorem characterizes all T-groups. In the proof we use
the properties of Frobenius groups (sec [4], pp. 495 —3508).

THeOREM 3. Let G be a T-group. Then G is a Frobenius group with kernel
P and cyelic complement M. Furthermore, N(H) = P for all 1 = H <P. Coit-
versely, a Frobenius group with these properties is a T-group.

Proor. Suppose that G is a T-group. Since G is non-niipotent, it follows
that G has a maximal subgroup M such that N(M) = C(M) = M. Further-
more, C;{(X}=A{ for all the non-unit elements of M. Thus G is a Frobenius
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group with complement M. Now M is abelian, so ali the Sylow subgroups of
M are cyclic, hence M is cyclic, too. Let P be the Frobenius kernel of G.
From the maximality of M it follows that P is a minimal normal subgroup of
G. Clearly, G ig solvable and thus P is elementary abelian. Let I<H<P.
Now H has a trivial automiser in G, so N(H) = C(H) = P.

Now suppose that G is a Frobenius group possessing the properties
given in the theorem. Now N(M) = C(M)= M and N(K) = C(K) = M for
all 1 = K= M. Thus all subgreups of M have trivial automisers in G. As in the
first part of the proof, we conclude that P is elementary abelian and thus
all proper subgroups of P have trivial automisers in G. Subgroups of the form
PK, where K is contained in a conjugate of M, are normal in G. Suppose there
exists a subgroup of the form HK, where ] « H< P and I < K is contained in
a conjugate of M. Then HK is a Frobenius group with kernel A and com-
plement K, so that N(H)}= K, a coniradiction. Thus we have shown that
G is a T-group.

Let G = Py be a T-group, O(F) = p* and O(ft) = 1. We consider P as
a k-dimensional vector space over GF(p). Let X be the linear transformation
induced by A Then X1+ ...+ X+ { =0 and by theorem 3, the only
non-trivial X-invariant subspace of 2 is P itself. Now we can state a corol-
lary on the structure of T-groups.

CoroLLary. Now GF(p¥) is the splitting field for f(x) = x""1+ ... +x+ 1
over GF(p), £ is the additive group of GF(p*) and g* = ag for all gcP,
acGF(pMyand f(o) = 0. 1T k=1, then f1is of prime ordergand & = ¢— 1.

The proof follows from theorem 3.10 of [4], pp. 165~ 166 and from the
fact that if k= [, then f(x) is irreducible over GF{p).

We remarlk that if O(A) is cven or if O(k) is divisible by 3 and p = 641,
then &k = 1.

We also remark that T-groups belong to the class of groups character-
ized by CsOrGO [2].

Now it ig natural to ask how the structure is changed if in the definition
of T-group the condition “a(H) = 1 for every non-nermal subgroup H of &
is replaced by the condition “a(H) is cyclic for every non-normal subgroup
Hof G”.

It is easy to see that in studying the structure of such groups we can
proceed in the same way as in the proof of theorem 3 and we get the same
structure as in theorem 3. But now the Frobenius kernel 7 has a cyclic
automiser in , a contradiction. Thus there exist no groups which satisfy
the “new’” definilion.
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OTKPBIiTbIE OTOBPAKEHWA MNMOJTYCUHTONOINEHHbIX
NPGETPAHCTR

MACHIOB B. B.

Bopumiiesrpast

{ Hecmynuwan 13. 11, 1950)

FaK uspecTio, ToNOIeIMYecKye, DIM30CTHEE 11 PABHOMEPHLE CTPYKTYPLL
SIBHSIOTCST RCCHMI UACTIEIMIK CIIVUASIMH TAR [A3BIBACMLIX CHUTONOTEHHDLIX
CTPYKTYP, 1ICPRONAYAILIOE H3YHRIINC KOTOPBLIX nposeneiio A. Hacapom (¢
[2]). HousTie noaycunTonorennast cTpyYRTypas ects nbobienue MOHATAA
¢CHITONOIERHAN CTPYITYPaY; NOJMYCHIITOROUCIILIC CTPYRTYPLI BOECPBLIEC pacc-
sarpusanict 5 ([1]). C repnunciorieif Mo3KIIG 03HAKOMHTLCA B YKAa3aH-
IBIX paboTax.

B nactosiuedi cratoe N3yUarTes HEKOTOPLIC OTODPEEHA N0y CHHTO-
HOCCINBIX {TPOCTRANICTE, Ta3BATILLIE ¢OTKPLITLIMIY.

Onreaenenue 1. Orodpancenne f:|X 0 S;]-- | Xa: S, dvieat nasnisarh
(S5 SL-OTKPLITBIM, €011 KKAOMY  NONYTOMOUCHIOMY HOPMAKY = €5,
COOTBECTCTBYCT TAKOH MOIYTONOTeHELIT TOPSIIOR -=,€8,, UTo H3 K&AJOT0
cooTHoneHist A=< B BeItexaer cocThowentne f(A) =, f(B).

3ameuanmsi. 1. Ecnn [X{=,}] u [X,; {-=,}]-rononoruueckue npo-
crpatctsa, 1o nousitie (§ =} { =.D-oTRpuiTocTn otodpaskenun fi X, - X,
SIBJIAETCST 111 UEM MBI, KUK TOUATIEM OTKPLITOCTH (B 00WYIOM TOII0S0TA-
YeCKOM CMBICITE).

2, [yvern [X; {=4}] 1 [Xy; {=,}-0pocrpancraa 0an3ocTi, a oTo0pa-
srenue 1 X, — X, aisterest ({-=}; {~= . })-0TKpuIThm. TOrfa Kasigoe cooTHO-
wenne A-= B picuer covrHouerne f(A) <. f(B). Nvers 8, § = 1, 2-knac-
CHYECKOC OTHOLIeHHe BIU3OCTH, CooTneTeTRYIOWCE CTpYKTYVRE { <.}, { = 1, 2,
a4 §; 8 = 1, 2-orpuuanie 27roro oTHetens. B Takom civiae, KAK 3BECTIIO,
cooTionedde A=, B oznauger, uro A §, X\ B (coorserctreino, f(A) d,-
< XOAf(B), 1 obpatio. Mnwsmn caosami, orodpayceunc fi [ Xy, 41— [Xq, 8]
SIRIAETCH OTKPLWTHIN TOF, i H TOJIBKO TOTA@, KOTAR GBITIOZALSIETCS] Cleayoumee
venonre: awiomectsa f(A) 11 X\f(B) dy-nanekmn Kajplii pas, xorga o,-
Aastery aHoskeetra A X\ By,

3. dotyernm ceiivac, uro [X; S, 1 [X,; Sy ]-pasnosiepiuie 1npocTpat-
crpa, o X =X, —(8); Sy)-otupuiroe wirbekrhBitoe ortodpaxcenne. [yern
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NMOPHNOK =, €8, COOTBETCTBYET MOPSAAKY =<, €S, TAK, KdK TOTO TpedyeT oll-
pemenenne 1. [Mopsigry =, { = 1, 2, conoctarisicres okpyskenve U, i = 1,2,
ACCOMMIPOBARKOIT Inacenueckoil pasnosepnoll cTpyitypu va X, i = 1,2,
npasuion: (X; WE L, Torna 11 ToALKe TOra, KoL 1 RePHO COOTHOILENIE
Ix}=; X\yh @ = 1, 2. Baas orpruanne, iaitten: (x;)))¢ 4, Toraa 1 ToaLko
Toraa, worpa {x}-=,XA\{y}, i =12, Urar, no vciosmo: {x}=, X \{y}=
) =L (X AYD < XA} Unaue rosopst, HELCKTIBHOE 0To0 pasKeH e
[ anngerca (S S,)OTEPLITEIM TOCIA 11 TOJIBKO TOLIA, KOTCZA BBITK.IISIETCS
CHEIYIOLIEE YCAOBHE: (GBKAOMY QKPYKennew L, panioyMepnoit cTpykTyphl,
AcCOUMMpOBaHHo{T co cTpyRTYpoll S;. cooTReTcTRYET 0Kkpyycene U, pagno-
MepHodl CTPYRTY PLL, ACCOLINPOBAHHOIN o CTPYRTYPOi S, TAK, YT0 KAKOBLI
OBl HH ORI U -jladerie aneMenThl (X, )€ X X X, 6ipaasl 3THX 3JeMeHTOoR
(T. e J(X), f() simasuores U,-Taieriimn.

fleeanonenir 1. Ecnu otobpaycenne f:[X; S, [Xa; S,] anasierest
(5,5 S,)-0TKpBITEIM, TO JAA Kot monyennrouoreitiolf crpyxkrypm 8] (co-
OTBETCTBeHHO, S3) I wiacce X,. Goaee ci1adoil (cooTseTCTREHHO, CILILHOI),
HeM CTPYKTYPA Sy (COOTRETCTBEHUO, S,), orodpaxennc f ssasercst (875 S5)-
OTKPBITEIM. J{0KazaTeaLeTRo d51emeHTapio.

Caeacreust. 1. Tlyern orolpaskenwe f:[X,; S|~ [X.: S,] snisiercs
(S1; So)-0KPHITHIM; TOTAA 210 0Tobpaskenne dyvier u (8,:83), (S1; S5), (S,. S),
(51; 53)-0TKpBITLIY,

2. Ecom oro0pasiReiiie 13 paBloMepuors npoctpatictsa [X,; &;| b pab-
HomepHoe npoctpanctso [ X, S, | asnaercsa (S;; S.)-0TRPLITLN, To f sIRASCTCS
(S;; Sfh~(coarBereraetiio, (Sy: SHP)-} oTKPBITLIM OTOTPAKENNCM paBnoNep-
woro mpoctpanctra [X,: 8] 8 npoctpancreo dimsoctin [X,; S§] (cooTReT-
CTBCHHO, B TOToSIOrHUecKoe rpocrpadctso [ X, SEP).

3. Ecan orodpanienne f us npoctpanctia 6inzocti [ X0 {=,}| 5 npo-
crpanctso Gansoctn [X,: {=,}] asmercs ({-=,}, {-=.})-0TRpWTEN, O f—

-({ =1}, {=i)oTkpprro  (Kak orodpaykenne M3 npocTpancTtBa  0A1I30CTH
X, {=}] B Tonosornuccroe npoctpaicTeo [ X, {<51D.

Heegnowmenne 2. Ecan oroBpayene f1[X 08, ]— [ X2 So]— (5,0 8,)
GTRPBITO, TO 0HO sBmsieTcst o (SP; SE)-0TkpuThiM.

Horaaareascrso. Cosepurennsii noaytonworenii mopsigo = e ST
ONPEAENACTCA MOAYTONOICHHBIM [OPSTAKOM <=, €S, JUI KUTOPOTO MOMINO,
noib3ysdch, onpeyresncnaen 1. nafitn oeayrenoreninii HOPSLOK <, €85,, 1t
TEM CAMBIM, - - COREPUIRNHLIT MorvyTonoreuluit nopsaor <§€ S8 NMoraskewm,
YTo MOPAAOK <5 ¥HoBICTROPsIeT onpelencimo 1,

[Myvere A-<P B; 9o 3naunT, uto Haliayres Takofi Kadce nHaexkcon [ i s
Kangdoro i€ - takag uacTts A, Kaacca X, uto A=A u A=, B apni

reex i€l Torpa: f(A)-=,f(B;) npit i€l, n Uf(A:.)E-Icgf(B). Tar rax
i€l
DI = F(U A = F(A), w0 [(A) <4/ (B).

Conepcrene. Ecnn [0 [ X0 {=< 1~ [Xa: { <ot} steisteres (<.} {=.D)-
OTKPBITBIM oToDpasKelies npocrpadcrra Gnnzoctu [X):{=<,}] B npocrpail-
cto Gamzoctn [ X,; {=,}], To f—({={}; {=<ED-ompuito Kak oTobpancemie
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Tononardueckoro mpoctpancrsa [ Xi; {<P}], sHBojuMOre M3 NpocTPAHCTBA
pausocti [X:{=,}], B Tono:oruueckoe npocrpasctio | X,; {=<5}], BbiBOAH-
Moe u3 mpocrpanctsa dundoctl [ X,; { <.}

Neepnoswenue 3. Ecint orodpakente f1[Xa: 81— [ X Spl—(Sy; Su)-
OTKPLITO, TO 010 ABsIeTes1 (S1 S4)-0TRPLIThIM.

Hoxaszareabctio. [lonownn St ={< ), i=1L2. Ecm A<, B, T0 A< B
NPY LIEKOTOPOM = €5, Tai 1To f{A) <" f(B) (Mbl cunTaem, yto nopsaor <’ €8§,
vioriteTRopaeT onpeaesemno 1), a notony: f{A)=, f(B).

MNeeanoxenue 4. Ecinn uinertiiBaoe otobpaskenie f: X, — X, (8y; S,)-
OTICPLITO, TO ON0 siBasiercst (ST; SIFoTKpBITHIAL
12

Hoxasatenserso. Kay Al Tonorenusnii nopsagoK —={ 43 cnutonorenuoi
eTpywTypel S onpeneisiercsl MOJYTONOreHHLIM NMOPSARKOM <, U3 MOJNYCHE-
TONOTEHHOH CTPYKTYPB S, LA KOTOPOro B NOJIYCHITOMOIeHHo CTPyRTYpe
S:: CYIIECTBYET MMONYTOIOTCHINBIT HOPAJI0K =, y,;'],(]BJIETBGI)SII()]IIHf-i anpefeice-
amo 1. TMokacen, wro nopsigor =4 € Si-ackemwil.

Nivers A<% B; 310 3naunt, uro HaffiyTesl TAKIE HATYHUILHBIE HTHCE
myn, nouacty A, (- L2000 By J=12, ..., n Kkraca X,, uTo:

m n
A= ) A, B= 1 By n A= B; 1pn prex 3HaUCHNSIX MHACKCOB [ 11 J.

i=1 i=1
it

Torpa f(A)=.f(Bj) Gf(A,.){g N f(B))- Mocronnry
f—1

1) =f[,_[31A,-] « U 1Ay n (8 =f[j.:11 B, - J_.:w!f(li'j)

(3/1CCh HCTOAL3YETCs MILRTUBHOCTL), To f(A)<]f(B).

Caeactensn. 1. Ecan winerritenoe orobpaskennme f:1X: S| [X5:8,]—
—~(8,; S,)-0TKPITO, TO OHO SIBISICTes) 1 (S5 S5)-0TKPBITLIM.

Jiig  A0KazaTenseTBA HOCTATOUIG  3AMETHTDL, 'ITO  Kaadlblii  HOPSLT0R
CTPYRTYPH S° maicer B (= |J) <), e < €S,

2. Ecnn orobpasenne [ [X; 8] (X, Sa| ABigeress dbeKTHBHBI 11
(S,; S,)-0TKpWTHIN, To 910 oTOBpLKene aasercst 1 (SY SE)-oTkpeThIM.

3aMeTHM, YTO ecil CUMTATL, B YACTHOCTH, YTO S;-, i=1,2 — pasno-
sepubie cTpyicrypel, To S F = 1,2, — CopTBETCTBYIONIHE CTPYRTYDbL BAu-
30CTH.

Nevmerst. 1. TIyeTh & - NOVCHHTOOOTENHAS CTPYKTYPA a4 KIacce
X 20, Kazkaptil noayTonorennstii ToPsaioK KOTOPO «3aMKHY T 0THOCHTETHI0
KOHeunkuX nepeceueHnii (Ho 1le siziIsieTes, BoDle ToBopsl, TOMOTEHIBIM, TAK
uto § — BobwWeM-TO, Ne clHiToNnorentas crpyirypa). a A =0 — npouspo.is-
Hast HacTe Kagced X, JEas toro, wrodbl KaNOHIMECKas) NILeKUHs § 0 A~ X
orta (S| A; S)-oTepbiToll, HEOBX0MMO 11 ZOCTaTOUNE, UToGLl Kidce A Qi
=< =OTKPBIT PH BEEX = €8,

2. st oro, utoGut drexuns £ (X3S, ]~ [X,: S,] Obina n3omopdusmon,
HeoGXoAMM0 K JocTatoulo, yrodn oTodpaxeime f oo (S S,)-Henpepoin-
HBIM M {S); S,)-0TKPULITHIM,
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def

3. Ecan mapeaurs xaace X #@ crpyirypoii f~1(S,) = S, rae f -
CIOPBERI Kidecd, X Ha [QIYCHITONIOICHHOE NpocTpaHcToo [X,; S,], o f
oRazReTest (S; S, }-oTKPBITEIN oTolpaskenet.

4. Kapinast ipoekumst pr, { €1, TpousBeiens [H; X ”; S,.] NoAy I

33 i€
Touorennx npoctpanets [X S;], (€7, na npocrpancteo X, S;), (€],
SIBASIETCS] (H S; Si)-UT](p]ﬂTLL\I oTedpaCIIHeM.
fer

Neeanomenne 5. Hyern £{X; S|+ [ X5 S nyg: [X;8]-]X": 87 —
ABA 0TobpasKeHEsT. Bepel CACAYIONIE YTREPAKLCHIN:

(1) ecnu orobpaskenue f—(S; §)-orepeito, a y—(8; S”)»0TRPLITO, TO
otobpaycenne go f—(S; S"}orphiTo;

(2) ecant oTobpaykente i o f—(S; §7)-01KPBITO, 2 0TODPAIKEHIIE f-CIOPLeK-
THEUo 11 (S; S7)-nenpepisiio, o oTodpwKkeHlie g— (S’ §7)-0TKpeITO;

(3) econt oTobBpaykenie g o f—(8; S7)-0TRPLTO, a 0TOOPAIIKEINE F-HIFLEK-
THBHO i (S7; S”)-nenpepuisuo, to otodpaseine f asnaercst (S; S7)-0TKPbITHL.

Horaszarenserso. Yrsepaeane (1) oueBnjino.

(2) TIpouapoannoyy NOINTOMOrenoMy Nopsaky =’€58° couTBeTCTRYCT
(B cuny (S; §)uenpeppisroct 0TOGPaRENNS f) TOJAYTONOIEHIBET TOPSUIOK
== €8, 4 1 LUero - MONYTONoreHyulli Nopsigor = “€S57 (u cenny (S; 87)-
OTKpUITOCTI 0TOGpasKeiste gof). B A<'B, to f (M) <f1(B) 1
go f{f~ 1 (MY ="gof{fH(B). Tax raix f ciopbertsro, to f{f~1(A)} = A
o f(f1(B)) = B, & notony g(A)<"(B).

(3)Ecnu < €85, 10 (S; 8")-011puITOCTL 6TOGPas LIS g o f I5eUeT BO3MOMK-
HOCTL BRGOPA N0 TONOTEHIIOTD MOPSAKE = "S5, YHORIETBOPSIONEIo onpee-
AeHKe ) nenoanayst (87 87} -UCnpepuiniiocts oTodpasicius g, naiigem nosy-
TOTOCENLi MoPsiAN. =" €857, MGKODHPYIOWHil Loy rolorenikii 1opsiox
gH="). Ecw A= B,rog o f(A)="g o f(Byng g o f(A)=<"¢ (g o f(B)).
Tax kaK g mwekTsio, 10 g='(g o f(A)) = f(A) 1 g ' (go f(B) = f(B), a
notomy f{AY<"f{B).

Mepmowenne 6. Tyers f1[X ) S+ [Xa: Sa|-uponzsoiistioe (S,; Ss)-
uTEphiTee oTedpakerne, Jlast wenveroii uacri B owiacca X, cumsodon fp
odosltatin orodpasenie ¥ 1sacea 1 (B) 8 wace B, cosmyawee ¢ f ua
=1 (B). Oxaseicaercst, uto 970 otofpaxeniie snisiercs (Sy[f~1 (B): S,[3)-
OTKPLITHIM,

Horazarenserso, [Iyerh < -nponaBoiILIBT 10Xy TOIROrCNIET TopsIoK
crpyrryprl S /71 (), onpejiensiemslil Mo/IyToneretnyi Topsgkom =, €5,.
Ao =, nailigen uoavronorennsli nopsioR <,<£8, TaK, Kak tero tpebyer
onpeaesienne /. Hakoned, uoaosim =" = < 0B Ecoan U=V, o U=, VI

U(X,\/ 77 (B)), & notony
FUO)="FVUXN B = F (O UF (XN HB) of (V) U(XA\BY,
rax utn f{(ED<"f(V).

Ieepnoyesue 7. Tlvers fuckoropoe oTodpajcennie THoAYCHHTONONC -
norn npoctpanctsy [X; 8] B cnutonorentoe npocrparetee [ X7 8] Ipea-
(01051110, YTO BBINOIIISIOTCS CACAYIONIIE YCA0BHA:
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(1) Bbitenesio KoHeulloe Nokpuimite (B) i =1,2, ..., n, knacca X',
(2) Bce Kiaacew B; YIORACTROPSUIOT cootHoulenuio B;< B; npH BCeX
<€S;
(3) ree ovobpwrenust fu,— (S~ (B 8’| B)-omcpoirh. Toraa oxasoi-
paercst, uro otodpaienne f sasagercs (S; S)-0TKPLITEN.
JorasaTEReCTBO. BLidepey NPOH3BOIILIN UGS TOHOTENHBIT MOPSAJOK
< €8; s =, = = |f71(B;) nafiges <7 €8’ B; 1ax, Kai T0ro rpedyer on-
pegenense 1. Ecnu <] = <{{B;, i:+1,2,...,1, 10 Hycts <’€8" — TOT
TOTIOF CHIILIH NOPANIOIC, KOTOPBUT MUAKOPHPYET BCC TIOPSIAKI <1, £ = 1,2, .. .1l
INyers U <V roraa UNFH(B)=, VN (B)ynpui=12 .. .1 anoto-
Wy f5,(U NS (B)) <7 fa, (VOB 7. c.

FUNB;={fV)nB,,
FUINB,="(f(VINBYU(X\B)).
Tax xkar B,<" B, 10
(f(U) N B,-) NB;< '((,f(‘/) i Bi) U (X’\Bi)) MG,

TaK UTO

" HO3ITOMY
JO)nB;<'f(Vins;.
Otcioga:

f n
U (fnBy<" y (SV)NB);
i=1 =]

pwecre ¢ arum: f(U)<"f(V).

Bameuasme Jorazannoe HPELHEIKEHHE MOWKID HECKO L0 BHAGHA3ME-
1HTh, TPHCNOCOOMR 10 1K TOMY CIIVUMN, KOTAA HOKperne (5) xiacca X7 e
HBJTHETCS 10HETHBIM. O,I'lll:'.l[{O. TOVAd HPIETCH Tl}{fGUIiii'l'b, rG0bI CTPYKTYPA
S oplia cuHronosorueii. [1pin 2roM, B YACTHOCTY, HOJIVULETCS HIBECTHBI
peE3Y ALTAT, 1<ac11|01111'11‘-'1c51 TOHOAOFINECKHX NPOCTPAHCTE; & [IMCHUHOT €Ml
[X; 8] — monveurrontorenuoe npocrpadeTro, [X'; {<"}] - Tonoaornyeckoe
IPOCTPAKCTEO, 1 cemelieTO (Bi)icr-g 00pasver nokpoerrue kinacca X {<’}-
OKPBITHINI KNTaccami, A Bee oTodpaskersi fg, (€1, swsmotest (S1f~1(B,)
{ <"} B)-otrpitbing, 1o (S; {<})-orpuiTo otobpazkennie f: X - X’ Orye-
THA EUIC, UTO ¥KAZAHHLLH (palcr 0 cux nop GopMYIIHPORWICS NMIllb B TOM CIIY-
uae, KOTjEa CTPYITYPa 8 IPCAnosIaréiach TOHOJOME.

[Meennowenne 8. Tlyers f;: [ X0 S;]— Y Si, i€f+0, — (8, §)-or-
KpwiTast clopbextnst. Torja oxaswisacicst, uto otobpaeune f = (f;): J[f X,—
+i]\E]f Y; arnsercs (EQS,-; t_[écs;)-(}TKpblTh].\l. ef

HaxMeTny dnmb UAC0 J0KA3aTe I,CTRA.

Kaigreil nosavronorentwit nopsjler =< € ff S, onpeacisieres KoHCUIbIA

it
CeMEHCTBOM [OAYTOIOTEHULIX HOPAAKOR =<, €8, af AT [ Kaniony = ,€8,,
7€ A, COOTBETCTBYET, COMUCHD OUPCAL/IEHing 1, NeAYTONOrciuiLii mops;iox
<o €8], «€ A, CemelfcTso MOPAAKOB (=< .).ea OUPEEIsIeT TCAYTONOIEHHbIH
nopsanok <’ € [T 8. ViMeuio 3ToT-To Mopsiior 1 SIBISCTCH [ICKOMbIM.
3]
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OnpegeneHuE 2. Muorogiaunoe otodpaxcenne f:[X,; S, [+ [X,; S,] 0y~
AEM NA3WBATL (817 5,)-0TKPLITEIM, eCiH Ka)AOMY I0AYTONOTEHROMY UOPALKY
=, €5 COOTBETCTBYET Takolt noayTonoreHubli NOPAAOK = ,€S,, UTC KA Joe
cooTHowenne A= B umeer cneacrenen cootioutelme f{A)=,f(5).

OnreneneHue 3. [IVCThL < — HEKOTOPLIH MoAyTonoreHHLi MopsAoK Ha
Knacce X =, Mexay nopxnaccamn A, B knacca D(X) onpegenum oTHoule-
111 =< ; CNeAVIOLUM npaBuioy: A< ; B TOra B T0JIbKO ToTad, Koraa: (1) smbo
A= B =10, (2) nubo waligytes Taxue e vacT J 1V knacca X, o U <V,

AciW):WnU=0} {(U):WnV=Jch.

MeennokeHKE 9. OTHOWENNE < ; SIBJIACTCA MOAYTONOTEHHBIM [OPSLKOM
Ha xkaacce P(X), cykenne KoToporo n1a X ecth <.

[Meenanowenve 1Q. Ecnu § — nmosveHdTonorennas cTpyKTYpa Ha Knacce
X A0, To knace §; = {=;: < €8} ecTh NOAYCUNTONOrENHHAA CTPYKIYPE Ha
D(X).

3ameuanue. V3yyeHue ceoicTR cTpyTyphl S; (pasiio, KaK v cBoicTR He-
KOTODLIX APYTHX CTPYKTYD Ha Kiacce (X)) nposogntes B ogHolt u3 pabot
4BTOPA, KOTOPAS B HACTOSILICE BPeMd HAXOAHTCS B IICUSTH.

IMeepnomenue 11, Ecian muoroznaunoe otofipaskenme f:[X; S,]—
—+ [ X, 8,1 sinasiercst (S); S,)-0TKPLITLIM, TO 0AHO3HAUHOE OTodpacenne f,
onpenensenoe npasunom: (A) ~(f(A)), econ (AYCPHX), annsercs (S, Sy)-
OTHPLITIAM.

Horazatensetso. [1vers <,;,€8,; — Tpou3B0ablbHT TOAYTONOrEHHBI
MOPANOK, onpeesiemslit mopsaaromn =, €5,. TTokax)cest, Tro 0Ny TONOTeHHE i
HMOPANOI. < 5, €85,;, ONpeaeTsieMblil NOAYTONOTCHHEM NOPAAKOM —=,€8,,
COOTBETCTRYHMHM NOPAJKY - TaK, IKAK TOr0 Tpeﬁye'r onpeacnaenmne 2, YiooB-
JETBOPALT OIIPEdesIeH I 1.

Ecmt A<= B, 10 nafifyrest taie vactn U, V kiacca X, uto

U<V, Ac{W):WnU=8), {(W):WnNV=0icB.
Tar rax

JW)y=.7(B), 1o {(W):WNfU)+P}=<u{(W):WNfV)#D}.

Eom (2)€f(A), To naiigercst Takoii aneveut ()¢ A, wro (2) = f((1)-
Tax kax (D€ A, ot U =0, Tax uro fI N U} 20. [Nockonsky f(HNFU)D
DfENUY, To fFONS(U)=0, a moroay (f()) € {{W) : W Nf(1J) 0}, Tak uto
(YEUW) - W N f(U) =0}, Tawcum obipasoss, f(AYC {W): W Nf(U)=0}. Ana-
SIOTHMEO MOZKHO MoKasats muouenne {(W): W N f(V) > B} cF(B).

Hrag, f{A)<quf(B).

Sameuanue. Yactuwilt cavuait npennowenun 11, xorna [X;S)), =
= 1,2, — TononoTHYecKye IpocTpaLcTRa, pacenarpupanest Jluauuviom P. C.
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A REMARK ON CONTINUOUS INDEPENDENT FUNCTIONS
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In [1] Bosznavy gives the following generalization of a theorem due to
GELBAUM: Suppose (K; d) is a compact connected metric space and u is a
probability measure on Borel subsels of K such that for G< K open, non-
empty u(()=0. Let f, g€ C(K) be u-stochastically independent, such that
there exists {,€ R with O<card f=!{f;) < =. Then g is a constant function.

The purpose of this note is to give a very simple proof of the above
theorem. Moreover we do not use a metric structure of K and we need weaker
assumiption on f, namely O=card f~(f,) <t where ¢ is cardinality of the real
line. We do not need compactness assumption in a very strong form, either.
To make it clear we formudate the main resultl in abstract forn.

Let us recall some standacd terminology: Let (X, 1) be a topological
space. We say that probability measure P defined on Borel subsets of X is
regular if for every Borel set AcX

P (A) = sup P(K)
where sup is taken over all compact sets Kc A.
For regular measure P we define the support of P as the smallest closed

set Ac X such that P(A) = 1. We denote it by supp (P).
The following lemmas are standard and we give proofs to make the

paper self-contained.

Lemma 1. Let X, Y be topological spaces, PP be a probability regular
measure on Borel a-field in X and f: X -V continuous. Then measure g de-
fined by w(A) = P(f1(A)) is regular. Moreover, supp x = f(supp P).

Proor, Fix ¢ >0 and B Y Borel. Then by regularity of P there exist a
compact set Kcf~!(A) such that |P(f YA))—P(K)| <e. Clearly K =Ky
is compact, Kc A and ],u(A)—p(K)[ =,

This proves regularity. Now let A be a closed set such, that u(A) = I
i.e. P(f~1(A)) = L. Then, since f~1(A) is closed, f~1(A)>supp (P). Hence
J(supp (P c A and f(supp(P))_C A because A is closed. Clearly
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«(fsupp(PY) = P [ o (supij'(fi)'))]:_-P(supp P)) = 1

therefore f(suﬁ([’ﬁ is the smallest closed set of measure {.

Lemma 2. 1T P2, @ are regular probability nieasures on topological spaces
X. Y respectively then

supp (P®Q) = supp (P)Xsupp (Q)-

Proor. Clearly supp(P&Q)csupp (P)xsupp (Q) always. To prove
the converse inclusion let xesupp (P)Xsupp (Q)—supp (P®Q). Since
supp (P Q) is a closed set, one can choose open sets [f, V, such that x¢
cUXVand {U X V)risupp (P& Q)= 0. Now since U (resp. V) is non-empty
open set in supp (P) (resp. supp(Q)), thus

(PeQUUXY) = P(U)Q(V)=-0.
This contradicts to supp (P2QNUX V)= 0.

CoroLLAarY 1. Let f, g : X~V be continuous. Let P be a regular proba-
bility measure on X such that X = supp (#) and f, ¢ are independent P-

stochastically. Then (£, £) (X) : (X)X g(X).
Proor. By femma t measures g, v defined by formula
%) nRr(A) = P{f~{A)Ng(A))

are regular. Thus (f, ¢1(X) = supp x®@r = supp uxXsupp r = f(X)rxg(X)
by lemmas | and 2.

For every topological space X, which contains non-trivial connected sub-
sets we define a cardinal number i, in the following way:

my = minfu:n = card -1, Ac X closed connected, n=1}.

Clearly nt, == ¢. I next lemma we give lower bounds for m..:
Lemma 3. Suppose X contains connected subsets of cardinality = I.

(i) If X is Hausdorff space, then nry == x,,.
(ii) If X is complete metric space, then we=c.
(iiiy If X is compact Hausdorff space, then m, =c.

Proor.

(i) Suppose that m, = 5= [. This means that there exists a closed con-
nected set of the form {x,...,x,}. Let U>3x; be open sets such that
xqU; i=273,...,1 Then U = N U; is an open set and x, €U, x,, ..., X, §

i
¢ UJ. This means that {x,} is au open set in relative topology gencrated from
X. Since it is well-known that {x} is closed sel, we get a contradiction with
the assumption that {x,, ..., x,.} is connected.
(ii) Let ¢ be a metric onr X such that (X ) is a complete space, Let
Ac X be closed connected set with card (A)= 1. Then by (i) card (A)=8&,. We
will construct 2% Cauchy sequences (z,) with different limifs in A.
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Let x, =y, €A be arbitrary, and z,€{x,, ¥,}. Supposec that z;, ...,z,_;
are defined as arbifrary elements z,€{x,, ¥} k=1, ..., n1—1 Since A is
connected, it does not contain isolated peints. Thus there exist x,=y,

1
such that d(zn_,l;x")fz_gd(xn_l; r._1) and d(zn_l;yn)_-;% d(x,_; V,_y) Let

2,€{x,, ¥} be arbitrary. Then d(z,;z,4,)=3"" d(x,, ;) thus (2,) is Cauchy
sequence. Let (z,} and (z;) be different sequences obtained by the above pro-
cedure (with the same points (x,,, v,) if possible). Then lim z,, = lim 2/, because,

for sone f, d(zn ; z::) = d(xm .vn} =0 and for every k d(zn'i-k; Z::+J'.') }% d(xm vn)

Since A is closed limz, ¢ A, thus card A=«.

(iii) I dea of the proof is essentially the same as in (ii). It suffices to con-
struct 2% (ecreasing sequences of compact sets K, =0 disjoint for large n.
To do this it suffices to use a standard property of compact Hausdorff sets:

(P): for every different points x, ye K there are open sets Usx, Vav
such that U v =1

Indeed, let Ac K be closed connected set with card A= ). Let x; =y,
he arbitrary elements of A, Since 4 is compact, using (P) we obtain UJ, and
V.. Let K, be U, or V.. Since A does not contain isolated points, one can
choose points x, > y,€ K, and once more appiy () ctc. By induction we
obtain 2% decreasing sequences (K,). However A is compact, thus N K, ~

and card A=c,
The main result of this note is the following proposition:
Provosimiox. Lef X, Y be fopological spuces, P be o regulur probability
measure on Barel subsels of X. Assume that f, g X~ Y are non-constani con-
tinigus P — independent functions such that

(f, ©) (supp P} is closed,
g (supp P) is connecied.

Then for every y€f(supp (P)) card f=1(y)=1ty.
Proor. By corollary 1 (f, g) (supp (P)) = f(supp P)Xg(supp P). Thus
if yesupp P then card f='(y)>=card ({¥} X g{supp P)) =my.

CoroLLARY 2. If P is a regular probability measure on a connected non-
trivial topological space X and f, g are continuous P — independent map-
pings: XV such that (f, £) (X} is closed and for some y,€ ¥V

2) 0- card f ' {(vg)=min {ny; ur,}
then condition
(3) for every open non-empty G X, P(G)=-0

implies that g is a constant function.

Proor. First let us mention that condition (3) means X = supp P.
Secoud observation is, that f:<const. Indecd, suppose f is constant, Then
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X = f7{y,), thus by (2) card X =m, which is impossible. Since g(X) is
a connected set, the proof is finished by Proposition.
Now we will state in explicit forin a generatization of Boszxay’s result.

CoroLLary 3. Let £ be a probability measure on a compact Hausdortf
connected set K such that for every open non-empty & K P(G) = 0. Assume
that for some topological Hausdorff space V f, g: K-~ ¥ ave continuous -
independent functions such that for some y,€ ¥ O=card f~(v,)=c.

Then g is a constant function.

Proor. It sufficies to apply corollary 2. Since K is compact, so is
(. ©)(K). Thus by lemma 3 assumiptions of corollary 2 are satisfied if K is
not one-point set. Clearly if card (K) = 1, then g = const either.

AppED 1N PrROOF: The author wishes to thank G. ZBacganu for peoint-
ing out an error in the formulation of Corollary I.

In the case X = ¢0, 1} Corollary 1 was proved by J. HoLerook: Sto-
chastic independence and space-filling curves, Ann. Math. Monthly, 88
(1981), 426 - 432.
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in the present paper the set of the maximal elements of some subset X
of a partially ordered set L is described by the set [X],. of the T-isolated
elements of X where T is a closure operator on L. For that purpose a modifi-
cation of the theorem of Krein —MiLman is used. By this description the
set of the maximal elements of X is equal to the set of the maximal ele-
ments of { X ]. Analogously, there exists a description of the set of the mini-
mal elements of X, too.

0. Infroduction and results

By the theorem of KrREIN —MiLman every compact and convex subsef
X of a lecally convex space is equal to the closed convex closure of the set of
the extremal points of X (see KRN —MiLMAN [4], K&THE [5]). In this paper
there is concluded a modification of the theorem of Krein—MiLman for
closure operators. For that purpose let L be a set. The power set of L is
denoted by P(L).

Then a map T from P(L) into P(L) is called a closure operator on L iff
the following conditions hold for X, Y € P(L) (see JonssonN [3]).

(0) XET(X).

(1) From XSV it follows thai T(X)S T(Y).

(2) T(T(X)) = T(X).

Any element x of X is cailed T-isolated iff x¢ T(X —{x}) (see ScumioT
[6]). The set of all T-isolated elements of X is denoted by [X];.

There is given a sufficient condition such that X = T([X];) holds for
some subset X of L.

Now let L be partially ordered by the irreflexive relation <. Let max (Z)
be the set of all maximal elements of Z for ZE L. For any element z of Z
one has z¢max (Z) iff there is no element 2z, of Z such that z<z, (see
GRrATZER [2]). Then in P(L) there exists an equivalence relation y such that
y ={X, Y): X, YeP(L). max (X) = max (Y).}.

2 ANNALES — Sectic Mathematica — Tomus XXVI.
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t.et M be a family of sets. Then the union of ali elements of M is denoted
by WL If M =0, then the intersection of all clements of M is denoted
by 0.

TueEorEM 1. Lel p,Sy. Assume that from
TSy, UK, Y) (Y, XY UK, X): XeP(L)}
il follows thal
(UEX (X, V)eT), UV (X, V)eT )4y,
Then the folloving holds.
(0) A closure eperufor T on L is defined by the formulu
TXYy= N{Y: X YeP(L).
From (U, W)ey, il follows thal US Y {ff WE Y}
Jor XeP(L).
(N If XoeP(L) and X, EXST(X,), then (X, X)ep. |
There exists a subset p, of p, satisfying the assumption of theorem !, by

THEOREM 2. ol »,C . Assumie that for every elemeni (U, W) of », the
seis U, W are finite. Then from

TS, UiX, V) (Y, Xdep JU{(X, X): XeP(L).}
it follows fhuat
(UIX (X, Y)ex), U{Y: (X, V)eTDer. §

Now let p, be a subset of 9, satisfying the assumption of theorem 1.
Furthermare, let T be the closure operator on /., existing by theorem 1.
Obviously, then there exists a subset £, of L XX P(L) such that

TXy=nn{Y: XS VYEL.
From (x,, X)X and X, SV it follows that x,c Y.},
Assume that there cxists a ternary relation ¥ in P(L), i.e. FELP(L)X

X P{LY» P(L), such that the following conditions hold where N denotes the
sel of the natural numbers.

(3) From (F 1, F, F)eF it follows that F-1nF1C
{4) There exists no subset {(F F, Fy:ieN) of 3 sucll that
(ROAN. . OR)S(ROE. . NENFL4)
for every natural number i,

(8) If (x, X)eX., (F~', F, Fed and xe FiN FY, then onc of the fol-
lowing conditions holds.

(5.1) There exists an clement x_, of X such that x_, 4 F'.
(5.2y XSF-'(n FL
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Let X< L. Then the §-closure 3{X) of X is defined by the formula

FX) = NLYU{F : XS FL There exists an element
(F-1, F, F'y of P(L)x P(L)x P(L) such that (F-1, F, F1}¢%.)).

F(X) is called (D, F)-compact iff from (x5, X,)€0, (x,, D, x,eH(X)
it follows that there exists an element (x,, X,) of £ with the properties. For
xe X, there exists an element (F,!, F,, F!) of § such that

(XUl UX)NF = [ EHXONE
and FX)EFL
Now one has the announced modification of the theorem of Krein —
MiLman.
THEOREM 3. Let X< L. If F(X) is (2, §F)-compact and F(X) = T(F(X)),
then F(X) = T([FX)]r)- §
One obtains the theorem of Krein—Milman for an Euclidean vector
space L if the following three assumptions hold.
(6) If XS L, then T(X) is the convex closure of X.
(7) L= {{x, X}: (x, X)L X P(L). There exist collinear peoints x,, x, x,
of L suich that x = x;, X = {x;, x,} and x, is between x, and x,.}.
8y (F-, F, F1)eg iff F is a hyperplane of L, F~1 and F* are closed
halfspaces generated by F with F-1nF = F.

Let X be a bounded subset of L. Then F(X) is (2, §)-compact and
FX) = T(HX)). [F(X)]y is the set of the extremal points of F(X).

Finally, from theorem I and theorem 3 one obtains the following theo-
reims. )

THEOREM 4. Let X G L. If §(X) is (D, F)-compact and F(X) = T(F(X)),
then (F(X), [FO)er- 1

TreEoOREM 5. Let XC L. If F(X) is (03, F)-compact and F(X) = T(X),
then (X, [X]r)ev, (X, FX) ey, (HX) [FX) ) er- |

1. The proofs of the theorems

Lemma 1. Let & be a map from P(L) into P(L) with the following prop-
erties for X, Y¢P(L).
(0) XS h(X).
() H(X)SH(Y) for XEY.
Then there exists a closure operator T on L such that
T(X,) = N{X: X, EXeP(L). (X)) =X} for X,eP(L).
From
DXg) = N{B: X, cHBCPEL). H X, then A(X)eH.
It Y&, then UPed.}

Q%
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it follows that $(X,) is well-ordercd by set inclusion (see Bacumaxx [[])
and the following holds.
(2) T(X,) is the greatest element of H(X,).
(3) X, is the least element of H{X,).
{4) The successor of any element X of N(X,) is #1(X).
(98) For every limit-element X of H(X ) different from X, one has X =
= {V:YCX. YED(X,).}

Proor. Let J be the tamily of all subsets 9 of H(X,) well-ordered by
setinclusion with the following properties. X is the least element of (.

The successor of any elenient X of ¥ is i(X).

For every limit-element X of ¥ different from X, one has

X = U{Y:YcX, Vell).

From U, Be A it follows that A is a section of & or (% is a section of
9 or ¥ == (¥, Without loss of generality assume that ¥ - =0. Let A be the
least element of ¥ — & and assume that R{A) =: [X: X e X AL 1t follows
that R(A)YZ@. Moreover R(A) = (.

The assumiption R(AYc® leads to a contradiction as follows. Let B he
the least elernent of @ — R(A). Since X, € G R(A), one has X, < 5.

Then two cases are possible. B =n(B8) and B'¢ R(A) hold. Hence
Bed and B’ A 1t follows that B9 and BCSA. Assume that B =
= U3 BB Be® ) and B eR(A). Hence B¢ and B = A, Thus
BeX and BTA, toe. Since A4($, one obtains that 8 = A is impossible.
Thercfore BC A BER(A), a contradiction.

Assume that B = U Ae A} Then Ve . First A is ordered by
setinclusion. Then & is ordered. From X, YeX5 and I, e H and Xc¥,
Ve it follows that X, Ve without loss of generality, Hence X = Y or
Xc VY or Yo X. Moreover ¥ is well-ordered. Assume that @=93C %, Then
there exists an clement ¥ of & such that WA <G, From 030U it
follows that there exists the least element W, of I8N 9. W, is the least
element of 28, too. Otherwise there exists an element W, of 38 such that W, c
C W Since W, is the least element of WM 9(, one has W, ¢ 9.

Therefore there exists an element & of _# such that A and W, €.
Moreover U = {X: X€®. X< B.} where Be®. Therefore W,c B and BSW,.
Hence W,cW,, a contradiction. Asswime that the element X* of % is the
successor of an element X of V. Then there exists an element A of # such
that X, X*¢¥ and (X)) = X*. Finally, let X be a limit-element of . As-
sume that X7 X,. Then there exists an clement 9 of _# such that Xe¥(
and X is a limit-element of 9. Therefore

X=U{Y: YCX. YU = UlY: YoX Yedll.

Now it follows that 8 = $(X,). First 8 is the greatest element of _#
in regard to setinclusion. Moreover, one has BEH{X,). The assumption of
Bey(X,) leads to a cuntmdlchon as follows. Two cases are possible.
There exists an element A" of 8 such that A = #(A)4B. Then A" is the
greatest element of 2. Therefore B WY {A} such that R fA e #, a con-
tradiction.
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There exists a subset 76 of B such that JZ54¢RB. Then there does not
exist an element A of B such that X = A where X €45, Otherwise let A¥ be
the least element of B such that X < A* where X ¢ 0. A% is not {imit-element.
Otherwise U d6 = A*, contradicting 1 jZ¢%B. Therefore A* is isolated.
Now there exists an element A" of ¥ such that A(A") = A* and A'C A*.
From the assumption on A* it follows that A’ is the greatest element of 76
and A" = U, contradicting UZ4¢%B. Therefore U = UBLB and
Bc U®B where BeXB. One has BeBU{U B} and BU{U Ve H contrary
to the fact that ¥ is the greatest element of .

T(X,) is the greatest element of H(X,). First UH(X,} is the greatest
clement of H(X,). It follows that

UDX)SA(UDX)) S UDX,) -

Hence UH(X,) == AU DH(X,)). Since X< UH(X,), one has T(X)E UHX,).
Moreover T(X,) = UH(X,). Otherwise T(X )<= UD(X,). Then there exists
an element X of ${X,) such that XL T(X,). Now let X* be the least element
of H(X,) such that X* ET(X,). Then two cases are possible. X* is isolated.
Then there exists an element X” such that X' X*, i{(X") = X* and X' ¢
S T(X,).

It follows that X*CS(T(X,)) = T(X,), a contradiction. X* is a limit-
element. Then X* = Yf{X: XCX* Xen(X,).} and from X€9H(X,) and
Xc X* it follows that X< T(X,). Then X¥ET(X,), a contradiction, too.

Finally, a closure operator 7" on L is defined by the formula

T(X,) = N{X:X,SXEP(L). i{(X) = X.}

for X, € P(L). Obvicusly, from X< Y<EP(L) it follows that X T(X) and
T(X)S T(Y). Since I(T(X)) = T(X) it follows that T(T(Xy =T1T(X). 1

PRrooF OF THEOREM 1. Let 1 be a map from P(L) into F{L) such that

XY= XUUY (Y, )€y ZEXJU ULZ: (Y, Z)Ey,. Y X}
where X< P(L).
1 XS YeP(L), then obviously X< (X) and i{(X)SA(Y). Now i(X) =
= X iff the following holds. From (Y, Z)¢y, it follows that YE X iff ZC X.
From lemma | one obtains that a closure operator 7 on L is defined
by the formula

TX)= N{Y: XS YeP(L).
From (U, W)¢y, it follows that US Y iff WE Y.}

for XeP(L).

Let X,€P(L). By lemma 1 one has a set $(X,) such that X, T(X,)¢
€H(X,). Now from XeH(X,) one concluds that (X,, X)¢y. First one has
(X4 Xo)Ep. Assume that there exists an element X of H(X,) such that
(X, X)¢y. Then in refation to the well-ordering of £(X,) there eXists a
least element X* of H(X,) such that (X,, X*}{y and X,c X*. Two cases
are possible. X* is isolated. Hence there exists an element X* of $(X,) such
that #(X’) = X* and (X,, X" )€y. It follows that (X', #(X"))€y. Assunie that
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T={V,Z): (Y, Deyy. ZEX YUY, £): (£, V)Ey,. ZEXJU{(X, X))
Then from the assumption on 3, it follows that

(ULY (Y, 2)€1), ULZ: (Y, £)€1.)) = (A(X"), X') €.

Therefore (X, X*)€y, a contradiction,

X* is a limit-element. Then X* = U{Y: VcX* Yep(X,).) From
YeH(X,) and ¥ X* one obtains that (X, Y)éy. One has max (U{Y:YC
cX* YeH(X,)}) Smax (X,). Assunie that x,emax (U{Y:YcCX* Ye¢
€9(X,).}). Then there exists an element Y of H(X,) such that Y < X* and
x,€max (Y} = max (X,). Furthermore, max (Xg)Smax (U{YV: Y X* Y¢
€H(X,).}). Assume that x, € max (X,). The assumption of x, ¢ max {U{Y: Y
CcX* YeEn(X,).}) leads to a contradiction as follows. Then there exists an
element ¥ of H(X,) such that Y X* and x,4max (¥} = max (X,). There-
fore (X, X*)¢v, contradicting the assumption on X*.

Now it follows that (X,, T(X,))¢y. From X, € XS T(X,) one obtains
that T(X) = T(X,) and therefore (X,, T(X))¢y. Furthermore (X, T(X))¢5.
From this fact and (X,, T(X))€y it follows that (X, X)¢y. §

Proor o THEOREM 2. Assume that 3¢ P(L) such that every clement Z
of 8 is finite. Then
max (U 3) = max (U {max (Z): Z¢G.}).

From z,emax (U 3) one obtaing that there exists an element z, of 3 such
that z,€ Z,. Then z,€max (Z,) and z,€max {U{max (Z): Z¢9).}).

Let z, be an element of max(U{max(Z):Z¢3.}) such that z,¢
emax (£,)& Z,€3. Assume that there exists an element z; of max {3}
such that z,<z,€Z,¢8. Since Z, is finite, there exists an element z¥ such
that z,<2z, =zFemax (Z,), a contradiction.

Since

(X, X) = (UHlx}: xe X, Uffx}: xe X))
there is assumed without loss of generality that for every element (U, W) of
T the sets U, W are finite,
Finally, it follows that
max (U{X : (X, V)€3.)) = max (U {max{X):(X, Y)ei}) =
= max (U {max (¥): (X, Y)€3.}) = max{U{V: (X, V)eZ.}). ||

Lemma 2. Let i be & map from P(L) into P(L) such that the following
trolds for X, YeP(L).

(0) X< h(X).

(1) From XCV it follows that H{X)Sh(Y).

Furthermore, let [ X ], be defined by the formula
[X], ={PoxeX x¢h(X—{x}).}.

if T is the closure operator ont L, existing by lemma 1, then [T(X)}y =
= [T(X) ]
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Proor. From x€ T(X) it follows that x€ T(T(X)— {x}) iff xe i{T(X)— {x}).
Obviously, from x€ i(T{X)—{x}) one obtains that x¢ T(T(X)—{x}).
Conversely, let x& T(T(X)—{x}). Consider the set H(T(X)—{x}), exist-
ing by lemma 1. Then T(X) is the greatest element of H{T(X)—{x}). From
this fact it follows that x€ #(T(X)— {x}). Otherwise, T(X)—{x} is the greatest
element of H(T(X)—{x}), contradicting (T(X)—{x}) = T(X). |
LEmma 3. There exists no subset {75, : i€ N.} of P(§F) such that the fol-
lowing conditions bold.
(0) & ¥4y for feN.
(1) N{F: There ¢xists an element (F~', F, ) of P(L)X P(L}XP(L)
such that (F- 1, F, FlYye§;.1o
o N{F: There exists an element (F-1, F, F'Yy of P(LYX P(LYX P(L)
sach that (F7', F, F1)€3, , .} for every natural nwmber i.
Proor. Assume that the lemima does not hold, Then there exists for
feN an element (7}, Foy, F' ) of §- such that
MHF: There exists an element (F=1, F, FYY of PLYx P(LYxP(L)
such that (F7', F, FHeF, 1o
S F: There exists an element (F=1, £, £1) of P(LYXP(LYXP(L)
such that (F=', F, FOeE. N Fy )
Let (F'. . F)ER,. Then
(RNEN...NE)>FEANRN...NENFL)
for every natural number {, a contradiction. J
Let ¢ be a map from a set A into a set B.
Furthermore, let X be a subset of A. Then the image ¢ (X} of X is de-
fined by the formuta ¢ (X% = [y (x):x€ X}
LEmma 4. Let A and B be sets. Moreover, let B he partially ordered by

the irreflexive relation R. There is assumed that there exists no subset
{y,:icNJ} of B such that
(U Ve)ER, (Vo VIER, . (Ve V)ER

for every natural number /.

Let ¢ be a map from A into B. Finally, let § be a propesitional function
with the domain A such that the following condition holds.

(0) Let x¢ A If S(z) is true for every element z of A with (¢ (2), ¢(x))€

€R, then S(x) is true.

Then S(x) is true for x€ A.

Proor. Assume that there exists an element x, of A such that S(x) is
false. Then there exist a naturat number s and clements ¢¢x,) ¢ (), - -,
¢(x,) of g{A) such that

((f'(xl)s ‘."(‘\'0)) €R, ('f ('\‘2)1 i (‘YI)) €R, ..., ((‘r ('\-n)’ Q('tn—l)) eR
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where S(x,), S(x,), . .., S(x,) are false and S(z) is true for every element z of
A with (p(z), p(x,))€R. Then S(x,) is true, a contradiction. ||

Proor orF THEOREM 3. Let i be a map from P(L) into P(L) such that
h(X) = XU{x,: There exists an element (x,, X} of & such that X, S X.}.

Then X G #(X), (X)YSH(Y) for XS YeP(L).
Then from lemma 1, lemma 2 and F(X)E T([F(X)],) it follows that
theorem 3 is true. Therefore it is enough to show that F(X)<S T([F(X)],)-
First, x,¢[F(X)], if x,€F(X) and from (x,, X)€€, X, EF(X) it fol-
lows that x,€ X,
For x,€%(X) one has x,€ T([F(X)],)-
Obviously, from x,eF(X) and (x,, 0)€ L. it follows that x, € T F(X)],)-
Let [F(X)], be the set of all elements x, of F(X) such that (x,, B¢
and there exists an element (F~?, F, FY)of § with x,¢ F~'N FL and F(X)&
CFL.
Let P(%) be partially ordered by the irreflexive relation R in such a way
that from §,, §.€P(F) one obtains ({,, §,)¢ R iff following conditions held.
(0) T <B:
(I) N{F: There exists an element (F~%, F, F') of P(LYXP(L)XP(L)
such that (F-!, F, FHe§,.jc
< N {F: There exists an element (F-1, FF, F') of P(L)x P(LYx P(L)
such that (F-!, F, F1Ye%,.).

It follows from lemma 3 that there exists no subset {y,: i€ N.} of P(F)

such that
(Vo Yo)ER, (o, MCR, -, (Vv VER
for every natural number {.

Furthermore, let ¢ be a functien from [F(X)], into P(F) such that from
X €] H(X)], it follows that

#(%) = ((F2, F, F1)1 (F=1, F, P)ER. x, € F10 FL §(X)S FL).

Now there exists for X, €([F(X)],—{F(X)],) an elenment (x,, Xy of &
such that X, S[F(X)], and (p(x), g(x))€R for x€ X,

First, from (x4, X )€, (F~4 F, FLYeF, xeF1NF, FHX)SF! and
XoEF(X) one obtains X, & F-'NF. Otherwise, there exists an element
x_, of X, such that x ., 4 F'. Therefore x_, 4 ¥(X), a contradiction.

Now let x, be an element of ([F(X)],—[F(X)],)- Then there exists an
element (x;, X,) of & such that X, EF(X) and x,4 X,. Since F(X) is (&, &)-
compact there exists an element (x,, X,) of O such that the following holds.

For every element x of X, there exists an element (F. 1, F,, F1) of § with
XUV Xe)NF = (TN A

and §(X)& FL. Therefore X, S[F(X)],.
Furthermore, one has X, EF-INF! for (F-1, F, FHEF where x,€
€FINF and F(X)EFL
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Moreover x,§ X,. Otherwise No€ Pt . B
From this fact it foilows that X,U {x,}U XoE RN, Then XU
U fxehU X = {xg). Since X, 0 one obtains x,€ X,, a contradiction. Now
one has for every element x of X the inclusion
(F", F, FY): (F3, F, FY)eg. x, € F 1\ FL S FLIC
C{(F-Y, F, FYy: (F-\, F, F)eF. x€ F~10 FL §(X)S F1).

Since x,4 F, for x¢X, one obtains

N{F: There exists an element (F~4 F, F') of P(LyX P(LYx P(L)

such that (F-1, F, FI)eF. x¢ FIN F. §(X)C FL)c

< N{F: There exists an element (F~1, F, F1} of P(LYXP(L)XP(L)

such that (F-1, F, F)eG. x,€ F1 N FL §(X)S FL).

Therefore (g(x), (%)) €R for xe X,.

Let x, €[F(X)], such that from x€[F(X)], and {g(x), ¢(x,))€R it foi-
lows that x¢ T([F(X)],). Then x,€[F(X)], or there exists an element (x,, X,)
of £ such that (p(x), p(x))€R for x¢X,. In the second case one obtains
XeT([F(X)],) for xe X, Therefore X, T([F(X)],) and

X €AX Y ER(T(FHX]N) = TUFOOL) -

From iemma 3 one obtains that [F(X)],E T{[FHX)].)-

Finally, let x; be an efement of (%(X)—([EE(X)}OU [E(X)]h)) such that
(xy, W)€% Since F(X) is (L, F)-compact there exists an element (x,, X,) of
33 such that X, S [F(X)],.

Therefore x,cA(X,)S: B SHT(SX)]) ) and %, € T([F(X)]1,)- I

ProoF OF THEOREM 4. From [F(X)],SFHX)ST([F(X)}r) and theo-
rem 1 one obtains (F(X), [F(X)]r)ey. |}

Proor oF THEOREM 5. From
[T} € [X | S X EFNET([F(X)]r)
and theorem 1 one obtains (X, [X] )¢y, (X, F(X)) ey, (FX), [FX)])€r- 1
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By

THARWAT FAWZY
Suez Canal University, 1smailia, Egypt
{ Received December 24, 19050}

In the recent years there has been great interest and progress on spline
approximation of functions. In most investigations, the functions satisfy
certain smoothness conditions. [n this paper we construct a cubic spiine
which converges to a discontinuous function in the L? norm if this function
is defined and hounded in [0, 1] with that norm.

Let £ be the interval |0, 1], L*({2) is the class of those functions f{x)
defined on 2, which are measurable and for which | f(x)|* is integrable on 22
and have the norm

Wi = [ J e a'x]” .

Let us divide the interval [0,1] into equal subintervals [x,, x,;,] and
leth=x 4 ~x,k=0,..., N—1 If for any x€[0, 1],

JE+O)+f(x—0)

2

exists and bounded then we define

X+ 0+ [ —0)
2

() Vi = f(xp) =
Our spline function approximating f{x) will be given in the following
theorem:
THeEOREM 1. If A denoics the mesh poinis,
Ji0=x, =2, = 0 =X, <X~ ... <Xy=1]

witht ft = Xpp— X, and k=0, 1,..., N—1 then there exists a unigue spline
Sunction S 4(x), approximating f(x), which has the following properties

(2) Sal)eC0, 1],
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def ' —
(3) SH0) = 5,00 = ¥ ‘7—” (X — X+ 6 (X — X7 + a8 (x — )"

where xc[x,, x,., Jend k=0, 1,..., N-2,

(4) Sy} = Sy_lx)-
Proor. From (2) and (3) it is easy to get
(3) a4+ h =0
and
(6} 200 + 30T R = Vg o —2Vun TV

Equations (3) and (6) have the unique solution

- ] I ’
(M) 0y = 1 (Frao—2Vis1+ Vi)
and

. ] ,
(&) ) = ey Vi =2V 130

and this compleles the prouf.
THEOREM 2. For any function g(x)e CO[0, 1], S.(x) converges uniformiy fo
#(x) as i~ O and for all x<[ 0, 1] the inequality
Lo(x) - S 4(x)] = Goa(lr)
holds, where (i) is the medidus of confinuity of g(x).
Proor. Forx, = x = x,.,,,
l£() =S| = |gx)—Su(x)] =
=) — 8OO + 184 1= Lel A28k — 20s 1 G =
= |2} =g + 1804 ) — )+
+ 2|8 (X4 2) — 8004 D+ 8001 ) —£()) =
= o)+ o)+ 2(w(h)+ o)) = 6uw(fl).
THEOREM 3. Lot f(x)€L*{0, 1] with the norm

A

Il = [ Ofl | /() dx]I

If for any x¢|0, I],—-;— {(f(x+0)+ f(x—0)) exists and bounded, then the spline

Sunction S 5(x) constructed (1 Theorem 1 converges to f(x) as fi~0 in the normn
defined above.
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Proor. Let {f, denotes the set of all polynomials of degree =<un. If P, (x)
is the polynomial of best approximation to f(x) in the norm L2, then for

arbitrary Q, €11,

9 EMFLﬁM%&®H4:4fMWﬂMWM 
Ef)=E(= ... and lim E{/)=0.

- &a

Since for any V(x), the relation
1 N
(10) o > [ V)2 dx ~ !I;‘ZO[V(X,‘)F
5 -
is true, then

: N
(1n n= f LfC) =P (O dx = I ;0 0= Palxd)* = 0(1)
b -
for sufficiently large ».
Let us definefork=0,1, ..., N

P (x,+0M+P.(x,.—0
(12) Poli) = py =t OBl 20)

and for x, = X = X, , S.4(x) = §,(x) denotes the spline function approxi-
mating P, (x) and constructed in the same manner as S,(x) of Theorem 1, i.e.
forx, =x=1x.4,,

(13) _S_J (x) = Sy(x) = pp+ Prer=Pu (2 —x,) 4 bR (x — 2. )2 4 BYO (x — x, )3,

h
N
(14) bR = _-;;1;_ (Prva— 20511+ 1y)
and
= . [ ’
(15) B = - (Prv2 =201+ p)-

Now we proceed to the proof of the theorem as follows:

(16) [ 1 -5.)]2dx =
0

1
= Uf (LFC) — P + 1P o(x) — S400)] + [S(x) — S ]} dx =

I

1 1
2 [ £ — PP dx+4 [ [Pox)— a2 dx+
li] i}

1
+ 4 [ [84(x) - S4(0)12 dx
0
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and

1
a7 [ 1S40 —Sa
0
1
+—(Prr1— Pr—
f

1
_E(pk-l-:’.“

]
+ iy (Pr+a

P

Xpaa

-3/

K=0%,
N--1

f:zzf

k=03,

Xpry

+2Zj'

K=0 %,
_ .;frl

K= (1 %
N—1 Tkt

+4zj
=10 xj
N

— 4k

k=0

and from (11) we get,

(18)

(19}
and

(20)

— 2Pt P —

Xi+1

1 Kkt

f U=y +

*k

(x)]2dx =

=0

Vierr t V) (x—x)—

2Pt P Veso+ 2V — Vi) (X — X2 +

Vera+ 2V — V) (X=X *Y dy =

B {x—x, )—- -—Cﬁ(x x )P +El§(,‘k(x—xk)3}_dxs

{ A, +- : B(x— xk)}" dx +
1
-Cplx — X, + C:.(x - Y;fr)r‘} dx =

5

A*de~4 f
X

e B;{(r X )P dx +

~1 Xkn

1 = CRx =X} dx+4 Z f x - Chx—x)tdx =

i > Aj =o(l),
k=0
N-1

h Z B = o(1)
k=10

N—1
> Cy=o(l).

=0
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Combining these resutts of (18), (19) and (20) with the last result of (17) we
get,

@1 [ 8.0 —Ss0)12dx = o(1)

for sufficiently large n.
Now consider

]
(22) 1= [P0 -8 dx.
o

Since P, (x) is a continuous function, we get from Theorem 2, where g(x) is
replaced by P (x),

(23) |P(x) —S.x)| = bax(P, k)

where w(P, 1) is the modulus of continuity of P, (x), and thus
i
(24) [ 1P.(0) —S.0)12dx = o(1).
0
From (11), (21} and (24) the result of (16) becomes

1
(25) J 1)~ Su0F dx = o(1)

and this completes the proof.
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As pointed out by A. BieLecki, L. Janos, and others ([1], [5]) the
Banach contraction principle, when applied to the theory of differential
equations, provides proofs of existence and uniqueness of solutions only
in a local sense. In [2], 5. C. CHu and J. B. Diaz have shown that the con-
traction principle can be applied fo functional equations if the metric of
the underiying function space is suitably changed. In [3], W. DERRICK
and L. Janos applied the ideas of Cuu and Thaz to the differential equation

= f(x, y), where f(x,y} is a continuous function from (—a, g)X E™ into
Em 0=a= «, satisfying a certain global Lipschitz condition. In [4], the
preseit author extends the result in [3] to the differential equation ¥y (x) =
= f(x, y, &, ..., y-1), where f(x, y, ¥, ...,y is continuous on
(—a, O)}XE™"X...XE™ jnto E™, O<a=<w, satisfying a global Lipschitz
condition.

In the present paper we are concerned with the problem of the existence,
uniqueness and continuous dependence of soiutions of the following func-
tional-differential equation

) ¥ @) = f(x ¥ (), ¥ (), 1),

in the interval f = (—a, a), 0=a= o, where k;, i = 1, 2 are continuous on
J into J, fis a continuous vector-valued function on j X EmX E™X E into
Fm satisfying the global Lipschitz condition

@) 17C6 Vi Vi 1) — 3, VE, 3, 1)] = z 2, () |9~y

for every (yy, ¥2) O, ¥2)EE™XE™, x€ J, ue¢ E and non-negative continuous
functions 2, (x), { = 1,2 defined on f such that:

either
(A} 2,(x)=¢;=0, i = I, 2 for all xcJ and 2,(x) non-increasing for
x=0 and non-decreasing for x=0;

3 ANMNALES - Sectio Mathematica — Tomus X XV1.
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or
(A2) 7,(X)=k, i = 1,2 for all x¢f.

Here ¢, ¢, k are some constants and |- | denotes the usual norm in £7,
Following [3], we let {/,]f= I} be an increasing family of compact in-
tervals which contain zero and U /; = J. We denote by ¢(/;) the Banach

- . j 0 . - -
space of continuous vector-valued functions g : I, - £ with the norm

H X
3) o = sup s 7] [ 2 oa0a ‘] 129 I}
=ty u ' _
if (A1) holds: and with the norm
4) Kl » = sup {exp (— 2 Ix{) [g(0)}
Ne ;

if (A2) holds, where 7 is an arbitrary parameter. The Fréchét space ¢f J)
may be topologized by the family of sciinorms {Jigl;, 5! j=1}. If 2 =0, the
spaces ¢(/;) have the usual sup norm -, on I

THEOREM 1. [f the function f(x, v, V., ) satisfies (2) and (Al) and if
(3) xh(x)=0, hx)i=|xl, xef, i=12,
then the initial value probiem v{(0)y = v, v (00) = v, flus a unigue solation v
Jor every (3, ¥ )e ERXXEM which is given as the Iinit of Successive approxi-
mutions.

Proor. Let [ be a compact subinterval of J containing zero and for
simplicity, dennte the nonu of geo({) by Jgii.. From (3), it follows that the
norms |lgl;, for arbitrary real 2, arve all equivalent to the norm |jgf,. The
identity

(h) | / exp (, j z(S)r.-'s;)z({)dtl — _{_Iexp ({j] i’(f)ﬁ'fi)—ll
(o iu i | i l ) : [

is valid for every xe f, 7 0.
We shall reduce our problem, by substitution

X 5

VX)) = 1, by, [ / gltydt ds
T
to the following equation
ap(xy s fra(x)
(7 e(x) = j[x,_v,, i () v, j jg(r)d:ds,yl+ [ g(s)ds, u].
¢ o U

Let u€ £ be fixed. It is obvious that the transformation @ = T(g) defined by
the right-hand side of (7) maps ¢(f) continuously into itself. We shall prove
that
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I i
8 Y = |14+ — —oll;
() 1Tg,~ Tl H'[ +M]llgz al

for all g, g,€e() and A= 0, where ¢ = min {1, ¢,, ¢,}. Using (2) and the defi-
nition of ||- |, we have:

mea s
T -Ta @ =<a®| [ [ le0O-g®idds|+
1] 0
frz (X}
+2,(0 | [ [B©)-n@]ds) =
0
B gx) s | k2 (%) i
2@ | [ [16O-a®lts|+u0) | [ 166 -g6) ds|=
O qa o]
l mx) s t .
<llg gl 15 () | [ [ exp ["i [a (u)zgtu)dur]drds +
l a0 ‘o !
A3 (X} | s :
+2,(X) j exp [Fﬁle(u)zg(u)dm]ds L_-:
) 0 ; I
X ¥ i
-zr|g2—g1n,-,{z1(x) [ e (3| [ awa@a|as +
a o Q
. ) ) ) 2, (u) du | | d |
+ 2, (x) Of exp [z !Uf zy (1) 2, (1) u]] sl
Stk 2] [ e (i) [ a @z @a)as)
. “exp (1] [ (1) 2, () dut! dsl =
+2,(x) 0fexp [/ Of z,(u) 2, (1) Hi] sJ
l l xz (8)25(s) ex [ ‘ : 1]
- 1 (8) 2, pla z, (1) 2, () du! 1 ds| +
/ I

< lga— galla -
- ]532 3

Of 2, (8) 2, (8) exp [,1 Lfsfﬁ (1) 24 () du‘!]ds

1
1 -

b
J

x

f 2, (8) 23 () ds
0

where we have used (3), (6), {(Al) and (6)), and (6) to obtain, the fourth,
fifth, sixth, and the seventh inequalities respectively. Thus

5-—]-—[] +—l— exp [A
cl ri

] lga— gl

g%
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1
umr@mi—p+

y h&—&m.

1
22

Now choose 2=0 so that —I-—[I + 21— <1 and apply the classical Banach
c/‘- C f\

contraction principle to 7 and the distance function |jg,—g,/l, to compliete

the proof.

TueoREM 2. The conclusion of theorem 1 holds under the assumptions (2),
(A2), and (5).

Proor. Using (4) and similar calculations used in the proof of theorem
1, we obtain

k 1
©) wg—wkﬂ;p+7ym—mu

for all g, g,ec(f) and 7=0. To complete the proof we need to choose i=0
k I

s0 that " [1+T]{1.
Fa A

Now we consider the problem of continuous dependence of sclutions of
our problem on a parameter i,

Tueorem 3. Lel the hypoihteses of theorem | be sutisfied. 1f there exist a
constant M and q funciion G = | — ] such that for every x€ J, u, 1, €E, (¥, ¥,)€
c Em % Em

(10) lf(xs Y Ya “)_f(xr Y15 Vas Hl)l {.G(X) Ju -~

and

(1 sup\[exp[——?.ir fle(x) z, () dri] G(X)lﬁ:M,
x| o D)

then solution y(x, uy of (1) fulfilling y(0, u) = yo, ¥’ (0, uY =y, is continupus
with respect fo the variables (x, u) in J X E.

Proof. For gee(l) we define the transformation T, (g) by the right-
hand side of the equation (7). From (8) we have

| i
|mxm~ﬂmmm€—f[rrq pm—ﬂm
¢ )

A

From the hypotheses we obtain

W (@) — T (Qla=M Ju—u,].
From theorem I, there exists unique solution g{x, u), g(-, u)cc(J) such that

X 5
Yoo wy=yotxy+ [ [ gt wydtds
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T, (g6 1) = gx, w), T (g%, 1)) = glx, 1) for xej .
Therefore, we have

1 | -1
llg(x, &) — glx, H1)||s.‘;—[1 - [l +f]] M |u—1,] .
) ct A

Hence y is continuous with respect to two variables (x, )€ J X E.

THEOREM 4. The conclusion of theorem 3 holds under the assumpfions of
theerem 2, (10) and

(12) ilg) {exp(—1 |x])G(x)}=M.

ReEmaRrK. The resuits of this paper can be extended without difficulties
to the following equation

P () = £yl (), YO (1 (), - 0 (B (), 1),

which in turn extend the result in [4].
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The present paper deals with two relational and two functional charac-
terizations of congruence relations on universal algebras and their applica-
tions to varieties of algehras. Following the recent investigations, see e.g.
2], I3], (6], we consider not only congruences but also other sorts of com-
patible binary relations as: folerances (= compatible symmetric and reflexive
relations), quasiorders {(— compatible transitive and reflexive relations), and
compatible reflexive relations. In particular, for any algebra 9 and any subset
M of A XN, the symbol

M)  denotes the congruence on ¥ generated by M;

T(M) denotes the tolerance on ¥ generated by M;

(M) denotes the quasiorder on ¥ generated by M; and

R(M) denotes the contpatible reflexive relation on A generated by M,

For the sake of brevity, we will write &({u;, b)), ..., {u,, b,>) instead of
A({{a,, b)), ..., {a,, b)Y and G(u, b) instead of G{{{g, b}}); analogously for
tolerances, quasiorders etc. The detailed results on compatible binary rela-
tions may be found in [2] and [3]; for other undefined notions we refer the
reader to the relevant sections of [8].

[t is well-known that the “‘generated’” congruences, i.e. the congriences
of the form O(M)}, McUAXY, play an important role in universal algebra
and thus the characterization of @(M) known under the name Mal'cev Lem-
ma, see [8; Thm 4, p. 55}, is frequently used. This Lemma contains the set-
theoretical condition {p,(a,), p, (b))} = {z;_1, z;} ensuring the symmeiry of
(M) and so there appears the question of a suitable description of the men-
tioned set equality by purely algebraic notions. In [3], the symmetry of
Oa, b) is expressed by means of tolerance T(gq, &) using the forntula

(¥) MNa,by= U T'(u, b)

M=
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where T+(a, &) denotes the relation product T(a, b)o ... o T(a, b) (n-factors,
ir=1) and T°(q, b) stands for the diagonal on Y. The right side of (%) can
be easily expressed in terms of binary algebraic functions; the obtained result
characterizing &(a, b) is therefore called the binary scheme. In this paper
we extend the binary scheme for arbitrary generated congruences, sce
Theorem 1 below.

As was just noted, the concept of binary scheme has its origin in the
symmetry of congruences, however, in many cases this property follows
directly from assumptions, e.g. this phenomenon can be found on algebras
in an n-permutable variety as was shown by J. Hagemann [10; Cor. 4, p. 7]:

“A variety V is n-permutable for some integer n>1 if and only if con-
gruences coincide with quasiorders on any algebra Ae V™. Clearly, in this
situation we consider Q(M) instead of @(M) and thus tolerances in (%) are
rewritten by reflexive compatible relations. This simplifies the functional
characterization of @(M) since the binary algebraic functions from the
binary scheme are replaced by unary algebraic functions, in other words, we
get the unary schieme characterizing @(M), see Theorem 2 of this paper.

We begin with the following three lemmas. Firstly, we recail the func-
tional description of T(a, b) and R(a, b); for the proof, see [2].
Lemma 0. Lef a, b be clements of an algebra . Then

(a) {x, yyeT{(a, b) if and enly if there exisis a binary algebraic function g

over U such that x = f(a, b), y = B(b, a); briefly: (x,y) = (X ) ({a, b, {b, a)).
(b) {x, vyeR(a, &) if and only if there exists a unary algebraic function o
over W such that x = w(a), ¥ = a(b); briefly: (x,¥) = (aXa)({a, b)).

Further, we express @(M) ard Q(M) by means of suitable tolerances and
compatible reflexive relations, respectively.

Lemma 1. Lef U be an algebra and lef M be a subsel of W X U, Then
OM) = U{T,, v o ... o T, v); (g, v, ..., (U, v)yeM}.

Proor. Since the inclusion T{g, )< &(a, b) holds for any elements a, & of
A we have also 7(u, v} o ... o T(u, V) S Huy, v) o ... 0 O, v,)=HM)
for any {u,, v)), ..., {u,, v €M and thus

U {T(uh vl) ORI T(Hm vn); <“1! l"l1>9 s <un’ VR>EM}QQ(M) N
Conversely, denote by & the union

U{T(Hl’ vl) ¢@...0 T(”m l’n); <“1: lr'1>, Ty (um 1"a-1>€‘ﬂ‘"“ir} '
Then it is easily seen that
(iy MCU;
(i) U is refiexive, symmetric, and transitive binary relation on ¥;
(it} U is a subalgebra of the square 2 X% since it is a directed union
of subalgebras of U x .

In summary, {J is a congruence relation on % containing the subset M; hence
O(M)S U and the proof is complete,
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An analogous result for quasiorders is given in the following lemma;
the proof goes along the same line as that of Lemmma 1 and is therefore
omitted.

LEmma 2. Lef A be an algebra and let M be a subset of WX Y. Then

QM) = U{R(u, v o ... o R, v,); Uy Vs o ooy (U, VYEM) L

Now, we are ready to characterize (M) and Q(A) in terms of algebraic
functions; the first statement is a slight generalization of [3; Thm I].

TueoREM L. Letf 9 be an algebra and tel M be a subset of M X N. Then the
Jollowing conditions are eguivalent:

(1) (x, ey,

(2) &L yeT(u,v) o ..o T(u,, 1) for some (g, ), ..., (un, Vo EM;

(3) (Binary scheme) There are elements iy, ..., U, vy, -.., ", of A aid
binary algebraic funciions 8, ..., 8. over A siich that (U, vyEM for
l=i=n, and

X o= gy, v)
Butt) =Biv Wiv 1y Vigy) Jor l=i<n
y = ﬁ” (l,n’ II") -

Proor. (1)=(2) follows directly from the preceding Lemma 1.
(2)=-(3). By the definition of relation product, there are elements
dy, ..., 4, of I such that

XN=dyy, Y =Fdgias
and
(a;, e pET(, 1)) for d=i=n.
Using Lemma 0 (a) we get hinary algebraic functions 3,, . .., 5, over % with
=B, vy, 4, =8,u) for l=i=n.

In summary, condition (3) follows.
(3)y=(1). Clearly, {B,(u;, v)), 5: (v, t;)y€T(u, v;) hotds for all I=i=n.
Combining this with

x = (i, 1)
ﬁl(v”“)_ ¥- 1(”1-1? r‘l) fOl‘ IEE{H
y= F}n (Vm i )
we easily get (x, ¥)¢T(iy, V) o ... o T(u,, v,). Moreover, since (1, v}, ...,
(i, v YeM we have Ty, v)o ... o T(uy,, v,)SG(M) and thus (x, y)€O(M)
completing the proof. ) ) )
Combining Lemma 0 (b) with Lemma 2 we immediately get an analo-

gous resutt for Q(M); it will be used under the name unary scheme in the
sequel.
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THEOREM 2. Lei A be an wigebra and let M be a subset of AV Then the
Jollowing conditions are equivalent:

(1) (v, y)eQM);

(2} (x, vyeR(u, v e ... o R(u,, 1) for some (g, v, Lo, i, vy yEM;

(3} (Unary scheme) There are elements u,, ..., 0, vy, ..., ¥, of A and
unary algebraic functions oy, ..., =, over A such that ‘u, v, eM for
l=i=n, urtd

X =y {iy)
()=, () for I=i=n
Y=z, (]]n) '

The proof is similar to that of Theorem [ and hence is omitted.

We can now apply the binary and unary schemes to regular and weakly
regular varieties. This choice has two reasons. Firstly, regular and weakly
regular varicties form in fact o very suitable material for direet applications
of the preceding theorems aud, secondly, the vbtained results simplify the
former Mal’cev characterizations of regularity and weak regularity, see [1].
[41. 151, [8) 7], [9], [10], and [16].

First of all notice that regular varietics were characterized by (2n+3)-
ary polynomials 7, ..., 4, in [4]. By applying J. Hagemann's theorems:

“Any regular variety is n-permulable for n=1", sec [10; Thm 3, p. 11],
amd

A variety 'V ois ni-perinutable for smmne ne- | If and only if congruences
coincide with quuswrders e any eV, see [10; Cor. 4, p. 7], the (2 + 3)-ary
]'JOIynOthllH Fls o ey Ay WEIE IL‘p|dCEd by (1+3)-ary pu}ynommls Fiy cooy Ty
in [6]. However, as was shown in [3], (24+3)-ary polynomials p, ..., p,.
are enough to characterize regular varieties. It can be easily seen, that the
latter polynmumla follow from the hinary scheme.

Moreover, J. Hagemann'’s results entitle to use the unary schenie only
and thus regular varieties are described by (I + 3)-ary polynomials ry, ..., r,
now.

Writing the above considerations in a more precise form we immediately
get

THEOREM 3. For ¢ variety V, the following conditions are cquivalent:

(1) V is regalar;
(2) For any elements x, v, z of an algebra eV, Qx, ¥) = Qz, p), -,
2 Py} olds for some elements p,, ..., p,, of %;
(3} There exist ternary polynomials py, ..., p, und d-ary polynomials
Foy - by stich that
X = rl (Z, S 4 Z)
(PG50, = (X, 0,2y for D=ien
V= (pa v, 2), X, 9, 2)
r=pidx,x,2) for l=i=n.

1l
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Proor. (1)=(2). It follows directly from the so-called Hashimoto Lem-
ma, see [12] or {9; Lemma 1, p. 335], that for any elementis x, y, z of a regular
algebra U, O(x,y) = &, py), ..., {(z,p,)) is satisfied for some elements
P1s -+ s Py of A, Further, by J. Hacemann [10], congruences may be re-
placed by guasiorders on any algebra from a regular variety, In summary,
condition (2) is proved.

(2)=(3). Take A = F,(x, y, 2) the free algebra in ¥V with free generators
X, ¥, z and assume (2). Then, by applying the unary scheme to the condition
“<x’ y>€Q(<2? pl)‘ Ty <Z, pm)) for some Py meF;S(x! Y, Z)”, the idEﬂ'
tities of (3) easily follow.

(3)=(1). Apparently, the ternary polynomials p,, ..., p, from (3) sat-
isfy: (z=p;(5,¥,2), 1=i<n)wx =y, ie we get the well-known B. Csi-
KANY’s criterion for regular varieties, see [4; p. 188). Consequently, condi-
tion (I) holds and the proof is complete.

For varieties with nullary operations, say ¢,, ..., ¢, the concept of
regularity was generalized to that of weak regularity as foflows: A variety ¥
with nutlary operations ¢,, .. ., ¢, is said to be wealkly regitar with respect to
oy, ..., € if for any congruences @, W on each MV the equalities [¢,]@ =
= [¢;|¥, | =i=<k, imply @ =¥.

Mal'cev conditions for weakly regular varieties were derived in [1], [6],
[7], [9], [IO], morevver, [[0; Thm 6, p. 14] states that

“Any weakly regular (with respect fo nullary operaiions ¢, . . ., ¢, ) variety
is (2n 4 1)-permnutable for somne n1=1" and thus we use the unary scheme in
weakly regular varieties too.

For the proof of our next thenrem we need the following modification
of H. A. TrursTON's result, see [15]. Without loss of generality we will
consider varieties with one nullary operation only.

Lemma 3. Let V be o variety with mutlary eperation ¢. Then the following
conditions are eguivalent :

(a) V is weakly regular with respect io ¢;
(h) A congruerice @ on an algebra eV is trivial whenever [c}@ is u
singletorn.

Proor. The implication (a)=(h) is ebvious and thus it suffices to prove
the converse implication (h).»(a): Take a congruence ¥ on an algebra
Ac V. We show that ¥ is uniquely determined by its class [¢]¥, i.e. we
prove the equality ¥ = @ ([¢[¥ X [¢[¥). Clearly, ¥ 20 ([c]¥ X [c]¥) and
s0 we can consider the congruence relation ¥/ {[c]¥ X [c]¥) on the quotient
algebra /O (Jc|¥ X [c]¥)e V. By the construction, [c}(¥/O([¢]¥ X [c]#))
is a singleton and thus, using the hypothesis, /@ ([¢]¥ X [¢]¥} is trivial
congruence on /@ ([c]¥x{c]¥)eV; hence ¥ = @([c]¥ X [c]¥) and the
proof is complete.

Now we are ready to prove

THEOREM 4. Let V be a variety with nullary eperation c. Then the following
conditions are cquivaletit:
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(1} V is weakly regulur with respect to ¢;

(2) For any clements x,y of an algebra eV, Q(x, vy = Q€ 40, - - -,
(¢, g} holds for some clements q,, ..., 4, of U;

(3) There exist binary polynomials ¢, ..., q, und fernary polyiomials
Wy, ..., W, such that

x=w(c,x,¥)

wo(g; (5 ¥, % ¥) = W (6 X, V) for F=i<n
Y =W, (¢, (%, ¥), X, ¥)
e=¢q,(,x) for l=i=n;

(4) There exist binary polynomials q,, ..., q, setisfying (¢ = q,(x,¥),
lﬂfﬁ—’n)crl’ = V.

Proor. (1)=(2). Analogousiy to the proof of Theorem 3 above, this part
follows immediately from the Hashimoto Lemima and J. Hagemann’s
theorems [10; Thm 6, p. 14 and Cor. 4, p. 7.

(2)=(3). Choose ¥ = F, (x, ) the free algebra in ¥ with free generators
x, y. Then, by applying the unary scheme to the condition **{x, yY€Q({c, §,),

oy 46 §y) Tor some g, ..., q,cR(X,¥), the required identities of (3)
follow.

(3)=(3). Immediate.

(4) =(1). Take an arbitrary congruence relation @ on an algebra AcV
and suppose that [c]@ is a singleton. Since {g,(a, b), ¢) = (¢, (4, b), ¢, (¢, a))€
€0, 1=i=n, for any (u, bY€B, we have ¢ (¢, D)e[c]@ = {c}, 1=i=n. By
assumption, the equalities ¢ = g, (g, b), | =i=n, inply a = b proving the
triviality of @. Lemma 3 completes the proof.

Remark, Let ¥ be a variety weakly regular with respect to nullary
operation ¢. Then, using Theorem 4 (3), we introduce the ternary polynomi-
alshy, ... 0y, via B (4, v, vy o= wi (g, (1, v), £, v), 1 =i=n. Clearly, these poly-
nomials satisfy

f=Mi{v,M
i, Lvy=»1n.,( vy for I=si<n
r="h Q1L

proving the (14 1)-permutability of ¥, see [10], [11] or [8]. As the same
resuit holds for varieties weakly regular with respect to nullary operations
€1, - - -5 &y J. Hagemann's theorem [10; Thim 6, p. 14] can be expressed in
the following form:

“Any weakly regulur variety (with respect to nullary operations ¢y, .. ., ¢;,)
is n-permutable for sone n>= 1.
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0 NPUMEHEHMHX METOA YCPENHEHUWS IS PEIIEHWA
MHOTOTOUEUYHLIX KPAEBBIX 3ANAU
¢ HEJIMHENHbIM KPAEBBLIM YCJIOBHEM
AJIs1 OOHOI0 KJIACCA MHTEMPO-IN®PEPEHLIUAIBHBIX
YPABHEHMH COIEPKAIUX KPATHBIE VHTETrPAJIbE

A 4. BAUHOB n C. JI. MUNIYILIEBA

Ilaceausckkil Yuuseperrer uaieHn 11 Xuiengaperore, [trosaus
11 Bricumii Matmndo-Jerporexunuecikiiil Macrryr msicnn B. . Jleeura, Codwst

f Mocmynuao 2. 3. 1978 )

B nacrosineii pafote ofocHoBAH MeTOA YCPeIHEHUsI JUGL PewieHHs:
MHOTOTOYEUHLIX KPAEBBIX 33JaU ¢ HenuHelHbM KPaesLiM YCIORKEM [T MH-
Terpo-AnGdiepeHLUMaNLHBIX YPARHEHUH COMEMHKAIINX KPATHLIE HHTErPasibl.

PaccmoTpym cnctemy

{
(N My=¢X [t, x(), f g1 (f, S, X(5)) dsy, - .o,

t m i
[ s s X, - X(s) sy - ds,

0 )

C KpaenbiM ¥CIOBHEM

(2) i Ay x(t) = T(x(ty), - .., x{fx), €) s
<0

X, TER, qu€Rn, k=1,...,m A = (@@,
=T, i=01,... N, O=uog=a;=...=0ay=1,
T=~Lg L, L =const=0, a e=0 — manuii napamerp.

{Tvcrn cyueeTnyer npefes
1

-
lim € X (t, X, f gy (t, 5, Xydsy, ...,
] 0

Tovem

(3)
i i
f fgrm(t,sl,...,sm,x,‘..,x)dsl...dsm)dtzf(x).
0 o
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TOI'ﬂ,a CHCTEME (I) CTaBMM B COOTBETCTBHE YCPEAHEHHYH CHLTEMY

4) E(t) = e X(2(D)

C KpacBbiM ¥CIIOBHEM

(5) % Aty = T(Ey), - &), &) -
-0

Otmerna, uto ecnd x = (X, ..., x) w A = (@), ., T0 0 OTIPeseie-

HHIO
1

=2 (x*‘))z]%, 1a1=[% 5 e

Cripapefnuea cnefyioulasl Teopema:
Teorema 1. fTycmn:
1. @yuryusa Xt x, yy, - .., ¥,) Onpedesera U HenpepuiéHa 8 00AacniL

O = Q0 x, Y1 -, V) = LOXQ) X)X .. XAy,

20¢ 1) = [0, ), 2(x) — rnekomopad onmKpsuman obaacnio npocmpascmea &,
Ay)=Rn, k=1, ...,m.

Dyuryun o, (f, S, .. -, 5y, . i) k=1, ..., m onpedeaenya u Hen-
pepoisna ¢ olGagemi

QUOXO, = QYRS -3 S Uy - oo, U =
QX (s X .. X5 )X 2u) > ... XL,
ede (s;) = [0, ), AuPC Ry, j=1, , K.

fbynhqtm Iz, ), z = (z(,, . zN) onpedeﬁeua 8 ofaacnu
£2(z, &) = 2x) X ... X2AX)XA(e),
"‘—'_'-v'_\—"
Nt

20e Ne) = (0, &}, £ = const=0.

2. B coomeememgyiux npoeryuax odaacmi OF X 2, X Nz, &) Pyuryun
X v, - V) ol Sy - Sty L ) 1 Iz, 2) yOosaemeopaom

veagsuam
WXy s Yl =M
IX{ %, Yo -0 Y =X Xy < YRl =
=x(x =X+ y =yl + -ty —yall}s
s (E S0 -+ 1 8p s s W) = (651, oo S UL - U=

=, (L S5y s (e —ul+ oo+ la—uil), k=1,...,m,

0@, &)~ I'(Z', &)l = ZE; iz — 2|
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20e M, 1,2, — RnoaoucuineabHsle nocmoamnwe, i, i =1, ..., N 3asicam om
&, iyaryusa b(e) = max A, () Henpepsiia npu GOCMAMOUHE MAABIX JHAUEHUAX
i

e, limb(e) = 0 u
g0

f H T
k
limi d-.-:f f‘uk(r,sl,...,sk)dsl...dskz(), k=1,...,m.
0 0

tv= |
0

3. Kpaesas sadaua (1), (2) useem eOuHCIgeHHOE HeNpepsigroe PelicHile
x(f) u x(fyex) npu tc|0, T).

4. B xancooil mouke x€Q(x) cymecmgyem npedea (3). dynkyua X(x)
6 obaacmu (X} renpepotgia 1t yoosacmeopsem ycaoewo Aunuiuya

X0~ X(x)

5. Kpaceas 3a6aqa (4), (5) wmeent eQUHCHIBeHHDE, HenNpepLGHoe DeleHLe
) v g Q(x) npu 1[0, T].

6. Mampuya A, necmoarnaa it det A,=0,

7. Mampuygst A, [ =1, ..., N 3asucam om g, fyuxyus

d(s) = max | A, ()]

=pllx—x, »=const.

HERPePLBHA npit O0CTANRIOUHY MAABIX 3HMeHLx ¢ u limd(e) = 0.
e+

8. BbINOAHEHD HEPABCHCITIEN

B

N
'q'i{l'
0

F=

Toeoa, Oag awloix =0 1 L>0 MOMCHO YKA3AMb MAK0E YUCAG 540,
e npu 0 < e =g, #a ompesre 0=<1t=T oINOAHAAOCE HEPUBEHCINGY

o) — & <7
JorasaTEnecTro. st perlenuii kpaesbix 3apad (1), (2) u (4), (), B cuny
ycioBUl Teopemsl 1, BEITOJIIEHLI PABEHCTBA

x(f) = X5+« j X {T: x(z), fr @1 (7, 81, X(5))) dsy, - . .,
o

J
(6) ) )
f N f Pm (T 81y -« o5 Sy X(50), - -+, X(8,)) sy - - . dsm]dr.
0 0
(7) ) =&p+e f )_((E(r))dr,
0
N
(8) ZAI(x0+£ﬁi):r(xoixn+3ﬁ1;-.-,xo-{—sﬁN,g),
<0

4 ANNALES — Sectio Mathematica — Tomus XXV
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N _ _ —
9 Z At ey =TCn &gt efy o Gt e B €)s

rie
Xp = x(U), L = E(O)!

b= [ (o0 [ pntosxo s

o}

T m T
f f Do (T 81y <+ < Sy X(51), ..,,x(sm))dsl...dsm]dr,
Qo 0

__
ff_,-:fX(E(r))dr, i=0,1,...,N.

0

Bwuuras (7} w3 (6) nonvuaem

fr [X [T’ X(z), fr @y (T S x(s)) dsy, - -y
0 0

(@) -~ (W = llxo— &oll +

(10)

I om

j f P (T3 51, - S X(S1), - %(8,)) dSy - a‘sm]—-)_f(f(r))]dr[ .

Hns Broporo cparacsore B upasofi cropene nepabeHcrsa (10) cnpa-
EeAMHMBA OUeHIa

i

f [X [T’ J\'(‘L'), fr 1 (T’ S1, X(Sl)) dsl! ]
0 0

£

fr O fr(pm (r, 515 -+ oy Sy X(Sg), - - .,x(sm))—?(g(r))]dr =
0 0

=d{e)+e

f [x [1’, £(z), f @ (% 51, E() sy, - - oy

[ mnms s i, ...,g(«:))dsl---arsm]—i(s(r))]ar +
0

0

+ed f {HX(I —3@l+ [ (x ) Ix(s) — E(s2)l 05, +
0 0

L0 L sy s )~ Sl + -+
0 4]

() — (50 s, < - asm} dz,
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TIe
nt
oe) = ALM Z kéy(e), d{(e)= sup Iy, (le™Y),
O=lsL

k=1
t T T
1 3
?k(f)Zde"ﬂf f,uk(-c,sl,...,sk)dsl...ds,(, k=1,...,m.
a 1] 4]

B cuniy venoeuil Teopembl 1, Kax B [1], Mmoo 10ka3ars, gTo mobomy
DOMKHTENIHOMY YHC/Y £ MOYHO II0CTABUTh B COOTBETCTBHE QYHKIUMIO ale, p),
(a(z, p)~0 npn p—~ = 1 £—~0), rAe p HaTypanbHOe UHCIO ANS KOTOPOH Ha
orpeske 0=i=T RulllONHAETCA HEPABEHCTBO

fo [X [r, £(z), Df! w1 {7 8y, E(T)) dsy, - .,

4

I [ S0 - 5 0, ...,g(t))dsl...a'sm]—
) O

—')?(s(z))]a'z <ae, p).

Taxum obpasom, 1 Beex 1€{0, T'] BulllosiHACTCSA HEPABEHCTRBO

f‘ [X [1:, x(z), frrpl (z, s X(s)) &5y - - -,

1] L]

f ”= f P (T Sys - s S X(81), -, X(S ) dsy .- dsm] _X(g(r))]dr
] ]

£

=

(n
t T
=d8(e) +ale, p)+ei f {HX(T)— @+ [ wa(m s) (s —Ssolldsy+ - .- +
d 0

LT s o s L) =+ -+
(o] 4]

o) — &5 5; - . - dsp bz,

J

Beiuntas (9) u3 (8), Nocne HEKOTOPHIX BRIKJIAA0K, NOJIVUAEM HEPABCHCTRO
N -1 N
(12 4) | 23] wa-e=
{=0 i=0
-1
2

=0

=&

_g: (HA;' (&l +4 (3)) 18:— E;” -

4%
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B cuny ycnoeuit TEOPEMBl, M3 MOCETHEI'0 HEPABEHCTEA CNEAYET

(12 ool =2 e) 3 16— Bl

() — (0] = cle, p) {1 + h(e) [N Fa(e L+ N 8% () sup “x(.f)f&—(”“]} +

ozt (e, p)

rpe

he) = {b(e) + d(s)) [1-“[ i A,.]_l _ﬁo A,—J

Wwest seuay (10)—(12) Haxonnm

(13)  ter | {nx(r)—s(r)n+ J (o0 5) xts) — 65 ds +
1] 0

T m T

[ [ sy s Uxs) — sl + -+

4] 0

ldr,

HIJ

(e, p) = ale, p)+ 8(c), 8% (e) = E_: kdp(e), o= Y a.

+ (s} — (sl dsy - -

Tie

TTonoxmnm

e(e, pYult) = x(t) — £(0)
H BBeNem nbozinageHne
belly = sup [lu(t)] .
O=t="1

Torpa (13) mpuaMMaeT BHL
@l =1 + h(e} [N + A {x L+ N 6* (&) |ull-] +& 2 f {Ilu(f)ll +
¥
(14)

+ j #1 (TJ' sl) "H Sl)” ﬂ(‘sl -+ f f fyn (‘I‘:, 31, mr sm) {“(81)" +...

s )] ds, . ds, \de.

HI]
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IIpapvio vacTb HepaBeHcTBa (14) ofo3uaunv uepes w(f).
[Tpu s={ umeeT mecTo HepageHcTBO W{(S)=w({) K

wi o fleen [ Jlats)l
) e}l{ D) +nf uy (4, 8) it as;+ ...+

w(f) w(f)

f fﬁm(r o m)[nu(sl)n 01 P s,,.}ﬂ

(15)
¥ t m t
Esl[l—[—fpl(f,sl)d31+...+mf f,um(t,sl,...,sm)dsl...dsm].
0 ¢ 0

Huterpupys nocnefiHee fieparseliicTBoO B Apefenax oT () o { nojavaaem

! T
w(t)*gw({})explslf [l+fp1(-.~:,sl)dsl+...+
0

L s
+im fT O frku.m (T S1y « -+ S, Sy . - - dsm}dr} ,
0 o

OTKYJAa CHERVET, YTO

Nl = {1 +Ae) [N + A (o L+ N 8% () [ltlly 1} exp i[slf [1+
o

F syt am [ [ s, ..A,sm)dsl.-.ds,,,]dr}
a 0 0

H
(16) |ullr={l +h(e) [N+ 4 (a L+ N 8* (&) |lull- ]} exp {A(L + 6* ()} .
Tax KaK limh(e) = 0, To CYIIECTBYET UNCIO &,> () Taxoe, YTO TPH £€

e~

€(0, 5] BBIMOAHACTCA HEPABEHCTBO
Ma L+ N 8*(e)) i(s) exp {A(L + 8% ()} < 1.
Torpa us (16) nojyyaem
ity s (1 + Nis)) exp (AL + 8* (e))} _a,
1 — 2o L+ N 8* (&) h(e) exp {A(L + 8% (e))}
rge A — ToRMKHTENLHOE UNCTO, T. €.

() — £(D)l| = A (e, p) .
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Brifiepem p 1 e, raxiim ofpasom, UTedsl NpiH & = e; BHIIONHAIOCH HEPa-
BeHCTBO A cle, p)=1.
Toraa M3 3TOTO HEPABEHCTBZ 1IPH £, = MiN &, CJIEIVET YTBEP;KIEHNE
i=1,2,3
TeopeMsl 1.

3amevanue. Haflo OTMETHTD, UTO METOX YCPeMtEH s JJIA pelleHHst Hauaslb-
HBIX 33424 7151 BHTer po-IndidepeHLManbHbIX Y paBHEHHET COEPKAIIHX KPATHbIE
MHTErpansl OB obocHoBan B paboTax [2]— [4].

Jlutepatypa

[1] dunaros, A. H.: Mempds vepedHerun € cucmeMux e perifiaabrelx U UHMe2Ppo-
duditfeperiyguatsrtix ypusnenusx, Uag-so «DAH», Tawenr, 1971.

[2] MOBRAHKYIIOB, X.: YcpegHenue IHpdepeHipanLao-oNepaTOPHEIX vpaBHenul, Jor-
Ao AH V3CCP, 8 (1972), 21 - 22,

[3] SmMATOB, X.: O0 vCpeAHEeHHH B HEKOTODPBIX CHCTEMAX AHTEI'DO-{de peHLITATLHELX
yparHeHnit Ha GecKonenHom npovexwvTre, Hsgecinus AH V3 CCP, Cepusi dn3s.-xart.
Havk, 2 (1975), 34 - 36.

[4] SmwMATOB, X.: 0§ YCpeaHeHs B HEKOTOPhIX CHCTEMAX HHTErpo-anhheperuianbHEX
vpagHeHnit, Yupagucxuldl samnesamiugecikuti scypiaa, 27 (1973), 421 — 427,



KPAEBAST 3AJAUA
A1 ®YHKHHUOHAJILHO-TUOPEPEHLHAJIBHBIX
VYPABHEHWI HEWTPAJILHOI'0 THIIA

H. I KA3AKOBA u J. 1. GAMHOB
Flnosanecknit ¥aupepeurer nmenn I, Xunenpapexoro, Inosans

{ MToemynutan 17 4. 1978 )

B nocneanne Toaw g TCOPHE UIpdEpENLNANLILIX YPaBHeHNT ¢ oTRI0HS -
IOIHMCH  apTyMeHTOM BonLmoe BUAMAHNE OTAeTsIeTes  pyHKHoNa LN0-
DUpepeHUBaILILIN YpaseHusy neliTpainaoro ThHitd. TpyHOCTH, BO3IMKA-
W0Ke MPH MCCNeROBANMM YPABIEHi Hellrpansliore Tuna TpajulMoHHEMH
METOHAMH CBSI3AlEl ¢ TeM, YTO PACCMATPHBAEMBIC 3AEChH 0NEPATOPbI KAK ApPa-
BRAO 11e BroNe 1enpepoliibl. FlpumenicHue Teopud YILIOTHSIOWHWX 0TIepaTo-
poB [l] pazpeiraer psyl BOHPECOB, HOCTABJICHHBIX ANA TAKHX YpaBHeHui
[21-[7).

R pafoTe pACCMATPURACTCH KpaeRas 3ajava Julst GYHKUWOHAILHO-
JUupepeHINANLHBIX YpaRHeHKTD HelTpaasHore THna ¢ suuiefinby Kpaesbimn
YCJIOBHEM. an ECTECTREINIBIX OIpAlIHYEHMAX HOKa3atg, YTo0 ecnd ¥ pac-
Cl‘lanl-iBHCMOlvl 3agadil cyuleCcTBYET peledHe, To 1 ¥ BO3MY[U.EHHO!‘7'[ SaAMI
NpPE ManoM 3uayucidl NapaMeTpa CYUCCTBYET TOXE pPCIUEHNE. FIpM JOK&34-
TENBCTBE W3NOAL3YITCS MOISTHSL Mepa HekoMmnawTiioctd [1], BpamieHue
votnsionux onepatopos [1], IpUNUKG HeTOARMIKHOIT TOUKH N5 YIIOTHS-
wiux oneparepok [1] 1 ocHopHasn meroasKka ua [2].

PaccMoTpum 3afauy o cYUIECTRORBAHWA DeileHuil KpaeBoil 3apayn

Mt) = flu 1, xp %), 1€[0, T]

(1) X0) = ¢, 1€[—h, O]
S ax(t) = 0,
i=1

rae n€[0, 1], omepatop f neficreyer u3 [0, 1] xXRIXC[—h, 0] xXCf—-1,0] &6
R7; mop x, monumaetcst MyNKUHST X, (8) = x(f+5), s€[— f1, 0]; ananoruuHbIi
CMBICII MMECT X,; o-PEANLIILIE NOCTOSIHEBIE, oy 20, 0 =f<fh=< ... <fy=T
(uxcuporanueie TouKH; p(0) =0, peC* -, 0]

[ipeanono:kun, Ute BHINOJNHENL! cegyieinne yenorns (A):

1. Oneparop f HenpepbBell.
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2. Z b5 0, Z a; = 0.

3. (p (0) f(p, ,(p, @) A Jneboro €0, 11

[lvetb C! mpocrpaHcTso HEMpepbBHO JupdepeHUHPYEMbIX §yHKUWH
N

x:[0, T]-R" ¢ Hopmoii llxlicé = [xlle + i%lle, TaKMX, wto B a;x(f) = 0;

Ci, = {xeCl:x(0) = 0, %(0) = ¢{0)}.

Hrst mobwix p€[0, 1], x€CL onpepenum GyHrmo J(u, x) 1 R~ R" cre-
Jviouium obpasom:

Je x) () = f JGu, 5, x, X¥)ds —
0

N -1 N 2
(Z=t) o] o [ s e,
i=1
0

=1
(2)
x* () = {‘P(f); ¢ —h, 0] ) = {q;(f) tc[ —h, 0]
x®), [0, T] i), t€[0, T
U PACCMOTPUM OTIepaTopHOe YpaBlieHne
(3) x = J(u,x), xeCi,.

Jlemma 1. [Ipu Boinonuedvu ycroBusi (A) omepatop f(p, X) AeHCTBYET
u3 [0, 11X C}, 8 CL v HempephuiBen,

Howazatenscveo. [lvers p€ [0, 1], x€CL. Ouesnano, f(u, f, xF, XF) Hen-
PePLIBHO 3aBHCHT OT {. CRefoBaTenLHO, npaBaﬂ YaCTh COOTHOWEHKS (2) umeer
CMEICTT M SIBNSIETCA HeNpepblBHO jnddlepeHuupyemoll @yHKUMCH, npryem

j{ L 910 = s b, x5, 53—

—[i %, r i f(;.e,s x5, 3¥)d's .
i=1
]

N
Kpome roro, > a; f{u, x}{4;) = 0. HeiictButensHo,
=1

i=1

N N 4
> & Jw @) = f fds—
g
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i,

i 11~ ! N o
—~hit— Zoc,-fde: Zoajffﬂ's_
i i i=1
o 0

|
Tz
R
M=z
9
KA
)

B CHIY TIPENOJIOzKEHHA Z o; =0.

l
Wtak, f:[0, 1]xC—~
Hoxaskem Hel'lpeprBHOC'lb oneparopa f(u, x). JLst 970i nefn focraTouHo

APOBEPHUTH, UTO U3 [|X, — \||,,“1 0 e gy CHERYeT
e n) (0) Je ) Ol =50

max [ f(wo %)Y (0~ [ )] @O == 0.
te[0, T'] (=}
B cuny (4) amo Gyper A0Ka3aH0, ecnH yCTAHOBUM, HTO [IPU
”xk_x"ccll_’o’ Mg i

_max Iif(#:., s () (0 — T 1 X, X0

e, T
[ocneanee COOTHOLICHNE JIETKO BHIBOAMTCS W3 HENpPEPLIBHOCTH onepa-

Topa f.
Jlemma 2. Tpn BoutoiBenun yenosds (A) dyhxuus x: [0, T)— R* siBns-
eTcs peluennem Kpaepoit sapaqn (1) Toraa u ToNbLKo Toraa, Korpa xeCl, x =

= J(u, x)-

Horazatenscteo. [Tyvers x viosnersopsier (1). Ouesnmio

{
) = [ S5 x5 ds
J

N N f;
S>ox(t) = o [ flus 53 55 ds.
i=1 i=1 o

CJIEIIOBaT{:JIbHO

x(f) = ff(p,s,x*,xs)ds— —-Nl t+— % ffds,
Z o t; %1 fi=t
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xeCl, x= f{g, Xx).
IlyeTis Tenepl

xeCl, x= J{g, x).
Torga
1 i
ek 1 1 N
)= [ flusxd iyds—| 14— | Sa, [ fds,
0 Z“etr At 0
i=1
U CITe0BATENLH
4 4
N N .N‘ l N
Soxty= Y [ fds—F | —t— |3, ffds:
i—2 i—2 i=2 S . f %y |iSt
0 % ¢
=1
N hY
N £ Z) nl ooy N 4
=2 =2 ,
- %, fds— n T Zoc!-ffd:,_
=1 ot £e] i—1
0‘1{{ 0
i—1
N
> ol i
P A e

iz

._]
o
_‘_ﬁ
»
[
Y
&
\.
k.‘,
=
o
|
[z
__!Q
2 -
b=y

N t hy
Sa, [ fis=
i—1

N
% X(6) = > wx(f) =0.
i=2
¢
HMrax,

F=1
!
x(ty = f Fuo 5, 52, 32 ds,
3]

HAPYPHMH caosaMn, X sikisgeTea peinenxes sapaqn (1).

Onpegenny PyHKUMI0 y(82) = 7(2') na MHOAKECTBE BCCK OTPaAHIMCIIBIX
TIOAMHOKECTB §2 npocTpadctBa C, e Q27 = {& 1 x€£), 4 y-Mepa HeKoMIaKT-
rocth Xaveaopdia 8 npoctpancree C. HecomkHas NpoBEpKa NOKA3LIBALT,
YTO p €CThb MEPA HEKOMITAKTHOCTH.

%%KMZO.

i=1

Jiemma 3. IlycTh BhiMosHeHo venoBue (A). ITyers onepatop f viorier-

BopsieT yenosino Jlunuuna ¢ nocroguuoll K <1 mo mociiefneny apryventy.
ITycTe KpoMe TOY0 anozkectse M Cl orpanuyeHo.
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Torga oneparop J:[0, 1]XM - Cl p-yunorusier.

Hoxasarenscreo. [Ivers @c M. Muoxkectso J([0, 11X €2) orpattudero
B CL. JelicTBuTenLHO, B cHiIy (2) HAM AOCTATOUHO JIOKA3aTh OrPAHHYEHHOCTD

MHOM ECTBA
Ul £33, 37) : w€]0, 1], £€]0, T, x€).
Tax Kax onepatop f venpepbised Ha [0, 1]XR*XC[—h, 0] XC[—-A, O],

d MHOM{ECTRBO
(G, 1, X2y w0, 11, £€[0, T], xe)

OTHOCHTENBHO KoMnakTHo B [0, 1 [X R X C[—~h, 0], To cymecTByer MocTosH-
nasi Mo Takasn, uro

I, t, xF, Ol =P (ue[0, 1], 1€[0, T], x€Q) .
IMoaTomy
MG, 10 xF, ) < s £, XE 52) — Fluan £, XE, O)) +
S £ xF, O = K Ao+ o,
e Mo MaKOpAHTA HOPM SneMenToB X€Q2 B C;.
MMycry, Mumkecrso  ne womnawrho B Cl. Ham ny;kHO JI0Ka3aTk, 4TO
w[ ([0, 11X Q] <¥[L2],

([ (JO, 1] xQ)) ] =[]
PaccmoTpum oneparop

F( ) (&) = [ b 4+ (K Y1)
rae
f
V)W = [ vs)yds, 1= ¥0).
0

Oneparop ¥ g-yonovusier, (em. [1], [2]).
Mosoxum

@y = {x((}) -xe.@}

ff(ﬂ 8, x¥, x¥) ds : x€Q, pe|0, 1}

M3 (4) HeTpyAHO BHUETL:, UTO
[ ([0, 1) XD [ € F([0, 1] X2, X2)—Q.

[Nooromy B CUAY CBOHCTBA YINOTHEHMA ONEPATOPa F, BIIOIME OTPaHH-
YENIIOCTH MEMIKECTBA @ 1 Toro, UTo MIoMecTso {Y He BIONHe orpaHWueHo,

Tonyuacm

#{{(JE0, 11X Q) ) =1( F(0, 11X 82X 2)) + Q) < Q") -
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JTuUM Aemya 3 poKasaHa.

Teorema 1. TTycine soinoaseio yeaosue (A). Tlyems onepamop f yoosaem-
gopaem ycaosuto Jmanya no necaedHed nepesernodl ¢ nocmoanHod K <1,
TMyems kpose mozo 3adaud

() = f(0,§, x, %), 1€[0, T],
x(t) = p(f), t€[—1.0],
N

> ax(t)=0
i=1
ialeent pewleHde X U apu Hekonwposm R =0 onepamop j(O, .} He useem Ha
epadute 9 B(x, R) cdepnt B(xX, RY HenodsudiciitX mouck, npudes epauenie
y(l—j((}, ) 8 B(x, R)) 0. \
Toe0u npu Oocmamouno Maaix p 3eoqde (1) uaseem xems fut 00HOZ0
peuterua,

HoKAsATEMCTRO. JlOKEKEM cHAUAAd, UTO NIPH YCA0BHH Teopembl 1 one-
parep J{u, .) ne uyeer Ha @ B(x, R) neuopsmKipX To4eK NpU MajaoMm .
Houyerum, yre 970 He Tax. Torna cyulecTBYIOT INoOCileloBaTeibHocTn {x,}
u {u,}, X, €8 B(x, R), X, = J(n,, x,) ¥ g, —0. B cuny ynaoTuenns oneparopa
Ju, ) umeem oUCHKY

P = P X0 =F U0, T DD =P (xa]) -

CrnejoBaTe Lo MHOMECTRO {X,} KOMTAKTIO U Je3 orpaHuueHus: obuHo-
CTH MOMHO CHHTATD, UTO X, —~ X, X,€9 B(x, R}.

Tlepediiem 1 Npejeny npH 11— co B paBencTse X, = f{i¢,, X,,)-

Torpa moayuvaem, uto X, = f(0, x,), B ueMm W [IPOTHBOPEUHE.

B cniy nemsnbl 3 romoTolNHbIE YIOTHANIME BEKTopHble nossa [ — f(0, .)
n I— f(ux, .) ve nmeoT ua rpanuie ofepsl paguycon R mpH Manuix g He-
NOJBMIKHBIX TOYEK M CJIEJ0RATENLHO

(1= J©, ), 3B, R)) = (I~ J(u, -), 9B(x, R)).

C apyroii croponsl B cuny venoust Teopembl (1 — J(0, .), 8 B(x, R)) <«
< (). CriepoBarensHo onepatop f{g, .) uneeT B B(x, R) IEN0ABIKHYI0 TOYKY,
KOTOPAs B CHJIY Jiemmbl 2 siBnsieTcst pelnennes sagaum (1).

Teopema goxasana.

Paccmorpum orreparop

St xp &) = Al x %)+ B x, %),
rfe oneparop o peficryer us R' X C[ — I, 0] xXC[ —h, 0] B R", oneparop B
neifereyer u3 RYXC[ —h, 0]XC[ —h, 0] B R", g-napametp.
Teopema 2. [Tycine sonomiciivt cAcOyIOWLe YCA08UA:

1. Onepamop A nenpepuigens, addumueens 1 00HOPOORH 1O SMOPONY U
MpPembeAy apey.ucHiny.

2. Onepamop B nenpepeisert U yooeaemngopsem ycaosie Jlumunga no
IMPEMLEAY ApRYyMeniy.
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N
3. D0, Z a; = 0.

i=1

4. |\, i, v)]!ﬂaf|]u||,chF(||uHC (K <1) 0aa mobozo u, veC{ —h, 0].
5. Mureiitias Kpaesast 3aéaid

Hty = Mt x, %), 1€[0, T],
X = g(t), te[—~h 0],

i o, x(t) = 0

i=1

uawent peienue X u npu Hexomoposm R =0 onepamop J(O, ) He useent Ha
epanutie d B(x, R) cepst B(x, R} HenoosulcHex movuex, npudes spayeHite
p(I — j(O ), 8 B(x, R))=0.
- - (0) = A, 9, p) + 1 B0, @, @)-

Toeoa npu JOCIMANIOWD AL I 803.':!}'11}[3“”(1}! 3004
W) = Al xXp %)+ B xp %) £€[0, T,
x(®) = ¢(t). e[ 1, 0],

N
S ax(t) =0

i
LMEER! XOMA Obl 00H020 peuteHus.

Apropet uipaskcaot bnaropapuaocre M. M. Hamuneromy u P P. Aseme-
POBY 34 OﬁCY)KIIEHHB PE3VILTATOL,
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APPLICATION OF THE GRADIENT METRHOD TO THE SOLUTION
OF BOUNDARY VALUE PROBLEMS
FOR A SELF-AD]JOINT ORDINARY DIFFERENTIAL EQUATION

By

A. SHAMANDY
[1. Department of Analysis, L. Edtvis University, Budapest

{ Received Decemnber 70, 1979)

Let 1= [a, b] be finite closed interval, C%{J) the set of all complex-
valued functions which are f-times continuous differentiable in the inter-
val [.

Let W@ (/) — for simplicity W™ — denote the set of all complex-
valued functions 1 : F -, which are defined on {he interval I, and for which
e Con-V (Y and utm-1 is absolutely continuous on [ {and hence ul™ exists
a.e.) further u™¢ L, (). In the space W we defined the following scalar

product

b
i m -
(l) (f”’ |;>w(m) — 2 <u(l‘-'), ];Uf)> = 2 f 1R R e
k=0 k=0
[
where u, ve W,
The norm induced by this scalar product is

L2l 1 m b 1
@) el > = { 3 IIu”"Ilig}z _ { 3 f |um[zax}z .

The above function space W) with the scalar product (1) is called Sobolev
space. !t is known that this space is a Hilbert space. Obviously W = L,

Let N be a given natural number, let the functions B, B, ..., P, be
defined on the interval I and satisfy the restrictions

1. PeC®(D), (k=0,1,...,N),
2, B (x)=0 for every x¢f, (k=0,1, ..., N-1),
3. There exists a constant m=0 such that for all x¢/

Py(x)=m.
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Consider the following equality

N da* df
3) A= 3 (C1p [a— ]=f-

o dx¥
We will define the domain of definition of the operator A in the following
way':
Introduce the notation WM for the set of all functions ueWeN
satisfying the boundary conditions

4 ) = (@)= ... =uWN-2(q) =
=u)y=w® = ... =uN-V@)=0

and define

(9) D (A) = WEN .

It is easy fo see that 7(A) is a dense subspace of the Hilbert space
L, (I). We see that for all u€D(A) implies AucL,(f). Therefore A is a linear
differential operator of order 2N defined on the dense subspace D(A)c L, ({)
and A maps into L,{/}.

Now, we can show that the differential operator A defined in (3) is linear,
strictly positive definite and self-adjoint in the Hilbert space L, () for which

R(AY = Ly(1).
An easy computation shows that for arbitrary u, veD(A)

b
N T
by dky
/ - #) -
(6) {At, v) fg,ﬂ[c o g 4
a

Thus, in the case v =t we are led to

(7 (Au, 1) = % p 0 g
k=0 dx*
From (3) we have
(8) Ait = gf (=P
& I axk ! an N
thus
)] (Au, vy = (11, Av)

and since 7D(A) is a dense subspace of the Hilbert space L, ({) the equation
(9) means that A is a symmetric operator.

Since P=0, (k=0,1, ..., N=1) and P, (x)=m, xcl it follows from
(7) that for any uc/D(A)

(10 (Auy iwy=m1||uM3, .
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It is easy to see that

(b—a)yN
From (10) and (11) we have
(Au, y=p ul}, (ucD(A))

where
m2N

= oo
This means that A is strictly positive definite.
Now we will show that 2(A) = L, (). Let C®®¥ be the set of all func-
tions ue C@M satisfying the boundary condition (4).

We will show that there exist constants a and § (0 <o <g < + =) such
that for every ue¢ C2M

(12) o ety emr = [| Al = B [ally )

where
]

N 03
nmmmnz{zuwwm}.
k=10

Let ucC@M (1) be an arbitrary function. The relation (8) gives
2N 2N
[ Aulle, = > Ifi 1 ®)ley = 7, My {1z,
=0 k=0

where
M, =max |f.[, k=01,...,2N).

1

2N
Introduce the notation § = {Z M%}‘Z and apply the Cauchy-Schwartz
k=D

inequality. Then we obtain

(13) fAule, =8 ulln -

Let ueC@(J) and take f= Au. Then it is clear that fe C({). Consider the
following boundary value problem with the above function f.

(14) SRy,
k=0

It
dxk
My =v®OEH =0 *k=0,1,...,N-1).

The choice of the function f has been in such a way that the function ue
eCRM (1) is a solution of the boundary value problem (4). On the other

hand, it is well-known (see [l]) that the above solution of the boundary
value preoblem (4) has the following form

5 ANMNALES — Sectio Mathematica — Tomus X XVI.
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]
(15) uxy = [ Gec, Wy, (xel)

f

where G is the Green’s function of the linear differential operator A. This
Green’s function exists because the operator A is strictly positive definite
and in this case the equation Av = 0 has only the trivial solution in the space
CeN)(I). From the property of the Green’s function it is easy to prove that
the derivative of the function (13) may be written in the following form

40 (x) = f 3“?‘”",\}’)]“@)@ (k=0,1,...,2N—1),

i

N G{x, v)
) (x) = f I rnaye |, g,
XN Jon (X)
41
since | fon (X)| = Py (Q=m=10, {(m is a constant).
Applying the Cauchy -Schwartz inequality for the above equations we
obtain

(16) Ju®) e, ey |fhe, k=0,1,...,2N—1),
> i
(17) ;|u<-~)||L=£[am + —] 17l
m
where

g\_,l._.

i ‘.
2y = l[[“’“”’f d.xdy;. L (k=0,1,...,2N).

With the substitution

I IN—T [ }2
Sl AP G AR
o ) in

in the inequalities (16), (17) we are led to

r~..|—-

et = {7 ||u“>nf_} <—i-||f|lL=-

Hence, taking into account that f= Au, we obfain
(18) x ||tllop =1 Atz .

Let fel,(f) be an arbitrary function. Since C({) is dense in the Hilbert
space L, (/) there exists a sequence of functions (f,)= C(J) for which f, —f
in L,-norm.
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Consider the sequence

u, () = [ G »fa)dy, (xel)

a

then according to the consideration, we have

i, €CEN (1) W
and
Au, = f,

n

(n=12...).
The application of inequality (12) gives

i
Hun - umHW(ZN) E_x ”A (un U ||L - ||fn fm”

This means that the sequence of the functions (i) is a Cauchy sequence in
the space W@ (1) with respect to the norm ||-[,. But by the completeness
of WEN(T) there exists a function * ¢WSEN (I} such that

ot — 0%y 0.

Thus, we see that the inequality (17) is satisfied by the functions belonging
to the space CN(1) and it is also satisfied by the elements of the space
HEM (). Therefore

"fn - Au*ing = ﬁ "un - u*HEN_"O .

From this it follows that f, ~ Au* in the Ly-norm. On the other hand £, —~f in
L.-nerm, and hence Au* = f. Thug we have proved that for each function
feL,(I) there exists a function u* ¢ H2¥) (1) with Au* = f and, finally, we
have the desired refation

R(A) = Ly(I).

Since WEN (N L, (1), and R2(A) = L, (1), we have the foliowing situation.
The differential operator A defined on the function space W2 is a
seff-adjoint operator in the ff-space L,, R(A) = L,(J).
Consider the energetic functional
(19) L) = {(Au, wy—2Re (1, f), (ueWEN))

corresponding to the equation (3) for which the minimum point is the same
as the solution u* of equation (3).
it will be shown now that the gradient method discussed in [7] can be
applied to determine the minimum point of the functional £. To be able to
do it we have to find a strictly positive definite operator B in the Hilbert
space L, (1) for which
D(B) = D (A) = W=V.

We need also constants
Q=t=M=+ =
having the property that for every uc/D(A) the estimates

¥
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m (Bu, u)y={(Au, uy=M (Bu, &)

hold.

Consider the differential operator B defined by the equation
20 Bla) = (— v B wen
(20) (@ = (~D¥ T, (ew),

Note that B is a special case of the differential operator (3), with B, =
=P =...=PFy_;=0and Py=1. Thus B is also strictly positive de-
finite, self-adjoint operator, and

o
N 2
21) By = [ [0 dx = quonyg,
dxN | :

Further, we also have
(22) m a3, = Au, n) = M [lu®]2,
where m =0 is a constant satisfying
Py (X)=n, (x¢)

_ mEN-£)
{b—apti™e , M, =maxF,.
IN—k 1

and ,
N
M= > M,
k- O

It follows from (21), (22) that for every ne W@ we have
n1 (Bu, ty=(Au, t)=M {(Bu, u).

Now we can apply the gradient method described in [7]. Choose an
arbitrary initial function u,e W™ say u = 0. Assume that having applied
the gradient method we have obtained the (n— 1)® approximation u,_,¢
EWEN of the minimum point of the functional &. Introduce the notation

Ja= Aun—l_f-
Obviously f € L,(I}). Consider the differential equation
Byv=#,

where B is the differential operator given by (20). it is obvious that this dif-
ferential equation has a unique solution v, e W2, which can be obtained
by elementary metheds. Using the function v, we can compute

{(BV, V)

(Aup.u)

i
From () and (7), it follows that
b
[ v ax
(23) fom —
N b
> [ PivPzdx
k=0
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The nth approximation of the function u* is
u, =i, +i,v,

and we continue the algorithm. From [7] we also have the speed of the con-
vergence

1

(24) i, — ¥ p = ———=fAtg—filr. 9" -
Vmp
M—mn . e . .
Where ¢ = , and p=0 is a constant satisfying the inequality
(Bu, )y =plluflfi, (ueWw V).
Since i

lullp = V(Buy ) == [a™e,,  (uEWED)

the above algorithm gives that the #th derivative of the sequence «, in L,-
norm tends to the #th derivative of the solution u* of equation (3).
We will show for k=0,1, ..., N-1, that

a0 uniformly in 1.

Define in the function space W™ with the norm ||z}, such that

1
fuly = X max [a®] +{u™, -
e

It is easy to prove that there eixsts a constant K =0 such that for any
€W, we have

(25) flelly = K {5 -
By using inequality (24) and (25) we get

, K
z,— ¥y = K, ~u¥llp = — = | Atty— fll. 4"
Vmp
From this, for k=0,1, ..., N—1, it follows that
. Uy (i) K n
max |u —p* = A, fllL. "
7 Ymp

Further, we can conclude that for k=0, 1, ..., N—1 t¥ - *& uni-
formly in [.

CoroLLARYy. There exisfs a constant K,=0 such that
¥y —u, ()| =Kyq7, (1=0,1,...).
ReEmaARrK. By siniple calculation we can prove that

W 2 41+l -

Summing up, we proved the following results.
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Summaiy. By applying the gradient method discussed in [7], we obtain
the sequence {u,)c W) that converges to the solution 1/ such that uf -
—*¥® yniformly in f, k=0,1, ..., N—1 and

aN ¥ N Lo-norm .
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1. Introduction

There are two distinct advantages of the gradient method. The first
and foremost is that we need not select a closed system in the image space
of the operator. Secondly, it is not necessary to solve a large system of linear
equations as in Ritz's method or least square method in order to calculate
the nth approximation of any real valued function. One more advantage
of the method is its rapid convergence.

The method can be successfully applied in normed spaces to determine
the minumum point of any real valued function. The essence of the method is
the following:

Let F be a real-valued function defined in the subspace D(F) of the
normed space X. In order to defermine the minimum point x*, iet us choose
an arbitrary vector x,€{(F) and a vector e€D(F), for which ficjj = con-
stant holds. Compute the derivative of the function F in the direction e at
the point x,, i.e.

Flxg+1te)— F{x,)
f

Assume that the derivative F) (x,) takes the Jargest value in the direction ¢,,
with |le,|| = constant. Consider the function ¢: R—~R defined by the equation

2f) = F(xo+10,), ((€R).
Calculate the minimum of the function g(f), and assune that this minimum is
taken at the point {,. Put

F (x,) = lim-
10

X, =X+

and repeat the above construction with x;.
If we continue this, by iteration we obtain a sequence

Xy =X, e,
where ¢, is the direction for which £ (x,) takes the maximum, and ¢, is the
minimam point of the function

8(f) = Flx,—1+1e,), (ER).
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2. The case of bounded operator

L. V. KanTorovicH (see [2]) applied the gradient method to the solu-
tion of the equation

) Ax = f,

where A:H-—H, is bounded, lincar, seif-adjoint, and strictly positive defi-
nite operator in Hilbert space H, f¢ H is a given vector. From this assump-
tion on the operator A we know that there exists a unique solution x*¢ #H
for the equation (1), which is the same as the minimum point of the energetic
functional -

xy = (Ax, x)—2Re{x, f), xeH
(see [5]).

Apply the gradient method to eobtain the approximation of the mini-
mum point of the energetic functional &. Begin with an arbitrary chosen
vector x,€ 4 and assume that we have obtained the (n— )" approximation
of the mininmuni point x* of the functional & such that x,_, ¢ H where

v, = Axn—l _'f9
and
el
(Aen’ I""’i’l)

Then the P approximation of the minimum point x* is

n

‘\ln = xn—l + in f‘“n .

Kantorovich proved that the sequence (x,) converges to the minimum
point x* of the functional &£, and obtained the error estimation

) o= o Ax—fll g
Ym

where ¢ = M—mf(M-+m), m and M are lower and upper bounds of the
operator A, for which

NDei=M= + =
thus g¢=1.

3. The case of unbounded operator

According to several authors the great disadvantage of the gradient
method is that it can be applied only for the bounded operators. The main
theme of this paper is, however, to apply this method successfuliy for the
case of unbounded, linear, self-adjoint, and strictly positive definite oper-
ators such as the differential operators.

Let A be an unbounded, linear, self-adjoint and strictly positive definite
operator defined on a dense subspace of the Hilbert space H, and let fe H
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be a given vector. For this case the gradient method may not be applicable
directly for the approximate solution of the equation

3) Ax = f.
From the assumptiion of the operator A, we have r2(A) = H there is because
for all fe H, there exists a unique solution for equation (3).

If A is not self-adjoint operator, but only symmetric and strictly positive
definite, then we know ([5]) such that operator A can be extended to seif-
adjoint one, for which

W(A)=H.
Although, the lower bound of A is pesitive and the upper is not finite (i.e.
n,>0 and M, = + c). Thus the convergence of the algorithm is not
guaranteed by inequality (2).

In the following we assume that there exists a self-adjoint, strictly posi-
tive definite and unbounded operator B associated with the unhounded
operator A for which

D(B) = D(A) = H,,

where H, is a dense subspace in the space H. Furthermore, we can find con-
stants m and M with

O=m=M=+ c

and are such that for any x,€ A, we have
1) m{Bx, x;= (A, X)=M (Bx, x}.

Note that such an unbounded operator B and the constants m and M
always exist. Thus above construction does not restrict the generality.

We will prove that by applying the gradient method one can develop
a constructive procedure (algorithm) for the sofution of the equation (3).
However, at each step, we shall have to solve an equation of type

®) Bx=g¢g,
where g€ H is a given known vector. We may choose the operator B in such a
way that the solution of the equation (5) is much simpler than the solution
of the original equation (3).
introduce the scalar product
X, ¥]g = (Bx, y), (x,ycily)

and the norm induced by this scalar product is

Let Hg be the Hilbert space obtained by the completion of the Euclidean
space (H,, [x, y]g)- We can see that

HcHgcH.
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Consider the bilinear symmetric functional f, which is defined by the
equality
A, ¥y = (Ax, 1), {x, yeH,).
From (4) we have

(6) mixfiy = ct(x, v)y=Mix|p,  (x€Ho)-

This shows £ is bounded symmetric bilinear functional onto the space H,.
The functional ~# and the inequality (6) can be extended on the whole space
Hg. However, by Riesz’s theorem, there exists a continuous, finear scif-
adjoint operator

A Hy~H,

({(.\',y) = [AC.\',J)], (x:yEHB)r

tor which

such that
(7) mx|z=[Ax, v]= Mix[.

[t follows that A° is a strictly positive definite bounded operator on the
Hilbert space ffp.
Since R(B) = H, then it is casy to prove that
A®lm, = B A,
thus we see that the original equation (3) is equivalent fo the equation
(8) APx =g
with g = B-1f.

Let us recall the essential difference between the two equations (3) and
(8). The left side of equation (3) involves an unbounded linear, self-adjeint
and strictly positive definile operator which is defined on a dense subspace of
the Hitbert space f{. However, the left hand side of cquation (6) invoives a
hounded, linear self-adjoint and strictly positive operator A° which is defined
on the whole space H .

Now the gradient method can be applicd to obtain the solution of (8)
in the energetic space H,. Begin with an arbitrary vector x,€ H; and apply
the gradient method. According to KaxTorovicH [2], we can obtain fhe
fotiowing approximate sequertce

Xp =Xpqt+lu, (1=12,...)

u, = A°x,_,—¢
where

iy
[A°up, u,]
Applying the error estimations obtained by Kantorovich, we get
1 M"‘"..—'_{I]AE. &
]/on MA°+.'HA0] .

n

©) ot — ¥l = 1A% 30— gl [
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We can transform the above equations and the error estimate in such a way
that the operator A° does not play any role since A°y, = B-1A and g =
= B-1f, we have

Bu, = Ax, ,—f.

The vector «, is the solution of the equation
Bu,=f,
where f, = Ax__,—f Moreover, it is easy to see that
| (B )
{ AU, Uy

Finally, we investigate the speed of the convergence of the sequence (x,).
We know the inequality

m x| = [A° X, X]=M ixy  (x€Hp)
and alse the bounds of the hounded self-adjoint operator A°: Hy—Hy,
namely mae=m and M .= M. t is easy to prove that

Maa—t100 M-

(10} S——— =
Maad-mae  M-4m

and ||A® -\'u—giisﬁvl;‘HAo X,—J|| where p=0 is constant for which

(1) IBX, Xr=p N, (XEH).
Using (9), (10) and the relation - = L——, we have
V”Mn l/f
. [ M—m
12 X, —X¥g= _  [Axq—flI}-—| .
(12) R o Sy

Since for arbitrary x€ Hp we have i|x|i<%"x||3 for the original nerm in
f

the space we obtain {he following cstimation
M—m

1
13 Xn—.\'* = = | Ax,— " = — .
(13) I | oY fAx,—fllg", ¢ Mam

The above algorithm can be sunmed up in the following theorem,

THEOREM. Begin with un arbitrary vector x,¢ H, aid assume thal we
obtained x,_, the (n - )" approximation of the solution x* of equation (3),

wiere
f:'l = r"l..\'”__l _f

fef 1, be the solution of the equation
Bu=f,
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then the ' approximatien of the solution xX* is
xn = xn—l +'{n un

_ (B, )
<Auﬂ! “!’I>

Srarement 1. From the above discussion we see that for applying the
gradient imethod we have to solve the equation,

Bu=/f, foreach n=12....

where t . And we can obtain the error estimation (12) and (13).

The method can be applied effectively it we can choose an operator B for
which B~! can be easily calculated.

STATEMENT 2, The gradient method can be applied to the equations of
the form

Ax=f

where A may not be a symunetric operator. It can be done by taking ¢ =
= A*f where A% is the adjoint of the operator A. Then we are led {o the
niew cquation that has the following pleasant form:

(1) A¥ Ax == g

Clearly A* 4 is a symmetric semidefinite operator. If A% A happens 10 be a
strictly positive definite operator then the gradient method works as in the
case of equation (3).

References

L1] L. KanTtorovicn: Functional analysis and applied mathematics, National Burea of
Standards Report 1509, 1905, M R. 10. 380, MR 4. 766.

[2] L. KanTorOVICcH: On the method of steepest descent, Doki. Akad. Nauk. SS5R, 56
{1047} 233 - 236. {Russian) M R. 9. 308.

[3] L. KanTorOvICH and (. AwiLov: Fuucliona! analysis in norniaf spaces, Pergamoit
Press, Oxford, 1964, M R, 22, 0837.

[4] L. A. LustErNik: Element of functiona! analysis, Hindustan Publishing Corp. 1,
Delhi.

[B] 8. G. MicuvLin: The méninuun problem for Quadralic functionafs, 1932, in Russian.

[G} 5. G. Micsuin: Variation methods in mathematical physics, Akademie-Verlag, Berlin,
1962,

[7] 8. G. MicHuiN: Lincar partial differential equalions, Moscow, 1977, in Russian.

[B] W. PeETRYSHYN: Direct and iterative methods for the selution linear operator equa-
tinng in Hilbert space, Trans, Amer. Soc., 105 (1962), 1306 - 175. MR 26. 3150,



ANALYTICITY OF THE SOLUTION OF BOUNDARY VALUE
PROBLEMS FOR A SELF-ADJOINT ORDINARY DIFFERENTIAL
EQUATION WITH POLYNOMIAL COEFFICIENTS
VIA GRADIENT METHOD
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A, SHAMANDY and A. EL-NENAE
Faculty of Sciences, Mansoura University, Egypt

{ Received December 10, 1980 )

In this paper, using the gradient method, it is shown that the solution of
a boundary value problem for a self-adjoint ordinary linear differential
equation with polynomial coefficients is an analytic function. The proof is
hased on the fact that the gradient method provides a series of function with
a very high speed convergence.

Let 7= [a, &] be a finite closed interval and

po: pl! R | pN

polynomials satisfying the following conditions.
(i) Forevery k=0,1, ..., N—1 p, (x)=0 (x¢])
(ii) there exists a constant m=0 such that
Py (Xy=m (xe€l).

Denote by C§*™ the set of such functions «: 7 R that are 2N-times con-
tinuously differentiable in I and satisfy the homogeneous boundary con-
ditions:

) ) =t @B) =0 (k=0,1,...,N—1).

Consider the self-adjoint linear differential operator of order 2N defined
on the class of functions C$®M) by the equation

N It it
A= 3 (= 1) d -~{ﬂ. d ”].
k=0

e | dee
For the special case py=p, = ... =py_, =0, pyy =1 define
42N
= — YN _
B=(-D TN
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In [2] we have proved that besides the constant #z:= 0 in condition (i1} there
exists a constant M such that for every ¢ C2¥) we have

1 ||u]|3 = {Au, wy=M|ul3,,

where ¢-, - denotes the scalar product in L,(/) and

lelz = (But, 0y = 3 a®llian, (€CEN).

N
k=0

Lei f be a given polynomial and consider the differential equation

@ Au=f
having a unique solution u€CEV) under conditions above.

THEOREM. The solution * of the equation (2) satisfying the boundary
conditions (1) is analviic in the closed inferval 1.

Proor. Apply the gradient method described in [1] and [2] to the
approximate calculation of the solution . Start from the initial function
t, = 0. Then the method provides a series of functions (z,) for which

Uy =ttt v, (=12 ..

where {,, is an appropriate constant while the selution v, of the differential
eyuation
Bl’r: :.fn

belongs to the class of functions CEM, where

fn = A”n—l_'f'

For obtaining the first approximation , we have to solve the differential
eguation

Bry=—f
witich has a polynemial right-hand side. A simple calculations shows that the
solution of this equation in the class C2% can be written in the form
LX) = (XN (x—u)VNP(x) (xeb)
where P is a polynomial having the same degree as f. Hence, it follows that
the first approximation
ty = tig+i =41y
is also a polynomial having a degree 2N 4 deg f where deg f stands for the
tegree of the polynomial f.

1t can be ecasily proved by induction that every function u, will be a
potyrtomial for the degree of which the following estimation holds.

d,=degu, =2N+d)yn (n-=1,2,...)

witere d is the maximum of the degrees of polynomials p,, p;, ..., py and f.
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From the results of [[]and [2] we get the following estimation
[er*—u y=Kg® (n=1,2,...)

M—m

Mim’

Introduce the notation g, = ¢'2¥~4 and take into account that for every
1€ CEM the inequality

where K is a constant and ¢ =

max |u| =4y
i

holds (see [2]). Then we get the inequality

max i —u,|=Kgin (n=12...)
I

where O=g¢,=<1 and u, is a polynoniial of degree d,. Hence, by the well-
known Berstein theorem, it follows that g is an analytic function in the in-
terval.
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ESTIMATES ON THE EXISTENCE REGION OF PERIODIC
SOLUTIONS OF PERTURBED VAN DER POL’S EQUATION
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( Received April 1, 1981}

The aim of this paper is to apply the estimates of M. Farkas in [1]
on the existence regions of periodic solutions of the 7 dimensional perturbed
differential systems to perturbed van der Pol’s equation. in the first section
we repeat shortly the results of M. FaArkas for the general case. Applying
these results in the second section we get explicit bounds for the parameters
among which the existence of the periodic solutions of perturbed van der
Pol’s equation is ensured.

1. M. Farkas® estimates

in [1] the perturbed sysiem of differential equations
!
(L1 i:f(X)wg[—,x]
T

was considered, where dot means differentiation with respect to 1€R, ueR
is a “small parameter”, =0 is a real parameter, x€£2, £ is an open and
bounded ball in R? with center in the origin (or, in general, £2 is some open,

connected and bounded region in R"), the functions f: QR g: RXQ~Rn
helong to the C? class in the closure £ of the ball £ and g is periodic in the
variable { with period 7, i.e.

25+ 1, X)=g(s,x), SCR, x€Q.
It was also assumed that the unperturbed system
(1.2) x = f(x)

has a non-constant periodic solution p:R—~Q with period 7,=0 and the
number 1 is a simple characteristic multiplier of the variational system of
(1.1) corresponding to the periodic solution p(f)

(1.3) y =L Et)y-

6 ANNALES — Sectio Mathematica — Tomus XXVL.
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It order to formulate M. Farkas’ theorem we need the following nota-
tions and constants. Let us denote p° -: p(0)= col(pg, ..., p%) and p° =
= p(@)=col(p{, ..., pB). 1t is assumed, without loss of generatity, that
pi=0, pt =0 (i=2, ..., n). The norm of vectors and matrices is defined
as follows:

= col(vy, ...,0,) v = max iy,
i
M=1|m,] G=1..,mk=1,...,m), |M|=mmax|u,],
ik

E=ley] (bkt=1,....m, |E|=nmaxle,.

By oy

Put
1.4 o =dist (I, d):=0,

where I" denotes the path of the periodic selution p(f) and 9 Q is the boundary
of balt (2;

Fy = max [f()l, G, = max flgCs, ),
XL :EE
Fy= max [|fo0ll, G, = maxllg. (s, x)Il,
(1.5) xen xE82
SER
B = max | f4 (9, G, = max|igi(s, )
XL ;gg
PO 0 ... 0
(£.6) J=l0 0 0 .0 Ly,
6 o6 o ... 0

where Y(f) is the fundamental matrix solution of the variational system
(1.3) which assumes the unit matrix at £ = 0, i.e. Y(0) = I;

(1.7) K= max ¥, K_ = max [Y-1@|;
e - =ta,
(L8) P = max o= "S-I5
HES ST n

Let a;, §; (i = 1, 2, 3) be arbitrary positive numbers satisfying the fol-
lowing inequalities, respectively:

(1.9) %Goroﬂl-f—ﬁ1<aexp[-—-—- F].Tu]:
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ay [% F Gyt exp [% A fo] + Gy + 4G exp [% T, {(F + Gy az)]}+

o
nljy’

3 3 3
{_2.a3 [?Ez(}o T2 exp [E K 10]4—61 1:0] +

(1.10) +Bo (1 + Fy) Fyexp [g-m]{

+ 8 [%(1 + FR) Fergexp ["i'_Fl 70]‘*‘&]} eEXp [%Tu Gy ﬂz]{

i 3
I.]l - ._.,_F B
(10 Tl [ 2 ”“]

Further, let us define
oo )
o = Min |dy, 8a, 4y, —|
2
(1.12)

; T
£ = min [,31: Bas Pas 70]§
3 -, 3 3
Hi=nl« [EFI(JD'ruexp [?Fl 1:0]+Gn+4Gsexp [?fo(Fl—l-Gl at)”+
+B(1+F)F, exp [%Fr]}
3 (3 R 3

-I-ﬁ[%(l + ) Byt exp [%Flfo]"‘Fl]}KeXP [%fo(ﬁ‘{“gl‘x)]’

(1.13) H =max(H,, Hy);
_ I/~ [3
Ay = YKK_, Gyry+ — G (x+5)+
=L 1Us T =T { 5 s (o + 8)

3Gy 70+ B KK, Gord [%G roa+ﬁ+Foﬁ] exp [%Flro]+
+26,KK_, Gygo+ KK, G, ﬁ] exp [% wo(Fi+ Gy «)]+
(1.14) +H_]—1||HKK_1G(,10},

6%
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P
- yH

+Gn°'-+[‘§ [z Gytoat+f+F ﬁ]Fruexp[S FT(,]

{ [3 Gty 2 +B+F, ﬁ]exp[ F,‘rn]

(1.15) +%Gm.z+ﬁr3]Pexp [—:”;ro(mala)]},
(1.16) A= 2max{d,, 4,).

Finally we introduce the notation
A

(.17 U= {(p, eYERE - | u] = min [:g, -"-], || < min [rx, —ﬁT]}
K s

Tneorem 1. (M. Farkas, [1]). For each (u, p)e U there exist an unigue
(e, ¢ YER and an unique Iy, ¢) = col (0, Ity (u, @), .. ., I, (g, p)) € R* such that
the selution of system

=f(x)tug [;(;6 ) .\']

which af | =g assumes the value x = p*+ Wy, ¢) s periodic with period
(e, @), the functions ©: U~R, h: U—~R* have the properties z€Cl, 1€Cl,
7l ) =751 =B, Wi, @) < B in U, 7(0, 0) = 7, 10, 0) = 0.

2. Application to perturbed van der Pol’s equation

The unperturbed van der Pol’s differential equation
2. d+mi— N+ =0,

where m is a positive constant, is known (see N. LEvinson [3]) to have a
non-constant periedic solution with period depending on m. This solution
will be denoted by i, (t) and its (least positive) period by r,. It is assumed,
without loss of generality ([4]), that

(2.2) {0y = a=0, 1,{0)=0

Let us introduce the notations:

(2.3) Uy = max \uy(f)], Uy= max |igy(t)]
it Jont T Ozt

It is also well known (sec M. UraBE [53], pp. 216-218) that the path of the
to-periodic solution (i, {t), ity () of the system ii =v, b = —m (U~ v—u,
i.e. the closed orbit G = {(11, VIER2: 1 = 11, (1), v = i1, (D), 1€]0, 7,]}, encloses
the origin in the phase plane (i, 1) and it crosses the 1-axis at two sym-
metric points (0, 5) and (0, — &) (b=0).
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By using Loup’s substitution ([4])
. 1 I
X, = —utm|—at—a|-m|—u*-ul,
3 3
2.4)
X, =Uu—a,
from the scalar equation (2.1) we get the equivalent two dimensional system
(2.5) * = f(x),
where x == (x;, x,) and f(x) has the components

H() =%+a,
(2.6)

Ja(x) = —x1+m[% a3—a]—m [%(x2+a)3—(xg+a)].

Corresponding to the r,-periodic solution i, (f) of (2.1) the system (2.5)
possesses the zg-periodic solution p(f) = (p, (f), p, (1)), where

= —i,H+m [; a”—a]~m [% ug(t)mun(!)],

(2.7)
pa(l) = () —a.
[t follows from (2.7) and (2.2) that p,{f) = u, (), p.(f) = i, () and

(2.8) P = p O — (p?, p) — (0,0},
(2.9 p° = pO0)= (¥ p3) = (4,0).
Now we consider the perturbed van der Pol’s equation of the form
(2.10) a+m(u2~1)a+u=w[i,u,a],
T

where t€R, u€R is a small parameter, |u| <y, for some p,=0, 7013 a
real parameter, |v—z,| <7, for some 0=z, <7, (U, L)cQ,

(2.11) Q= {(t, VER2 12412 <12}

with some finite number r= 0 such that the closed orbit G is contained in £2

and the function y: RXQ-~R belongs to the C2 class and v is periodic in f
with period z. The equivalent system obtained from equation (2.10) by (2.4)
can be written in the form

@.12) # =f(x)+pg[§,x],

where x and f are the same as in (2.5) and g[i,x] has the components
T
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1 [%:x] = —‘)’[‘i", Xy + 4, —x1+m[;—a3—a]—m[;——(xzé—a)"‘—(xg-l—ﬂ)]],

22 [{—,x] = 0.
(2.13)

Now vector x in system (2.12) varies in the image S of bali 2 by the trans-
formation (2.4). The set

(2.14) S:{@bngﬁuﬁmP+

+ [—xl+m [% at— a]—m [-‘;— (x;+a)— (XQ+£I)]]2 -:r2]

is evidently an open, connected and bounded domain.

In order to apply M. Farkas’ theorem to system (2.12) now we must
determine the quantities o, F, R, F,, G, G, Gy, | /7Y, K, K_; and P for
this case according to the general formulae (1.4), (1.5), (1.6), (1.7} and (1.8).

In this case we have

(2.15) o = dist ({’,d8)=0,

where I" denotes the path of the periodic solution p(f) (see (2.7)) in the plane

(x,, X,), i.e. I'is the image of G by (2.4),

Fy = max [xﬁ—a, —X,4+m [ia“—a]—m [ L (x2+a)3—(xg+a)” =,
x€§ 3 3

(2.16)

F, = thax

= 2max max (I, m |(x,+a)2—1{) =
x€8 5

0 |

[-— I —m[(x,+a)*— l]]“ xe§
= 2max|[[, mmax(l,r*—1}],

(2.17)

and
(2.18) F,=8mr,
hecause

f]"xlxl (l') = fl’i‘(lxz (X) = f{;le (J.’) - fl”xgx2 (x) —
= f'gxl X1 (x) :félxlxz (x) = '-:-'lxxxl (X) =0
and rrexe (X) = —2m{x,+a).
Let the following notations be introduced:

max |y (s, o, )] =y,  max |yy(s, u, &)| = ps,

(u, D)En (u, M)€D
sER SER
(2.19) max [yu(s, u, i)} =y, max |yi(s, u, )| = .
(i, 4)EQ (u, pyee

SER $ER
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it is clear that

[ |
G, = max |y [s, X, + 4, —xl-l—m[—-63—a]~m[—-(xg+a)“—(x2+a)] =
x£8 3 3
o SCR
(2.20) = Yo-
| "1 N!
G, = max {y;[s,ngr a, —x1+m[—a“—~a]~m[ —(x2+a)3—(x2+u)J | =
xe§ | 3 3 !
ER
(220 = Ps-

The matrix g7 (s, x) has the form
g (5, x) = [}’:‘a —yutm[(xs+af—1]yi ,
0 0
hence we have
llgx (8, D=2 max (fil, [vi|+m fral [(a+ap—1])=
=2Mmax [y, ¥+ My, max (1, r2—1}],

and from this it follows that

def

(2.22) G, =G = 2max [y,, y,+my,max (1, r2—1}].

Now we find the Jacobi matrix J and after that we shall calculate the
normm of its inverse matrix f—1. In this case according to formula (1.6) the
matrix f is written in the form

-
(2.23) _,r:[*;l O]+Y(ro)-!,

where pf =a (see (2.9)), Y{t) is the fundamental matrix solution of the
variational system

r Y o= 0 ]
(2.24) v = [_1 —m(ug(r)—l)]y

with Y(0) = I = diag (1, 1). One solution of system (2.24) is clearly (u,(f),
ity (f)), which is z,-periodic. The system (2.24) has the second solution (v, (),
Ve (£)), where

(2.25) v () = u, (1) fugz(s) exp[—m fs[uﬁ(a)—l]dm]ds,
14 0

for which
(2.26) {0 =0, ¥ (0)=a"?
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(see W. 8. Loup [4]). 1t is clear from (2.2) and (2.26) that two solutions
(120 (), ity (1), (Vo (£), Vo () of system (2.24) are linearly independent, hence
the fundamental matrix sotufion Y(f) (Y(0) = I) of system (2.24) has the
form

‘ e tu, () avy (6
(2.27) V(f)_[a—lf;o(t) abo(f)]'

By Liouville’s formula we have

W(t) = det Y(f) = exp [—m f [1F (o) — 1 ]drx].

9

Let us denote the two characteristic multipliers of system (2.24) by o, and
0y, then as it is well known that g; = | and

(2.28) 0y = W(,) = det Y(z,) = exp [—m f [2 (f)— l]dt‘]}(}.
]

Furthermore we note that
(2.29) g < 1

for arbitrary positive values of the parameter m (see M. Urage [5]). By
(2.28) the inequality (2.29) is equivalent to the inequality
(2.30) j'" [L2()—1]di=0.
0
[t follows from (2.27) and (2.2) that
OB B

0 av,(z,)
or
2.31) Vi) = [(‘) “"'“ﬂ(’ﬂ)]

because av,(r,) = det Y(1,) = n,. Substituting p}=a and the last ex-
pression into (2.23) we get
J = [a av, (ro)]

» - 0 92‘- I
and its inverse matrix is
J1= at v, (e (1 —g)!
0 —(l-gy)t )
Therefore we have

(2.32) 1770 = 2max fa=, (I—g)7, ¥ (z)(1—ea) '],
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where by (2.25)
Vo(t,) = @ fo u,;?(s)exp{—m fs[uﬁ(a)— l]da]dS}O.

Let us denote

Vo= max |n{®l, Vo= max |y,

o . ™
—— iy — ==
Z o 3 o

(2.33)
W,= min W()=0.

o
——-St=T
2 L]

The inverse matrix of the fundamental matrix solution Y(f) has the
form

ai W) —av, W)
—atig (YW atu,YWDE
It is easy to see that the following estimates for K and K_, hold:

Y-1(f) =

(2.34) K=K'=K",
where
{2.35) K =2max(u' U, a? Uo, avy, aVD),
(2.36) K’ = 2max(a-lr, aV,, av)),
and
(2.37) Ko=K_=K",
where
(2.38) K., = 2W;  max (@1 U,, a-1U,, aV,, aV,),
(2.39) K’y = 2W;tmax (atr, 4V, aV,).
From (1.8}, (2.9) and (2.34) we obtain
(2.40) P<pP =P,
where
2.41) L
2
and
(2.42) P’ = —;—GK”.
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Denote
{243y U’ = {(y, P)ER? | < min [pn, o, %}, || = min [ot, %]},

where «, 8, A are determined by (1.9), ([ 10), (1.11), (1.12) (1.13), (1.14),
(1.15), (1,16) in which ¢, F, £, F), G,, G, | J~!|} are given respectively by
(2.15), (2.16), (2.17} (2. 18) (2.20), (2. 21 , (2.32) and G|, K, K_,, I’ are re-
placed respectively by their upper buunds Gi, K (or K7), K, (or K}),
P’ (or Py in (2.22), (2.35), (2.36), (2.38), (2.39), (2.41), (2.42).

Now we have all necessary notations and constants to formulate the
following result.

THEOREM 2. [f the inequality (2.30) is satisfied then there exist fwo Cl-
maps v, h: LV R such that for each (w, p)c U’ the solufion
wlt; e, utfily, ¢), mhis, r,r,){l—a2 afg, ¢)— -5 2 (u, q)] s iy Tla, qr)]

of the perturbed van der Pol's equation

(2.10°) ﬁ+m(u2——l).-'r+u:py[ ! ,u,ir]
gy )

which at t = ¢ assumes the value
(u, 1) = |a+ 1y, ¢), My, 9) [I —a*—ah(u, ¢)— ; i (u, (p)]]

is periodic with period t(u, @) and the maps 7, I have the properlies
|‘.'."(I|I'.£, (p)_ tl‘ll <min ("':17 ﬁ)! |h(|I“J '7))] = ﬁ in U’r T(OT O) = Ty h({)! O) =

Proor. Theorem 2 is proved by applying Theorem 1 of M, Farkas to the
two dimeunsionat system (2.12). In this case by assumiption (2.30) we note that
the number 1 is a siimple characteristic multiplier of systeru (2. 24). Accord-
ing to Theorem 1 for systenmt (2.12) there exist two C'-maps 7, 1: U~ R such
that the solution

(560 @1 ), o) (G0 O ) 070 )

of system (2.12) which at { = ¢ assumes the value (0, 1 {g, ¢)) is 7 (4, ¢}
periodic and the two maps z, i possess the properties expressed in Theorem
1. Then by (2.4) the function u(f, u, ¢) = x, (t; o (0, i, ), 1, 7 (t, qo))+a
is the z (g, ¢)-perioedic solution of equation (2.10") which satisfies the initial
conditions expressed in the Theorem,
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It is easy to see that domain U in (2.43) is contained in the domain U
of the form (1.17) for system (2.12). The proof of Theorem 2 is completed
by using the restrictions of the maps « and # on the region U’.

The author wishes to express his thanks to Prof. M. Farkas and Dr. A.
ELserT for reading the manuscript of this work and for giving valuable
commeits.
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{UBER LOSUNGEN ASYMPTOTISCH PERIODISCHER
STOCHASTISCHER SYSTEME

Von

TRAN VAN NHUNG
Lehrstuhl fiir Mathematik, Technische Universitdt, Budapest

{ Eingegangen am 4. Dezember 1950}

In dieser Arbeit betrachten wir einige asymptotische Eigenschaften von
Losungen asymptotisch periodischer stochastischer Systeme auf Grund
einiger Resultate von H. Bunke in [1], {2].

Im weiteren brauchen wir folgende einfache Begriffe. Einen stochasti-
schen Prozel &, (t€T), dessen Realisierungen fast alie auf T stetig sind,
nennen wir R-stetig auf T (f1], S. 12). Ein stochastischer ProzeB g, (f¢T)
heiBt streng ©-periodisch, wenn alle endlichdimensionalen Verteilungs-
funktionen der Gestalt

FlXp oo X bty o3} (- LET)

O-periodische Funktionen in = mit der gleichen Periode @ sind. Ein stochasti-
scher ProzeB g, {({¢T) heit streng stationdr, wenn alle endlichdimensionalen
Verteilungsfunktionen der Gestalt F(x,, ..., x,; f;+7, ..., {,+7) unabhén-
gig von 7 sind ([1], S. 38).

1. In [I], S. 83, hat H. Bunke das folgende lineare periodische sto-
chastische System betrachtet:

(i.1) = Axty,

wobei A, ein auf R! R-stetiger streng O-periodischer stochastischer nXxn-
MatrixprozeB und z, ein von A, unabhingiger auf R' R-stetiger streng ©-
periodischer stochastischer n-Vektorprozef zweiter Ordnung it

(1.2 sup E|zl? <k (k= const)
te[1g, fu+ 6]
ist. Mit ||| hezeichnen wir die Euclidische Norm von Vektoren bzw. von

Matrizen. E(g) ist der Erwartungswert von & (2, @, P) bezeichnet den
Wahrscheintichkeitsrawm.
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Derinrrion (f1], 5. 83). Wir nennen die Lisung x, von (1.1} asympto-
tisch @-periodisch, falls

(1.3) lim[Ex,o—Ex]=0
-
und
(1.4) lim [K*{t+0,s+N—K*{,5)] =10,

1,5+
wobel Kx{t,5) = E{(x,— Ex)) (x,—Ex)T} die Kovarianzfunktion des Pro-
zebes x, ist, gilt.
H. Bunxke hat die folgende hinreichende Bedingung dafiir angegeben,
daB jede Lésung von (1.1) asymptotisch @-periodisch ist.

Sarz L1 ({1}, S. 83). Gilf fiir jede Lisung y, ven

ay
1.5 s g
(1.5} P t
zu feder Anfangsbedingung (yo, v)€L2(Q, G, PYXR!
(1.6) ElylF == E Jlyo|f* e~#=2

mit positiven Keonstanten o und o, dann ist fede Losung x, von (1.1} zu einer
Anfangsbedingung (x,, {)e L2 (02, G, PYx R, wobei x, vom Prozefi (A, z)
unabhidngig ist, asympltotisch ©-periodisch.

Nun betrachten wir die Gleichung

(17) B Ay,

wobei A, und z, wie bei (1.1) sind und , ein von A4, unabhéngiger auf R' R-
stetiger stochastischer n-VektorprozeR zweiter Ordnung mit E |2 ]2€ C(RY)
und

sup E|7] < «

teR
ist.

Satz L2, Es seien (1.6} und die Bedingung

(1.8) lim E|¢* =0

f
erfiillt, dann ist jede Lasung &, von (L.7) zut einer Anfungsbedingung (&, {,)€
cL2(0, di, P)X R, wobei &, voin Prozef (A, z)) unabhingig ist, asymptetisch
&-periodisch.

BEwEIs. g, sei eine beliebige Losung von (1.7) zu einer Anfangsbedingung
(& L)EL(Q, AL, PYX R, wobel & vom Prozel (A, z) unabhangig ist. x,
sei die Losung von (1.1) zu der Anfangsbedingung (&, {,) und »? die Losung
von

dm .
(1.9 d—r‘ = Ayt
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zut der Anfangsbedingung (0, #;), dann gilt
(1.10) & = Xt -

Nach dem Satz 1.1 ist x, asymptotisch @-periodisch, d. h. (1.3) und (1.4) er-
fiillt sind. Im folgenden zeigen wir, daB fiir jede Ldsung », von (1.9) zu ]eder
Anfangsbedingung (s, f,)€ L2 (2, Qé PYXR*

(1.11) lim E |j, 2 = 0
[ et

gilt. Q, sei die Fundamentalmatrix von (1.5) mit @, =1 (nxn-Einheits-
matrix), dann gibt es wegen (1.6) Konstanten 8 und g, so daB

(1.12) ENQQNE=feet=2 (t=9)
giit. Aus der Gleichung

= Qt’?o+ f Qth_I Cst

erhalten wir mit (1.6}, (1.12) und nach Anwendung der Schwarzschen Un-
gleichung folgende Abschitzungen

=

E |m|* < 2E|Qsmoll®* + 2E

f 2
f Qi Q;l Cs dS
fy

S ?
<2ENQ 2 [ [ E1Q,QEI0 QW E UL ) dsdu =
=2E [Qunllt+ 2 [ [ E 1R QI E (e as| =

2
=20 E [yl e=o¢-10 1 28 ¢! [ f eems (E L2 as] .
ty

Hieraus ist (1.11) nach der L'Hospital-Regel und mit (I.8) gezeigt.

Wegen (1.10), (1.3) und (1.11}) gilt [E Etyo—E &+ 0 (f+ =). Aus (1.10)
haben wir

K&t s) = KX (8, )+ Kx {1, s)+ K" x {{, s)+ K™ (¢, 5),
wobei
K=o (t, 5) = E(,nfT)— Ex; (Eng)T

die gemeinsame Kovarianzfunktion von x, und #¢ ist. Wir bemerken, daff
fiir die Losung x, von (I.1)
(1.13) ElxP=c {c=const), &R,

gilt ({1}, S. 84). Aus (1.11), (1.13) folgen nach der Schwarzschen Ungleichung
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lim K= {t4 0, s+ @)= K** ({{, 8)|| = 0,

{5~

lim [K7* (40, s+ 0)— K**(t,5)| = 0,
t,5+00

im K7 (40, s+ — K7, s)f = 0.
t,5+oo

Damit und mit (1.4) erhalten wir
lim ||[KE(E+0, s+ —KE(L, s)| = 0.

1, §wos
Der Satz 1.2 ist bewiesen.
Im Fall der Gleichung

(1.14) %$=1Am+QUm

wobei A(f) eine auf R* stetige O-periodische deferministische nx n-Matrix-
funktion und C, ein auf R! R-stetiger streng @-periodischer stochastischer
i n-MatrixprozeB ist, zeigen wir eine hinreichende Bedingung fiir (1.6), die
auf Koeffizienten von (1.[4) gegeben ist.

Wir bemerken, wenn alle charakteristischen Exponenten i, der Glei-
chung

dp
1.15 = = A{t
(1.15) o ®r
negative Realteile haben:
(1.16) max Re, < —~v=<0,
1=k=n

gilt die Abschitzung
(1.17) |P{) P~ ()| ==me—>t=% (m = const, {=5),
wobel P(t} die Fundamentalmatrix von (1.15) mit P(z) = [ ist.

LEMmmA. Die Ungleichung (1.6) gilt fiir jede Losung y, von (1.14) zu jeder
Anfangsbedingung (y,, v)€ L2(Q, @{, P)X R! wenn die Bedingung (1.16) und
Voraussetzung

i
(1.18) f IClds=e(t—7) (f.5) (=7, e<ypmb)
erfiillt sind.
BEWEIS. ¥, sei eine beliehige Losung von (1.14) zu einer Anfangsbedin-

gung (v, )€ L2(Q, @, P)x R, dann gilt

(1.19) Yo=PWOyo+ [ POP(S)C;ysds.
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Aus (1.19) und (1.17) erbalten wir
e iy =me ol +m [ | ers|lysfl NColl ds
und nach dem Gronwall — Bel[n1an~Leln1;1a ([4], [5]) folgt wegen (1.18)
&ty =me Iyl exp {m [ed ds}--—:me?fuyou exp{me(i—1)) (f. ).

Damit haben wir
E |[y)P=m® E fiy,|* exp {20 e —p) (1 —7)},

d. h. in diesem Fall gilt (1.6) mit = = m?, ¢ = 2(y —me)=0 (wegen (1.18)).
Das Lemma ist hewiesen.

Wegen A, = EA+(A,— EA)) kinnen wir dieses Lemma auf (1.3) an-
wenden,

Aus Satz 1.2 und diesern Lemma folgt unmittelbar der folgende Satz
fiir das System

(1.20) LR ERER

wobei A(#), C, wie bei (1.14) sind, und z, ein von C, unabhingiger auf R?
R-stetiger streng ©-periodischer ProzeB zweiter Ordnung mit (1L2) und
ein von C, unabhiingiger auf R! R-stetiger ProzeB zweiter Ordnung mit
E5#e C(RY) und su]?E Z42 = oo ist.

1R

Satz 1.3. Es seien die Voraussetzungen (1.16), (1.18) und (1.8) erfillt.
Dann ist jede Léosung &, von (1.20) zu einer Anfangsbedingung (&, f)¢
L2(Q, A, PYXRY, wobei £, vom Prozef (C,, z,) unabhdngipg ist, asymplotisch
O-periodisch.

2. in [1] (5. 120), [2] hat H. Bunke eine Differentialgleichung der
Gestalt

(2.1

L)
dt
betrachtet. Der folgende Satz stellt eine Verallgemeinerung eines Resultates
von A. Ja. Dorogovcev in [3] dar.

Satz 2.1( H. BuNKE [1}, [2]). Es seien folgende Voraussetzungen erfiillt :

() fix,{,2) und gi(x,t,z) sind auf RPXRIXR™ stetige n-dimensionale
Vektorfunktionen, die fiir jedes feste {x, 2)€ R* X R™ @-periodisch sind. Es sei
1(0,1,2) =0, t, 2)ERIXR™,

(i) 2z, ist ein R-stetiger streng O-periodischer m-dimensiongler Vektor-
proze.

:f(x_u Lz)+g (xh f, Z,)

T ANNALES — Secctio Mathematica — Tomus XXV
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(iii) Es gilf fg(x, 1, )| = (f, z,) (f. 5.} mit

f Eqma)ds = K=o und |lg(v,t, 2)—g X L z) =5, — X[ (. 5.),
o

wobei 3 hinreichend klein fst.
(iv) Es gibt eine reclle stetige O-periodische Malrixfunktion Ay (f), deren
charakteristische Exponenten yegative Realteile haben: max Re /= —0 <0,

i=k=n
so daf

1wt 2)=f (0o £ 20— Ag (P —X)b= g Iy — Xl (T 8.)
mit hinreicltend Kleinem y gill.
Damn existiert auf R' eine Lisung x¥ von (2.1), fiir die (x?, z)) streng O-
periodisch ist, und jede Losung x, von (2.1) konvergiert fust sicher cxponenticl!
gegen diese sireng periodische Listung.

Wegen Voraussetzung (iv) haben wir die Abschiitzung

(2.2) Qo () Qs (D)= e=0t=9 (= const, f=1),

wobei @, (1) die Fundamentalmatrix von g = A, ({f)¢ mit Q,(0) = 7 ist. Im
Beweis des Satzes 2.1 hat H. BuxkE gezeigt, dab

(2.3) Jim (et b, —x0) == O (F. )

fre o

mit 0<g=p -y(x -5 gilt.
Nun betrachten wir das asymptotische Verhalten von Lisungen des
Systems

a i

(2.4) p

=fEp ) te (5 z) (i 1 2),

wobei fi{x, 1, z) nichtperiodisch in f und asymptotisch klein ist.

Satz 2.2, Es seien die Bedingungen (i), (i1), (iii), (iv) des Safzes 2.7 mnd
folgende Vaorausseizung erfiillt:

(v) i(x, 1, z) ist cine auf ROXRYXR™ stetige n-dimensionale Vekior-
wriktion, so daff es [(x, {, z)lj=p (¢, 2,) (f. .} mif peC(R* X R™) und

lim ety (f, 2)) =0 (f.s),
-
6=0, gilt,

Dann konvergiert jede Losung &, venr (2.4) fust sicher exponenticlt gegent die
stretig O-periodische Losung xP ves (2.1), d. h.

(25) lim (et~ = 0 (£ 5.)
{ v

mit 0=g=min [, o—»(y-+75)] gilt.
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Wenn nur lim p(f, 2)) = 0 (f. s.) erfiillt ist, dann gilt
[
lim g~ =0 (. s).
t—+ o

Bewers. Nach dem Satz 2.1 von H. BUNKE ist {2.5) bewiesen, wenn fiir
jede Losung &, von (2.4) und jede Losung x, von (2.1}

(2.6) lim (¢ 5= xf) =0 (£ 5)

mit 0 =eg<min [8, p—y (z+ )] gilt.
Aus der Gleichung

dle—
L:”XI] = Ay [&—X ]+ (& b 2)—F (3 1, 2))~
- Ao (f) [-.Ef_xi] +g (5!‘, f: Zz)_g (X,, i; zf)+h (Sﬁ f, Z:)
erhalten wir wegen (iii), (iv), (v) und {2.2)

=l =110 BN g0 %ol + 7 [ 1Qe () Q5" ) & — ol d v+
o]
+8 [ 1RMQ @l fise—xdhdv+ [ 1RO Q* @ (o v 2 d7=
D D
=y [f—Xlle=+y (x+6) [ e e—xddr+
0

!
+y j e-tt-9y(r, 2)dr (£ s),
0
bzw.

1
feiHfr_xznﬁy”En“‘xo|]+'}’(2+ﬁ)f erflE, —xjldw+
0

i
Fy f ey, zydtr (f. 5.).
o
Daraus erhalten wir nach dem verailgemeinerten Gronwall — Bellman-Lem-
ma ([1], [6])

e, — Xl = p 1150 — Xl elrte-+A—elt

H
(2.7) 4y el D —elt f ele—1G+Blry (¢, 2)dz  (f. 5.).
0]

7%
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Aus der Ungleichung

et g — X, = 7 [|g, — x| el tA ety
el rM-cielt f gle=stetdlry(z, 2)dr (f. 8.)

erhalten wir (2.6) wegen (v} mit der L'Hospital-Regel.
Aus (2.7) folgt mit der L'Hospital-Rege!
(2.8) lm [z —xfi =0 (f. 8},

for e

wenn Ilm wlt,z) = O(f. sy gilt. Aus (2.3) und (2.8) erhalten wn‘llm jlg,—xPf =

=0 (f . ) Der Satz 2.2 ist hewiesen.
Aus Satz 2.1 felgt unmittelbar das entsprechende Resultat fiir die Glei-
chung

dx,
it

FoLgErunc 2.1 (H. Buxke [l], [2]). Es scien folgende Vorausset-
zungen erfiillt:

(i) fix, z) und g{x, 2) sind auf R R stetige n-dinensionale Vektor-
funktionen, Es sei f(0,2) =0, 26 R™,

(iiy z, ist ein R-stetiger streng stationiirer m-dimensionaler Vektor-
prozel.

(iiiy Es gilt jlg(x, 2}/ =¢ (z) (f. s) nmit Eq(z)=< und jg(x,z)—
— (X, 2| =%, — X[ (. 5.), wobei 3 hinreichend klein ist.

(iv) Es gibt eine reelle Matrix A, deren charakteristische Zahlen ne-
gative Realteile haben:

(2.9) =[x, 2)+g(xp 2,).

mMax RC:‘.A_{ ---r_)-f.(],
| =kzin

1F X0, 2 —f Xy, 2))— Ag (X, =X =z X, —xa8 (F. s}

mit hinreichend kleinemn y gilt.

Dann existiert anf R' cine Losung x¢ von (2.9), fiir die (x}, z,) streng
stationir ist, und jede Lésung x, von (2.9) konvergiert fast sicher exponentiell
gegen diese streng stationire Lisung.

Aus Satz 2.2 folgt unmittelbar das folgende Resultat fiir die Gleichung

i d G ,
(2.10) = (5 2048 (Ep 20+ (et 7)) -

so dafd

FoLGEruxa 2.2, Es seien die Voraussetzungen (i), (ii), (iit), (iv) der
Folgerung 2.1 und die Veraussetzung (v} des Satzes 2.2, erfiillt. Dann kon-
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vergiert jede Ldsung &, von (2.10) fast sicher exponentiell gegen die streng
stationdre Losung x? von (2.9), d. I,

lim et e -0 = 0 (£ s.)
I~ o

mit 0<e<min [§, g~y (z+5)] gilt.
Wenn nur lim p(t, z,) = 0 (f. s.) ecfiilit ist, dann gilt

[

lim 5,— X0 =0 (f. s).
[+ o=
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NEPHOKUYECKHUE PEUIEHUA
MUPDEPEHINAJIBHO-PASHOCTHbLIX CUCTEM HEHTPAJIBHOTO
TAMA ¢ UMIOYJLCHLIM BO3NENCTBHEM

M. A, APOJICKA u J1. . BAMHOB
ITnoBapeekHit YRupepeHTer wnedu TH. Xuaewpapokoro

{ Hecimynuae 18, 71, 1087 )

B rractrosunefi padore paccuMarpuBaercs 3aaua 0 CYIMECTROBMUINTG
MEPHOANUECKIX PEEnHi HeiHeRHLX CHCTEM JHePeHLInalLHo-PasocT-
HHIX YPaBHeHIIT ¢ HMOVILCILIN RO3AeHcTBHEM 1A

#()= Ax(I—h)+Bx(—h)+Cx(f)+
+f( x (), x(f— ), (t—R)), teih

AX[j_g = !f(x(f): x(t_h):-"c({_h))hﬂn—o:

rie X€R™, A, B, C-NocTostNHBIC (711X HT) MUTPHEDL, /-1L010410TeibHAN 1H0CTO-
sman, x|, = x4 O —x (-0}, (i =0, £1, ...}, f{, x, v, z)-nepuopu-
ueckas tto { ¢ nepnodom T m-nepHan BexTop-QyvIncUuMs, olpeneetias Ha
smioxcectse fx D, thoe

) [ ={t:— o <t<+ o},

D= {(.\’, ¥ 2) : "}'” = Uy HJ/" = fiy ”Z" -'F-‘.”'}!
H-TIONOHAIHTEALHAA NOCTOSHAS, a Neprofd T Hveer Bl

3) T=ph,

riae p-natypainuoe uucno; 1 (x, 1,2, (=0, £1, ...) — m — MepHpie pex-
TO[)-(I)YI]K[LHI-I, OIPCALACHIILIE 1A MHOHCCTRE Do ¥, JOBJICTBOPAWIHE PABEH-
CTBRAM

(4) 1x+p(-\':}’,7~) = 1:('\';]’,2)

npy (x, ¥, 2€D.

HEU_IO OTMETHTL, YTO dUAIOTIYHBIE BOTIPOCH!, 1O G050 CHCTEM ODLIKIIOREN-
HBIX AHdhepeHIHaNblbIX YPABHEHHH PACCMOTPEIL B |1].

Byjexn roROpHTL, UTG MATPHIA A YAOBNETROPSIET veioriie () ecan ce

cOOCTBCIIIBIC 3nAVENHsT Z; YA0BACTBOPRIOT yeiaonutw |4;] <1, Oraerny, wTo

]

(1
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TOTAA MAaTpnyHbli pan > AKX cxommres 1< (E— A)™! n cipasepnnso sepa-
K=o
BEHCTBO

(3) IE - Ayt =5 AK) = L< .
K=0

Byaem rosopuTh, 4To KBagpatHan Marpuua H yIoBIeTBOPAET VCIDBHI
(Q), ecnu BEWIECTBEHHBIE YACTH ee COOCTREHHBIX YHMCEN OTJIMUHLI OT HYIIA.

ITyeTe, marpuua A yaosneteopsiet ycnoeuio (Q). Bes orpanuuenmst
00WHOCTH MOMNCHO TIpeAnonarath, uro H = diag (H., H_), rne H.-matpuua,
coBCTReHIILIe 3HAUEHHSI KOTOPGH HMEIOT [OJOKHTEABHBIE BellecTBeHHEE
vacTH, a H_-MaTpHua, BellecTseHHEIe YacTh coDCTBEHHbIX 3HAUYeH1# KoTopol
OTPULLATELHBI,

Onpegenum marpuyy G(f) coeTrouensen

iqer { — p—Hal -
(6) Gl) = {d{dg( e , 0y mpu f=0
diag( 0, e~"-Y) npu =0.

Har M3BECTNO, CYUWIECTRYIOT MOJIOHTENLHBE NIOCTOSEHBE K 1 ¥ TdIKKE,
YTFo

) G Ol <K et

upy fef.
PaccmoTpum AHHEHHYIO CHCTEMY

)= Ax(t—R)+Bx(t—m+CxO+g(), =i,

(8)
Ax|p =1

Jlemma 1. TIvCeTh BRIDOJHEHD CAEAVIOUNE VEAORHSA:

1. Marpuua A ypounersopsieT vejosuio (P).

2. Marpuna H = (E— Ay~ (B+ () vaosaersopsier ycnoruio (Q).

3. OvHKuxA g{{) KYcoUno HeNpepbiBHA Npit €/ ¢ TOUKAMH pasphbisa
nepeore poja npu f =ik, ({ =0, &1, ...) u nepuojnteckasa ¢ Ie-
puoaom T = ph.

4. TlocTosninnie m-mepHble BexTophi I, ({ =0, + I, ...) vioaeTBOpsioT
pasexcTBam f;. , = 1,

3. BrinonHeHo HepaseHCTBO

AKT L Vm
9 S S e Lyt o <1,

e Ly = L{[1B] +[Cl})-

Torma cucrema (8) umeer eguHCTBEHHOC T-MePUOANMYECKOe pelwleHKe
Xp (f). IT0 perenye VAOBJIETBOPSIET HEPABEHCTRY

(10) e Ol = max  sup lig O sup Ui},
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THe ¢-NONoyKUTENbHAs TNocToaAnnas, HesaBucslas ot f, a vepes |lx (D,
oBo3Hauecio
Pl = OilflspT - (D) + 0_5_1;137‘ ez (D4 sup B4 Xy il + sup |4 Zp ]~ )] -
!_;E.ITH i_‘#ﬁl ! '

HokasaTEnbcTeo. OfiosHaudm yepes M MIOKECTBO BceX ni-mepHbIX T-
nepuoguueckux GpyHKUn w(f), onpelefeHHLIX W HeNpepbBHO-gAp(epeHIH-
pyvemuix 8 f 3a WCkiouyeHHem OuIThL MoKeT Todew f=1ih (i =0, £1,...),
B KOTOpBIX W(f} n W(l) MOTYT HMETL Da3pLB JICPBOrO POAA.

Muoecrso M apngetcd N0MbHLIM HOPMUPOBAHHBEIM APGCTPAHCTEOM
C HOpmoli

Wi, = sup [w@)+ sup [Oii+sup |4 wl-ll + sup A i, -l -

0=1=T 0=f=T i i
=ik [ EFL]
(11)

Hna anemenrtor w(f)cM onpefennm JidHeiHble oneparepel A, u B,
coeaviomym odpasom

(12) Agw(lty = Awl{i—h), B,wf) = Bw({t—Hh).

Mz venosust | pemmim 1 cuepver, uro obparHbili omeparop (£— A, ) !
CYUIECTBYET U oNpeAendAercs dopmy o

(13) (E-Ap~t= 2 AF.
K=0
Kpome TOTG HMEET MECTO OUEHKA
(14) (E— Ayl =L <o
[Mosib3ysich oneparopamu A, n B, zankuiem cuctemy (8) B Bupe

5 ) =(E- A ' B+OxO+(E—AY g+ (x, h), tih.
15

AX|pmip =11,
FAE TOJI0MKEHO
TG ) = [(E-A) " —(E- A H{B+Ox()+(E— A, (B,— B)x(#).

(16)

JUtss HCCNeJOBaHNA NEPHROAMUECKHX peineHuif ckerem TMna (15) Hvaem
MOJIL30BATLES CIEAVIONEH JIemMmoii:

Jlemma 2. [f] [lyveTh cHcTeMa vpaBHeHWiH

)= Hx@+P©O, t=1f,
(17)
Axlf:ff = [j

YAOBIETBOPACT YCIIOBUAM!
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1. Matpuua H vaopaeTRopsieT ychoBHio (Q).

2. Gyigaa P(E) Kycouno HEenpepuiBlid ¢ TOYKAMH Pu3pLIBA IIEPBOTO
popa npu {=f; (i =0, £1,...) v T-nepuogAuecras.

3. ,H.illﬂ HEKQTOPOYO HATYPANRHOID YHCHA ) BLITOJHCHO PaBeHETBO

Lo, =1,

4. FlocliefloBaTeILHOCTL MOMEHTOB {; 3aHYMEPOBAHA MHO»KECTBOM LeJblX
YHCESl TAK, UTO f;—+ — oo, f;—+ f oo, . ;= 1,4+ T 1t MOKHO YKA3aTh
TaKoe HONOKHTENbHOE uKese O, uto {; . —4=0 npni =0, & 1,....

Torpa cucrema vypasHenuit (17) Wmeer ¢IMHCTBCHIOC NEPHOIHYECKOE
peurenne x* (f), vIOBAETBOPSIIOUIEE HEPABRICTEY

2K
(18) I =" sup_ [P+

K oo
o sup il

.

rae uncaad K 1y enpepeitenct u3 (7).
OtBoznauuar uepes w, ({1} anemeHT MHO:KeeTBa M, BT KOTOPOTO

(19) AWolimin = 1.

Paccaorpun cucreny
% YO =(E-AY' B+Ox, O +(E-A) T g®)+ 1w, h), i=ih,
0 AXglyeiy = 1;-
Cucrema (20) vaosnetsopser seem TpeboraHdsiv neambl 2 1py
H=E-A1(B+0),
@h Piy=(E-A) g+t (w, h),
{=-ih, O =h.
Ho rorpa cuctema (20) umeer efuHCTBEINNS TEPHOLNYCCIKOC pPeUIeHHE
ﬁ? (t)él:)mmsncmopmmuce Hepapedctsy (18), rae H, P(f) u & onpepenens
’ (I]O'CTpUl'[.\l MOCHENOBATCALHOCTL PYBKUHH X, (f), Kajash K3 KOTOPHIX
SBISIETCS COOTBETCTBEHIO IEPHOJHUCCKHM PElIeHUeM CHOTeMBl YpaBHEHNid
X, =(E-A)HB+O,OHE A gt +1{x,_y, ), il
(22)
Axﬂ|!=ﬂ: = ‘(i ’

B35iB B K4uCCTBE (DYHKUMH X, (f) pemenne cucrenst (20).
W3 nexvin 2 caenyer, wro npn 2= 1,2, ..., cHcTema (22) HxeeT euiH-
CTRellHoe peutenne X {HEAL

Ouenny Hopxy [lz (w, M) tupn weM. Wyeen

(23) e (w, )= 2 | A% (B +C) [w (t— ki) —w (B)]]| +
+ S HARB [w{t— (k4 1) ) --w (- k]Il

k=0
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OBozuauum yepes w,(f) j-Tvi0 KOMINOHEHTY BexTopa w (). PaccmoTpum
pasHocth W (f—kh)—w;(t). Tockonsry w;(f) T-nepuosnueckas QyHKIMS,
Ins I(a}[\JJ,OI"O k MOKHO YKazaTh TAKOE Ha'rypanbﬂoe YHCNo ¢, UTOOBI BHI-
NOJIHAJIOCL paBeHCTRO

(29 wif—kh)y = w;(t+qT —ki), k=p(g+1).
WUs (24) crepver
wit—k)—w; () = w;{{+qT —kh)—w; (),

e t—({+gT—kin=T.

Hutst Kayuoro £ ¥ cooTBeTCTBYI0INETO eMy § ua cermeute [(4-gT—kh, 1]
CYLIECTBYIOT He Oouibue yest (p+ 1) Touxu Buga {h, rae 1€{0, +1, .. .}. Ipu-
MeHstem Teopemy Jlarpama jna fyuxumn w;(f) na cermenre [a, b], rac

uepes ¢ obosnayena jexoropasg uz Touex f+gT—kh, ({+ DA, ..., ((+p)h,
a uepe3s b — COOTRETCTREHID HEKOTOpass M3 Touek ({+ DA, ..., (I+p)h i
TNonvuaem

w;(b)—w;{a) = l,i)j H »—a), f}“e(a, by,
OTKYId CNeAyeT QUCHKA
[ @) —w (@l =Vm sup_ i (t)l4.
t=in
Janbuie HaXOMUM
(25)  Iwe—kB—-w@®i=pVm [Gi‘;‘PT [w ()] 1+ sup (|4 wlf'—-ih”] .
Tein !

Ananoruudbly 06pasod Anst seipakenmst [w(f—{(k+ 1Y) —w(t—kh)|
nonyuaes

(26) [w(t—(k+ 1)y —w {f— ki) =
=2V (s, WO+ sup -l
1 ih
M3 (23), (25) u (26) crenver ouenka
(27) e (w, Wl <2p Ly Y [ sup_{iw ()] i+ sup [ 4wl m”]

f#lh

Ouenum Tenepe sHopay (X, O —x, O, tpu n1=1,2, ...,
Dyurumst X, ) —x, ({) sIBAgETCH PEUleHHEM CHEAVIOWER cucTembl
YpaBHeHHMI

(28) L) = (E— A (B+O) L)+ (x, () x,_1 (), 1) -

Hassure SyjieM nonL3onaThest HepageHcTsoM (eM. [2], crp. 360)

(29) Bores O — %0 Q=22 sup. e (5, ) —Xps @ B -
¥ Q=t=T
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M3 (27) n (29) naxojum OLEHKY

6 @5 o1= T s 15 5.
13 (28) nosvuaem
@D %41 () = X (B = Ly (1% (1) =X, (O] +

+2pLy¥m h Sup [l (£) — -0 (-

M3 (30) n (3]) caefyeT HepaBeHCTBO

(32) “xn-’- 1 (t) —Xn ('{)“l =R “X (f) Xn-1 (t)lll ’
Fie

4KT L, ]/m y
(33) R=— 5 [I+L +—2—K}

W3 vcaoBust 5 nemsbl 1 coegyer cX0jMMOCTb TOCIEA0BATENBIIOCTIH
{x, (O)7_o B pocTpaHcTBE M.
Beefem obosztavenne X, (f) = lim x,, (/). dyvuxuua x, (1) dyaer T-nepuo-
H o=
JAnveckmMm peurennem cucremsl (8). Kpome Tore n3 cHcressl (22) npd #— oo
N Ayyaem
() = (E— A (B4 O X (0 +HE—A) g+ (xp (1), 1), 2ih,
(34)
AXplimin = 1;-
M3 nemmsi 2 uleuym‘ OLeHKE

2 2K
Il (f)llE ) OilflgT (E-A)e)+7(xn NI+ p—— (1=

2K L 2K 2K

= - sup Mgl +—— sup |z (xp, Mii+ - “——sup |/ ].
v 0=tsT Y 0stsT |t

MMoiib3yacy oUeHkoit (27) nojyvdaen

AKT L Vm .

—————— sup %+ (Ol +
v 0=i=T

il

@) rOl= 5 sup @)+

AKT L, ]/m 2K
.F[ > h — i é—w{] 5111_p .
M3 (34) mpu 15 ih naxomum
(36) ey Ol =Ly sup lixr I+ L sup fig®)l+
. Qmis=T 0=i=T
1xik Pih
L 2T Ly ym [

i sup |y (Ol i+ sup | ,-Il] :
G=f=T i

=i
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M3 (35) n (36) crefver oLeHKA

ZKL L
@37) sup |1xT(f)|1_<[ ter] sup e+
Fein Feih
AKT L:Vm —)
| A o LY | sup e ]+

!,t.lh

AKT L, ¥m 2K 2T Ly¥Vm
+[L1[ ” + ,_e_,,h]+ 7 sup 1]
Hanee us (15} naxoaum

(38) 4]l =5Lysup |1 +2L sup g0} -

W3 (33), (37) u (38) nonvuaem

Wy @)l = 2T L, Y [ 2;{ 4 2K

2KL  2KLL
+[ + :

+ 1] Ier (), +

+3L] sup_fig(d)|+
O=t=T

¥ Y
AKT L,Vm 2
+[ KTLyfm + K_",f +
v h | i
. (5+ 2T Y 4. 2K AKTL, }/m] sup [
! h 1 =g v h Pl
M3 (33) u vcooBus 5 nemsbl 1 Haxoapm
(39) ez ()l = ¢ max { sup g Oli; Sl!PIlf;If},
O=i=T i
rie
(40) 6= - ]——~111ax {L [ﬁ-{—& +3];
I-R 7 Y

AKT L, Vm . 2K_

L K vy [5+ 2T Vm 2K 4K T L ¥m ]}

+
h [ —egvh y

CreponaresibHO TIEPHOJWUECKOe peilieHMe Xy (f) cuctemnl (8) viomner-
sopsieT HepapeHctY (10). EQMECTREHIOCTE 3TOMO PEIICHMA CACAVET M3 TeX
cooﬁpa)}(enuﬁ, YTO NOCKONLKY BelMUMHA TOJNMKOB TIpU Kawaom ih (i =
=0, +1,...) Ans Beex pBIIIEHHH MOCTOAHNA, TO Pa3locTL ABYX MEPUOAH-
YECKHX meemm Xp () u xF () cucremst (8) A} = x, ()—xf (f) Gvaer ne-
PHOJUUECKHM PElIEHAEM CHCTEMBI

(41 Ay = Ad({t—m+BA{—I)+CAQ).
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Paccyaaa Kak u ApM JI0KA34Te)bCTBE HEpaBeHcTBa (39) 3aximouaes,
yTo A(f) ByaeT vI0BJAETBOPSITE HEpaRencTRY TWNa (39) npu g(t)=0 n [,=0,
(i=0, 11, ...). Caeposarenntio, 4{f) = 0.

ITHm Jiemma | AoKasaHa,

Henonsays nevmy 1 MO0 A0KA3aTbh CYWECTBOBAHWE eAHHCTBEHHOTO
nepuoandeckoro pewenun cucremsl (1). ToyHee, HmeeT mecro ciefyiomas
Teopema:

Teopema 1. TTycmb GuHOAHEHS! CACOVIOUILE YCAOGUA:

l. Mampuya A ydosaemeopsem ycaosuio (P).

2. Mampuya (E— Ay~ (B+C) yoosaemsopsem yeaoguo (Q).

3. Oyuxyun f(L,x,y,2) v I,(x,1,2), (i=0,+1,...) onpedeserst u
HeRpepouisHbl 1O CBOLM (apey.eriitasl ¢ MHodicecmisax [ X D n D coomsem-
CIIBEHHO, VOOSACNIGOPIONT Yeaosio JTumuuya no X, y, 2 pesHoMepHo no
fuicnoemesnrel N, ., e,

(42) f (s g0 ¥y 20 —F @, X, Yo, 22l =
= N (g — Xl| + [l — pall + lles —2al))

1 (X2 Yoo 20) — 1 (Xay Yoo Z2)1 = N (X1 — 5] + [[y1 — ¥l 4 21— 25[1)
npu fel, (xy, ¥y, 21), (Xs, Yoy 206D 1t pasescrmsas

JerT,x, v, 2y=f{,x,y,2) npu T =ph, ({,x,v,2€ixXD
(43)

Lep(X, 9,2 = 1;(x,3,2)  npu (x,9,2)¢eD.
4. BbninoaHeno repaseHcinisg (9).

Toeda npu Cocm@NOWe MAIX 3HEUEHIUX nocmosnHoil Jlunmwuga N
cucmena 1 uneem eduncmseitiioe T-nepuodirteckoe peateniie,

HorasaTenecTto. [1yeTh X (f) T-nepnognueckoe peulenne CUCTEMbI
Fo) = Ax (- +Bxy(—M)+Cx, )+ 0,0,0), #ih,
(44)
Axglemiw = 1;(0,0,0),
a pyikumy x, () (1~ 1,2, ...) oupegencinl n3 CHCTEM
(49) X, = Ax, -+ Bx, ({-h)+Cx, O+
+f(tf xn—l ('t): xn—-l (f _h)’ J-C."t—]. ("f —h))! t¢ lh ¥
A% ooy = L (% g (=0, Xy (= D1~ 0), %, 1 (= 1) = 0)).

Corracsio emmbt |, cuctemel (44) 1 (45) umetoT EAUHCTBEHHLIE PELIeHHUs.
Brenen obo3Haveue

(46) § = max { sup 7(,0,0,0), sup 1,0, 0, O)I}.
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Hoxaykem, 4ro NpH AOCTATOMHO MalbiX 3nauenwax N cipaseliHBsL
I[epaBCI{CTBa

cS
a7y I @l =)
(48) Bty ()%, (8] = %cs, =0,1,...),

TAe NOCTOsIHUAs ¢ onpefdenena us (40).
Jlelictutensho, 1st GYHKIKK X, (£) ¥2 nemmnl 1 coeyeT oreska

(49) o Ol =¢ S,

OTKY/la CIIEWYET Crpase/IuRocTL HepasencTed (47) npu n = {, ecad nocro-
sinnas Jlumunua N pwdpana nacronpio masoli, urodut

(50) 3Ne=1.
[Mpu 71:+ 1 npumensia Nemny | noavuaem
[}y @), = ¢ max 1o3up I/ (2, xo (= Q), %o (f =11 —0), %o (F——O))I],
0sisT

sup [7: (xa (15— 0), % (= ) h—0), %o (i~ ) h—=O)) )=
=¢max {OSUPT 1 (¢, Xt —0), Xo (E— 1t —0), %o (f— T~ 0)) - (1, 0, 0, O)| +
| +,sup |7 0,0,00,

sup 17 (xo (61— 0), %o ((F = 1y 1= 0), % (i~ 1) h=0)}— 1, (0, 0, O)]| +
+supIf; 0, 0, O)f} ¢ max /2N sup o (t—O)+N sup lieo(¢—0)+
+ sup [/, 0,0,0), 2N Jup [ 0+
+N sup i (¢ - 0)||+surJII1 (0,0, 0)Ill

Vlatess BRHAY (49) UI{OHIIa‘IEJ[bHO nonyqaen
(51) %, Bl =eS+3N o).

AHAIOTHYHBIM 06[)830.-“ YCTANABJIHBACTCS CIIPUBRENJIMBOCTD HEPAREHCTRA
(52) [ O =eS{I+3Nc+...+@N), (=12 ...

Hm‘peﬁye.\i, uTODR TTOCTOSLINIAST A YJIOBJCTBOPANNA HEPABCHCTRY

__cS
1-3N¢

(53)

=l

Toraa kawas w3 pyaxuuit x, (), (n=1,2, ...), IpuHUMAeT 3HaYeHnsT U2
ofadcTs [|x|| =p W VAOBNETBOPAET HepapeHcTBY (47).
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Hoxaniem TeneplL lepaBeHctBo (48). TMoaokum

yn-’.-l("):xnél(r)—xn(r): (”: 0,1, )
[lvere 71 = 0. dyukipa y, (f) OyIeT vI0BIETBOPATL CHCTEME
)= Ap—nN+By {-H+Cy )+
+ {1, x (0, X (= R), X (E— ) —f(£,0,0,0), =ih,
(54)
Ayylimin = 1(x (@ ~0), x, (i~ 1) h—0), %, (i — 1) B—0))—1,(0,0,0).
Wz nemael 1 1 venopus (42) cregver

Iy (Ol =c (2N sup 1%, (= O)+N sup 15 (—O)]).

s (49) n (50) nonyyaem

S
55 Ol <3Ne-—"2
(35) fly, (N, [ aNe

M3 (B5) crepyer capasepnusocTs nepansenctsa (48) npu n = 0.

MeToaoM WMHAYKUMH, JHAJIOTHYHO KAK NPH KOKA3ATENHCTEE HepaseH-
crea {55), moiaseiBaeTcs HepapeHcTse (48) npn n=1,2, ...

H3 nepasencTsa (48) clieayer paBUOMCPHAN P (€] CXOMHMMOCTD T10C1E-
RopatenbiocTh {X, (D}r_,. MperensHas (yHxuua Svper T-neprofyuueckuy
peureHuem cucrembi (1).

Horasken Teneps eAMHCTBEHNOCTL [EPHOJMYECKOIG PEUICHIH CUCTEMbI
(1). Donyerum npotuBaoe. 1TyeTt ¢ () 1 @, () -~ ABa pasnuuubix T-nepuo-
JHUECKMX pelenns STl cucTembl. Ryurumns p{f) = ¢, () — @, ({) Ovj1eT vioB-
JIETROPAITH CHCTEME

P = ApQ—m+ By -+ Cy@O+ G () e —0), 7 (- 1) -
—f{l g @ g (1), 9 (= 1)), L2iH,
(56) Ayly o=
= I (‘T’l Oy @ (1), 9 (I~ h)) —~1I; (‘i'a (1), g2 (t— 1), ¢4 (f—-h))]le-h_u.
Ma nemmer I 11 yenoguit (42) cnenver oileHka

lle (Dl =2 ¢ Nl (O] -

M3 nepaserctia (50) caenver, uro p{f)=0.
JTiy Teopema 1 ioxasad.

JlsTepaTypa

[1] A. M. CAMOWAEHKO, H. A. TIEPECTIOK: T'lepHoguyeckne pelnersst cirabo HenuHeii-
HEIX CHECTEM C HMINY.[LCHRIM RO3jeitcTBuem, Judidhepenyuaise ypagienua, 14 (1973).,

[2] B. I1. JIEMMAOBWY: Jexyuu ne aamesimivecicoll meopuu yemoeiidusocmi, Havica,
Mockna, 1967.



OUEHKA CHU3Y CYMMbI KBAJIPATOB
®YHIAMEHTAJILHBIX ®YHKIIUH OJHOMEPHOI'0 OIIEPATOPA
IMPEJAUHTEPA U EE NPUMEHEHHUS

H. HO
I1. Kaeapa Anannsa YHaBepcurera JI. Jreewa, Byganemr

{ Mocmyniae 9. 6. 1930 )

B nacrosinei pabore nsyyaeTes Ipou3BoAbHast (FyHIAMEHTAIbHAS CHCTe-
Ma ¢ynrouii (PCO) oneparopa

(1) 1=z

ax?

Ha Koneunom MM OeckoHeuHom uHTepsane G = (g, ¢). Hpeamonokum gé

€L (G). Harmomuum onpegenedne ©CD, Buepasie pefeHHol B. A. Wnbu-
Hem (cn [1], {2]) n pacnpocTpaHenHoit Ha cavuaii oneparopaf B [3]. [Tonuast
OPTOHOPMMPOBaHHAs B L®(G) cucrema {u,} nazepaercs PCP oneparopa (1)
Ha HHTepBalle (G, eCNH KAWJasd QVHKUMA U, BMECTe CO CBOEH NPOW3ROJIHOMH
aBcoI0THO HENPEPHIBHA HA KAMAOM 0TpesKe HHTepnana (G, [, ¢ L2(I") u 1ns
HEKOTOPOro HEeOTPHLATEIbHOIG uHcna A, VAORMETBOPSiET YPABIIEHHID

(2) -

+q(x),

P )+ g (), (%) = A, 11, ()
dx

noyTy Beloay B G. 3amernm, uro OGCD obodwraeT nousaTHe clcTembl co0CTBEH-
HeX QYHKUKIT 0TBEYAIOINNX TPUH3BOABLULIM LHEOTPHIIATEALHLIM CAMOCOTIPOA-
JKEHHBIM OMEPATOPaM ¢ JIHCKPETHLIM CHEKTPOM, MOPOKAEHHBIX (OPMaTLHEIAL
Anddepeninanninim onepatopon (1) (cm. [3]).

FrapHblii peavnerar Hacrosiigeii paloTel 2akniovaeTcss B CleIYIOLIEM
YTBEP}K,}I\CHHHI

TEOPEMA.

a) dan npousgospron ©CD onepamope (1) ha koneuHon uumepsase G
¢ nomenyuason geLP(G) (p=1) 0 dan moboze nodompeska I unmepeasa G
Haloynics MaKue neApHCLINEAbHbIe Yucae M U «, 4mo cnpasedausq oyenwa:

3) 2 e, PP=a=0, (xel, p=0).
Wiy —nl=m

8 ANNALES — Sectio Mathematica — Tomus X XVI.
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b} ALt npoussevioni OCD onepamopa (1) Hu xoxeurton 1wiu bect:oey-

2 - -
et unmepgase G ¢ nomenyuaion §¢ iy (G) u 0aa wodozo nodompeswa |
nnmepewae G HEROVICT INEKHE 10.1020Cmeabimie wead M o o, unio cnpaeeo-
.iga (3).

M3 pabornt [3] 1 [T} crenyer, YTo (P11 BRUICIHCHI YCIOBHUH YTBEPIKLE-
s @) 1an by crpagedanBa CACAYIOWAs OLeHKA CBepXy:

(4) 2 4 ()2 = 0(), (u=0)

! =
iy — =l

PUBHEMEPND N0 X Ma uofoy KoMmnakTe MaTepnaia G.

Cymmnt crosime na Jiesoil uvactn (3) fan (4) cOOTBETCTBCHHO MOTYT
COAEPyKaTL DECKOHEUHOE YNCiID ciraraemuix (8CHL UNCiIa {A,} UMEIOT KoHEUHbIE
TOUKIL CI’YIIICIII'IFI), HO B 3T0M Ciiyuddae JTH (Al CXOAsTes adcoinoTHo., B pa-
dote [3] nowazana, uto OPH BLIGANCIMH YCTORHIT VIREPI(ICHNA a) Cripa-
BEJLNHMBA CITYIOWAH OUCLIKA:

(5) ZI'J"I |H” (x)|2£C1 (\EGr 4”}0))

]P’E{—ﬂ}é]
rie nocragsHast Cp e 3arHcHT o1 X 1 oT w. MuTerpnpyst ofe ety (3) no x
Ia HHTEpBaJIC (G oIYUMM:

(6) X 1=C01G] (a=0).

Wi —w - 1
Orreiofig BeITERAET, YTO B 3T0M cayuae uncia {2} e nMeoT Koueddsle TOuKH
CIVINGHNS I TAKHMM 06PazoM MOyKHO NPEANOAATaTs, YTO OHII 3d1lYMepPORaHLl
B ropsipice HevOusatmsa. (Ma (3) nesayunm
(7) Voner Vi, =0(D), (1=1,2..))

C ApyToil ctopoibl 13 (6) Cpa3y BITCKACT CNEAYIOLAS DUCHKA CREPXY 1A
uucna A (A) coberBentnnix snavennii e nperoCxoIsNImK:

) oap _
(8) W@y = 2 1=CYn, (=0)

f.”{f.
(o [3), (6)).
B padore [3] gorazaua, uto ecan G oHeunuil 151 feckote bl Hurep-
BaJ M gCLA{G), p=1, To HyeeT MeCTo olleHKa:

(9 2 i WPE=C, (xeG, u=0).
l'(a—lnl[‘__:.l
3aMeTIM HIaKoHel|, UTo 113 OUeHKH (3) BhITeKanT:
(10) >, l=u-|f], (u=0)
PRETEY FREPEIY|
H
(11 H()=Co¥2 =0, (1=0)

11 TAKIM 00pagost ouensn (8 i (8) Tousle o nopsaxy 7.,
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Cnepcreve L. M3 oyeron (3) u (6) esimexaem, wno 0as Kancdoil mouxu
XEG cywecmayiom nocAcQosamesbHOCs 1, = 1, (X) HAMYpPAAbHLIX ducea U
makas nofoncinesoHan nocmosinas § = f{x) 048 Komopelx

(12) [tin, (D= (x)=0, (k=1,2,...}.

Hocmesruyw B(xX) mozxncto suifpams 00HUM 1 MEM JICE HA KAHCOOM KOMIAKME
mouex x unnwepeasa G,

Taxum ofipazom oleHka (12) crnipaBepnrBa UPH BHITOIHEHAW YCROBUIH
YTREMKALHAS a) WIM b} (B cvyae BBIIQJIHCHUM YCAOBUSI YTBEPIK/EHHH b)
110 AOTIONHMTENLHO TIPEANoNaraTh Tawke BhHoaseHne (6)). Venosus
HIOCNIEIHETO  YTBEPACHHS BHINONHAKNTCH HADPUMEP A8 KIACCHUECKHX
OPTOFOHANLHEIX (yHRUMA (pynxunit $lkobu, Jlareppa m Dpmura) H psana
APYTHX CNEUWANBHBIX (YHKLIAN.

Caencraue 2. Henoabzys oyeary (12) soncito doxasams, uno 0as Kaic-
00l mouxu XCG Cyujecingyiom nocAe608QMeAbHOCHI 1, = 11, (X) HAMYpasbHbIX
qucea I maxoe dueas 0-<y < p(x, §G) 04z Komopsix

X+¥ | i
(13) fun,((x)(t)dt =C0) ey (k=1,2,.)
Vim0
X—¥

¢ Hekemopoil noagncumenstoll nocmosineld C = C(x). Iecmoanuytw C(x)
MOICHO 66I0PAMb O0HIIM I MIEAl MCE HE KAMCOOM KOMRAKING Mouex X wimnep-
eaaq G.

B palote [6] nokasaHo yTo [pH BbINONHEHUH YCIoBuH VTBED)(IEHMS
a) uad b) cnpasefiuBa QLEHKA CREPXY:

az

I
(14) fu,,_(t)di 5(3(1){7:, (An=1 oy, 02€1)

1

st moboro orpeska [ untepsana G. [MoctosiHaa C = C(f) 3aBHCHT TOJIBKO
0T oTpesxa [.

Cnencreue 3. [lycme epinoanens: yoaogus ymeepsicOenun b) meopessl.
Toz20a 048 Kaxcood Mol XEG CYWecmeyiom nocaAe006amebocms u, = u, (X)
HAMYPAsBGHLIX Ylcea U maxoe wucao 0=y < o(x, 8 (F) 011 Komopbix

X+y 3

(15) s, f i, (1) dt| =C(x)

= M=Yag =py+ M X

L

fey

k=12

¢ Hexomopold nospncumenorton nocmoantod C = C(x). Hocmogunyro C(x)
MONCHO EHOPAMS QOHILM U THeM 2Ice HA KAMNCOOM KOMIAKMe MOYeK X UHMEp-
sna G.

a=
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B pabore [6] 0uin0 fo1azalo, UTo INEET MEeCTO OLEH:

k4

]
= O — 1,
(f+ 1y
B Kotopoft { — mndoe 1eUTPHUATENLIIOE BELECTREIHOE YICAs, a X, H X,
juobpie ABE YNMCAA N3 3AMKIYTOU0 oTpe3xa O = |a, b] B cavvae a) M u3

noboro [I}III{CM]JOBHIIIIOFO KOMIIAKTA NHTEPRANA G — r cavuae b) TEOPEMBL

{x; H X, JmoOble ABA UHCAA 13 KOHEUHOTO 15 GecKkoneunoro nuTepeana G,
B cydae geL2(G)).

Hanoauny, ure peavinstat ananoruuneit (3) pas dCE  enepatopa
Jlamiaca Amke B MHOIOMEPHOM civaae §sl1 noivaeH B. A Wasunsiv B [4].
JorazareneTso reopembl Tacrosieii padorTol 1 eé cIeACTRIH ocHoBal Ha
setofe B AL Mneuua (o [1]) a raroke nexoTophle pesviabTaTtax padot [3],
[6] w 7]

Aptop ravforo Bnareiapnt npodeccopa B, AL Mneuna 3a snuvasie
12 Aanioit pabore.

Xz

(16) e [ i, (1) d!‘

t=¥iy mtt ] &

ﬂOl(;\Sr\TEﬂbCTBO TEOPEMLI H EE CJIEOCTBHIT. CnepBa JLORKAMeM TCOPCMY.
Pa,IU-I YJ_I,UGCTBH, leSOﬁ'[)C.\'[ JOKA3ATEILCTRO Teopedhl HA OTALTHLHBIC TV HKTERL
CHauana IoKaseM yToepyicie a).

1. (‘I)I-Il(mqps‘e,\\ I]]]UI'IBI‘}IJJ]I.IIhlrl OTPesnn ! UNTEPBAILA (l‘, M HCRKOTOnOC
[THWACITENLHOE UHCHID R:'O, MEHLUWIE MHIAMYMA PACCTOMNIS MENAY [Pi-

tunavy orpeska { o onntepnana G [vers X npoisBosibHas (PIKCHPOBAHHAS
TOUKA OTPe3rRA A p AeGoc NONOKUTEILHoC Yico. PaccuaTpiy gyhii:

i ; C— | =
(1% wp{lx—y], u) :- l; cos|x—yl npi |x—1 __.R'
l 0 apn |x—y| =R

Koaddmuwienr ®vpie w, pyinapiun (13) 1o GCA {u,} mojeinrran sanpusep
B pabote [7]. On myeer nua

R
(18) W, = i, () = j cos g fcos i, tdt -
pr 4
L]
l R x4
e f cos ul f g u, () sinyz, (x—: -0 d&dt.
x V2,
x—t

(HL‘]’[U.F]L\"SYH ToxJIECTRELNT0L [IPEO(F}]JZBUBEIHHC e ABNT OTEHIHTAa:
- H:: (Y) + [q (\) + 2] I, (\) = (}n + 2) Uy, (‘\)
M BEJIOYEHNe

{rr: _V’}.n_ —u ~ Al ={n: ,‘/'.”4.—_.@..—]:11 =M 2},



OLIEHKA CHU3Y CYMMBI KBAPATOB ©YHKLMI 117

MBIl MOKEM CUHTATh B fannolt pabore, wro 4, = 1}. Ofoznaumn vepes M noxa
NIPOH3BOABII0E TTONOHMTENLITOE W0 (Bbll)op ero NPOM3BEAEN ML) M 3alu-
uem s pyuunu (17) pasencroo flapeesans, pasbubast see KOXppUIMEHTL]
bepm, ta ABe [pynnm, 13 TIEPRYID W3 !\OTODBI)( BXOEAT KOdPPUUMENTDI TS
pamy. Bmem HMeT

b
(19) f fwg (

a [LEI

x—J-’|, 1“"!')|2(n‘ll = __Zr; ]11’"|2 + _ _Z!_I luluig'

i — = AT [}(I'.n iz M

IIpesicae seero yoeguyes B Tox, YTo NpH mobon pucuposaniom R, s
HITErpana, croguiero 8 mesoil vactu (19), pacioMepHo OTHOCHTEIBIO X HA
oTpeaxe | CNPUBCIIMBA P COMBILNX g CIEAYIOILAS OUEHKA:

(20) -[Im x—vl, W2 d LR
27

} ]
B camoMm gesie, NOIb3YICH TOHNICCTRON COS? o == --2 +  -cos 2w, MMCeeM
3

fm(lr y|,u)l—dy——*—+0[ ]
o ﬂ.

a

2. Voeasmest TEMEph B TOM, UT0 IR T08oro QuicHposasdore 1uncia M,
TIpH ¢ - ==, PABIOMCEPUO CTHOCHTCILIO X 114 0TPE3KE /, CTPABCLINBA CIIeay-
IS OLETIRAL

(21) 2 waP=RE B Ju (o ().

;P’).n —;!!-_":.“nl ’]"rf;l_—ul":’a";.[
Mz (18) B cuny Hepasencrna ((+ b)* =2 (e*+ 6%) BoITeKALT:

Sy wr=RE X, (9P +

|,f_—n--,,|._-1., W— ulzm
+2 fcus;:t f g (&) u, (s)sml/." (Ix—&|=-Ddtdi
|Pr)_n— ;1|-,M 7}/2.“
Hax ocTanoch AGKA3aTL OLEHEY
(22) 2 WP =0(l), (o o)
[]r'().n —;e!‘_‘-)\r!
rac

R X+t
@) i, = —= [eosut [ 4@u@sinVL (x—si-gaza
T ‘n
0 x—t
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MeHSTST TOPSAOK MHTErPUPOBMIAA B [pasoli dacTi (23) nveem:

x+R

R
T fq(t) 4y (8), f{:t;ﬁyiSiltV?.n (x—c|—fydt |az.

7 Vi,
x—R |x - |
(24)
HMcnonuava obGosiladende
R ___
(25) G, = j cosptsinyi, (|x—¢|—Ddt
[x— ¥

ouenKy o, = (1) 1 "epaseHcrzo Homn — ByHAKOBCIOTO, TOIYUKM:
n ?

x4+R xR
(26) v,z = O(1) fiq(s)lds fiq(s)|--'—-‘—’-";—‘f-)-'-"-as _
x—-R x—R "
11{ ()I

= 0 (1) Wlleer- f ()]

]

rae fp,={xcG:p(x, I}=R}. H3 (4) 1 (26) pureaeTr (22),

3. M3 conocrapsienust pasencrsa Mapeeranst (19} ¢ HoKaSaHBIMIL HMI
nepagercTami (20) u (21) Borexaer, gro KA gorazaTeicTBa Tpebyenoii
OUEHKH CHUIY (3) M0CTATOMING A0KA3ATL, YT0 MOKHO (JMIKCHPORATL YUCH0 M
TAKHM, UTC HPI RCEX FOCTATOYIIG OOILIUNMX y, PABIOMEPHO OTHOCHTEILIO X
na orpeske { OVICT COPABCAMIRO EPABCHCTBOL

- o . R
(2 'f) 2::1 |wr1I- R
Vi =i 4t
MpH JoKd3aTeALCTRE HeparelcTA (27) MBI B¥,1eM OMHPAaTLes! na oenky (4)
Il €ro JIETKN jIOKA3bIBAEMDIE CHEACTBUSA:

Hust moBoro =1 u moboro ¢ n3 orpesia = po=g pusHoMEpso 0THO-
CHTEJIBLHO X 114 KAMGION KOMHAKTE HATepBasa (F CHpaBefiHia OLeiKa
(28) CZn I, @E=o-00).
i~ =n

113

Has moboro §=0, na Kaxuglon KoMnawsre Hurepsaina G, psig

< Ju, ()
(29) > s

n=1

obaagaer paBlioMepHo orpaHH4eHHBIN CEMEICTROM UACTHHILIX CYMM.

Jag jloKasaTenbeTRA HEpapeHcTBa (27) PazodLeM cyway CTOsWy I b
Jeroil yacTd (27) na aBa cyMMbl
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(30) Sy= Zn P+ Zn [wl?
L=Fig <{n/2) Vig =(3/2) «
(31) S, = Zn LA

M<,V1n_— ,u}:f(,nj'.!)

Joctareuiie goKasath, wro nomHo GUHKCHpoBaTH uncio M TakmnM, yro npu
Beex jocratoido Oosnwinx gowancian us cyms (30) n (31) anst Beex X Mz
orpe3xa I ne npessoiifier Bennyunn K /8a2.

4. Mpucrynum Tenepk K olenike (30). B cuny ToxAecTRa

(32) coSa cos ff = —rl)- {cos (a+ ) fcos{a— )},
A0y HaeM
2 [ L
2 | § n R
a !

Hanee sterxo vbequtecsl B TOM, 1T0 Ut BCEX HOML’DUB , yuat:'rByuoumx B
cymme (30), cnpapeanmusul uepanencrna (Y2, — i =~—2-, Vi, —ul }/Zn
M3 2Tux HEPABEHCTE BLITCKAET, UTO JUIS DBCEX HOMEPOB 11, yqaurnymmnx I
cymme (30) cnpagesivBa DLElKa:

(34) —-l = 6 —.
Vi, —ul a3 00
B cuny {33) u (34) umeenm:
|2 lm @ .
(35) S _12{ + i jw, L.
: Vu nz' p AR Wiy — =2y
Jlerko ydeauThesn B TOM, YTO
(36) n ST , VA, #).

,V “;“'l

Micnoawayst (36) 11 Hepasenctso Kouwin— ByIakoBcKoro, nonyuum:

-fmui 3 l”"(“)’ ds

(37) Zn o IWafP=

¥o, -el=(a2

l'l

YUHTLIBAs, MTO YACTHYHLIE cyMMBL psAaa (29) npu 6=0 paBHOMENHO OrpaH-
yenbl HA KAXA0M OTPE3Ke HHTepBana G, nonyuum u3 (35) u (37):

o R
(38) 815_8; 2! (xef, p=p,).

a4
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5. Jlns 3aBcpLIEHHs JOKA3ATENLCTRA YTBEPHKACHNUA ) TEOPEMEI, OCTAETCs
oueHuTe cymmy (31). JloctatouHo jpokasarth, 4To (GHIypupyvioulne B 3Toil
cvmme uucno M MoykHo GHKCUPOBATL TAKHM, UTe [IpH Beex p=0 cymma (31)
Af151 BCEX X M3 0TpeaKka ne npessoiimer pesitunnsl R/8=% Paccmorpum Nocne-
JopaTenbBocTh oTpesxos [1, 2], [2,4], ..., [297%, 2%] ... n oBo3nauum ue-
pes p HAUMEHLUIHH M3 HOMEPOB K, ANA KOTOpHIX 2%=uf2. Bes orpannucuus
001HOCTH MOYKHO CYMTATL, UTO UHCIo M TpecTaBisieTes B Buae 2™~ 1, rie
1t — HEKOTOPLUT HoMep. [ToKances, UTo HOMED 1 MOMCHO PUKCHPOBATL TAKHAM,
uTo NS Beex p> (), cymma (31) co 3nauennen M = 2M-1 gag Beex x u3 oT-
peaka I ne npersoiifier Beaduuibl R {822

B COOTBETCTBHM € TPHHATHMH OD0OIHAUCHMAMH MBI MOM(EM 3alUCcATh
A3t eymmbl (31) cneaviolwice HEPABENCTBO!

PRGN ol
(39) sg«sz{ s, B s el
M=V, - =02) V2, —pl? M=V, — el =) J

3aect, ML UCIHOIBL30BAIM HepaselcrBa (33) ¥ (a+b)*=2(a*+b%). Vs (39)
& cuaty (33) u (36) nonyuum:

= g,
“0) Sz;z{kz:n ["k 1.—,[}’_ pleot W? }T

Jin O }

!l

IO

Nty | 14(8)] Z
IR

Orcopia, uernonbavsa (28) « (29) nonyaum:

. p-1 1 i
@) si=2'3 S ) ]+o ) 1] _o[zm_l].

K1 foxlyi, — a2

2m—1

Jois oueHKu CymMBl, cTosueil B npasoii yacrn (41) B (urypibx cxkobrax,
HCTIO/IL3YEM PABHOMEPHYIC [1d Kaxclom HOMBaKre untepsana & oueHKY (28),
NONOKKB B 3Toi oilelke p = 25, Orcraercst GUKCHPOBATL HOMED 71 TAKAM,
4Tofbl BLIMOJIHANOCE [ePAREHCTBO

!o[ 1 ]!<-~‘[‘-)
i 2m=1 ] 82

ComoctaBnsid Haril OLENKH Moy UM

(42) S, =

Il TEM CamblM YTBEpIKNEHUE a) TEOPEME: A0KA3aHO, J0KAa3aTeNbCTRY YTBEP) K-
jdelnst b} Teopemsl avanorryue. Teopema goxalaHa.

Hakoxey, nepexoiiy K AOKA3aTeAbCTBY CNefcTEHH Teopembt. Crencrrue |
cpa3y BLITEKART u3 AoKazaHHoli Teopembl. Jowascem Cregcrsue 2. Mnrerpn-
pyst obe wacti popmyn cpearero auadenus 3. Y. Turumapma
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U (x+H+u,(x—1)

5 = u,{x) cos }/J.:I—
i x+t
—— Hu () sin¥Va, (jx—g|—Ddg,
T fa() & sin VA, (Ix— gl —1)dz
HOJVURM Xt
x+y

(43) f a, () di = un(x)fu}%]/) { dt —

f f@(z)u @ sinVL, (|x—&|—f)dzdt,

(x--y, x+y€G).

DdukcHpYeM TPOUIBOILIYI TOUKY X BHTepBaia (. Bufepesm Takvie nocne-
AoBaTENbHOCTL {N,} NATYPAILHBIX MMCEN, ANs1 KOTOphIX Bmnonusercsa (12).
CyllecTBOBaHHE TAK0H [OCHCJOBATEILHOCTY TARAUTHPYETCS CHEACTBHEN [,
INocne atore BeIffepen Takoe WICS0 Y H3 WHTEPRAIA (0, o (x, {)G)), st KOTOo-
POV LAHAETCST MOMIIOCNEIOBATELIIOCTD {n,ﬁ_} nocneoRarTeliLiocTh {11} ob-
JIAJIAIOIN AT CBOHCTROM:
oy
(44) 005 V7ng, fd.f‘ e X 20, (=12 .. ).
}/}-nki

10
Joxa)ces, 4To TAKOH BLIDO ¥ BO3MONell M3 molory nurepnaita (0, £), (==-0).
[Tpeanono;xus NPeTHBNOE T. €. UTO HAITIeTCa £y = 0, TAKOE UTO HE CYIIECTBYLT
y€(0, g,) obnanaolnee prnne cpoiictravn. OTCi0/1a nosv4daem, uto

SN Pin, y+0, ko, O<y=<e,.
Ilo Teopeme JleGera o iipeyesuioyn NePexoie oL 31aKoM HUTEPaia BhTCKALT:

i

(45) lit j sin? V:l;"ydy =0,
fi—e aa 5
C,u,euae,\l 3aMelNy IIC])(‘.'A*ICHH()E’T T, nn'rerpa;m.u, MaleeM:
0 }().nk_
l .
(46) T3 I f sinfgde =0,
fe = l/ n;
C JApyToii CTOPOHS], HEeTKo BHAETL, UTO
£ V’nk
f S Ed E= ¢ [ Ay,
O

a 3to npoTupopeynt (46) 1 oueHka {44) gorasaia.
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3ameuvanue ], Ouenxa (44) eerrekaer ua oflleit Teopevsl Jupunine: gid
aodoi Q}MI{CHpOBaHuoH TNOCTEZOBATEILUOCT, BEUIECTBRIMIBIX uncesn {a,— c==}
(n -~ oo} MuoKecTBO {£'7 ), TIOTHOE HA eHHHUHOM KDPYTE KOMITEKCIoH
TINOCKOCTH TIPH [I0YTH KaXblil BelllecTrenn b X,

st 3apepuwenns gokazateilbersi CaeIcTBHH 2 ocTaeTest MOKA3aTh UTe
JUISl Y3Ke BRIOPAHHBIX X 1 ¥, RTOpOe ciaraemoe B npanodf yacrd (43) nveer
nopstor 0 (1//2,) npu s+ oo l/lcxo,qm-i M3 TOxAeCTBa paboTul {6]:

}l

fh (‘c,r)d{ f fq()u (£)sinV7, (|x—g| —Hdsdl =

i

(47)

= r)}/ - f f[‘?(t—-f)n x+)—glx—1u,(x—7)]dx s”]]/, (t—v)d.

Mbl nenoiL30Banu 910 paseHcTso B pabore [6] 0e3 JoKKa3areILCTRE I HOITOMY
Mbl JAAAM 3/leCh IOKA3aTCLCTBO JUISL Cro.
VIcnosab3syst TOACIECTBO

(48) sin{e+ ) = sinecosf+cosasing
noYdRM:
y ¥ T x+i ™
N 1 & . PR T e -
I, (o, D di == VT cos Vi, ! g{u, (sinVi, Ix—tlde | df-
0 Mg |
i ¥ x+t
49) - Ty f sin Vi, f g u,(F)cosV, |x—t|d&|dt.
0 x—1

W3 nocaenero PABEHCTBA HHTCIPUPYS [0 YACTAM BBITCKACT!

¥ ¥

onp 1 ¥
v, = fh,,_(x,f)dt: _—f fcos}/}.nrdr X
2Y5,
O 0

t

X[gGc+Hu, (x+0~g(x—u, (x—)]sinV2z, fdf—

I ¥ ¥
— 2-—‘-/—;1:— f sin¥i, rdz |} x
LAY
XIg(x+0a,(x+1)—g(x—Hu,(x—H]cos V3, idi =
¥
= (_)A-I_— f (sin VA, v—sin¥z, D [g(x+Du, (x+1)—qx—Du, (x—H)]at+
Py

o]
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y
+ QL [ (cos¥2, y—cosVi, ) [g(x+u, (x+ ) —q{x—Tyu, (x—]dl =
A’n
0

1
24

f [cosVi, =D —1]-[gx+D 1, (x+H—q(x—Du,(x—1)]dt.

OTciofa OTSITL UHTErPHPYSI 110 YACTLIM BBITEKACT TONACCTBO (47). M3 (47)
MCIIOJB3¥A HEPaBLHLTEBN Ko — By 1siKoBCIOTe TTOAYUIM:

]

3

| § 2
]unlzg.;;;f f[q(x+r)u,,(x+r)_q(x-r)un(xur)]dr% dl =

) i‘«' fy{lof q(x+1)un(x+r)d1;lg+ !(Jfrff(x—r) U, (x~1yd T 2][a'f'.

£l
Ho reopene Pumana— Jlebera:

t
lim fq(x+r)un(x+r)dr=0
¢ r O=f=y.
lim fq(x—r)u"(x—r)d-czo
ey

JAEJIee HCNOL3YSE HEpdBelcTBO rE.:'I,"],Cle JETIKG b'GCJI-I'I'bCH B 34IKCHHOCTIL
NpedesiLIore [epexota Mok 31aKkoy HHrerpada nparcii wactn (30). Takum
00paszoM oleHKa 1, — u(]ﬂ/}.“) 1 ren camblm Cilelectaiie 2 JoKazalo,

Hago e poxasati, uro nocrosinnyvio C(x) B ouenie (13) MOMKHO BLI-
OpaTh OANMAT M TEM K€ N KAKAOM KOMIIAKTe Touex X unTepeana G. Hna
ITOr0 JIOCTATOYHO FOKA3ATH OUCHKY V, = ()(]/]f?.,,) pasioMepHs 11a modox
KOMIAKTe nuteprana (. 3Ta oUeHKa BHITEKACT U3 HepaselcTsa (50) npumeuss
cAegyoILit Gaxt, nmenniii cCanoCToATe ILHEI HIITepee:

MyeTs {@,)e 1PON3BOALIAST NOTIAS OPTOHOPMIDOBAHHAN CHCTEMA 114
Koneuniom witn feckoHeylom nutepewie G, nyetn fe L2 (G} mnoebas Gy
inoacl mobast Touxa., Toraa 10CHCAOBATEILHOCTL HEMPEPBIRHBIX (yHKUil

ff(!) v Odl; n=1,2, ...

CTPEMATCA K 1YIN0 DABHOMEPDHO e Mofom  KoMitaKre HHTEPBAID G. 31
RLITEKAeT H3 PABENCTBO nEl]’]CCB('_lJ'ISII

(51) > | [ om0 arir'h = [ rara

n=11g i
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OPHMEHAS] H3BECTHYW TeopeMmy Anuu {(cm. lanpuwep B. A, Mneun—2. .
[Tosusx [8]). [To o710k Teopeme psif HenpepwRILX GyUKUAI B paetcTie (BI)
CXOAMTCST PARHOMEPHO Mo X 112 mobod oTpesre K nntrepoana G, CleJoBaTeNsIo
WIEHBE PSAA CTPEMISTTCS K 1IYI0 PABHOMEIO 1T0 X 112 i10f0M KoMITAKTE n1iTep-
sasia G. Oreofia cpady Bulrexiet: ecau fe L1 (G) 1 cucrema {¢,} pPaBHOAEPHD
OFPANNUENa HA BAMKHYTOM MHOMKCCTBE CYIIT f (ociere L p¥ Iy f), To noc-
JeA0BATENLHOCTDL NEMPEPLIBHBIX (PYHKLI (3]} cXOANTES K HY /0 PABHOMEDIO
mo x Ha mwbom Kommaxte nirepsana G.

3amevanue 2. MaBectiio, UTo €CiW NOCICA0BATENLHOCTL (Y HKLHOIANOB
Ha GaHaxoBoM [IPOCTPAHCTRC CTPEMMTCH K HElpepeniriionmy (YHKUHOHAIY B
KARA0I TOUKe, To 2TA CXOAMMOCTL PABHOMEpIA 11a MoboM KOMIAKTE 3T0I'0
npocrpaictsa ([10]), M3 JToro BBITEKANT HAUK YTBCPACAEIN, HCMONLIYS
H3BECTIVIO XAPAKTCPUIALHKIO KOMNAKTHBIX MINOHECTE B [HPOCTpPaHCTRAI Le,

Jorasatenecteo. CHeACTBHE 3 ananornuio K JoKasatenLersy Cled-
cTBI 2.
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AN ELLIPTIC BOUNDARY VALUE PROBLEM
FOR NONLINEAR EQUATIONS IN UNBOUNDED DOMAINS
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The purpose of this paper is to deal with the existence and the uniqueness
of variational solution for the equation

2 (=D A (x, u(x), ..., DPu(x), .. P+

ju]=m
+u (5 u () + g (x, u(x), ..., D7 u(x), ...) = f(x),

x€£2, where £2 s a (possibly unbounded) demain in R?, under some conditions
on A,, g1, g2, 2; |fl=m and }y|-=m. The main result is stated in Theorem 1.
Problem of this kind has been well studied by J. R. L. Wege in [3]. The condi-
tioits on A, i the present paper are more general than those w [3] and ihe
problem in [3] is discussed without the term g, (x, u(x), ..., Dvu(x), ...).

FORMULATION OF THE PROBLEM, We shall discuss the existence and
the uniqueness of variational solution for the equation

(1) L(ty=A(u(x) +g, (x, u(x))+
t8 (J(, .'{(X), RN & H(X), .- ) :f(Y) '

xef2, where £ is an arbitrary (may be unbounded) domain in R" and A is a
noniinear elliptic partial differential operator of order 2m given in the form

(2) Au(x)) = 2 (—~NE DA, (x, u(x), ..., DPu(x), ...),

g =m, 0= |v| =], whuc {is an integer such that I - m. More exactly we seek
for a 5(}]utmu uEWm (£2) satistying the condition

5 f/l,(x,u(x), con DR (), L) Devdx+ fgl(x,u(x))ﬁdx+

lz|=m

+ fgz(x: u(x), oony D7u(x), . v dx = (f,7)

for any reW; (U)nL (€2) and for v =u, where l<p< oo,
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Here we use the notation (f, #) for the value of fe{Wm (0)* at ue
e Wim (£2). The expression W7 (€2} will denote the completion ot Cy (£2) with
lespect to |- |Iwm @y Where

i = ||el],.. = D=l 3P
] ” ”urmo D) || ”u;?}’i(g) (!zém " “L ff.)) ¥
anc
. 3'“' 1
Dy = y 2l = tast .. oy,
oxT' 8tz . ax n

in the sense of distributions.

Assumprions 0N A. The operator A given hy (2) is restricted as follows:
A.lx, £): O RN R satisfy the Carathéedory couditions, i.e., are measur-
able it x for each fixed <RV and continuous in £ for almost all x in 2. N is
the number of mulli-indices « with |o|=m, =" ..., %, ...), |fl=m

(A1) There exists a constant ¢=0 such that
(3) | A (%, ) =c ([P '+ K(x, ), forall |e|=m,

where K (x, &) is a measurable function such that

(@) fulfm =e¢; implies f[K(x, ux), ..., DPu(x), .. ) Jrdx=c,,
P

1
£y, €, are constants and I‘—+— = 1.

2
(A2) There exist constanis ¢,=>0, ¢,>0 such that for all ueWr, ()
(5) 2> Re{A.(x,u(x), .., DPu(x), ...}, D*uy=

|ee] =2

=0, Hu"f‘”ﬁfu @€
where
A u(x), ..., DFulx), ...), Dxvy =

= fAu(x, ugx), ..., DPuxy, ...} Devdx.

(A3) Condition of semibounded variation of A: There exist a function
Pelr (Q) and a function (R, p) -~ F (R, p) which is continuous for all fixed

R=0, lim =~ (R’ & go) =0 such that for any R=0 and afl u, veWnm (Q)
E0} »

satisfying HII“WEO(O){R i i,wm U,)M_R it is true that

©) Re(A(w)—A (), u—v)=~F (R, (te—v) ‘P’Hwﬁal (Q)) .

n [4] there is an example where (A1)—(A3) are fulfiiled.
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ASSUMPTIONS ON gy, g
(G1) For all xe@, &=, ..., &, ...)¢K™, |y| =], tcK
M SO0 = p (4,
&) £068) = p O, Y4100 Y
where g, 5, Pu Po T T satisfy the Cdmtheodory conditions, i.¢., are

measurable in x for each €K, "¢ KN and continuous in f, & for aimost
all x in £2 and

P b 1=0, ro( Dl =i (x), fry, e L3N L (D)
p"(x t!)EUEO) irﬂ(x! E!)1ﬁh2(x)!

for all teK, KN, 0cK, xc2. Here K denotes R or C.
(G2) The equations

©) g0 = sUp 103 01, @ () = sup Jga(x, ¥)
=S =y

define L' (€2) functions for Q=§< =.
(G3) |lullym (4 =61 implies
pot

(10) j lg (x, 2 (x), ..., Dru(x), ... )-Dru(x)| dx=c, |o|=!.

REMAr, Let £2 be a region in n-dimensional Euclidean space with suf-
ficiLntly smoath boundary. From the imbedding theorems (see [7]),

:'-*.fn—— then the imbedding W;* ({2)< C (13) is bounded and in this case
P

the condition (G3) is fulfilled if (GI), (G2} are satisfied. For (>m——ﬂ—,
jij
from the imbedding theorems, too, the imbedding W (Q)cWiL(Q) is
bounded, where
npo
n—(m-=0Hp
and in this case instead of ((i3) we must have the following condition:

g =-

. “u”wgl’u {¥) =ty
miplies

[lee(xu0, o Dru), )| dx=c,
£$

| i
where - . +—$ = 1.
P q
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Here Ci (£2) is defined by
Ch (@) = 'gEC‘(!)) sup [DPgl = =, 0O=[f]=!
o

and C!(Q) is the space of functions which belong to C'(2) and the deriva-
tives up to order ! have continuous extension on 2, the closure of Q

DeriNtTion. For a compact set K, the (in, p) capacity is defined by
C,p, p (K} = inf {{@[i}, ,; PC~(R?), d=1 on K},

|-, lenotes a norm on W (R").
The definition is extended to arbitrary set £ by

Cyp p (E} = sup {C,, ,(K); KZE, K compact}.
A statement that holds cxcept on a set of (1, p) capacity zero is said to hold
(m, p) q.e. (quasi-everywhere).
ASSUMPTIGN ON (2,

(©21) Given ueW(R"), the necessary and sufficient condition that
HeW () is Dou = 0 for (m—1zl, p) q.e. x in C2, the complement of £2,
for| <m— 1.

REMARK. If m= max [— 2———] then (21} is fulfilled for any do-

main. (See [3]).
Now we shall mention an example of a problem which satisfies the as-
sumptions (Al1)—{A3), (G1)—(G3).

ExawrLe, Consider the equation
(~1 Z Dx(ID=alp=2Drut 3 fp(e) |DPule! D u) ¢
|z]=m || ==m—1

> (=1l Dﬁ(!w{d{ma,;,.,(.\‘)|D“'u|pﬂ“')+

Bl=m—1
O, (0¥, @)+ Py ()P, (1) Wy (1 @), ., Dru®), ...) = f(x),
where |y|=l, l=p<p—1, 3 pp.=0, Pr.=0 and g, fs€C,(£2), the

X i Jew| z=m—1
space of continuous functions which have compact support contained in Q;
@,, @, are non-negative L'-functions; ¥,, ¥,, ¥, are any continuous func-
tions such that ¥, ..., &, ...)=0 and

= if =0
W v 1 ’ P, () =
(= {{0, TR () {

0~ ()

L

=0, if
={), if

Ly ]

Here ri(x, ) =0, ry{x, )=0.

Tueorem 1. Lef assumptions (A1)—(A3), (G —(G3) and (1) be satis-
fied. Then for any fe(Wr (@ MW* there exists e W (Q) such that g,(-, u),
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g(oot, .o, Druy o)), afg (-, ) +g.(-u 0, .., DY, L)) belong to L2 (82)
and

(11) > fA,(x, ty ..., DPu, o) DRV dx +

fz|=m o

+ [ty vdet [gtou o, Druy )V = (f,7)

Jor all veWr (YN L= () und for v =u.

Ta prove this theorem we need some other theoretns and lemmas. The
operator A:Wrm ()W (©2))* is said to be semicontinuous if for any
x, yeW;, (€2), the mapping

10, 1= (Ax—ix+8y), x—y)
is continuous.

A is said to be bounded if it maps bounded subsets of W (€2) into
hounded subsets of (W7, (£2))*.

We call A pseudomonotone whenever (i;) is a sequence in W% ()
which converges weakly to an element i in W7 (©2) (we write ;- u), A (i)
converges weakly in (W™ (£2))* to f and lim sup Re (A (), #;— ) =0, then
/= A(u) and Re (A (u)), t;~u)--0.

The operator A is said to be coercive if

lim Re(A(w,m) -
““”Wﬁfo(ﬂ) e ”””WEO(Q)

We say that A is continuous in finite dimension if for ail fixed
Hy, ty, -ty PVEWT(Q) and for any sequence (c'?) converging to ¢™,
where ¢ = ({9, e$D, ..., cU)eR* for j=0,1,2, ...; (A{Pu+.. .+
+eP ), V)~ (ACEu + e+ e u), v) as jo- oo,

THEOREM 2. [f A: W[ ()W (Q)* is semicontinuous and satisfies
the condition of semibounded variation, then A is pseudomonolone operator,

Proor. First, we shall prove that if u;—~u such that

limsup Re (A(u)), u;—u)=0,
then

(12) Re (A (1), t—v)=liminf Re (A («)), u;~v)

for all veW» (9).
By assumptions:

Re(A(up)—A@), u;—tu)y=—-F (R, N, — 1) -lp”wfpngl (ﬂ)).

9 ANNALES — Sectio Mathematica — Tomus X XVI.
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As -~ then there exists a number R =0 such that:
||”J||Hfm (“)' R‘ “”uu ”1 [n} R
and
Re (A (), 1;— 1) = Re (A (i), ;- 1) F(R ;= 1m) P““m 1(“})
(13)
{u;} is bounded which implies that there exists a subsequence {«} such that
(14) lin (i — 1) !‘”hv;{;l @ = 0

(see [4]).

Hence
F(R, l(u — ) Wy win 1{_,_,)) By

Since ;- ~w and Re (A(u), u;—u) -0, from (13), we get
(15) lim Re (A (), u;—n) ]

[t is also true for the original sequence. Suppose that it is not so, then
there exists a subsequence {17} such that

lim Re (A (u)), uf —u) = —d, O0-d=4 o

Applying the above treatment to the sequence {u;’} instead of {n}, then
there exists a subscquence {i;"} of the sequence {7} such that

lim Re (A(y"), 7" —u} =0
which is a contradiction. Therefore,
(16) lim Re (A (u)), 1y ~a) =0,
From the assumptions, we have
Re (A(u)—A(m), 4;—m)=—F (R. (i1 — o) ‘Pifwgia-l (_,_))) .
Put w .= (I—fu+tr, 1EW T, (0, 1], we get
Re (A Q). u;- w)-+Re (Afug), tu—tr)—
—Re(A(u—tu+ir), — 41 H—{rp}=
= —F(R, L —utiu—tr) W, e 1(,,))
As j - oo, by passing to subsequence, we get
(Re(A(u—Tu+tm, u—r) F(R (g — )P, s g ))<
=1 huinf Re (A (u;), i—r) .
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Divide both sides by { and let -0, we obtain
Re (A (u), u—v)=lininf Re (A (1), u—v) = lim inf Re (4 (1)), u;—7)

which is (I2).
Now, since
Re (A (u}), ;—r) = Re (A(a)), u;—u)+Re (A(uy), u—»)
and from (16)
lim Re (A (z)), ;—u) = 0,
we get
linyinf Re (A (), u;—») = lininf Re (A (1), 11—} = lim Re (A (1)), u—»)

" diminf Re {A (1)), 1;—r) = imRe (f, u—v).
So we have
Re (A (u), u—ry=Re(f, u—7)
for all re Wy, ()
Hertce A(u) [ which completes the proof of the theorem.

THEOREM 3. Suppose that A: W, (Q) (W (Q))* is coercive, bounded,
continugus in finite dimension and pseudomwmmne Then the equation A(u) =
= i has at least one solution. (Sce [6]).

Lemma 1. Let {u;} be a sequence in Wi, (£2) which converges weakly
to i in W, (€2). Then there is a subsequence {t7} of {u} such that for alt o
with |oj=k—1, D= (uf)~ D= ut for almost afl x i . (See [2])-

If we put

afu, V) = > A u, o, DR, L) Drvdx,
[al=m
then a(u, vy is well defined for u, veWm (Q) and vi—a(u,v) is a bounded
finear fuactional. Thus it induces a map
T W Q0 ~ (W (@))*

(T (), V) = a(y,v).

(A1) implies that T is bounded and continuous in finite dimension (thus T is
semicontinuous operator). (A2) implies that T is coercive. Theorem 2 implies
that T is pseudomonotone operator.

The terms g, (x, u(x)), g, (X, u(x), ..., D7 u(x), ...) are truncated as
follows: let @« be a positive integer and

21 (5 1) = 26 () P17 (6 )+ 11 (%, 1),
Gan (%, &) = 2 (X) p(ﬂ) E)+1s (x &,

by the rule

where
lpl(xr y] it |py(x, D=y
UNx, f) =
P ) lp. 2B erwise
| p1(x, D

g
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P ) I ) =p
UV iy BTy = . =t
P &) P25 )1 otherwise
P2 {x, &)
and
#u(xy = char. fn of {x€Q, |x|=u}.
Then

b (i, v) = f[g“, (6 () +gou (X, 1 (x), ..., Drurfx), .. )]V (x)dx

is defined for all u, veW, (2) and
[0, v} = ¢ () W] Lpiey -
Thus vi—b, (1, v) defines an clement in (W™ (@))*, say S, (1) by the rule
(Su{t) V) = b, (1, v).

Lemma 2. If ur,—~u ae, then S, (u)~S,(u) in LI(2).

Proor. We have
|G-yt ) on (-5 tlyy - D ) =g (- ) —Lon(5 1, -, DY, L) 9=

S AP G 1L V- (N { PR DL g PR T RS
+1ga (s NI |gan (-5 1, -, Dy, L))

We shall prove that each of these four terms in the right hand side of
the previous inequality is less than or equal to an integrable function which
does not depend on §,

Eu (% 1,00) = 7, () P (x, u; (Y 1y (X, 1, (x))
g (6, 1ty (O} = {2 () P12 (6, 11 G [+ [y (x5 () =
=y, () A (x),
o g (6 Y= [ 09 (ra ()T (I (00)9].

19 (7,.(x))¢ is bounded and equal to zero outside of a bounded domain,
it (X} Le (O, hence

g1 (X, 4; () [2=G, (%),

where G, is an integrable function which does not depend on j.
Similarly,

GuulX, (), -, DV, (), L) = 7 P8 O w00, L DY (), L)
40 up (), L DY), LY,
10 (%, 11, (), -, D710, <) = |1 () PEO (&, 1, ), - o, DV (), 2 1+
+ (o), L DY (), LY =g () (X)),
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g (5 0 oy DYty (), )]0 [0 ()04 (B, (O]
since R, {(x)€ L9(x), then
Ware (3, (X, -y DY (X), .. J]e=G, (),

where (G, is an integrable function which does not depend on j.

In the same way, it is clear that |g,.(x, #(x)}|? and |g,,.(x, u(x), ...,
.o, Dru(x), ...)|9 are less than or equal to integrable functions which do
not depend on j. Hence

e uj)'i‘g‘zﬂ(-: Uy oo, D71ty o)
_glﬂ(-: u)_gz.ﬂ('r u, .. 'rD?“r v ')|QEG;

where G is an integrable function which does not depend on j. Since g,,,
g, are coutinuous functions, it is easy to see that

|G (s U gan (s ttyy o, DYy L) —

'_glﬂ(-! “)_gzﬂ('s i, ..., Dra, .. )|q_,,0
a.e. Then by using Lebesgue’s dominated convergence theorem, we get

f |Z10 (s ) Lo (s tly -0, DVl o0 ) —
i

— gy Wy —Fou (s gy -, DY, L} 9dx 0
i.e. Su(u;) ~S,.(u) in Le(@).
LEmma 3. 5, T4 S, are pseudoemonotonte and &, is bounded.
Proor. As u;—u there is a subsequence u] such that wj—-u a.e., by
lemma 2 we have S, (1))~ S, (u) in L7(2). By Hdlder’s inequality we obtain
Re (S, («}), ;—u)~0.

Since 8, (1)) ~S,. (1) in L2}, S.(uy)—~S,.(u) weakly, but if S,(u)—-y as
u;—u, then S, {u) = y. ‘
As lim sup Re (S. (1)), n;—u)=0 and there exists a subsequence u;
such that
Re (S, (1), uj—u) -0,

Re (S, (u;), u;—u)—~0,
for suppose that Re (S,,(uj), uy— tr) does not tend to zero. Then there exist
go>0 and a subsequence {u}’} such that
Re (S, (u}), uf —u)<—&.

Applying the first part of the proof for uj instead of 4, then {u}-’} has a
subsequence {u;”} such that

Re (8, (u}"), uf” —u)~0

then
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which is a contradiction and pseudomonotonicity of S, follows. Similarly
can be proved that 7'+ 5, is pseudomonotone and S, is bounded.

Lemma 4. Under the above assumtions, if {u} is a sequence in W (Q)
with u; —~u in W (2) and

f“glj(‘! U |+ 1oy (o ttyy -, Dy, )y =cy,
2

flgzj(., U, ...,Dru, .. )| - |1 D2uy| =,
1

for all |«| =1 and ail j, then u[g, (., Wy +g,(., 4, ..., Dra, .. )]l (2) and
g udtg (huy D7y, ) (Guy g (G, DYy L)
in L (£2) as j—+ oo.
ProOOF. As u;--u in W7, (Q) there is a subsequence, again denoted by
iy such that u; ~u ae. in Q and Dvu;~Dvu ae. in Q for |p|=m—1. (See
lemma 1). Condition (G1) and the definitions of &1 £; imply that

£ (x, u, ()~ (x, 1 (x))
Loy (% 4, (0, o, DY (x), . )~ ga (X 1 (X), ., DY u(X), L)

a.e. in 0 as j— «. By Fatou’s lemma

Re [[g(, )tgalortty ..., Dvu, .. )=

and

=|im inf Re j g0 o)+ gy (o ttyy o, D7y )]l =cy,
1
Im f[gl(i II)+g2(., b, ... D}'”, - )]H'E
12

<timinflm [ g, (., uptgo 0y ..oy Drity .. )]G =0

Hence

Sl Comrea oty D7y it < o
1

ufg (G u)tge (., u, .., Dy, )] L1{Q).
tor any 6=0, we have

13 (6 )4, (0 1y, o, DYy, )] = gy (x, )] +
+1ga; (6, 1y o, Drat L) 5“15;1& g (o D) +2h,(X)+

+ 0 g (6 1)1y +[§§ng_1 12 (x, &) +2h, () +

g 06 up - DYy, L) 6|=4251 | D=y .
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Thus for any measurable set F in 0,
;j g0, Co i)+ ity o Dy, ) =
- f [gh-1 () + g () + 20+ 20, | dx + 6 C.
&

Given £:=0, let 6 = -—ch—. Then for meas (£) sufficiently small

é[ e Coutge (hagy oo DYy, L Y dy<e
and there is a set A, of finite measure with

f Bt ey (bt o D, L) di<e

ONAp

By Vitali’s theorem these show that
G ()t (otiyy -, Pty o)y (G )+ g (0 -, D7, )
in Lt().
LEmmA 5. Under the above assumptions, the following inequality holds

Re (T +S,) (1), ) = ¢ Elffilf;;;?no @~ G [Illeoen + allee @] lullep i »
I . ey
where ¢, ¢, are constants and p=1, — +—-l— = [. Furthermore, (T+S,) is
a coercive operator. rq

Proor. We have

b.(u, 1) = f (g0 00 1) Gow (X tr, .., D71, L0} () dX =
= [ 0 [ (5 )+ (1, DY, L () dx

+ f[rl(x, wWy+ra (X, 0, ..., Dru, ) a(x)dx.

L

But

£ () pY (x, u (x)) 2 () =0,

2u () PO (x, (), -, DY u(x), ) u(x)=0.
Therefore

1 [
Reb, (u, uy= —| f [ O uy+ry(x, 0, oo Dy, L ) fadx,
| 12 !
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and we have
fry (x, D) = fy (x), [ra(x, &) =<hy (x).
Then

Re ((T+S,) (1), u) = Re{T (u), u}+Re b, (1, u),
by using Hélder’s inequality and (A2) we get:
Re (T + S (u), )=, ||£1||ﬁ,gtﬂ @

—{[Ilfgllza ey + sl ee ] llLPia) ,

where p=1, l_+l = 1.
p g

Hence
Re(T+8) @D ot a1
- 3 W (n)
el ey, ¢
tlhpr e
- [“h‘lHLq(r)) + “h HLQ("]J ” ”L "y
iy o
As
llez]]2.2 (e
"H” L a0, Rl
Wp,ﬂ(z) ||u|lw2’tu (1)
Then
RE ((T + Sﬂ) (u), fl) — e

o™= Wl o

i.e. (T+8,) is a coercive operator.

ProoF or THEOREM l. On the basis of the properties of T, S; that

mentmncd and proved above, thus, from theorem 3, T+S maps W"‘( B))
onto (W (Q))*, in particular, there exists a u; e W, () such that

T)+S;(u)=f in (Wm(2)*.
Moreover ||u||=c, for if not, then from lemma 5
Re (f, 1)) 3 Re (T +S) (), EJ-)

HUJHW’;‘,U (%) H!'!J'”WEO ()]

- as "“;‘”wgﬁo(m”m

But we have

ICh apl L 1129 @ ol oy

””j”wfpﬂ’u [(5) ”uj"wzl‘o [€7)]
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which is finite as [lt;]|,,m @~ Then we have a contradiction. As T is
PO

bounded, by passing to subsequences, we may suppose that ;- uin Wi ()
and T (u)—y in (W5 (@)% Thus Jluj=c, |7 ()| =c, and
2 Un a4 1o u)l] luyl=c,
1

imply that

S gy Coapi+ g (g ooy DYay, ) )=

12

={fll a1+ 6t =¢
and from (G3), we get
f |82 (s tty .o, DYy ) (D*H )] dxsc, for o] <ni.

Thus by lemma 4,

g (., W+, 0, o, Dra, . )]e Ly
and _
S o4 g (ot oo Dvi =g (L i)+ g5 (1, ., DY, L)

in L(2). Therefore for any ve W, () L-, passing to the limit as j~ <o,
we obtain

) 0+ [l e, u, .o, Du, L )] vdx = (, 7).
We shall show that y = 7"(u) by using the pseudomonotone property
of T. Now,
(T =) = (T (up), u}— (T (up), w)

tim sup Re (T (1)), u;—u) = himsup Re (f—8; (1)), u)—Re(y, u)=

50

=Re(f—y, u}~liminf Re f[g,j(., Uyt go; (s tty -, Dy, o ) u;dx.

From Fatouw’s lemta, we get
limsup Re (T (), u;— 1)< Re(f—y, u)—

—Re f[gl(_, D+ (s u, ., DYy, L )]udx,

Thus for any wcWm ()N L=, using (17) we get
timsup Re (T (¢)), u,— 1ty <=Re (f—y, i— o)+

+ Re f[gl(., wy+ g (o, ity o, D7y ) (o — ) dx.
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By (£21), there is a sequence ;€W ()N L= such that o;~u in W7 (2)

and |o; (x)] =clu(x)] ae. (see [5]) thus Re (f—y, u—wj)+0 and by passing
to SleSqul(.]‘lCCb we get

1[21 g, ( ,u,...,D?’u,...)]wjdx—av

- f[gl('? y+g ., U, ..., D7y, )] wdx

by dominated convergence theorem, since
g, (L, +g. (0 D, Lo )]e L ().
lim sup Re (T (u)), u,— 1) =<0.

So that y = T (u) and (T (u}), u;— ) 0.
From (17), then

Hence

a (i, v) j[g]L y g (L u, DYy ) vde = ().
Setting v = w; and let j—~ <o, we obtain
a(u, )+ [ g (., W+, u, .., D7, . ] Hdx = (7, B)

which conipletes the proof of the theorem.
Tueorem 4. Suppose that the operator A defined by (2) satisfies (Al)
und the foltowing condition of strong ellipticity :

2 Re{A (¢ u,...,DPu, .. )-A(x,v, ..., D8y, ), D (u—v)=

|| zzm
(18)
=4, Hl[ p”wm (r:)!
where a, =0 is u constant. Then the problem (1) under the conditions (G1), (G2)
and (21} has one and only oue solution provided that g,(x, &'y =0 and g, (x, 1)
satisfies the condifion that :
e h)=g 061ty for f=l,.
Remark. If A statisfies the following condition
llZm[Aﬁ(x’ E)'_Az(x}n)](sa_;ja)?:cllg E;"'n1|p)
x| = x| =M

where ¢,=0 is a constant, then A satisfies (18).
A is called a strictly monotone operator if

{At)—Auy, Ut —uty) =0, for any u,, u,€D(A),
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anl
(A — Ay, 1~y = 0 0 1y = u,,

where D (A) is the domain of definition of A.

Proor or THEOREM 4. From (18) it follows that condtions (A2) and (AS)
are fulfilled. The conditions of the theorem imply that L (1) defined by (1)
is strictly monotone, therefore the solution is unique.
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ON ISOMETRIC AND ISOMORPHIC CHARACTERIZATIONS
OF SPACES OF CONTINUOUS FUNCTIONS

By
A. BARDOSSY
{ Recetved April 27, 1987 }

1. Introduction

The isometric and isornorphic theory of C(K) spaces (K compact Haus-
dorff space) is quite developped. There are a lot of conditions which guarantee
an E Banach space to be isometric to a C(K) space. {[1], [4], [7]). In this
paper we first present another isometric characterization. The similar iso-
morphic characterization is also given. Finally the results are applied to
M spaces.

2. Isometric case

First we introduce the condition (A)

DerFiniTiON 1. The Banach space E satisfies the condition (A) if there
is an ¢€ E such that for all x¢ E we have

max (|x+e], Il —e]) = ixi|+ 1.
Let C = {x; [[2x— x|/ el| = ffx|f} -
Lemma 1. Cis a positive cone.

Proor. From the condition (A) |lef = I.
if a=0 the aCcC.
If x>0 then (A) implies
max (2x— x| ], | —2x — x| ef) = 3 x|
so CN(—C)=¢
We only have to prove that C+Cc C. Let
Z = {x*c¢Ex x* =1, jx*(e)| = 1}.

We shall prove that
(1) x| = sup {|x*(x)|; x*€Z}.
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We can assume that fix+e¢| = x|+ 1. Using the Hahn— Banach theorem,
we can find an x*¢ E* with [|x®|] = 1 such that:

x4+ 1 = [x* (xe)| = |x* (@) [+ |x* ()| =|}x][+ T
so |x¥(e)| = I and (1) is proved. Let

&
clz{x; T g, vx*ez].
x*{e)

For this C, we have C; = C because if x¢C,,

12—l el = sup {|2x* (x)— x| x* ()], x*€ Z} = fix]|
and if xeC then by (1) we have again:

sup {|2¢* () — x| <% (¢) ; x*€Z} = i so C,=C.

For C, the condition C,+ C,cC, is evident.
This cone C introduces a partial ordering on £. This means we have
x=y if (x—y)eC.

LEmMA 2. The element e is a strong order unit in (E, €) and the norm on
E is the strong order unit norm introduced by e.

Proor. We use the set Z from lemma 1. If |ix||=1 we have for all x¥*cZ

He—x) _ xEE@-XT)

xX¥(e) x*(¢)
and
XEex) @)
xX*()  x*(e)
50 —e=x-<¢, If fx||=1 then there is an y*¢ Z such that
7+ ()} =1
50
yE©)
or

YOy
¥*(€)
Which means e—x=0 or e+x=0. So we have |x|=[ if and only if —e=<
=Xx=t
Now we can give the isometric characterization:

Tueorem 1. The Banach space E is lineary isomelric to a C{T) space
for some T compact Hausdorff space, if and only if E satisfies the condition (A)
arid for each z¢ E there is an y ¢ E such that

) Cc(C+z)=C+y.
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Proor. If E is isometric to C(T), then with ¢ = 1 E satisfies the con-
dition (A). The cone C introduces the natural ordering on C(T), and as
C(T) is a lattice it obviously satisfies (2).

Conversely if (2) holds then E is a Banach lattice. By Lernma 2 £ has a
strong order unit, and a strong order unit norm, so E is an abstract M space
[6}. Now by KakuTaxt's theorem [5] £ is lineary isometric to C(T) for some
compact Hausdorff space T.

3. Isomorphic case

Now a similar sufficient condition can be given for the isomorphic
case. For this we introduce the condition (B).

DeriniTion 2. The Banach space E satisfies the condition (B) if there is
an f¢ £ and an a:-O such that for all xe £

max (Jpe-+ 14, fx—fl)=[xll+e.

Now we want to find a connection befween the conditions (A) and (B). For
this we prove the foilowing:

THEOREM 2. If F satisfics the condition (B) then there is an cquivalent
norm on E with which it satisfies the condition (A).

Proor. Using the condition (B), for each x¢E we have an x*¢E¥
lIx*l=1 such that

[x* )] = Il [xX* (N ==
= % xF () =4}
Then with the help of a subset H, of H for which
[ix] = sup {ix* (x}}; x*€H,)

So let

holds, we can define a new norm

(AR . I x*(x) :. ~2k }
Vxl = supd | Lt x*eH, L.

It is clear that this is a norm on E, and we have

b=l =
||f|| el =l 1] || = ]1Y|l

max {;/[x+f1', llx—fii} =

max Y (Y)+1*(f)_ e *(l) t*(f)l_ - |
I e o R s [ e

- |ux!_l!+l -

and
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I't is obvious that the cone
e
C,=b; % Lo, xren,
x*(f)
coincides with the cone C defined with the norm |j| [|l.
So we can apply theorem 1. and we obtain:

CoroLLarY 1. If the Banach space E satisfies (B) and there is an H;
which defines the cone C, such that E with the partial ordering introduced
by C, is a lattice, then E is isomorphic to a C(T) space.

4, Application to A spaces

Let us recall some definitions. A closed subspace X of C(K}) is called
a G space if there exist x, y,€ K and numbers 1, such that

X ={fcC(K)y:J(x) = 2,f(y) v€l}.

A subspace is an M space if all 1;-s are non-negative.

Kakurang [5] introduced the A spaces, and proved that they coincide
with the closed sublattices of C{K).

BENvYamiNg [2] proved that separable G spaces are isomorphic to C(K)
spaces. In [3] he gave an example for a non-separable M space which is not
isomorphic to a C{K) space. Here we give a simple sufficient condition for
M spaces to be isomorphic to C(K) spaces.

Theorem 3. If E is an M space in C(K) with the set of relatinis
(X, ¥is Aier and 04{2;; icl}
then E is isomorphic to a C(T) space for some compact Hausdorff space T.

Proor. For each x€ K we have a function f ¢ E such that
Fe(X)=e=0.

Let V, = {x,; [ ()= ;} Using the compactness of K K = Lr:) Vi, Let
@ =max{f, i=1,...,nkh
So $¢cE and @(x)>—; for all x¢ K. E with @ satisfies condition (B).
Let S be the set of Dirac measures on K.
§=1{0, 8, () =1
For every geE we have [|gf = sup {|x*(g)|; x*¢S8} and
sup x* (@), x*¢ S}=inf B0

The ordering defined by S coincides with the original ordering of E, so by
Corollary | we have E~ C(T) for some T.
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A FUNCTIONAL EQUATION WITH POLYNOMIALS

By

]. FEHER
Teacher’s Training College, Pécs

{ Received October 13, 1951)

1. J. Binz [1] stated the following problen. Determine all polynomials
Jwith complex coefficients satisfying the equation

FEf (=) =)

Let &, = ¢27:%/s denote the §'th unit roots (k= 1,2, ..., s). Let us consider
the equation

(1.1} IT e ) = f(x),

=1
where fis a polynomial. In this paper we shall give all the solutions of (1.1),
if the coeffitients are complex, real or rational munbers.

Let H and K denote some generalized sets of compiex numbers, allow-
ing the occurrence of their elements with multiplicity. We shall say that
1T is equal fo K, e.g. H= K, if they contain their elements with the same
multiplicity. We shall say that a set H is a system if its elements are con-
sidered with their multiplicity.

We shall say that a system A is the union of A and K if M contains
exactly those elements, that belong to H or K with the sum of the multi-
plicity of their occurrence in /7 and K. We shall use the notation: M=
—HUIEIK.

in what follows let s=1 be fixed.

DerIniTION 1. We shall say that « has a suitable exponent if there exists
a positive integer & for which « is a root of

(1.2) xf_x=0.

We shall say that « belongs to £, if &£ is the minimal integer for which « is a
root of (1.2).

10#
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Lemma 1. If 2 belongs to k&, and & is a suitahle exponent to 2, then
k.
Proor. it is obvious that fr=k,. Let k = mk,+r, 0=r<k,, m:=0. Then

Mg+ NIy o
g = ST :(‘)‘,S t')s:ms"’

that is possibte only if r=2 0. ||
LEmMma 2. If o belongs to & and k=1, then the complex numbers e,
a5, ...,o-.sk_' are disjoint, and each of them belongs to k.

Proor. First we prove that each of them belongs to &, It is enough fo
prove that = belongs to k.
Since

(,_xs)s" — (o,_s-“')s = g3,

therefore «* has a suitable exponent, and it belongs to fi=k. Hf i<k, then
()" == o,

after powering it to the exponent s%-1 we have

s "‘:(s)s"' i1 _ 5521,
whenee by Lemma 1 k[f+k, that involves that =0 1f o5 .. 2 for O
={=j=k—1, then

' = ()
which is impossible from Q<j—i<k. ||
LEMma 3. If & is an element of £f, and

(1.3) Hi={og, - o} o, - o5,
then « has a suitable expeonent. Hf « belongs to &, then f=n.

Proor. 1. First we prove that, if « has a suitable exponent, then «
belongs to k& with k=1, Indecd, if « be]ongb to. k then from a€ H, &5¢ H, .
furthermore from Lemma 2, o, a5 ..., " are disjnint, consequently
k=m.

2. Now we prove that 7/ has at least one element that has a suitable
exponent. This is obvious if 11 = 1. Let n>1; € H. Since o5, o, . e H,
therefere for suitable [ and j with lfx{_,rfn-H we Rhave ar* —ur”—
= {25y ', This involves the assertion.

3. Now we prove that each element of H has a suitable exponent. We
shall use induction by n. The assertion has heen proved for n = 1. Let n>1,
and assume that this is proved for every H that contains m elements, where
I=m-<n. Assume that e, belongs to k. From I. we have k= If k=n,
then by using Lemma 2., we are ready. Assume that k—=n. Since of € H for
every i |, therefore we may assume that

2 i
- [ — S
Ta = FY, Ay = AL, - .., %y = O .
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Let us consider the systems
Hyt={op g - uds Hei={og, oo o)

So = HH, For the systems H, H, the relation (1.3) is valid, so it is
true for ,, too. Each element of H, belonqq to k (see Lemma 2), each ele-
ment of /1, has a suitable exponent by the induction hypothesis. |

DEFiNiTiON 2. The system H = {«;, ..., 2} is called to be connected
if it satisfies (1.3}, and has at least ene element that belongs to k.

Lemma 4. If H = {ay, ..., %} is connected, then

(@) its elements are disjoint,
(b) every element helongs to 1,
(€) H=1{as,25, ...,af} for every i=1,..., 1.

Proor. 1t is obvious. ||

CoroLLARrY l. If the connected systems H, and H, have a common
element, then H, =11,

Lenuna 5. If for /f (1.3) holds, then #{ can be given as the union of
connected subsystems. The components are uniquely determined.

Proor. Let H = {u,, .., 2, 900, ., 2}

First we prove the Lxthncc Itun=1, thm I is connected, and we arc
ready. Let n=1, and assurne that the anstence of splitting is proved for
every system aatibfying (1.3) with nt<n elements. Assume that H is not con-
nected. Assume that «, belongs to &. By a suitable rearrangement of the ele-
nients we may asswme that £y = {o), 0., ] is a conncctcd system. Lot
Hy={opih, - It is {JbV]UL!'-, that (1.3) holds for f{,. Since n—k<n,
we can use tlle induction hypothesis for H.,.

Now we prove the unicity. Let ¢ /7 with multiplicity m. Let us consider
a splitting. Then « belongs to some of the components. Let w€ff. Then #f,
can be represented by . #H, contains « exactly once. We can continue this
argument.

2. Now we consider the problem (1.1).

We shall say that f(x)=0 is the trivial solution of (1.1). If s = 1, then
{1.1) holds for every polynomial. So we asstime §=- 1.

Notations. Let C& be the set of non-trivial solutions of {I.1) over the
complex field, C& donote the solutions of degree /. Let E (1) be the set of
complex /'th unit roots, ¢, = efr2v/n,

It is obious that:

(A): If feC® and geC®, then f.geCbh

(Ayy C = E(s—1).

Let feCS (n=0),

2.1) fx)y=u, ]n] (X —a) (a,=0, a, aJGC).
i=t
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After the substitution x-~&,x, and by obscrving that

k3
JT (x—g o) = x8—a,
=1
from (1.1) we get

(2.2) s, - ghsts i JJ (- %) = d, ] (x‘—or.j).
i=1 i=1

Hence we get that
(Agy: =& (=Yt e e E(s—1) = CP.
Let
DY = {JIfeC, a, = (= 1ys=n),
D = ) D,

n=0
We shati say that the clements of D' are canonical solutions of {1.1). Fur-
thermore each solution of degree n, can be written uniquely as the product
of an element of DY and of C{ Now we are interested only in canonical
solutions.
For every polynomial f let G(f} be the system of its rovts: G(f) =
= {u

The f::]lgv;ring assertion is obvious.
(A): If fe DS (n=0), then G(f) satisfies (1.3).
I {o,, ..., 2,) satisfies (1.3), then

FE)= (=180 IT (v—a))

is an element of D),

DerinrTiON 4. The polynemial feD$® (n=0) is called elementary if
G(f} is a connected systen.

Let D% denote the set of elementary solutions.

THEOREM 1. [f f€ D), then f can be writicn uniquely as u product of
clementary solutions.

Proor. It is a straightforward consequence of (A,) and Lemma d and 3. ||
Now we shall deal with elementacy solutions. A system H containing
only one clement is connected only if H = {0}, {¢;}, - - -, {£5-1}s therefore

(Ag): D = D% = {(— hypming (— 1y (x—-e)) (=1, ..., 5= D))
Let feD*, n=1. f(z) = 0 implies that =" —o = 0. Since « =0 be-

longs to 1, we have =" 1—1 =0, Le. 2cE("—1). Let o =¢ cE(s"—1).
Then, from Lemma 4

G(f) = {8,, Ei‘ 4 Eﬁ”_z} = {Pr! Epss -+ s Ers”‘—l}‘
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DEFINITION 3. Let £y, ..., r, be integers. The set [(n)y={r, ..., 7.}
is called a suitable index-set, if:
() r;#r;(mod (s"— 1)) for i #j,
(b} with a suitable rearrangement
Fioy=rps (mod (st~ 1)) .
Two suitable index-sets are identical if their elements after a suitable rear-
rangement are pairwise congruent mod (s?— 1).
The following assertion can be proved ecasily:
(Ae): {ers erar -8} (5, €E(s"—1)) is connected if and only if
{ri, Tsy - .., £} 15 a suitable index-set.
(A 1,y =1{1,5,5% ..., 5" 1} is a suitable index-set.
(Agy: If I{n) is a suitable index-set and re { (n), then I(1) is identical
with r i, {m).
From (A,) it follows that if the suitable index-sets [, f, have a common
clement mod (s"— 1), then they are identical.

LEmma 6. [(n)=r-1,(1) is a suitable index-set if and only if

rz0 [mod [b—”_ ]—]]
sf—1

if d<n, and d divides n.

Proor. We have 7, = r-si=! (i = [, .. . m). Therefore (b) in Definition
3 is valid. The condition (a) holds if and only if
(2.2) ro(sF—~smy 20 {mod (s"— 1))

is satisfied for every (O=) m<=£k (=n). (2.2} is equivalent to
ro(sem—1)=0 (mod (s*—~ 1)) .

Observing that (s7—1, s#—1) = s'»?—1, we get the desired resuli imme-
diately.

Noration. Let H% be the number of those integers rin {0, 1, ..., s — 1}
for which the relation

does not hold for d|n, d<n.
LEmma 7. We have

(2.3) 5P = S u [i;] s
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Proor. It is enough to see the equation
©'—x=0
and classify its roots «, and use the inversion formula. |
THEOREM 2. We have

1 n
I[D(s)aizl — wl— 54 .
" n mzn d
PRrRooF. We consider (2.3) and take into account that r,r.s,r-s%, .. .,
..., r-s"~1 generate the same index-set. ]

3. Now we shall characterize the real soiutions of (1.1}

NoraTion. Let R denote the set of real solutions of (I.1), R the
subset of r’th degree polynomials, RW*< R the set of elementary poly-
nomials satisfying a, = (— )7+,

For a polynomial f = >' &, x/ the conjugate fis defined by f= > b;x/.

DeriNiTION 6. For a system H = {«,, ..., «,), its conjugate is H =
= {&y, ..., %}, We shall say that H is autoconjugate, if H=H.

The following statements are obvious.

(A,): Let f be a polynomial with real g,, and deg f= |. The coeffitients

of f are real if and only if G(f) is autoconjugate.

(A,): If fis elementary, then f is elementary too.

Let fe D, and

K
(3.1) f=Hf
=1
its factorization into elementary solutions. We shall prove that for fe Rl
cach factor f; is contained in (3.1) with the same muitiplicity as its conjugafe.
Indeed, if fe RY, then G (f) is autoconjugate. Let a € G(f). Assume that
« occurs in G(f) k times. Since G(f) is autoconjugate, therefore = occurs in
G(f} k times. Let f;= ... =f, be the elementary solutions generated by
o fi{x) = 0. Then there exist & elementary solutions in (3.1} generated
by .
The converse assertion is obvious. If fe D& has a representation with
this property, then fe R,
So we have proved

THEQREM 3. fERY if and only if each factor f, is contained in (3.1) with
the same mulfiplicity as ifs conjugate, f..

The following assertions are valid.

(Ay): RY = (=L 1, it sisodd
! ’ {1} if siseven
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(Ap): Ri* = {—x, -1} if sis even
o x+1,x—-1} if sis odd
(Ayg): The system {e,, &, - ., &} (e, € E{s"—1)) is a connected auto-

conjugate system if and only if for the corresponding index-set
f(rny={ry ro, ..., 1.} the relation ! (n) = — I (n) is satisfied.

Notarion. Let K§) be the set of those elements in HE) which are di-
visible by (sm—1I).

Lemma 8. Let nn=1, I(m) = r.I, (1) be an index-set with n elements.
The relation ()= —I{r) holds if and only if n = 2m and rc K.

Proof. 1. Assume that n> [ being odd and I(1n1) = —I(n). Then for a
suitable & r.sk= —r.s* (mod (s"— 1)) whence 2r=0 (mod (s 1)), i.ec.

mod[s—l(s—l)] it siseven
s—1
r=0
med st 6_1] it §is odd
s—1 2

that contradicts to Lemma 6. So nt has to be even.
2. Let 11 =2m, and v be defined by

(3-2) r=—r- {mod(s>—1)) (I=v<2m).
Hence
r{s—1=0 {(mod(s>"—1)),

2
r=0 fmod > l],
s4—1

and so

where d = {2m, 2v). By using Lemma 6 we get that d = 2m, ie. v =m.
Consequently r=0 (mod (sm— 1)) is a necessary condition.

The sufficiency is obvious. ||

As a straightforward corollary we have

THEOREM 4. ©
K5

R(s)* — I am .
IRz 2m

4. Let us consider finally the rational solutions.

Let f(x) be a rational solution, f(x) = 0. Since « is a complex unit-root,
therefore f{x) is a multiple of the cyclotomic polynomiat generated by o.
First we deal with irreducible solutions of (1.1).

THEOREM 5. Let 1= 1, and f be rational irreducible polynomial of degree
n, 0, = (- 1)7570. fis a solution of (1.1) if and only if there exist positive
integers & and & such that %|(s*— 1) and k¢ H for k> 1, furthermore if f
is the cyclotomic polynimial of rank {s%— I)/h.
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Proor. 1. Assume that f is a rational irreducible solution of (1.1), with
4, = (—1y*¢- 1, Assume that in its factorization (according to Theorem 1)
there is an elementary factor of degree k. Then there exists ¢, € E (s* — 1) such
that f(e,) = 0. Let h = (r,s*= 1), i.e. (r/l, (s"—[)/}) = 1. This means that
g, 18 a primitive root of rank (s¥— 1)/ Since 71 is even therefore a, = 1.

Since ¢, is a root of the elementary solution of degree k, for k=1 we
have re H{® (see Lemma 6), and for ajr we get ic H®. Consequently the
conditions are necessary.

2. Now we prove that the conditions are sufficient. Since n =
= v ((s*— 1){h)=1, therefore (s¥—1)/h=2 holds.

(a) (Case k = 1). Let ils—1, (s— I)ffr=2 and f be the cyclotomic poly-
nomial of rank (s— 1){/#1. Sinnce the roots of f are elements of E(s—1), there-
fore f is a product of ¢ ((s-- 1)/h) (even!) linear polynoniials. From (A} we
have that fis a solution,

(by (Case k=1), Let fi|(sk—1), (s"— I}h=2, ke S and f be the cyclo-
tomic polynomial of rank (s* — 1)/ir. The roots of f are the primitive roots of
degree (s"-- Dy, i.e. if f(s) = 0 then » ¢ E((s*- - 1)/it) and (r, (s"— 1)) == 1,
Let J denote the index-set derived from the roots of f. J is a reduced resi-
due system mod (s*-- ). We shall prove that fi- J <2 /9. 1t is enough to show
that from ke HE, h|(s* -1), (u, (s¥— 1)) = I it follows that the relation

(CN)] h-u=0 [mmi [\t B i ]]
$—

has no solution if d is a divisor of &, d=#. Assume that (4.1) has a solution.
Let Ay = (B, (s*—D)/(s"—1)) and &I = &;-fi,. Since hi(s*- 1), therefore
I i(s4—- 1), From (4.1) we have

, s |
(4.2) u=0 [mod [ --—} .
(s —1)
Since
bh__]_ _ ___SI(___I _ ‘ s |
h(st—1) si—1:
it .
|
) _ , SI.‘__ 1 Sh'__ 1
therefore from (4.2) -— =1, whence - fly = f, that contra-
hst=1) si—1 -~

dicts to the definition of A

It is casy to sec furthermore that fron réh- § we have r- y(ky<he- f,
Taking into account (A,), (A,) and Lemma 6, - J can be stated as the union
of index-sets f1- i+ 1, {k), i.c. J is a union of index-sets i+ [, (k).

Since the degree of fis even, fis a product of elementary solution, i.e.
JeD®. fis irreducible. The sufficiency has been proved. |

We remark that as a by-product we have get the following results:

I If h|(s"— 1) and heF1(9, then kiq ((s*— 1)/h).
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sh—1 k
2. =S ——] §¢
; [ h; ] ffZ!?; [ Y

where the summation is extended for every divisor of (s*—1) belonging
to H{.

(For a special case of 1. see [4]).

THEOREM 6. The rational polynomial f of degree n with a, = (—Iyts+1
is a solution of (1.1) if and only if it cun he written in the forn

(43)  J =[G P [ o D [ 1P o D T 8

where the factors I, are eyelotomic polynomials satisfying the conditions stated
Jor fin Theoren 5,

Proor. We need to prove only that there no other solution exists.
Let f be a rational solution of degrec n, and f = [[ #, its factorization into

irreducible tactors. /1, (z) — 0 involves that f(z) = 0. If « is real then z¢
ef—1,0, 1} and so is i; of degree 1. If the degree of it is greater than 1,
then it belongs to a k. Arguing as in the proof of Theorem 3, we get that /;
is a cyclotomic polynomial having the properties stated in Theorem 5.
Consequently

S = (= Lyl evom (o ys (x— Lys [T

where f1; are suitable cyciotomic polynomials each having an even degree.
The parity of i is Lthe same as of 1+ 1, -+ 11,0 The proof has been completed. |

We have proved that each solufion has integer cocfficients, since the
coefficients of the cyclotomic polynomials are integers.
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NOTE ON SUPER PSEUDOPRIME NUMBERS
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Let i be a positive compaosite integer. If
#](an—a)

for an integer a=1I, then u is called pseudoprime with respect to ¢. It is
called super pseudoprime with respect te a if each divisor of it is a prime
or pseudoprime with respect to a. In the case ¢ = 2 the namings are only
pseudoprime and super pseudoprime.

The pseudoprime numbers were studied by several authors and the re-
sults up to 1971 were collected by E. LIEUWENS [3] and A. RoTriewicz [4].
For example, we know that there are infinitely many super pseudoprimes.
K. Szymiczek [6] showed that F, F,., is super pseudoprime for n=1,
where F, = 22" ¢ 'is the nt" Fermat number. A. RoTkiEwicz [5] proved that
there are infinitely many super pseudoprimes which are products of exactiy
three distinct primes,

The purpose of this note is to show that the Retkiewicz's result men-
tioned above is valid for super pseudoprimes with respect to certain integer
a, too. We prove the following theorem.

THEOREM. Let a be an integer with conditions a=1 and 4fa. Then there
exist infinitely many super pseudoprime numbers with respect to a which are
products of exactly three distinet primes.

For the proof we need two lemmas.

Lemma I, There are infinitely many prines p of the form 4k—1 for
which 2p+ 1 is a composite number.

LEmmA 2. Let @ be an integer with conditions a> 1 and 4{a. Then there
are infinitely many primes p of the form 4k -1 for which p|(a®—1), where o

is an integer and ch:]_
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Proor or LEmma 1. Let us suppose that p, ..., p, are all the primes
satistying the conditions of Lemma I. Let p be a prime of the form 44— 1
greater than the p’s. Consider the sequence {g,} defined by ¢,=p and
4, = 2q, ,+ 1 for n=0. Each term of this sequence has the form 4k —1 and
each term is a prime by our supposition. But it is easy to show by induction
on n that ¢, =2"p+2"—1 and therefore g, cannot be a prime since
§,—,=0(mod p) by Fermat’s congruence theorem. This contradiction proves
tﬁe lemma. (We note that this result as a problemt was proposed by K.
Gydory [2]).

Proor oF LEMmA 2. Let d be a prime of the form 44— for which
2d+ 1 18 a composite number. By Lemma I, infinitely many primes exist
with such properties. Let us suppose that a=1 or 2 (med 4) and (d, a—1) =
= 1. In this case

d_
indecd, q! ‘ ———]1- and ¢|(a— 1} would imply the congrucnce
a—
ad—1 .
0=— . =@t hai2 Lo +at T=d (mod g)
a—

which confradicts fo the condition (¢, a—1)= 1. It is easy to see that
(a?— 1} {a-- 1y is a number of the form 44— 1 and each prime factor of it has
the form kd-+- 1. From these it follows that there is a prime p of the form
4~ 1 for which pj(e?—1), (p, a—-1) = 1 and p = &, d+ 1, where &, is an in-
teger. But &, =2 since, by the conditions, in cases &k; = [ and k; = 2 the
number &, d+1 is not a prime, Thus a’-::f—:—l. Distinct s determine dis-
tinet p's since (w—1, @*—1) = "™ —i. Therefore the lemma is true in
cases ¢ = 1 and 2 (mod 4).

We can similarly prove the lemma in case a=—1 {(mod 4). Let now
d be a prime of the forni 4k —1 for which (d, a*— 1) = 1 and 2d + 1 is a com-
posite number. In this case (a*@— 1)/(a®—1) has the form 4k —1 and has a
prime divisor p of the form 4k—1 for which (p, a*— 1} = 1, furthermore
p = k,d+1 for some integer k,. Here k,=4 since otherwise p would be

. . —1 S
composite or would have the form 4k 4- 1, thus 2d < p'—. From this, simi-

larly as above, the statement follows.

Proor oF THE THEOREM. Let p (> 12) be a prime of the form 4% — 1 and let
a (=1) be an integer with condition 4{«. Let us suppose that a belongs to the

exponent d modulo p, where d= P—"  Let g and r be primes which are

.

P
primitive prime divisors of the numbers ¢ = —1 and a?~*—1 respectively.



NOTE ON SUPER PSEUDCPRINE NUMBERS 150

Such primes g and r exist by a theorem of K. Zstamonpt [7] or of G. D.
=06. We show that

BirkpOFF and H. 5. VANDIVER [I] if =2 or P

ey = pgr is super pscudoprime with respect to a.

. 1— 1
By the choice of g and r, we have g = &;- j———+ land r=fk,(p—1}+1

2

for some integers &_ artd &,. But &, cannot be an odd number since other-
wise ¢ would not be prime by the form of p, therefore ¢ = k;(p— )+ 1, where
ks is an integer. From this it follows that each of the numbers n, 1, = pg,
ity = pr and n, = gr hias the form &(p— 1)+ 1 and so each of the primes p,
g, ris a divisor of number ¢7—t—1 for i =0, 1, 2 and 3. It implies that n,,
m, iy and 1, are pscadoprimes with respect to a. Thus 1, is super pscudoprime
with respect to ¢ which, together with Lemuna 1 and 2, proves the theorein.
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1. Let @ be a Young-function. For the definition and the properties of
this we refer {o [1] and [2].

DeriniTion 1. We say that the random variable X defined on the pro-
bability space (12, <4, P) belongs to the so called Orlicz space L® (&, o, P)
if there is a constant ¢ =0 such that

E [(15 [—[i:|.]]gl .

The L*7-norn of XeL® is defined as
IX|le = inf (a:a:»(], E[@ (ﬂ]]i 1) )
a

The normed vector space L* is coniplete. ([2]).
Let FocdF,c ... be a sequence of o-fields of events such that

F. :a[[] 'c-r,,] s
n-0
Consider the random variabte X ¢ L, and the martingale
X, = EX|F), n=0,

where we suppose that X, =0 a.e. Denote by {4} the corresponding mar-
tingale-differences.

DEFINITION 2. We gay that the random variable X €L, belongs to the
Hardy space /s generated by the Young-function @ if the random variable

=[5

belongs to L*.

11 ANNALES — Sectic Mathematicy — Tomus XXVI.
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We define
1 Xlseq = Sl -
The aim of the present note is to characterize the bounded linear fune-
tionals defined on the Hardy space “,.

2. This section contains some introductory remarks. The following
assertion is known.
Lemma 1. Let (@, W) be a pair of conjugate Young-functions. Let us
suppose that the quantity
Xy ()

vy

called the power of the Young-function ¥ (x) [where p (x) denotes the right-
hand side derivative of ¥, is finite. Then any linear and bounded functional
L(Y), defined for arbitrary Y £L¥, is of the form

L(Y) = E(XY),

q._

where X ¢/l.” and we have
I XM = 1L}

The following definition and lemma are also needed to get our purpose.
DerFixiTION 3. Let ¥ bhe a Young-function. We say that the sequence

0 = (6,6, ...)

of random variables belongs {o the Banach space 6 6, if

- 1.2
[ > 9;] eL”.
by

In this case we define

Fa3

191 iy, ==

()

Lemma 2. Let 2(6) be a linear functional on the clements of § 2y and
suppose that

iygr

12.0)| = B |Ollauiy
where B=0 is a constant. Suppose also that the power ¢ is finite. Then in
the Banach space & 4, there exists an element
o= {0, 0, ... )b M
such that

A{0) = lim Z fi{o, 6))

He st ]

and

v Ioleat, £ (“D (b )" ||a||w,:w]) =B,

Here ¢ is the conjugate of 'V,
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Proor. Let X¢cL¥. For arbitrary a1 we put
B {X, it {=mn
0, if i=n

and we take
2, {X)= 2.

Triviaily, @€y and so, by our supposition,
12, ()| = [N =B|Ollsz,, = B X]lw .

The power g of ¥ being finite by the preceding lemma there exists o, € L®
such that
2(0) =i (X)=E(@,X).

Consider now a sequence
Q(H) = (6‘)], PR @ﬂ’ .. ‘)Ea %w ’

for which @, = @, if i=n. By the linearity of the functional 2 we have
(OW) = i E(c,0)).
i—1
where o, ¢L*, i= 1,2, .._, n Since

n o 1/2 H
(2] =2

it follows that

and consequently,
ad® = (g, 0y ...,0,0,0, .. VS Hnp.
We can suppose that |lo", 2, does not vanish if # is large.

Now we prove the validity of (1) for o', where 1 is arbitrary. Let us
take @, in the form a, o, where the random variable ¢, =0 is determined by
the postulate that

O = (g, 0y, ..., 48,9,0,0, ...)

heleng to &y and that the value

A(O™) = ,21 E(0,0) = E [[i a‘g] a,,]

i—1

of the functional / be equal to the expression

[i 0‘?]];’:’.
16 |5 5, E |® A=l Fo

||‘7(")||a P,

11*
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n
On the event A = {Z a?:»()} let us determine a, by the formula
i=1

a, = \‘0‘(")|Ir)7r:,_,,@ ( [ -——}-—' ) f}i Gk

”U(“)”d o i=i

while on the complementary set take g, = 0. Then on the event A we have

o -e{e)"

oo B Y5

”0'(")“0;:;,-,,«.

¥

and on the complementary one

n 1/2
[2 9?] = 0.
=1
Since for x=0 we have
[q’(“)]<m(r)

we obtain that

(BT

il i-2 G(H)Hﬂv'}[}
E (tp [[ S o]] ) ~E |w *L o
5

=1

[

”G(")",} %q;

[’l‘ G%]Iiz ]
sl |- - I‘El
L N sz /|
Consequently,
H 1/2
[z 9?] L,
i=1
since

It follows that
O = (4,0, 4,01 .y 0y0,, 0,0, .. )E6 Dy
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and that
1Oy, =1

On the other hand by the boundedness of 2 we have

imwkwwmmﬁ(mﬂiﬁr

2
”U(n)||""r"f:r.'-]) =5 |](~)(n)“,,gaw .
So, by remarking that |09 ., = 1 we get

oMo a0, £ ( P [[2 a?)l z | ||0’(”)ﬂwc;¢,] ) =B

i=1 |

for arbitrary finite s.
Let now €475, be arbitrary. Then, if 1+ + o,

l -0,

'[ oy ] I

From this by the boundedness and linearity of the functional 7 with
(”) = (' Yar -+ o> Vs 0,0, .. 2)

E]

we get for 1+ + e

|2(y) =2 {p") =B H[l;": ?]w

r

i

Conscquently,
M) = lim 2GW) = dim 3 E(a ),

LR n=-bw f2)

where, as we have seen above,

n 1,2
[
o wy E |P il =B, n=1,2,....

||U(")||¢ o

ol ca E ( [[i ]Uzillaﬂasﬁw])gf}

and this means that

From this

7= (0, 0y, .. . VES DD

oo E ( o((Z e e ]) -5.

i=1

with

This proves the assertion.
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1t should be mentioned that when @ has finite power than for arbi-
trary X €Ly such that | X|. >0 we have

e ()]

From this the following consequence of the preceding lemma can be deduced

CoroLLary 1. Let (@) be a linear functional on the elements @ of

8y and suppose that
|2 (ON =B |Olls:as,, »

where B=0 is a constant. Suppose that @ and ¥ have finite power. Then in
the Banach space 8 4, there exists an element

6 = (6, 0y ... )ESHp
such that

(@)= lim Z E(o;0)

Restooa {77
and
ol 26, =B .

3. Consider the pair (@,%¥) of conjugate Young-functions, or let
@ (x) = ¢x, where c=0 is a constant. Let

D' (x) = D (x2).

Then as it is easily seen, @’ is also a Young-function. We shall denote by ¥~
its conjugate Young-function.

DEFiniTioN 4. Let X €L, and consider the corresponding martingale
(X, 'fp) n=0, introduced in section 1. We say that X ¢ X, if there exists
»€ L% such that

E((Y =X, 2| F 2 E (@2 F )= E G2 F,)

holds a.e. for all n=1.
Let X¢€ X4 and consider the following class of random variables
= {y:yel?, E({(X—-X,_2[F)=EQ®F,) ae., UESS
If I') is not empty then define
1Xlzg, = inf [[p}ar.
ref Ty

It can be easily seen that || X|lxe is a quasi-norm.

The interesting case in this definition is when @ has no finite power.
In this case L™ is “near” to L. and so the space Xy is “near” {o the well-
known BMO-space.
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A class of the elements of &, is characterized by the following

THEOREM 1. Let
T = ((f-i, ()'2, . .)

b sequence of random variables stch that 6 €0 0w Suppose further that ¥,
the conjugate of &, has finife power q. Then the martingale (Y, F,), n=0,
defined by the formulus Y, = 0 a.e. and

Yn = Z (E(gr|'71‘)_E(O‘:‘|“’FI—]))} =l

i=1
converges a.c. apd in the X p-quasi-norm te ¢ random variable Y. We have
WYilzo =24 o050, -

Proor. Let joysu,. = B. Garsia [3] has shown that the inequality

2 B 7y =EQA R, n=

holds a.e., where o
d; = E{o\F)—Ela,} F i)
and

X4

- 1
po=2g% = 2sup (gl Fo) g = 2
¢ = 2Rl T ¢ = (5

We have to prove that ¢ belongs to L*°. To this end remark that by the well-
known Doob-Garsia incquality [4] and by that of Jensen

oy v - ’ f 80—

ol Ll =E{ P fsupE-2-"5 =
[ [2q B ]] ( [nEH [ qBj f”]] )

e . P Y A o g

= su I o # " fn :_—,:E I3 -_:[-
ph ‘ [f‘ [B| / ]]) [(D [B]]

Conscquently, €L and ||y, =2¢ B.
As it is well-known, there is a constant ¢, =0 such that

G E[3 = EG=Ile — i< £,
i—1

(of. e.g. Proposition A—2—2 of [2]), or, in other words, (V,,, 7} is an L,-

bounded martingale. Thus

Vo= i Y, = 3 (BT B Fim)

Hm e

exists a.e. and also V), converges fo Y in L,. Since

E[ S d?|~'fn] S E((Y Y Pl 7)) ac

f=n
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antd we have cited above that

E[i d%m]gs(yzle‘-n) ae.
with "
v = 25up E gl 7,)

it follows that V¢ ¥, and that
1V lx, =2¢B.

Finally, we prove that ¥, Y in the ‘X ~sense. In fact,
>
i=n41
and for arbitrary k=n+ 1 we have

2 h){E(yn[{fh)!
where )

=2 sup E@IF), t= [z]f

R=nadl -y

This can be proved in the same way as in the case of n = 0. Also, it can be

shown that
E[@' [— ?"—]]gl
2q B,

== |2, ],

Consequently, ¥V —V, € X, and
1Y ~ Yol Koo =|ly,ller=2¢ B, .

Since B,—~0 as n—+ - it follows that ¥,—~ V¥ in the Xy-sense. This
proves the assertion.

We are now in the position to prove the main result of the present
paper.

THEOREM 2. Lef L{X) be a linear functional on the elements X of the
space Jby- and suppese that

with

[L{XY =B | X,
holds with seme constant B=0. Suppose also that the power g of W’ is finife.
Then there exists a random variable Y ¢ ¥ 4 such that

L(X\= lim E(X,V,).

i~ 4 o=
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PROOF. W5y is a subset of & 5, Namely, to arbitrary X ¢, we can
order the sequence

6 =(0,0, ...)¢0 Ay
such that
01’ = df = E(X|‘I.}:i)_E(Xil}‘;‘—1)) i=1.

Thus L (X) is a linear and bounded functional on this subset. The Hahn —
Banach theorem implies that L (X) can be extended to a linear functional
A(B) on 8 Ay having the same bound as L (X). By Lemima 2 we see that
there is a o€ 6 26,4 such that

lels g E (@ [[ ; a?]m f ua||.,%,]) =B

@) = tim S E(e,0).
i=1

LI N

and

Let X €A,  be arbitrary and consider X, = > d; 1=0, where X, =0 ae.
i=1

Then trivially X, €%y and for this random variable we have

AO) = L(X,) = Z E(o (E(X|F)~E(X[Fiy)) =

- 3 E(X(E@IF)-E@F ) =

= £ (X, 3 E @l 7 - EEIF )
The random variables ¥, == 0 and
Y= S (E@HF)-E@IF), n=1,
form a martingale and by Theorem 1 it follows that
V= lm Y, = 3 (E@IF)~ E (] Fio)e Ko
fteto i=1

and we have
1Yl = 2¢ llolls ey s
further
L (Xn) = E(Xn y;:) -
Now by tinearity and by the boundedness of the functional

LX) LX) = |L(X =X )| =B X=X, [z,
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since the right-hand side tends to 0 as 72+ + o it follows that
L{X)= lim L(X,)= lin E(X,V,).

LER Hoedw=
This was to be proved.
The proof of this assertion follows in main lines that of Garsia (sce [3],
Theoremt 1.4.3.). Exceptly the case of the space 2, treated in Garsia’s
assertion our result is more general than his one.

Remark. Let XL Ny, Then under the assuptions of Theorem 2

we have
L{X)y=E(XY), VeX,.

In fact, the martingale (¥,,,.f,) constructed in Theorem 2 converges to
Y in L_ as we have shown in Theorem 1. At the same time (X, . F.) is a
hounded martingale. Consequently, hy Theorem 2
LX)= lim E(X,V,)=E(XY).
=3 on
It is not difticult to verify that L. M 4oy is dense accerding to the norm of
Ao Far this purpose let £ =0 be arbitrary and let X € 2y be any random
variable. Then there exists an index n, = 1, (¢, X) such that we have
-

JE
e T

X = Xallae

if 11=n,. On the other hand let X’ be a bounded random variable and con-
sider
X7 X —E(X 7).
Then trivially, X" € oy, since E(X”| F,) -- 0 and wup [ X7 1 is bounded (cf.
=0

BurkuaoLDER, [6], Theorem [5.1.). By the Jensen inequality we further have
”X"n_ n;.|dr g lE (X X’“l?n,.)”dr e

[“ (E(X— X" F)—E (X~ X"} Fi_ .))] |z

(E*(X = X" F)-+EX(X -_X"|-J"-{-~1))] e

b

2

=2 2 (X~ X7 Fller =2V 2 (0t + 1) IX = Xl

Since E(X|7F,) =0 ae. by the Jensen inequality we get
X = XNl = [|1X = X"+ EA(X" = X | Folliner 22 [ X = Xy -
From this and from the preceding inequality

X ng — Ximfiog =4 V2 (Hy+ 1) | X — X
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The power g being finite the bounded random variables are dense in L¥".
Consequently, the random variabte X"¢ L. can be chosen in such a way that

VI @+ DX =X =

held. 1t follows that
WX — Xill = 1X — Xyl oo+ 1| X g — Xllager = € -

From these we get the following

CoroLLary 2. Let L(X) be a bounded linear functional on the ele-
ments of - and suppose that g, the power of ¥, is finite. Then there
exists a subset A4, of Fp- such that %, is dense in Zy and for any X¢
€ Y, we have

L{Xy=E(XY),
where Ve X,
A similar agsertion has been proved by J. O. STROMBERG. [5]

4. What is the structure of the ¥,-spaces? Theorem | characterizes
a subset of X, when the power g of the conjugate Young-function ¥ is
finite. We shall see in a foliowing paper that under some stronger conditions
imposed on @ and ¥’ the only elements of X, are those which were charac-
terized in Theorem 1.

When @’ itself has finite power then it is easily seen that . C K. In
fact, it X< then by the Burkholder — Davis —Gundy inequality (cf.
[6], Theorem 15.1.) it follows that X*¢.L®. Here X* denotes the random
variable

sup [ X,| -

n=l

Consequently, X*¢L, and we trivially have
E(X—X, Pl FA=E@X*2F) ae, n=1.

This mmeans that X ¢ .. In the following theorem we prove that this is true
also it the opposite sense.
More precisely, we prove the following

THEOREM 3. If the power p of B is finile then X € Xq if und only if
X €Iy, More precisely, in this case we hure

11t = X0 = ]/‘;’ Xl

Proor. Suppose that X ¢ ;. Let ¢=0 be an arbitrary constant and
consider

H
dif =min (¢, &), i=l, Sp- FdP, n=1,

i—1

where d,, d,, ... denotes the differences of the mwartingale (X, <F,). It is
true that S?€L... Let a=0 be another arbitrary constant. Then
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S, mor (S S;2 noo(SEV(SE S
D’ n) o G- | —@ | Tl 9 = « [ i Moo Mi-d ,
[ a ] Z:l[ [ a? ] [ a* ” rZi ' ot ][ a2 u? ]

since for arbitrary 0=x-=y we have ¢ (¥)—q¢ (X)=¢ (") {(y—x). Introduce
then notation

Then we have

o[T)=E e

a =141 a= -

— i(.) - bﬁ_‘_ 8;2—1\ — w O [S:: . g_:‘ L]
A Al e a2J i1 u® a>

Consequcntly, with arbitrary yEP_(’;' we have

a a

The last intequality follows froim the fuct that

it

"
=52 .5 - dr — §2 -8
(]_-"Sﬂ —1 2, i 2 i & I j—l

i=f
and from the relation

E(S3=Sial7) - E(Xu= X, P I FY=EGAI 7).

From these we get
a‘E[(IJ’[é ]]‘*b E rcp[&”——] .
i b? a?

Here b=0 is a constant to be determined later. Apply the Young-inequality
on the right hand side to obtain

a‘ZE[Qﬁ’ [ i"]]:b I:E [di [:]J+E (‘F [f,r [‘Z]])]

Remark that the power p of € is by supposition finite. It follows that the

power of @ is also finite. Namely, it is equal to z,
3

Consequent]y,

¥ (p()) = [-—-—1]@(1) t=0.
From this

@ E [(ﬁ’ [ i]] =t [f; {mf [;)] N [%- 1] E [qb* [:Z_]H .
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Since

@ [S”]ELm

[aZ —p [—g - ” E [(D’ [%]] =02 F [cb' [%]] .

Chose b = lyllar and let a = ]/3— [¥ller- Then

E @& —:S:‘ | =l.
( VL it )'

If we let ¢t + oo then S;1S,. @ being continuous and increasing we obtain

s Ay
djt _n . 1@/ I ; S .
( ]/g nyu«,») ( ]@uynm-)

By the Beppo Levi theorem this implies

E (&’ —_S"i =1
V2 it
2

and from this we deduce that

152 /2 17l

If 1+ 4 o then again using the Beppo Levi theorem we see that

ISk £ 1Xlzo,

Hﬂmwgygwxhw.

This proves the right-hand side of the inequality. To prove the left one sup-
pose that X ¢, Then E(S?) is trivially finite and the inequality

E((X—X, 2| Fn) = E(S*=Si_1[(F)=E(SEF,)
also holds. Consequently, Sey and it follows that Xe Xy We also have
X000 = Sller = 1 Xlla6 -

This proves the assertion.

we get

or, in other words
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MAXIMAL INEQUALITIES AND DOOB’S DECOMPOSITION
FOR NON-NEGATIVE SUPERMARTINGALES
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{ Received Joanuary 7, (981 )

1. We consider a non-negative supermartingale (X, 7,)), #=0, and for
the sake of cermmodity we suppose that E(X, )= + = for all 1=0.

The Doob cILcompmition of this is the following: there exists a unique
predictable and increasing sequence {An} =0, A, =0 ae. and a unique
non-negative martingale (Mn, Fo) = 0, such that for all 11=0 we have

Xn = MH_AH -
The supermartingale (X, 7,) is called potential if £ (X }0, as n— + .
Since a non-negative supermartingale has limit a.c., from the preceding as-
suiption we get that the a.e. limit of a potential is equal to ().

We congider a Young-function @ (x) and its conjugate ¥ (x). Together
with these we also put

(W)=Y () =x¢()—g ().
Here g (x) is the right-hand side derivative of @ (x). These are defined for
the non-negative values of x. Let

p o= sup —= g (x )
x=0 D (\)
This quantity will be called the power of @. We define simitarly the power

g of .

Let @ be a Young-function and denote by L™ = L*(Q, i, P} the set
of those random variables X which are defined on the probability space
(2, 4, Py and have the property that there exists at least one positive

number ¢ for which
E [G) [—]X—l] =1
1]

holds. Suppose that X¢L® and define
iXly = inf(a:a=0, E(@@"|X])=1).
Then ||X]. is a norm on L* (2, o, P).
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[t is well-known that tite normed vector space L* (0, <4, P) is complete.
This Banach space is called an Orlicz space.

More about the Young-functions and the Orlicz spaces can be found
e.g.in [1}orin [2].

For non-negative submartingales (Z,, . 7,) the following maximal ine-
qualities are true, Suppose that

Sup | Zpflo = + o= .
n=0
Then
a) the following inequality holds

Efefosuplizdle Ny L
.?.__._ 9_1

where Z#% = sup Z, and g¢=1 is an arbitrary constant (cf. [1], Propesition
n=0

A—3-~4);
b) if g, the power of ¥ is finite then

I £%(le. =g sup | Z,]|» ;
n=H

more generally,
E(@(Z%)= sup E(®@GZ)),

in the sense that if both sides are finite then this inequality holds; if the left-
hand side is equal to + « then so does the right-hand side (cf. [5], Lemma |
and [3], Theorem 1);

¢) if p, the power of &, is finile and

{‘:sup—l f%(t)ﬂ't

xz0 ('L(;)_
0
is also finite then

121w = pesup [1Z,f ;

more generally,
E(®(Z*)= sup E(@(pcZ)),
n

in the sense that if both sides are finite then this inequality holds; if the left-
hand side is equal to + < then so does the right-hand side (cf. {7], Theo-
rem L)

In this paper we present maximal inequalities for the non-negative
supermartingales and we study the Doob decomposition of these super-
martingates.

2. We prove the following
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THEOREM }. Let ®(x) be @ Young-function and consider the correspond-
ing function £(x). Let (X, F,), n=0, be a non-negative supermartingale.
Denote

X¥ = max X;,, n=0,

O=k=n
and let
X*=sup X
k=0
a’) if
Q<M flo=<+ =, n=0,
where

X, =M, —A, n=0,

is the Doob decomposition of X, then with arbifrary constant p=1 we have

E[E [---_Xf )]g_.‘-_.
o |M]le 0o—1

b’y If the martingale (M, F,) is regular, i.c.
M, =EM_IF), n=0,

where
M. = tim ae M,=X.+A.
He ==
and
X.= lim ae X, A.= lm ae A,,
A e At e
Jurther, if O<||Xalle-: + ~ and 0= A o= + o then

M

X* I
Ejs — s e e SN
e (sup X alle + IIAmllrn) o—1
ni-{
¢) 1f, in addition, (X, 'f,) is potential and ||A.|le <+ < then
#
el )=
ellAxlle e—1

d’y If the power ¢ of W, the conjugate @, is finife then we have
E (@ (X¥)=sup E (2 (3 (X,+A)

i1t the sense of b) of section 1.
e’y Finally, if the power p of © as well as the quantity

¢ = sup—-— ﬁ)—(t—)dt
=0 px)

12 ANNALES — SBectio Mathematica — Tomus XXV!.
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are finite then
(P (X*))=sup E (@ (pe (X, + A)
nxQ

in these sense of ¢ of section 1.
Proor. a7 Since for arbitrary k=0 we have
Xﬁ' = Mﬁ' '

it follows that
XE=MX  n=0.

Thus, £(x) heing an increasing function, we get from a) of section 1 that
s g%
E[&[—-X“ ]]:‘E[[ A —]]f_:_— .
o A e a |AT lla o1
L7} 1T (M, 7, is regular, consequently, of the form
A'fn = E(ﬂ‘(‘f‘” !'.7::1) o E(X“" E'.?n)J'_ E(A“ |7n) '

then again by a) of section [ we have

Eflsl- E =E{:z| — ix
g 0 (Sup | Xalle & SUp flflnllw)
=l =i}

lll'\l

sSup ”Xn”'-” + ”J'q“’"'f’)
Al

i

# #
=] — X_. . =Kl ___ﬂ'l —_ ] ,
QSUPI!XJI+ArJ|!’f’ qup“MnH"’ Q_I
n=0 n=0

since trivially
sup [Mollo = sup X, + Ao = sup |X o+ Sup 1A Jfo
n=0 A=l ne0 n=0

= sup [ Xalle + 1A wlle .

Here, as usual,
M*= =sup M, .

H={

¢y If (X, F), =0, is potential then X, =0 aec. and from the
preceding inequality

bl
oflAcfa n—1
since in this case

M, = E(A.|\T,)

and
sup [Mlle = Al -
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d’} Suppose now thal g, the power of ¥, is finite. Then, by b) of section 1
and by the fact that X =M} we get

E(®(X9) =E(® (M) =sup £ (P M,) = sup E(@ (4(X,+4,).

¢’) Finally, suppose that the power of p of @ as well as the quantity
= Sup —l. _f[(_t) dat
x=0 ¢ (X) H
]

are finite. Then, by c) of section 1 we get
E@(X*)=sE(@MH)=supE(P(pcM,) =
n==0 )

= sup E ((ﬁ (pc(X,+ A,,))) .

This proves the assertion.
Remarks. (a) Suppose that g, the power of ¥, is finite. Then the ine-
guality

W () = £ = Xq ()~ B(X)= q—il ® (x)

is trivially valid. 1 (X, . 7,) is potential then by choosing ¢ = g we get from
assertion ¢’} of the preceding thecrem that

-q_—]-_IE[é[}ﬁii]]:ﬂ[s[qnjinm ]]i q-l—l ’

provided that [|A.ls <+ oo. This shows that || X*|s=¢q|A.|+ This ine-
quality has been obtained by Neveu [1]. Proposition VIl1—1—4, in the
case of the Young-function @ (x) = x?/p. This inequality could also be ob-
tained from assertion d”) of the theorem.

{(b) Suppose that the power p of @ is finite and that the quantity

¢ = sup [ r® dt
x=0 ¢ (X) i
0

is also finite. If (X, #,,) is potentiai, therefore necessarily of the form
Xn = E"(‘A*== - An!l}‘n) = E(Aw F'?n)_[ln ’

then from assertion e’) of the preceding theorem we get
E(@ (X)) =sup E (& (pe E(A-F2))-

12#%
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From this, if AL<L*, by the jensen inequality we obtain

(0 (ein =i (2 (i 7))
gE[éhﬁZm”

X e = pefiAafin.

This is alse the generalization of the inequality of Neveu.

ilA

I

I,

which shows that

3. Now we turn to the study of the deceomposition of Doob.

Tueworem 2, Lef (X, 7,), n=0, be a non-ncgative supermartingale and
consider ifs Dol decomposition

X, =M, —A, u=0.
Let & be a Young-function. Suppoese that

a) q, the power of ¥, is finite, or that
b) the power p of @ is finite together with the quantity

X
¢ = SUp 1—/ 4 (-t-)—d!_
x=0 g (X) !
0

Thet under one of these coiditions the asstmnption

sup [|M,Jlu < + =

n=0

is equivalent fo the conjunction of the fwo condifions

sup X lle-= 4+ e and  |Aufle = + = .
n=0

I case by X converges in L%-norm o its a.e. mil X ..
Proor. Since
Mn = Xn + An’
we get without any supposition concerning the powers of @ and of ¥ that

sup iMfle = Sup | Xpfle | Al

Consequently, it the right-hand side is finite then so does the left one.
Now we prove the converse assertion. To this end suppose first the
validity of condition a). Since
X¥=M*,
and since

nit 3

(IM% | == g sup | M8
-0
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we get that
1Xalto = X3l = [ X¥a =g sup §M, ]l -
=

Therefore,
sup WX olle = X*lo=q sup Ml -

Further, since
An = Mn._ Xn )
we see that
Anlle = 1M Jlo + |1 X 1o = {g+ 1) sup lM,[lo -

From this
NALjle = sup NAlla=(g+ 1)51113 Ml -
n= ne

Suppose now the validity of b). Then by the same way as in the preced-
ing step we get
1A% = pe sup | Ml
=

and we deduce that
NX* o = || M¥]| = pe sup Mol -

From this it follows as before that
sup || X, llo = pe sup M, Jo .
=0 n=0
Further, since
A =M —X

L] n [

we obtain

1A<lle = sup [|Aqlle =5Up Mol +SUp | Xll = (pe + 1} sup [Malle .

In either case the assumption

Sup [[M o< + o

implies the finiteness of the quantities

sup | Xolie and  fiAxfa .

Finaily, in case b) we have

X=X, =M. —M,—(A.—-A).
From this
1K =X lo =IMe - Mo+ [ A — Al

By the supposition that p is finite it follows that (cf. [6], Theorem .}
"MH - fwn”"h ~0 »
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while for arbitrary @ we trivially have that
AL —Ale—0 i A.cL”.

This proves the assertion.

4, it seems to be interesting to prove maximal inequalities for concave
Young-functions of non-negative supermartingales as well. The concave
Young-functions have the general form

X

D)= [ p@)dv,

o

where ¢ (1) is a non-negative decreasing and right continuous function such
that the above integral is finife for arbitrary x=0. I't can be easily seen that
@ (x) is reaily concave and trivially we have for arbitrary x,>0

B (x)= D (x)+y (Xo) (x—xg) 7.

This implies that for any non-negative supermartingale (X, 7,), such that
E(X,)=< + o for all n=0, we have

E(@(X)) <+ .
For arbitrary x=0 we also consider the non-negative function
)= P{)—xg (1)
First we prove the following

THEOREM 3. Lef & be a concyve Young-function und let (X, F.), n=0,
be ¢ non-negative supermartingale. Then

E(s(X*) = E (P (X,).
PROOF. Since & (x) is non-negative and & is continuous we see that
limxg(x) = 0.
x~0
Let us consider the maximal inequality
X P(X*=x)=E (min (X, x))

which is valid for the non-negative supermartingale (X, F,) (ef. Neveu [1],
Proposition 11—2-7T). Integrate this ineguality on the interval (0, + )
with respect to the measure generated by the right contineous and increasing
function —g (x). By the Fubini theorem we then get

4 fo
E[f p(X*z=x)d(—¢ (1))]:?[.{ f min (X, X}d { g (\))] .
Q 0
Noting that for arbitrary z=0 we have

f"'“(—@(X)) =

o

Irr

),
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we obtain from the preceding inequality
+
B =F s+ % [ a(-orw)| =

= E(6(X)+ X (r (X)) —g (+ =) 2 E (5 (Xo)+ Xy g (X)) = E(P (X)),
and this proves the theoremn.
REmark. Let

r= :«ug 1&;[(%) .

Since @ (x) cannot vanish for x=0 (exceptly the trivial case of @(x)=0)
we sec that r exists and is not greater than 1. Suppose that r< 1. In this case

(09 =@ () xy () = o)) —--"'(g'(%’-]s@(xm 1)

and the inequality of the preceding theorem gives that

S E(0(X)).

E(@(x)= —
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NoTtaTion. Finite one step not p-nilpotent (i.e. with all proper sub-
groups p-nilpotent) groups of order p™. g7 (for any m, n) will be referred to
as (p, q)-groups. For different primes p and ¢ let J(p, ¢) denote the set of
finite groups without {(p, g)-subgroups.

The basic properties of (p, g)-groups were given by N. ITo [3] (see also
[2]). We shall use the Tact that every (p, 4)-group possesses a normal Sylow
p-subgroup. As o {p)= N A (p, g} is the class of finite p-niipotent groups,

@
7 (p, q) may be considered as a localization of p-nilpotence. Qur aim is to
show that some of the well-known “nice” properties of /3 (p) remain valid
for 7} (p, ), too. Before doing so we remark: A finite group G belongs to
3 (p, q) iff for any p-subgroup P and g-subgroup Q, N, (P) = C,(P) holds.

ProrosiTiON |.

(1) M GerM(p,q) and =G then He (p, g)
(2) 1f G,, Goe€7) (p, q) then G X G, 00 {p, ¢)
(3) If Ger¥ (p, q) and H <G then GIHeH (p, 9)

Remark. (1) and (2) are obvious. (3) is an unpublished result of K.
CoRRADI,

Proor of (3). Assume it were false, and let G be a minimal counter-
example. We denote by R a Sylow r-subgroup of H then G = H.N,(R). As
N (RN, (RYy~G/H, N,;(R)= G by the minimality of G, thus H is nil-
potent. Also by the minimality of G, f{ = R is elementary abelian and GfH
is a (p, g)-group. Suppose that p=r= g theu by the Schur — Zassenhaus the-
orem  contains a subgroup isomorphic to G{H, a contradiction. It r = p,
G would be a {p, g}-group with a normal Sylow p-subgroup not centralized
by a g-subgroup, contradicting to G&A(p, q). Thus r =g and G is p-nil-
potent by Ito’s theorem [3], contrary to G/H{J(p, g). |

CoroLLARY. G (p, g) is a formation. |
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gExampLE. Let G denote the group of automorphisms of the followin,
graph:

Let ¢ be the group of automorphisms in G inducing even permutations on
the set of the edges. (G is clearly the wreath product 8,1 A;). We denote by
H the subgroup consisting of the elements fixing all edges. Let @ be the set
of even permutations in ff and Z be the two-elentent subgroup of F gen-
erated by its unique fixed-point-free clement; then @G and Z=Z(G).
@ and Z are the only nontrivial nermal subgroups of G in H as ¢ is 4-transi-
tive on the edges. Suppose that @=L for some maximal subgroup L; G =
= H-L and FH is abelian, hence HNL 4G, thus HNL =2 or HTYL = 1;
in both cases #1L = @GN L which is impossible because of the ’195u1‘!]pt10[‘l
H.L=G=4¢.L So ¢ is contained in the Frattini-subgroup ®{G) of G.
C]eally H-=®(G), hence @ = @ (G) as GJH = Ay is simple. |[(GP)/(H|D)| =

20.32.5 forces (Gid)/(Hjdyeri (2, 5) hence Gl (2, By as Hid = Z((i}D).
On the other hand G- -r}/() 5) hecause the normal 2- HLI|‘1§_II‘0U{J H is not cen-
tralized by the S-subgroups. Thus we have proved

ProprosiTiox 2. The formations 2 (p, ¢) are not necessacily saturated.

TueoreM. X (p, q) is « Filling-cluss.

Remari. [t was proved in [1] that the p-solvable part of <3 (p, ¢} is a
Fitting-class.

Proor. We have only to prove that whenever G is a finite group,
NG, MG and N, Medi(p, q) then (N, Mye/)i (p, g) also holds. If G is a
minimal counterexample to this statement then ¢ = N-AM and G contains
a (p, gysubgroup U. Let U, denote the unique Sylow p-subgroup of U.
Let #f = /N, U} then H=N{/"M})=G by the minimality of G. Let
Nz N and Ny be a maximal normal subgroup in G then N, = N{N 1 M)e
€ (p, g) also by the minimality of 2. Thus we may assume that N and
A are maximal normal subgroups of & hence (because of /N, Uy =0 =
=M, Up) U, = NMIM. Let U, = P where P is a Sylow p-subgroup of N M,
then M = (NNAMN,, () hence G = N- N“(P) We denote by @ a Sylow
g-subgroup of Nw (P); as [G:Nl=¢, G - N-Q; by Q=C\(Py=Cy(U),)
this yields G = N.Cy (U)), therefare Ng(U,) = N(U))-Cy; (U)). Let Q1
denote a Sylow ¢-subgr nup of Ne(U,) CUﬂtdlﬂlng a bylow G- bubgmup U, of
U then (as N, (U,) and Cy(U,) are normal in N, (U))

qul - (quNN (Up))'(QIHC;\r](Up)) CG (Up)!
a contradiction. l
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Introduaction

Let us recall the definition of the so-called farthest point map. Let
{X,|-1) be a real normed linear space, K — X a boutded set. The mapping
Q1 X = 2K defined by

Qu () = JKCK: jlx —k|! = sup {x--&’||\
I KEH (

is called the farthest point map. The following question naturally arises:
does there exist a non-singleton K with the property that for every x€ X the
set Q (X} is a singleton?

This guestion — as far as we know — is not solved in general. There arce
many special cases in which the answer is pegative: for example in finite
dinensional spaces [1], in the case of norm-compact 4, in the space ¢, [2].
We proved in an earlier paper [3] that for any normed linear space there
exists an equivalent renonming of the space such that in the new norm the
answer is negative. In this paper we construct for every =0 a norm |- |!
such that in this norm the answer is negative, and

e il

I

The result

We say the set K is uniguely remotal if for every xe X the set @ (x)
contains exactly one clement. In this case we denote also this element
by Q (x).

THeoREM. Let (X, \,-)) fe a4 real nonmed linear space, ¢ =0 an arbitrary
Jixed munber. Theit there exists a norm || - |l on X such that

=14
for all 0=xe X,

s

(1) l—e<s—=l+¢ foral x¢X, x=0,

[
and that in (X, [|-]|,) all aniguely remotal sets are singlefons.
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Proor. We distinguish between two cases.

Case §. dim X «2. This case is trivial.
Case 2, dim X =2, In the sequel we deal with this case.

Let V¢ X be a two-dimensional subspace. Clearly, there exist n¢N and
Vi Vigs oo, Ve €V with the following properties:
i) yi=—-y_, Tor i=12 ... 1
(i) vli=1 for i=1,2 ...,i
(i) there exist x¥,, x%,, ..., x4 ¢ X*
such that
xf ot KHi=1,

i i

x¥ is a support functional of the unit sphere Sj.., (0, 1) at v, and the norm
||} on Y defined by

Ivls = max [xE (W

satisfies
@ [1 + ] Wl =l z[l - ] i
for all ve V.

Let us now consiruct the norm ||.||,- We define
i ) . 3z
e, = max Jixf, max [x%, (o {1425
1=i~in 4
Using (2) we have (1) for sufficiently small 7=>0. (2) and an easy com-

pactness argument imply that there exists 1>§=0 with the property the
every xe X which fulfils

(3) inf{x—yli; yeV, yl=1}=<o
we have
(4) [ ! +i] max Jx, ()] = ]

We prove now that all uniguely remotal sets in (X, ||-]|,) are singletons. We
show this in an indirect way.
Let K X be uniquely remotal in the norm |- ||,. Introducing
d = sup |kl
kel
it is easy to prove, using (3) and (4), that for all ¥ belonging to the set

2d
5) Hz{yeX; avey, ==L, n.v—y’nﬂr}
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we have
v~y = (1457 ) max it (/)
for ail ke K. Applying this to & = Q, (y) we obtain
©) =@l = 1+ 7] max 1 (@) for yen.
Now, modifying an idea of AspLuND ]2], we shall prove that the restric-

tion of the mapping Q, to /7 is constant. First we prove that if z,,z,¢ H
(see (5)), and

i1 =@ M, = [I +%] xt (ZI_QK (z),

s — Qu (2l = [1 4 %] XF (20— Qi (22)

for some 1=i=n (see (6)}, then

(7 Qi (21) = Qpc (2) -

We may assume without loss of generality that

XF{Qx (21)) =X (QK (22)) .

Using this and the definition of ||. ||, we obtain

Iz, - Qe @)l = [1 +1—] (2 — Qu (@) =

._:[1 +%]x?‘(zg — Qu (2)) = 17— Quc @)l »

which implies (7).
We can similarly prove that if z,2f¢ H and

I}~ Qu (25} = [1 + 3 ] X* (7 QD)

’ ’ 35 ’ ’
I~ Qe = 157 (- Q)
for some [ =<i=n, then

8 Qi (21} = Qu (23) -

(7) and (8) imply that the set Q. {H) is finite. Using now the elementary
fact that Qz' (k) is closed for each k¢ K (this follows from the definition of
2«), we obtain that H is the union of finitely many pairwise disjeint closed
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sets (in the relative topology of H). On the other hand, because of dim ¥V = 2,
H is connected. So there exists a £*¢ K with the property

)] Quv)=k* forall ycH,

as we have claimed.
By the definition of 1, it is easy to prove that there exists an element
x* such that k*+x*eH and k* —x*c H. By (9),

(10) Que (k*4-3%) = Qe (k* ~x¥) = &*.
This implies

Ko Sy (R* X5, [0S, RF —x%, X)) -
Using the triangle inequality, an easy computation shows that

| int Sy, (A% X%, )OSy, (- X%, ) =0
114
Sy, (X%, ) Nint Sjyy, (0% —x%, =) = 0.

From these formulas
K {Re kG [ x* —xiy = 1, 8 —x*—x, = [}

Here, obviously, x = &* is an elemert of the right-hand side and, in view of
(10}, the only element of it. ||
I should like to thank J. BoanAr and L. Stacno for useful advice.
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Let G be a linear subspace of the normed linear space (X, ||-1). The met-
ric projection F;: X 29 is defined by the relation

Po () = 1y€Gs -y = iof Je—y}.

Considering the special case P;(x)=0 for any x¢ X, we can define
QG (.\‘, F) = sup {'/f (PG (.\’), PG (V))' J’EX, H_V—F.\’H - F} :

where A(P;{x), £;(v)) denotes the Hausdorft distaice of £;(x) and Fg(y).
Further we can define

0. (X, 8) = supf2;(x, )
xEX

and
2.(X,e)= sup Q;(X,¢).

im&=n

In [1], G. Gop:iwnr raised the following question: Does there exist an
nneN such that

Qo (X, 1)< oo

for all normed linear spaces (X, ||-|)? In this paper we give a negative answer
ta this question.

The result

ProrosiTion. There exists an infinife dimensional nernied linear space

(X, |-} sech that for all ncN
QX D= .
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Proor. We shall construct normed linear spaces (X, ||-|i.) so that there
exists an n-dimensional Chebyshev subspace G, X, (i.e. a subspace G, of
(X, -1} such that P;(x) is a singleton for all x¢.X) with the property

QGn (Xn! l) = =

After this, we can construct (X, ||-|) in the following way:

X =Joxo o X 3 bl < ),

i=1i

s s = | S bl

Construction of X, ||-||,, and G,. Let X, = R"!? and
Gn = {(al! vy Ty 0: 0); D{fER}-

Let us denote by |- ||, the euclidean norm of X,.
After defining the subspace

h(n = {(Or 0,...,0 By ﬁz); i ﬁZER};

S, =1{xcH,; |Ixllh = 1}.

introduce

Clearly, S, is isomefric to the unit circle. For every x¢§, we denote by
arc (x) the length of the shorter arc in S, between x and (0,0, ...,0, 1).

Defining now the set

VI PR I o
S, = {y,y = Xt 5 SEn [arc(x) 2] 1/

for some xESn}

ar¢ (x)—%’ (1,0, ...,0)

for all ye§,, we clearly have —y¢S8) too. This implies that the Minkowski
functional of

o [s:,u{xexn; il = ﬁ)}]
i a norm. We denofe this norm by (..

We can easily deduce that in the norm || ||,,, G,, is a Chebyshev subspace,
and if

Xo= {0y, %oy + v vy Ty Loy, O ) EX NG,
then

Pﬁn (&, « ooy Ty Aoy Apag) = (f, Tay -« s Uyy O, U)!
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where

— n_
inf llx—gl, 2

ge0,

U R rI
f—o*li-mf fix—gll,, - au,[( o U % w1y %)

(0, .., 0, 00,0, %y2a) a

-sgn farcf- > =

10 inf Jlx-- g, 2
2EG,

The latter formula shows that for any ¢=0 we can chonse Yo ¥Ye£X, so that
fvi—Yal,=1 and l[PGn (yl)—PGn (vy)[]=¢. This implies £, (X, 1} = o=. l
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Let E (d) denote the ring of integers of the algebraic number field Q (Vd)
(the extension of the rational field by Vd), where 4 is a rational integer.

It was an open question for a long time, which are those d <0 values
for which E (d) is a unique factorization domain (UFD). It was proved by
non-elementary methods that at most ten such d<0 exist and nine of them
are

d= -3, —4, -7, -8, —11, —19, —43, —67 and —163.

In [1]1 gave an elementary proof by a unified method using geometry of
numbers that £ (d) is UFD for these values of d, and I obtained some in-
formation for the possible tenth value of d too. Later H. M. STARK gave a
non-clementary proof in [4] that no such tenth 4 <0 existed.

In my proof 1 had to face several technical difficulties, because T was
not aware of the following simmple fact:

If the norm of an E (d)-integer is a rational prime, then this integer is
not only irreducible, but is also prime in E (d).*

This statement can be easily proved by ideal theory. An elementary but
complicated proof was given in [3]. For a simple elementary proof see Lemma
4in [5].

Using this proposition my proof can be significantly simplified and
shortened which I shall sketch below. For further generalizations and com-
ments see [5} and [6].

My proof was based on a generalized Zermelo-type argumenti. Assum-
ing that for some = in E(d)

(I) o =0Ty - e T = Py - Py
* We note that throughout ihis paper the notion of “irreducible” and “prime™
wilt be distinguished in the following sense: an E{d)-integer {different from zero and

ut its) will be called irreducible if it has only trivial divisors, and prime if it cannot divide
a product unless it divides at lcast one of the factors.

14 ANNALES — Sectio Mathemativa — Tomus XXVI.
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where =, and p, are irreducible and =, € p,, (e is a unit), r, s =2, 1 constructed
an e, € £ (d) which had a smaller norm than & had and had also at feast two
different decompeositions inte irreducible factors. This process clearly leads
to a contradiction.

We may assume

(2) [ =leil=lea| = - - =1gs] -

Not willing either to repeat the main ideas or to sketch the unaltered
parts of the proof, 1 turn to that point when after several steps 1 found
that it was enough to deal with the case in which

) on o nl =it =y2 201,

This was in the middle of page 462 of my paper. The next four pages of
the argument can be replaced by the following cousideration, using the above
mentioned proposition.

It was previously established (p. 461), that the norms of all non-real
irreducible E (d)-integers inside the circle of radius I3 are rational primes.
Hence ali these integers are primes in £ (d).

Cembining (2) and (3) we ohtain that |=,|=I and |p,| =!I} for all u.
On the other hand none of the =, and o, can be primes, since then we could
reduce hoth sides of (F) by them. Thus =, p,, ..., s, must he all real, i.e.
they are rational primes. Bul then « is a rational integer and using that the
rational integers form a UFD we obtain obviously «r; = ¢ ¢, for some g, which
is a contradiction.

We note that from our proof we get also the fellowing result:

If for some <0 the norms of all non-real irreducible E (d)-integers

inside the circle of radius —'ﬁf—_f{-q-l arg rational primes, then E(d) is a
V2

UFD. This is a somewhat weaker form of a theorem of NAGELL in [2] (not

known by me when writing [I]) obtained by completely different methods.
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Let £ (d) denote the ring of integers of the algebraic number field Q (]ft?)

(the extension of the rational field by Yd), where d is a rational integer. We
may assume that

d=4m+1
or
d=4j where j=2 or 3(mod4).

in [2] Epit GyarMaTt gave an clementary proof that for
d= -3, -4, =7, =8, — 1, =19, 43, —f7 and - 163

E(d) is a unique factorization domain (UFD) — see also [3].

Her method yielded also a result of the following type: if for seme d <0,
all E (d)-integers of absolute value =C, (explicitly given) have a unique fac-
torization, then E(d) is a UFD.

Generalizing her ideas 1 obtained similar resuits for real quadratic
fietds (see [7]).

In this paper [ shall sharpen the results of E. Gyarmar and also some
of my results contained in [7], further I shall give an entirely new proof of an
old theorem of T. NaGELL [4]. All these results are established by a careful
analysis of E. GyarmaTI’s original proof and by several simpiifications due
to a lemma of C. P. Porovicr [5] (see the Lemima below).

THEOREM L. Let be d=<0, and 8 = V;;— ~0,58Y —d. Then E(d) is
a UFD if and only if the following condition helds:

(1 each real irreducible element p of E(d) with < p=<S§ is also a print
in E{d), L. it cannot divide a product unless it divides af least one
of the faclors.

14%
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REMARKS.

1. We shall use the above distinction between “irreducible” and “prime”
throughout the paper.

2. The necessity of condition (I) is obvious.

3. In [7]] proved a similar result with

i 2

J"“V—.d_ml,zn/"_d' for d=4m+l,
T =

l??.‘;iwo,m V=d for d=4j
instead of S.

THEOREM 2. Let be d <0, d = —4k+ 1. Then the following three conditions
are cquivalent :

{iy E(d) is a UFD.
(il M+ n+k is a rational prime for all 0<n<k—1.
(i} n®+n-+k is a rational prime for all

T2 T2 3

Remanrks. 1. Theorem 2 s essentially equivalent to Theorem VI of [4],
but there the value of the upper bound in (iii) is

I_Vfﬁtﬁf_ﬁ
9 3 2

antd also d = —59 is assumed, further the piroof is completely different.

2. We shall prove only the implication (ii{)=(i). (i))=(ii) is easy, and can
he found e.g. in [4], and (ii)= (iii) is obvious.

3. In [1]BEEGER claims that n® 4 14-72491 is prime for all 0= 7= 11000,
By Theorem 2 this must be false, since for ¢ = (—4). 72491+ 1 E (d) is not
UFD (no £(d) is a UFD for d< — 163, see [6]).

ProoF oF THE THEQREMS. The basic ideas and also several details of the
construction are the same as those of E. Gvarmari. To make this paper
self-contained we repeat now briefly those steps too, which are taken from
[2] unaltered.

The major part of the proofs of the two theorems runs together.

Assume indirectly that £ (d)is not a UFD, and « has the minimal nerm
among the numbers, which have at least two distinet decompositions.

Then

@ 2= 3Ty Ty oo Ty = 0y 0g 0. O

hotds where z. and g, are irreducible, r, s=2 and @, > £ g, (¢ is a unit in E (d)).
Clearly @z, and g, cannot be primes in E (¢). Assume that

N)=N(e)=N(e)= .. =N(g).
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Let us consider

T -
g = AE——2u N =T Wy - T, EmQy +vn BsM) = 03 « - OOy E—, 7))
Py

where the non-zero E {d)-integers £ and n will be chosen suitably later. If

(2) #fe §

then a, will also have at least two different factorizations (one with «, and
one without =), which is a contradiction, if also N (ep)=N (), t.c.

© =7 g <1
I ]
holds. We show that both (2) and (3) can be satisfied by a suitable choice of
£ and %, and this will complete the proof.
First we deal with condition (3). Since

i 1
T
l<1.

N () =N (o))

&
If the point % fies in the interior of the unit circle around the point 1 or

&1
— I, then (3) holds with the choice & =k or —1, and 5 = 1. In this case (2)

is clearly valid too. Thus we may assumc that ey belongs to the shaded
0y

domain in Figure I.

Fig. 1.

Then ™% is a point of a line ¢, which contains the origin, and its angle
e

1
with the positive part of the real axis is between 60° and 120°. Let us denote
the extremal positions, of the line ¢ by ¢, and ¢,, and let f be horizontal line
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with 3 = V;d-, and finally consider the intersection point M of the lines ¢
and f. (Line f is the first parallel line to the real axis which contains iattice-
points, Le. points of E (d).)

We take now for & that lattice-point P of which is inside or on the border
of the angle of 60° determined by ¢, and e,, and is closest to M (see Figure 2).

F

_/EI

We verify that the distance of P and ¢ is less than J;i This is obvious
if P is not one of the extreme lattice-points of the section between ¢, and ¢,
of £, since then

PM=t
2

(the distance of the consecutive lattice-points on fis 1). If P is an extreme

point, then consider the line g parallel to ¢,, and having a distance—zi from

P, the distance of ¢ and £ is obviously smaller (see Figure 2).
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The multiples of 1 by consecutive rational integers are on e, and have

! ] _

a distance In—‘! =1. Since the distance of ¢ and P is less than —l;i, therefore
51

the unit circle around P contains in its interior 4 segment of ¢ longer than |,

and so this segment must contain a multiple (by a rational integer) of 71 If

21
we take this rational integer for 5, then (3) is satisfied.

It is obvious that in this case

. —d .
H=] 5 =

3

(see Figure 3).

Fig. 3.
Now we turn to condition (2). We shall show that if : is prime or a
product of primes, then (2) is valid. Assume indirectly, that for some
mB=pé.
Since ¢ is prime or a product of primes, we can reduce here both sides by all
factors of £. Hence we obtain
mp =0
{7, must remain since it is not a prime), wiich is clearly a contradiction.

Thus to prove our theorems if suffices to show that our ¢ is prime or a product
of primes,
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In this final step we shall make frequently use of the following.

Lemma. If N{y) = p, where p is a rational prime, then y is not only
irreducible but it is also prime.

This lemma can be easily proved by ideal theory. An elementary but
complicated proof was given in [5]). For a simple elementary proof see [7].

Let us turn now to Theorem 1. Assume again indirectly that £ has an
irreducible divisor & which is not a prime.

Consider
do=N({@)=m.
Shice
8= 5] =S
therefore
m=352.

i cannot be a rational prime by the Lenuna.
Hence it has a rational prime divisor

p=Vm=S§.

If p is irreducible in E{d), then by condition (1}, it is also prime in £ (d).
If p is reducible, then by the Lemma it is the product of two primes. Thus in
any case p has a prime divisor = {(p =7 or p = = =), hence

x|M =20 d.
But then
|d or wlé

which s possible only if é = ez or 6 = ¢ 3 (where ¢ is a unit). Hence 4 is
a prime which is a contradiction. Te prove Theorem 2 we have only to ob-

serve that
etk = N[”+ ]+E-]

.

and our £ is of the form

with

By (iii) we have that N () is a rational prime, and we obtain by the Lemma
that & is prime in £ {d).
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1. Introductions

In this paper we shall deal with rings without small ideals and rings
without essential ideals. In section 2 the radical theoretic aspects of such
rings will be investigated and we shall give two characterizations of the Jen-
kins radical in terms of the above mentioned rings. The structure of certain
Jenkins semisimple rings will be described in section 3.

Next, we shall recall some notions which we shall use in the sequel. A
class R of rings is called fiereditary, whenever I ¢ A¢R implies €R, further,
R is said to be closed under subdirect sums, if any subdirect sum of R-rings
is again in R. We say that R is closed under extensions, if B A, BeR and

A/BeR imply A€R. If R has the property that for any ascending chain
B,cB,c...cB,c... of ideals of any ring A with B.cR for each y, it
fo]!ows UB €R, then we say that R has the mdnctwe property. A semi-
simiple class is a class of rings consisting of rings having O-radical with re-
spect to an appropriate Kurosfi-Amitsur radical. Let R be any Kurosh-
Amitsur radical class and & R its semisimple class. If § is a hereditary class
then @£ 8§ denotes the class of rings having no non-zero homomerphic image
in 8. As is well-known, (8 is a Kurosh-Amitsur radical class (see, e.g. [10]
Theorem 7.2.).

An ideal f of a ring R is called small (essenfial) in case if I+] =
= R((INJ =0)implies Jf = R {J = 0) respectively. Essential ideals are also
called large ideals.

ProrosiTioN 1.1, When 1 is small in R then in any image R of R the
image of I is smali.

For the proof we refer to Kasch [2] (5.13. lemma (c)), or MICHLER {7]
(Hilfssatz 1.3.).

It is known (ARMENDARIZ [1]} that the radical R is hereditary if and

only if the semisimple class & R is closed under essential extensions, that is, if
A is a esgential ideal of the ring R and A<3 Rimply R¢SR.

15 ANNALES - Sectio Mathematica —~ Tomus X XVI1.
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2. On the Jenkins Radical Class

Let 8 denote the class of all rings A such that (i) A is semiprime and
(it} A has no non-zevo small ideal, By definition every simple idempotent ring
belyngs fo the class 8, but S does nof coutfain subdirectly irreducible rings which
arc o simple idempotent gnies.

ProrosiTion 2.1. The class 8 is hereditary.

Proor. Suppose that 05 K << A¢S and let K denote the ideal of A
generated by K. By the assuwmption A has no non-zero nilpotent ideal, so

K3=0 and in view of Andrunakievich Lenuma (see, c.g. [10] Lemma 12.1) we
have K< K. Also AcSimplies that I3 is not small in A, therefore there exists
an ideal H=A of A such that /34 11 = A. Since K*< /I, by the modular
law we have

I=(H+K)NISK+(HN DS KA-(HN )

Thus J = K+(HN 1) and since H -+ A it follows that K*% H, so [ & H, that
is HM 1,24, Thus K is not small in /. Since being semiprime is a hereditary
property, the assertion is proved.

Proposition 2.2. The class S is subdircctly closed.

The proof is straightforward in view of Propodition 1.1 and of the fact
that any subdirect sum of semiprime rings is again seniiprinie.

Since the Brown-McCoy semisiiple rings are subdirect sums of simple
rings with identity, Proposition 2.2 yields immediately

Cororrary 2.3. 8 contains every Brown-MeCoy semisinipic ring.

The class 8, however, is not a semisimple class becanse it fails to be
closed under extensions.

Prorosimion 2.4. S s not clesed under extenisions und nol even under
essential extensions.

Preor. Let A be any simple idempotent ring without identity. By defi-
nition A€8 holds. Furthermore, A is an F-algebra for either F = rationals
if A has characteristic 0 or F = Z_ if A has characteristic p. Then for the
split extension R = A% we have Ac8 and R/A=F¢8. But R is well-known
to be subdirectly irreducible so R 8.

In fact R is an essential exteinsion of A so this proves the second asser-
tion.

Though § is not a seinisimple class, the class @8 is certainly a radical
class as § is hereditary.

Next, let us consider the class T of all rings, which have no essential
ideal. Obviously T contains all semisimple artinian rings and also all simple
riiigs including the simple zero-rings. A refoninulation of Lemma 2 of OLson
and JENKINs [8] gives

Prorositiox 2.5, The class T is mmomaorphiicafly clpsed.
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Prorposition 2.6. The class T is hereditary.

Proor. We shall make use of Lemma I of OusoN and JENKINS [8]
which states the following: If I is a non-zero ideal of a ring A then cither 1is a
direct summuand of A or there is an essential ideal of A containing I. Now let [
be an ideal of A¢T. By the above result we have A= I®J. If K is any
ideal of 1, then by the direct decomposition of A also K <1 A holds. Since AT,
we get A = K@L proving that K is not essential in A. Taking into con-
sideration that 7 is a direct summand of A, it follows that every ideal of /
is an ideal of A, too. Hence K is not essential in [ and so f¢ T follows.

Prorosition 2.7. The class T has the inductive property.

Proor. Let /,C... S, ©... be an ascending chain of ideals of a ring
A such that each [, is in T. Without less of generality we may confine our-
selves to the case A == U [,. Let K be any proper ideal of A. Now there is
an index y such that K, = Knl.=J,. Since K, /€T, by [8} lemma 1 it
follows [, = K,& L, and 1.,>0. We claim that L, g A. To see this, let us
take an element a€ A = U1, now there is an index # such that ac/,. If
f=v then acl;c [, therefore a-L,C/;-L . SL, and L,-a<L, hold.

If f=y, then I, @ I3¢ T which implies a direct decomposition Iz = I, ®H
yielding I, = K.@ 1., o H. Hence L,<J; and so el CiL,cL, and also
l,a< L, holds. Thus L, < A, since L.C ], we have

L.NnKclL,NnKNnlL,=L,NK,=0

and hence K is not essential in A, proving A¢T.

The class T is not subdirectly closed as it is obvious from the following
example. Let us consider the complete direct sum A of infinite simple rings
A,. Since the direct s of the rings A, is an essential ideal of A, it follows
Ad T, though A,¢T for each o.

Similarly as in the proof of Proposition 2.4, one can see that T is rnof
closed under extensions.

As it was already mentioned the class T contains beside the semisimple
artinian rings also simple zero-rings. It seems to be useful to exclude the
zero-rings by considering the class T, consisting of all semiprime rings A€ T.
By [8] lemma 1 it is obvious that T,C8.

ProrosiTion 2.8. A ring A<T belongs fo T, if and only if A is idempe-
tent, moreover
T, ={AeT: A is hereditarily idempotent} .

Proor. Assume that A is idempotent and let /0 be any ideal of A.
Since A€T, [8] Lemma 1 yields A = I K and by A? = A, it follows:
1 = I that is, A is hereditarily idempotent, and conseguently semiprime.

Conversely, suppose that A is semiprime. For A? we have A = A*@B
and B2 A*N B = 0, Since A is semiprime it follows B = 0, that is A2 = A.

The last assertion has been shown in the first part of the proof.
ProposiTion 2.9. T, has the following properties

15%
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(a) T, is homomorphically closed,
(b) T, is hereditary,
(¢) T, has the imductive property.

Proor. (a) Tollows from Propositions 2.5 and 2.8, meanwhile (b) is
trivial by Proposition 2.6,

I't is well-known that the class H of all hereditarily idempotent rings has
the inductive property, since it is a radical class. By T, = T H the assertion
(c) follows.

In view of the above proved properties, the classes T and T, are close
to those of hereditary radicals (though the cxtension property is missing).
Since among the hereditarily idempotent rings the relation B A is transi-
tive, the lower radical £ T, of the class T is given as £ T, = {A: every non-
zero homoemorphic image of a A has a non-zero ideal in Ty},

Furthermore, £ T, is a subidemipotent radical. In spite of T,S8¢c
CAAS. We have

ProrosiTion 210, LT, TSZS and S £7T,.

Proor. Let us consider the class K of rings A cach of which is isomorphic
to every non-zero homomorptiic image of it. As Leavirr and van LEEUWEN
[5] have shown the class K has the following properties

(i) Every rinig AcK is subdirectly irrediicibie.

(i) Every simiple primitive ring B with minimal one-sided ideals and

without idenlity, can be embedded us a proper ideal In o ring AcK.

Hence there exists a ring AcK wiich has an idempotent heart. By the
definition of £ T, we have A¢ £ T, aud the heart of A is in T,. Since the
heart of A is a small ideal, it follows A18. Also cvery non-zere homomaorphic
image of A is not in 8, that is AtS LS, because A is in K. On the other
hand the ring Z of integers is in 8, but no non-zere ideal of £ is hereditarily
idempotent and therefore Z4 £7T,.

TreEorREM 201 [f M denotes the cluss of all simple idempotent rings Hen
HM=adlT, 8 though M—T,—8, M=T, ~ 8.

Proor. The assertions MC T, <8 and M+ T, -8 are obvious. In view of
M T, o8 we get ASSA T, A{M. Let us consider a ring A58 and let
us assuile that A¢f M. Then there is @ homomorphic image B=0 of A such
that B¢S. By MicnLer [7] Hilfssatz 3.1 B has maximal ideals. [f B = B,
then B oas well as A has a non-zero homomorphic image in M, and hence
ALM. If B2= B, then by B¢S we have B?=0 and B2 is not small in B,
therefore, there exists a maximal ideal C of B such that B2+ C — B, Now
BJC is an idempotent simple ring, which is in M. Since B/C is a homomorphic
image of A, it follows Al M.,

JExkixs called an ideal 1 of a ring A a special idedd, if ArC [ for some
integer 1= 2. If no such integer exists for /, then [ is called non-special. A
ring A is said to be an m-ring if A has no non-special maximal ideals. The
class of all m-rings is a radical class, which is called the Jenkins radical. Using
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a result of pE LA Rosa [9] vax Lecuwen proved that the Jenkins radical
class coincides with @M. Ouson and JeEnkins characterized (M as the
class of all rings A such that every non-zero homomorphic image of A con-
tains either an essential ideal or an ideal isomorphic to a simple zero-ring.
Now Theorem 2.11 gives two new characterizations of the Jenkins radical.
Relationship between the Jenkins radical and the other radicals is given in
[6] by vax LEEUWEN. Moreover, the Jenkins radical is not hereditary (cf.
LEAvITT— JENKINS [4]).

3. On Jenkins semisimple rings

in this section we shall investigate the structure of certain Jenkins
semisimple rings. For this purpose we introduce the operator p designat-
ing to any ideal 7 of a ring A the ideal

a(N)=NE QATHK, = A).

Provosition 3.1. f <1 implies o{DYSo (), for uny ideal ] and [ of a
ritig A1 s a small ideal in A if and only if o () = A

The assertions are immediate consequences of the definition of o.

ProposiTionN 3.2. For any ideal T of a ring A the ideuls Tnyo(l) and
o{f +o(l)) are small in A,

Proor. If K is an ideal of A such that (/Ne(N)+K = A, then also
I+ K = Aholds. Hence o (N K is valid implying 7N o (< K. Thus K = A,
proving the first assertion.

By Proposition 3.1 we have o({ Fo{f))So(f)y and o(f+o(I)) < o* (1)
Sinece by Proposition 3.2 o (e (1) is small in A, by

o(I+e(IN (e ()
it follows the second assertion.

Propaosition 3.1 and 3.2 yield the following

ProrosiTion 3.3. A semiprime ring A is {n the class S {f any only if
INe(D =0 for any 1 <A,

ProprosiTioN 3.4, Lef Abeuring in8. A is prime {f and only if o({) =0
Jor every non-zere ideal 1 of A.

Proor. If A is prime, then by Proposition 3.3 we have o (/S INo(f) =
= 0. Since A is prime, it follows cither I =0 oro{(/} = 0.

Next suppose that o(f) =0 for every non-zero ideal I of A, and et
J=0and Kz0 be ideals of A such that j- K = 0. Since § consists of semi-
prime rings, A¢S implies K2=0. Let us consider the ideals [/, such that
J+1i1, = A. For any i, we have K< ] H, and so

0 KEC(J+H)K = [ - K+H, - KSH.

This tmplies 0.« K2Co(f) contradicting the hypothesis. Thus A is a prime
ring.
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Let Soe A denote the socle of A which is the sum of all minimal fwo
sided ideals of A.

ProrositioN 3.5. If a prime ring A is in' S, then cither A is siimple or
Soc A = 0.

Proor. Since A is prime, either Soc A = 0 or Soc A is the unique mini-
mal ideal of A. Since A is prime, Soc A must not be a direct summand of A
and so either Soc A = 0 or Soc A is the smallest ideal of A, and in this case
A is subdirectly irreducible with heart Soc A. By the definition of 8, how-
ever, § does not contain subdirecily irreducible rings, whicl: are not simple
idempotent rings. Thus either Soc A == O or A is siinple.

Let us recall that in view of Theorem 2,11 S8 is the class of all feir-
kins semisimple rings. The next theorem characterizes those Jenkins semi-
simple rings A which are in T,

THEOREM 3.6. For a ring A the following conditions are eguivalent

(a) Aissemiprime and o* ()= I for every I < A.

(b) A is semiprime and for every ideal I of A there exists ¢ positive in-
teger n such that g?n (1Y = 1.

(¢ AeSamd A= I+p(1)holds for every I q A.

(dy AceT,.

() A issemiprime and cach ideal of A ls a diveet sumnrand of A.

(MY A s the direct sum of simiple ideinpotent rings,

We remark that the equivalence of (d), (e) and (f} is known, but for the sake
of completeness we sketch also the proof of (e)=(f).

Proor. (a)=(b). Clear.

(b)=(c). Let J be a small ideal of A. Then by definition p(/) = A and
hence ¢*(f) = 0(A) = 0. By Proposition 3.1 we get clearly ¢* ()= 0 for
all positive integers 1. Thus (b) implies J = 0, that is A has no non-zero
small ideals. Hence A8,

Next let [ be any ideal of A. Since A€S, Proposition 3.2 implies
o(7+e(F)) = 0. Hence it follows ¢® (/ +¢(/)) = A and also p¥' (I +¢(/)) = A
for all n. Thus (b) yields f+p(I) = A.

(c)-»(d). Let I be any proper ideal of A. By Propusition 3.2 f g (/) is
smail in A and we have T+o()= A and therefore g(§)=0. Thus [ is not
essential in A.

(d)=>(e). The implication foliows from Olson-- Jenkins [9] Theorem 3.

(e)=>(f). By Birkhoff’s Theorem A is a suibdirect sum of subdirectly irre-
ducible rings A, (z£.1). Denoting by =, the projection of A onto A,, (e) yields
the decomposition A = Ker 7, A,. The heart of A, 1s an 1deal of A as well
hence a direct summand of A and also of A,. Hence necessarily A, = 171 (A,),
that is A, is simple. Since A is semiprime, A, is idempotent. Let us consider
the socle Soc A of A which is the sum of all simple idempotent rings 4, g A.
It can be verified that Soc A is the direct suz of the rings A, (the proof is
the same as in the case of modules (cf. Lamsex [3] p. 50-—60)). We prove
that A = Soc A. Otherwise by condition (¢} we have A =Soc A B (B=0)
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and ehviously also B satisfies condition (e). Hence B has an ideal C which is a
simple idempotent ring. Sioce C is ait ideal of A too, it follows CCSoc A,
and coucequently By Soc A=0, a contradiction, Hmce A = Soc A

(M) —(a). Let 1 be any ideal of .Y, and A be a direct st of simple idem-
potent rings A,, =¢.1. It is known that an ideal of a direct sum of siuiple
idempotent rings is of the same kind. it follows that if 47 - {Je. 0 A 1}
then 1 is the direct sum of A, ge.t’. Hence A = 153 ), where [ is a direct
sum of A,, p 17

Let K be any ideal of A such that /+ K = .1 We will show that J K,
and therefore J = o(f). Let D =bsf, then b=u,+d,+ ... +u, and b=
= b, +b, where O.2q,e A, €.\ 1" and b€ ), be K. Since

e, = N Ay = A DA = A b, A CK

we have (... +q,)c K. Thus o(l)=J. Similarly, we can show that
o(Jy=1. Hence I =n(f)=0n*({). Ohvmusly A 1s also semiprime thus con-
dition {a) holds. The proof of Theorem 3.6 is complete.
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Introduction

(Given a multiplicative semigroup € with unit ¢ and involution *, briefly
a *-semigroup, an operator valued function F of G into B (H), the C*-algebra
of all bounded linear operators on the complex Hilbert space H, has a dila-
tion S on a Hilbert space K (in a gencral sense) if there is a continuous linear
map V: K- H with

(n F(g)=VS, V¥ vyeG

where §:G+B(K) is a *-representation of G on the Hilbert space K. In
case when F (¢) = I, (the identity operator v £), or equivalently V vV* = [,
holds in (1), S is called a strong dilation of F on K.

Let further be given a vector valued function x of G into the Hilbert
space H, then it seems to be natural to ask:

A. Under what condition does there exist a dilatable operator valued
function F on &G, such that
@ x, = F(g)x, vgeG

holds. Qur aim is to answer this question. It shouid be remarked that this
problem in case of a strong dilation is left open. Only a special but interesting
case will be treated.

B. Given a sequence {x,}=___ of elements of H, which spans the space
H, when does exist a contraction T on #f such that
(3) xn = Tn XU Y ”EZ L

where T, = T7 for n=0 and T,, = T*# for n<0 and Z is the set of entire
numbers.

C. A similar problem is solved for one parameter continuous greup of
contractions on /. These last two problems are continuations of our pre-
vious investigations in [2].
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Results

Tueorem A. Problemt A fas a solution if and ouly if there cxist a con-
stant M =0 and a submultiplicalive function p: G—R v with C*-properiy

4) plg*ay=plgy vyed,

(implying  p(g*) = p(g) vg<G)
Sueh that

©) cli=Mp(g) vgel,
(6) |ZC \‘ll _ﬂfZ{,g u,(x;,*g, \g)

holds for all finite sequence {c,} of complex numbers indexed by elements of G.
Proor. Assuming a solution F: G -B({f) with (1) and (2) one has
for any ¢ in G
WA= (OB IXE=UVIRS L itVEL b= M p(g)

where M = [V ||x[, p(g) = ];6 || is of the type desired in the statement;
and also

[ < -"gﬂz‘é IVIFIL2 ¢ S VE x P = IViF Z e eV Sieg VX, X)) =
1 £
|1V|!“ e C (M*gs Xe)

for any finite sequence {¢,}peq of cump]ex numbers.

On the other hand let ¥ be the linear space of all conplex Vcl]ULd fune-
tions on (1 with finite support, each of which is of the form Z, g D where
0, denotes the function ! in ¢ and 8 otherwise and {c,} is a hmte sequence of
complex numbers indexed by elements of (7. Note that ' denotes afways
a finite sum. For any two elements

26,68, and >d. o, of V¥
i fi
we defiie a complex number by

/Z Cp Oy 2_: dy é!.‘\ = Z Cp g (Xg= 1y Xe)

such giving a semi-inner prodact on ¥ because of (6) The resuiting Hilbert
space (after factorization and completion) is K. In view of (6) we have also
that the map V of ¥ into H given by

(7) V (A’Z' C!i 6!:] = ;‘ Cp Xh (Z Ch ‘5:’16 }/')

defines a continuous linear map V of K into H (by 4 unique extension of the
densely defined continuous linear map arising after factorization). We prove
first the identity:

(8) VEx, = 0, .
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Let > ¢, 5, be an arbitrarily chosen element from Y, we have by (7)
]

< % ¢, 8y V*xe> - (v ( %’ ¢ 5;,),.@] = %*c,, (X X,) = <;' €y By ae>

implying (8) since such elements are dense in K.
Consider now the shift operator S, on ¥ given by
(g) Sg (% {.‘h ah) L= %’ L'h (SL,‘;, (geG, % Ch ahE Y) .

We have to show that S is continuous. To see this we observe that for any
Y= %’ch &, in Y
1

"Sg J/Hz == ”% Ch 6gh 2= %:Ch € (x-“* £¥ gity xe) = <Sg*gy,- }’) = “S.E*Eyn ”y“ .

By induction we have in consequence of (3}, (6)
15, I = S gm gn—1 I+ > 2 =
= =" %‘ Cn Cp (X grgy? 1y X)) =
S Ml 3 feal e p (=" ) =
=p @ VI M) (2 leslp (h))'*,
1Sg vl =p (VI " (M (3 el p ()2

for any =0, 1,2, ... and thus finally that

IS ¥il=p @Iyl (g€d; yev).

We see, as in case of V, that §_ is a bounded linear operator on & as well.
Moreover it is a simple check to prove that S, as an operater valued function
on G, preserves multiplication and involution. In other words § is a *-repre-
sentation of G on K. Now it is a kind duiy to observe that the operator
valued function F on G as in (1) satisfies (2) too: by (8), (9) and (7) we have

F{x,= VS, V¥x, = VS, 8, =V, =1,
for any o in & indeed. The proof is comnplefe.
THEOREM B. Problem B fas a splution if and only if there exisis a double

sequence (X2} n- - of elements of H such that

(10) XV =x_., Wwhenever 1-n=0

and

(17) ”;2 Cton KPS 2 ot b (X5 X)
W h m’,m

n,n
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hold for auy finite sequence {¢. .} of complex numbers indexed by pairs of en-
fire munbers.

Proor. Assume first that we have a contraction 7° on the Hilbert space

H satisfying (3). Let x#":= T,-x_ for any two entire numbers #’, n. Then for
', n=0 we have

=T T, % =T"Trx,=T"""x, =T,

n_nro-—l’: r

and for ', n<0 that
Tﬁ' = TH=m) T Xy = FHin Xo =Ty ato = Xp'ty

Moveover for any finite sequence {¢ .}v n__.. it follows by the unitary
dilation of B. Sz.-Nagv that

'Lg,'n Cn n x}:’!"-" = “Z’ T x, ’ XP 2, Cron U™ X, “ Z Cy oy U x,,”'*" =

wyn | no,n

21 Cotm € n(Uml—n’ Xop Np) = Z Lo, o O, r:( ' —n" Xy Xp) =

o, m
ahn N’ I'l

24 "HI i n n (\_;ﬁ’_”’ YH) ?

m’ n

where UJ is the unitary dllatmn of T on a Hilbert space K containing H.
These show the necessity of (10} and (11). On the other hand, assuming (10)
and (11), let ¥ be the linear space of complex valued functions with finite
support on Z X Z, each of which is of the form 3 ¢, 67, where 87 denotes
R H
the function 1 in (', 1) and O otherwise and {¢,» ,} is a finite sequence of
complex numbers indexed by pairs of entire numbers in Z. For elements
) Cor o O ANd 2, dy 6f of ¥ we associate a complex number by
v,

e 24‘ Co’, m é:::" Z dk' k ék = 2 Enl m dﬂ i (xg:f X ;)
T ' LSS ’ / ', m
Rk
thus defining (by (11)) a semi-inner product on V. Let K be the resulting
Hilbert space, as hefore, a contractive linear map V of which into 7§ exists
{also by (11)) defining on Y for 2 Cppe o O @S

"l ”I m
5T m BT
(]2) v ( Z Co’, e 6:}:) Z Con', o N -
m',m ne',m

Note that at once V V¥ =2 [, follows hecause
(13) V*x, = 8) vnck

holds for V since for any y -- 2, Cor o O In Y we have by (12)

n’ Ll

<m’2,’m Con' m a?r}” v xr1> = [V ( Z Cor’, 62:’)’ 1{1?1] =

e, m

= 2 Cor,m (55 Q) = 2 Gt O 5°>-

i, m wif, m
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Now let S be the shift on ¥ given by
(14) ( Z O’ m 5m ) Z Co,in 6$’+1 -

m,m m',m

An easy calculation shows that we have indeed a unitary operator S on K,
since §* = §-1 in view of

(15) S*( Z cm',m a::l) = Z 'Cm',m a:il’_l
and S is an isometry with respect to the norm inherited from the inner

preduct given before on the factor space of V.
Finally let T' = V S V* be the contraction of H which is the claimed

solution of the problem. We have indeed by (13), (14), (12) for n=0
Tx, =VSV*X, =VS =V =x=x,.,
and also by (I5) for n1=0
T*x, - VS*¥V*x, = VE*8 = VS =x1=x, ,

These show (3) and the proof is ended.

CoroLLARY B. Problem B has unitary operalor as a seiulion if and only if
(16) (X0 X)) =X, Xg) Vo, €L

Proor. Let x%':=x,..,, for any 1, n¢Z, then

IZ’ o, nxnt Z ot o, n(rm 1 \2,) = mZn f:m,, " Eﬂ',ﬂ (xm"’-‘m’ xﬂ"?'n) =
o n .ﬂ n* ’i:
= Z Coi'om En',u (xm'—n1+n'—m xo) = O\ m E‘n n (xm’—n’ n) ’
m,m
n,n

hence equality holds in (I11) for any finite sequence {¢,- 7 n—_.. of com-
plex numbers. This implies that V is unitary in the proof of Theorem B
and thus T = V S V* iz unitary too.

The proof of the next theorem is the continuous counterpart of the proof
of Theorem B using the suitable dilation theory of B. 5z.-Nagy.

Tueorem C. Giverr ¢ one parameter continuous famify {x,}tgn in H there
exists a continuous family {Thewr of contractions on I with T_, =T7* for
teR and T, = 1, for which

(I?) X, = ’f;xo VfER

holds if and only if there exists a continuous family (X'}, cr in H such that
(18) W =xp for P-1=0

and

(19) ‘ i e {3»2; Ly s Cer y (x§", xp)

’
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hold for any finite sequence {c. )} of complex numbers indexed by pairs of
real nimbers.

CororLary C. Theorem C has a continuous family {{J g of unitaries
ot H with U_, = U;"1 as a solution if and only if

(o X)) =(x,_pX,) Vs [ER.
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