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Abstract

Discrete Bayesian network models with hid-
den variables de�ne an important class of sta-
tistical models. These models are usually
de�ned parametrically, but can also be de-
scribed semi-algebraically as the solutions in
the probability simplex of a �nite set of poly-
nomial equations and inequations. In this pa-
per we present a semi-algebraic description of
discrete Naive Bayes models with two hidden
classes and a �nite number of observable vari-
ables. The identi�ability of the parameters
is also studied. Our derivations are based on
an alternative parametrization of the Naive
Bayes models with an arbitrary number of
hidden classes.

1 Introduction

A Bayesian network model (see [Cowell et al., 1999]) is
a set of probability densities over a set of random vari-
ables. It can be speci�ed parametrically as a product
of conditional probability densities or implicitely by a
set of (conditional) independence constraints between
the random variables.

On the other hand, a Bayesian network model with
hidden variables (see [Geiger et al., 2001]) is usually
only speci�ed parametrically. The density over the
non hidden variables is obtained by marginalisation of
the hidden variables, which implies non-independence
constraints that are di�cult to formulate.

Let us focus on Bayesian network models over
a �nite set of discrete random variables. In
[Geiger et al., 2001], the authors show non-
constructively that, with or without hidden variables,
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these models are semi-algebraic sets, i.e. they are
implicitely described by a �nite set of polynomial
equalities and inequalities. Finding semi-algebraic
descriptions of discrete bayesian networks with hid-
den variables is a di�cult problem that has been
the focus of recent research (see [Geiger, 1998] and
[Settimi and Smith, 2000]). In particular, important
progress has been reported in [Garcia et al., 2005]
and [Garcia, 2004] where discrete Bayesian networks
are placed in the realm of computational algebraic
statistics.

An (implicit) semi-algebraic representation allows to
easily check whether a given distribution belongs to a
model. Statistical tests can then be possibly devised
for model selection.

Despite their simplicity, discrete Naive Bayes
models can be successfully used for density
estimation and allow for fast inference (see
[Lowd and Domingos, 2005]). In this paper, we
investigate those models in the special case where
the hidden variable has two possible classes. Section
2 gives the de�nition of the discrete Naives Bayes
models and introduces an alternative parametrization.
Section 3 focuses on the inversion of the mapping
from the parameter space to the probability distribu-
tion space. In section 4, we derive a semi-algebraic
description by eliminating the parameters. Finally,
we conclude in section 5. The proofs of two lemmas
are given in the appendix.

2 Discrete Naive Bayes models

A probability distribution p on a �nite sample space Ω
with n con�gurations is naturally represented as a vec-
tor (p(o))o∈Ω ∈ Rn if we �x an order for the elements
of Ω. Such a vector satis�es the following constraints.∑

o∈Ω

p(o) = 1, (1)

(∀o ∈ Ω)(p(o) ≥ 0). (2)



In fact, equations (1) and (2) give a semi-algebraic
representation of the set of all probability distributions
on Ω, the (n− 1)-dimensional probability simplex.

Let X be an ordered �nite set of discrete random vari-
ables and let v(i) be the set of possible values of i ∈ X.
The sample space considered is thus Ω = ×i∈Xv(i). A
vector Θ = (θ(i))i∈X where θ(i) is a probability distri-
bution on i can be mapped to the distribution on X
given by

p(X) =
∏
i∈X

θ(i). (3)

Let D0 be the set of distributions parametrized by this
mapping.

For p ∈ D0, the random variables are mutually in-
dependent. This may be too restrictive for density
estimation and we may want to consider mixtures of
such distributions. Suppose that the number of mix-
ture components s is �xed. As a parameter space,
consider the set Π0 of vectors ((ωt,Θt))s

t=1 where
Θt = (θt(i))i∈X and such that

ωt ≥ 0, (4)

θt(i) ≥ 0, (5)
s∑

t=1

ωt = 1, (6)∑
i0∈v(i)

θt(i0) = 1. (7)

A vector ((ωt,Θt))s
t=1 ∈ Π0 can be mapped by the

function f0 to the distribution p over X given by

p(X) =
s∑

t=1

ωt

∏
i∈X

θt(i), (8)

The set of distributions NBs = f0(Π0) parametrized
by this mapping is the Naive Bayes model with s hid-
den classes. Of course, D0 = NB1.

The parameters of a distribution p ∈ NBs are identi�-
able if f0 is injective at p, i.e. if the set f−1

0 (p) contains
only one element. The commutativity of the addition
in equation (8) implies that any permutation of the
s components of a vector ((ωt,Θt))s

t=1 produces the
same mixture. Therefore, we can only hope for iden-
ti�ability up to such a permutation.

Equations (4) and (6) allow for some weights to be
0. As trivial consequences, NBs ⊆ NBs+1 and any
mixture of s components parametrized as a mixture
of more than s components will have non identi�able
parameters.

2.1 Illustration

To illustrate, let us brie�y consider NB1. Given p ∈
NB1, we have ω1 = 1 and by marginalisation

p(i) = θ1(i). (9)

Hence, we have

p(X) =
∏
i∈X

p(i) (10)

Conversely, any distribution on X satisfying equation
(10) is uniquely parametrized by the vector (ω1, θ1) =
(1, (p(i))i∈X). Hence, together with equations similar
to (1) and (2), equation (10) is a semi-algebraic de-
scription of NB1 and the parameters are identi�able.

2.2 About the notations

As the reader may have noticed, we adopted rather
informal notations in this paper.

First, expressions like p(i = i0) and θ(i = i0) for some
random variable i ∈ X and some value i0 ∈ v(i) are
abbreviated as p(i0) and θ(i0).

Moreover, if a variable or an index x is not constrained
in an expression q(x) then this expression should be
read as

(∀x such that q(x) is de�ned)(q(x)). (11)

For example, supposing that X = {i, j}, equation (3)
stands for

(∀i0 ∈ v(i))(∀j0 ∈ v(j))
(p(i = i0, j = j0) = θ(i = i0)θ(j = j0)), (12)

and equation (5) stands for

(∀t ∈ {1, . . . , s})(∀i ∈ X)(∀i0 ∈ v(i))(θt(i = i0) ≥ 0).
(13)

2.3 An alternative parametrization

To simplify the developments in the remaining sec-
tions, we introduce an alternative parametrization of
NBs. As a new parameter space, consider the set Π
of vectors (Λ, ((ωt,∆t)s

t=1)) where

Λ = (λ(i))i∈X , (14)

∆t = (δt(i))i∈X , (15)



and such that

ωt ≥ 0, (16)

δt(i) ≤ λ(i), (17)
s∑

t=1

ωt = 1, (18)∑
i0∈v(i)

λ(i0) = 1, (19)

∑
i0∈v(i)

δt(i0) = 0, (20)

s∑
t=1

ωtδt(i) = 0. (21)

Let us show that the function h given by

(Λ, ((ωt,∆t)s
t=1)) 7→ ((w′

t,Θt)s
t=1) (22)

with

ω′
t = ωt, (23)

θt(i) = λ(i)− δt(i), (24)

is a bijection between Π and the original parameter
space Π0 whose inverse h−1 is given by

((ωt,Θt)s
t=1) 7→ (Λ, ((w′

t,∆t)s
t=1)) (25)

with

ω′
t = ωt, (26)

λ(i) =
s∑

t=1

ωtθt(i), (27)

δt(i) = λ(i)− θt(i). (28)

Given π = (Λ, ((ωt,∆t)s
t=1)) ∈ Π, it is imme-

diate to see that h(π) ∈ Π0. Suppose that
h(Λ, ((ωt,∆t)s

t=1)) = h(Λ∗, ((ω∗
t ,∆∗

t )
s
t=1)). This im-

plies that

ωt = ω∗
t , (29)

λ(i)− δt(i) = λ∗(i)− δ∗t (i). (30)

Hence, we have

s∑
t=1

ωt(λ(i)− δt(i)) =
s∑

t=1

ω∗
t (λ∗(i)− δ∗t (i)). (31)

By equations (18) and (21), this implies that

λ(i) = λ∗(i), (32)

and, in turn,
δt(i) = δ∗t (i). (33)

Hence, h is injective. On the other hand, given
π0 = ((ωt,Θt)s

t=1) ∈ Π0, it is immediate to show that
h−1(π0) ∈ Π and that h(h−1(π0)) = π0. Therefore, h
is surjective and h−1 is its inverse.

This shows that NBs is also parametrized by Π and
the function f such that f(Λ, ((ωt,∆t)s

t=1)) = p with

p(X) =
s∑

t=1

ωt

∏
i∈X

(λ(i)− δt(i)). (34)

Similarly, we describe a distribution p over X in a non
standard way by means of a function g de�ned on the
subsets S of X as follows

g(S) = p(S)−
∑

P s.t. P⊂S

g(P )
∏

i∈S\P

p(i), (35)

with the conventions that p(∅) = 1 and P ⊂ S stands
for P is a proper subset of S. For example,

g(∅) =1, (36)

g(i) =0, (37)

g(i, j) =p(i, j)− p(i)p(j), (38)

g(i, j, k) =p(i, j, k)− p(i)p(j, k)− p(j)p(i, k) (39)

− p(k)p(i, j) + 2p(i)p(j)p(k). (40)

Note that g has the following properties

i ⊥ j ⇔ g(i, j) = 0, (41)

i ⊥ S ⇒ g(S ∪ {i}) = 0, (42)∑
i0∈v(i)

g(i0, j) = 0. (43)

and g(S) is a polynomial of degree |S|.

3 Inversion of f : Π → NB2

In this section, we discuss the inversion of the
parametrization mapping f . Suppose that a proba-
bility distribution p ∈ NB2 is given. Let us attempt
to identify the set of parameters f−1(p).

Equation (18) is equivalent to

ω2 = 1− ω1. (44)

Also, by marginalisation in equation (34) of the vari-
ables in X \ {i}, we obtain

λ(i) = p(i). (45)

This implies that equation (19) is satis�ed.

The following lemma is proved in the appendix.



Lemma 3.1 Given a distribution p over X and
(Λ, ((ωt,∆t)2t=1)) ∈ Π such that λ(i) = p(i), we have

p = f(Λ, ((ωt,∆t)2t=1)) (46)

if and only if

g(S) = −(δ1(i)+δ2(i))g(S\{i})−δ1(j)δ2(k)g(S\{j, k}).
(47)

In accordance with our notational conventions, equa-
tion (47) should be read as

(∀S ⊆ X)(|S| ≥ 2)(∀s0 ∈ ×u∈S v(u))(∀i ∈ S)
(∀{j, k} ⊆ S)(g(S = s0) = −(δ1(i = i0) + δ2(i = i0))

g(S \ {i} = s0 \ {i0})− δ1(j = j0)δ2(k = k0)
g(S \ {j, k} = s0 \ {j0, k0})), (48)

where i0, j0 and k0 are, respectively, the values of i, j
and k in the instantiation s0.

Lemma 3.1 has an immediate corollary that can be
used for identi�cation purposes.

Corollary 3.2 Given p = f(Λ, ((ωt,∆t)2t=1)), we
have

g(i, j) = −δ1(i)δ2(j), (49)

δt(il)g(im, j) = δt(im)g(il, j), (50)

g(i, j)g(i, k) = −δ1(i)δ2(i)g(j, k), (51)

g(i, j, k) = −(δ1(i) + δ2(i))g(j, k). (52)

Let us partition the set of probability distributions on
X into three subsets D0, D1 and D2 with D0 = NB1

de�ned previously. Let D1 be the set of distributions
that have a single pair of non-independent random
variables, i.e.

(∃!{a, b} ⊆ X)(a 6⊥ b). (53)

Let D2 be the set of distributions with at least two dis-
tinct pairs of non-independent random variables, i.e.

(∃{a, b}, {c, d} ⊆ X)
(({a, b} 6= {c, d}) ∧ (a 6⊥ b) ∧ (c 6⊥ d)). (54)

Note that D1 is de�ned only if |X| ≥ 2 and D2 is
de�ned only if |X| ≥ 3. Also, ω1 = 0 or ω1 = 1 implies
that p ∈ NB1.

Let us now analyse these three cases separately.

3.1 p ∈ NB1

As mentioned earlier, the parameters are not identi�-
able up to a permutation. Let us describe f−1(p) in

more details. If |X| = 1, then f−1(p) is the set of pa-
rameters belonging to Π and such that equations (44)
and (45) are satis�ed.

Suppose that |X| ≥ 2. All the variables are mutually
independent and hence, by equation (42), we have

g(S) = 0 (55)

for S ≥ 1. Hence, equation (47) becomes

δ1(i)δ2(j) = 0. (56)

f−1(p) is the set of parameters that belongs to Π, sat-
isfy this equation, equation (44) and equation (45).

3.2 p ∈ D1 ∩NB2

For some a0 ∈ v(a) and b0 ∈ v(b), we have

g(a0, b0) 6= 0. (57)

Hence, equation (49) implies that

δ1(a0)δ2(b0) = δ1(b0)δ2(a0) 6= 0. (58)

By equation (21), we have

ω1(δ2(a0)− δ1(a0)) = δ2(a0). (59)

Recall that p 6∈ NB1 implies that ω1 6= 0. Hence, we
have δ2(a0) 6= δ1(a0) and

ω1 =
δ2(a0)

δ2(a0)− δ1(a0)
. (60)

Equation (49) yields

δ1(e) = −g(a0, e)
δ2(a0)

, (61)

δ2(e) = −g(a0, e)
δ1(a0)

, (62)

for e 6= a. Moreover, by equation (50), we have

δt(a) = δt(a0)
g(a, b0)
g(a0, b0)

. (63)

p ∈ D1 implies that e ⊥ a, for e 6= a and e 6= b. Hence,
for all such e we have

δ1(e) = δ2(e) = 0, (64)

and p can be represented by a Naive Bayes network
where only a and b are connected to the hidden vari-
able.

By equation (42), the independence relationships be-
tween the random variables imply that

g(S) = 0 (65)



for S 6= {a, b} and S 6= φ. Introducing the parameters
already identi�ed, equation (47) reduces to

g(a, b) =
g(a, b0)g(a0, b)

g(a0, b0)
. (66)

This equation does not imply any additional constraint
on the parameters. In particular, it can not be used
for the identi�cation of δ1(a0) and δ2(a0).

To ensure that the parameters belong to Π, equa-
tions (16) to (21) must be satis�ed. Equation (43)
implies that equation (20) holds. Similarly, one can
see that equation (21) holds. Equations (16) and (17)
are equivalent to

δ1(a0)δ2(a0) ≤ 0, (67)

δt(a0)
g(a, b0)
g(a0, b0)

≤ p(a), (68)

−g(a0, b)
δt(a0)

≤ p(b). (69)

Hence, f−1(p) is the set of parameters given by equa-
tions (44), (45) and (60) to (64) and with δ1(a0) and
δ2(a0) satisfying equations (67) to (69) and such that

δ1(a0) 6= δ2(a0), (70)

δt(a0) 6= 0. (71)

We see that, in general, the parameters are not iden-
ti�able up to a permutation.

3.3 p ∈ D2 ∩NB2

For some a0 ∈ v(a), b0 ∈ v(b), c0 ∈ v(c) and d0 ∈ v(d),
we have

g(a0, b0) 6= 0, (72)

g(c0, d0) 6= 0. (73)

Equation (49) implies that g(a0, c0) 6= 0 and
g(b0, c0) 6= 0, i.e. a 6⊥ c and b 6⊥ c.

Equations (60) to (63) are still applicable. To identify
δ1(a0) and δ2(a0), we simply use equations (51) and
(52) and obtain

δ1(a0) + δ2(a0) = −g(a0, b0, c0)
g(b0, c0)

, (74)

δ1(a0)δ2(a0) = −g(a0, b0)g(a0, c0)
g(b0, c0)

. (75)

We conclude that f−1(p) contains two elements and
that the parameters are identi�able up to a permuta-
tion.

4 A semi-algebraic description of NB2

Using our identi�cation results, let us derive the semi-
algebraic description of NB2 given by the following
theorem.

Theorem 4.1 Let p be a distribution over X. p ∈
NB2 if and only if

g(l, m)g(S) = g(S \ {i})g(i, l,m)
+ g(j, l)g(k,m)g(S \ {j, k}), (76)

and

g(i, j)g(i, k)g(j, k) ≥ 0, (77)

g(j, k)(g(i, j, k) + 2p(i)g(j, k)) ≥ 0, (78)

g(j, k)(p(i)2g(j, k) + p(i)g(i, j, k)− g(i, j)g(i, k)) ≥ 0.
(79)

Note that the number of equations and inequations
represented by these expressions can be very large.
This could cause algorithmic complexity issues for
model selection.

Let us show that p ∈ NB2 implies equations (76) to
(79). Equation (76) is obtained by multiplying both
sides of equation (47) by g(l, m) and noting that

−(δ1(i) + δ2(i))g(l,m) = g(i, l,m), (80)

g(l,m)g(j, k) = δ1(l)δ1(m)δ1(k)δ1(j) (81)

= g(j, l)g(k,m) (82)

by corollary 3.2. Furthermore, equation (21) implies
that δ1(i)δ2(i) ≤ 0 and thus

g(i, j)g(i, k)g(j, k) = −δ1(i)δ2(i)δ2
1(j)δ2

2(k) ≥ 0. (83)

Finally, note that corollary 3.2 also implies that equa-
tions (78) and (79) are equivalent to

g(j, k)2((p(i)− δ1(i)) + (p(i)− δ2(i))) ≥ 0, (84)

g(j, k)2(p(i)− δ1(i))(p(i)− δ2(i)) ≥ 0, (85)

and these equations hold because the parameters are
in Π.

Suppose now that a distribution p over X is given and
that it satis�es equations (76) to (79). First note that
the following equations hold

g(i, j)g(k, l) = g(i, k)g(j, l), (86)

g(i, j)g(k, l,m) = g(i, j, k)g(l,m). (87)

Let us now show that p ∈ NB2. Once again, we parti-
tion the set of distributions over X into NB1, D1 and
D2.



4.1 p ∈ NB1

Trivially, p ∈ NB1 implies that p ∈ NB2.

4.2 p ∈ D1

Let us show that p ∈ NB2 by �nding parameters gen-
erating it.

Without loss of generality, suppose that

g(a0, b0) 6= 0. (88)

Consider the set

A = {−g(a0, bi)
p(bi)

|bi ∈ v(b) and p(bi) 6= 0}. (89)

Let us choose

δ1(a0) = max A, (90)

δ2(a0) = minA, (91)

and the remaining parameters given by equations (60)
to (64), equation (44) and equation (45).

Let us check that these parameters are well de�ned
and belong to Π. By equation (43), we have∑

bi∈v(b)

g(a0, bi) = 0. (92)

Together with equation (88), this implies that A con-
tains strictly positive and strictly negative elements.
Hence, we have δ1(a0) > 0, δ2(a0) < 0 and equations
(70) to (67) hold. For some bi ∈ v(b) depending on t,
we have

δt(a0) = −g(a0, bi)
p(bi)

. (93)

By equation (86), equation (68) is thus equivalent to

−g(a, bi) ≤ p(a)p(bi), (94)

Hence, it is also equivalent to

p(a, bi) ≥ 0, (95)

which holds because p is a probability distribution.
Equation (69) trivially holds for our choice of param-
eters.

Finally, note that equation (76) implies equation (66).
Therefore, by lemma 3.1, p is generated by the param-
eters chosen.

4.3 p ∈ D2

Again, let us show that p ∈ NB2 by �nding parameters
generating it.

Without loss of generality, suppose that

g(a0, b0) 6= 0, (96)

g(a0, c0) 6= 0, (97)

g(b0, c0) 6= 0. (98)

Let us choose one of the two elements of f−1(p) that
were given in section 3.3. We have

δ1(i) + δ2(i) = −g(a0, i)g(a0, b0, c0)
g(a0, b0)g(a0, c0)

, (99)

δ1(i)δ2(i) = − g(a0, i)2g(b0, c0)
g(a0, b0)g(a0, c0)

, (100)

δ1(a)δ2(i) = −g(a, b0)g(a0, i)
g(a0, b0)

, (101)

δ1(i)δ2(j) = −g(a0, i)g(a0, j)g(b0, c0)
g(a0, b0)g(a0, c0)

, (102)

δ1(a) + δ2(a) = −g(a, b0)g(a0, b0, c0)
g(a0, b0)g(b0, c0)

, (103)

δ1(a)δ2(a) = −g(a, b0)2g(a0, c0)
g(a0, b0)g(b0, c0)

, (104)

for a 6= i, j. By equations (86) and (87), these equa-
tions simplify to

δ1(i)δ2(j) = −g(i, j), (105)

δ1(i) + δ2(i) = −g(a0, b0, i)
g(a0, b0)

, (106)

δ1(b) + δ2(b) = −g(a0, b, c0)
g(a0, c0)

, (107)

δ1(a) + δ2(a) = −g(a, b0, c0)
g(b0, c0)

, (108)

δ1(i)δ2(i) = −g(a0, i)g(b0, i)
g(a0, b0)

, (109)

δ1(b)δ2(b) = −g(a0, b)g(b, c0)
g(a0, c0)

, (110)

δ1(a)δ2(a) = −g(a, b0)g(a, c0)
g(b0, c0)

, (111)

for i 6= a, b. Note that these sums and products are
expressed as quotients of polynomials.

Let us now ensure that the parameters chosen belong
to Π. As noted before, equations (18) to (21) are sat-
is�ed. Moreover, one can see that equations (16) and
(17) are equivalent to

δ1(a0)δ2(a0) ≤ 0, (112)

δ1(i) + δ2(i) ≤ 2p(i), (113)

p(i)2 − p(i)(δ1(i) + δ2(i)) + δ1(i)δ2(i) ≥ 0. (114)

Equations (77) to (79) imply equations (112) to (114).

Finally, we see that equation (76) implies equation
(47). Hence, by lemma 3.1, p is generated by the pa-
rameters chosen.



5 Conclusion

In this paper, we �rst studied the inversion of the
parametrization mapping of the discrete Naive Bayes
models with two hidden classes. Then we applied these
results to eliminate the parameters and obtain a com-
plete semi-algebraic description. To our knowledge,
these two contributions are original.

Several lines of future research seem interesting to us.
First, this work should be generalized to Naive Bayes
models with an arbitrary number of hidden classes.
We tried to expose our ideas with this in mind. Sec-
ond, our results should be compared with previous
work and, if possible, stated in the algebraic frame-
work of Garcia. Finally, they should be applied to
model selection.

6 Appendix

Before tackling lemma 3.1, let us prove the following
result.

Lemma 6.1 Given a distribution p over X and
(Λ, ((ωt,∆t)s

t=1)) ∈ Π such that λ(i) = p(i), we have

p = f(Λ, ((ωt,∆t)s
t=1)) (115)

if and only if

g(S) = (−1)|S|
s∑

t=1

ωt

∏
i∈S

δt(i). (116)

Proof of lemma 6.1. First, note that we have

s∑
t=1

ωt

∏
i∈S

(p(i)− δt(i))

=
s∑

t=1

ωt

∑
P s.t. P⊆S

( ∏
i∈S\P

p(i)
)(∏

i∈P

−δt(i)
)

,

=
∑

P s.t. P⊆S

( ∏
i∈S\P

p(i)
)

(−1)|P |
( s∑

t=1

ωt

∏
i∈P

δt(i)
)

.

(117)

Suppose that (115) is satis�ed. Let us prove by induc-
tion on |S| that equation (116) holds. For S = φ, we
have

g(φ) = 1 =
s∑

t=1

ωt. (118)

For |S| ≥ 1, by de�nition of g (see equation (35)) and
the inductive hypothesis, we have

g(S) = p(S)

−
∑

P s.t. P⊂S

( ∏
i∈S\P

p(i)
)

(−1)|P |
( s∑

t=1

ωt

∏
i∈P

δt(i)
)

.

(119)

Marginalising equation (115), we obtain

p(S) =
s∑

t=1

ωt

∏
i∈S

(p(i)− δt(i)) (120)

Hence, inserting equation (117) into equation (119),
we see that equation (116) holds.

Suppose now that (116) holds. By de�nition of g, we
have

p(X) = g(X) +
∑

P s.t. P⊂X

( ∏
i∈X\P

p(i)
)

g(P ). (121)

Hence, we have

p(X) =∑
P s.t. P⊆X

( ∏
i∈X\P

p(i)
)

(−1)|P |
( s∑

t=1

ωt

∏
i∈P

δt(i)
)

.

(122)

Using equation (117), we see that equation (115)
holds. �

Proof of lemma 3.1. Suppose that equation (46) is
satis�ed. By equation (21) we have

ω1δ1(i) + ω2δ2(i) = 0. (123)

Hence, by lemma 6.1, we have

g(i, j) = ω1δ1(i)δ1(j) + ω2δ2(i)δ2(j) (124)

= −(ω1 + ω2)δ1(i)δ2(j) (125)

= −δ1(i)δ2(j). (126)

We have

− g(S \ {i})(δ1(i) + δ2(i)) (127)

= g(S)− (−1)|S|−1

(
δ1(i)ω2

∏
v∈S\{i}

δ2(v) (128)

+δ2(i)ω1

∏
v∈S\{i}

δ1(v)
)

(129)

= g(S) + δ1(j)δ2(k)g(S \ {j, k}). (130)

Hence, equation (47) holds.



Suppose that equation (47) holds. First note that for
|S| = 2, this implies that

δ1(i)δ2(j) = −g(i, j) = δ2(i)δ1(j). (131)

Let us now prove by induction on |S| that equation
(116) holds for S ⊆ X. For |S| = 0 and |S| = 1,
equation (116) simply holds because the parameters
belong to Π, in particular by equations (18) and (21).
For |S| ≥ 2, equation (47) yields

g(S) = −g(S\{i})(δ1(i)+δ2(i))−δ1(j)δ2(k)g(S\{j, k})
(132)

Using the inductive hypothesis and equation (131), a
simple computation shows that

g(S) = (−1)|S|
(

ω1

∏
i∈S

δ1(i) + ω2

∏
i∈S

δ2(i)
)

. (133)

Hence, by lemma 6.1, equation (46) holds. �
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