
On Visibility Problems in the Plane – Solving Minimum
Vertex Guard Problems by Successive Approximations ?

Ana Paula Tomás1, António Leslie Bajuelos2 and Fábio Marques3

1 DCC-FC & LIACC, University of Porto, Portugal
apt@ncc.up.pt

2 Dept. of Mathematics & CEOC - Center for Research in Optimization and Control,
University of Aveiro, Portugal

leslie@mat.ua.pt
3 School of Technology and Management, University of Aveiro, Portugal

fabio@estga.ua.pt

Abstract. We address the problem of stationing guards in vertices of a simple
polygon in such a way that the whole polygon is guarded and the number of
guards is minimum. It is known that this is an NP-hard Art Gallery Problem
with relevant practical applications. In this paper we present an approximation
method that solves the problem by successive approximations, which we intro-
duced in [21]. We report on some results of its experimental evaluation and des-
cribe two algorithms for characterizing visibility from a point, that we designed
for its implementation.

1 Introduction

The classical Art Gallery problem for a polygon P is to find a minimum set of points G
in P such that every point of P is visible from some point of G. We address MINIMUM

VERTEX GUARD in which the set of guards G is a subset of the vertices of P and each
guard has 2π range unlimited visibility. This is an NP-hard combinatorial problem both
for arbitrary and orthogonal polygons [13, 17]. Orthogonal (i.e. rectilinear) polygons
are interesting for they may be seen as abstractions of art galleries, for instance.

Many variants of art gallery problems have been proposed and studied over the
years, with relevant practical applications [15, 19, 18]. An approach that has been ne-
glected is that of finding algorithms that obtain approximate solutions [19], although,
more recently, the use of some meta-heuristics (simulated annealing and genetic algo-
rithms) was investigated by Canales [5]. Greedy algorithms for MINIMUM VERTEX

GUARD were proposed by Ghosh [8] and Eidenbenz [7], the latter addressing also ex-
tensions to terrains. These approximation algorithms transform MINIMUM VERTEX

GUARD instances into MINIMUM SET COVER instances, using decompositions of P .
It may be required that each piece of the decomposition is either totally visible or totally
invisible from each vertex, which guarantees that the approximation is exact [8]. This
feature, that we call PIECE RESTRICTION, may render decompositions too grained.

? Partially funded by LIACC through Programa de Financiamento Plurianual, Fundação para
a Ciência e Tecnologia (FCT) and Programa POSI, and by CEOC (Univ. of Aveiro) through
Programa POCTI, FCT, co-financed by EC fund FEDER.

In [21], we proposed an anytime algorithm for solving MINIMUM VERTEX GUARD

by successive approximations. It may start from a partition that does not satisfy PIECE

RESTRICTION. Indeed, its main idea is to find a sequence of successively shorter inter-
vals that enclose the minimum value OPT (P).

To find a sequence of decreasing upper bounds, we successively refine an initial
partition of the polygon. To approximate the optimum from below, we consider an in-
creasing powerful subset of dominant pieces that are not visible by sections. A piece R
is visible by sections iff no guard sees it completely but guards may collaborate to jointly
guard it. When we decompose R, we obtain several smaller pieces that satisfy PIECE

RESTRICTION. Dominance of visibility regions is exploited for reducing the problem
dimension, as it is helpful to identify pieces or vertices that are irrelevant. It is also
exploited for choosing the pieces that will be decomposed to get finer partitions.

Our algorithm applies both Computational Geometry and Constraint Programming
techniques. In this paper we present some results of its experimental evaluation. The
samples used consist of orthogonal polygons. For the initial decomposition, we took
Πr-cut (the partition of the polygon into rectangles by extension of all edges incident
to its reflex vertices), which is constructed by vertical and horizontal sweeping. We
describe the algorithms we developed to find how each rectangular piece of Πr-cut is
seen from each vertex and to compute the partition induced by the visibility regions in
each piece. To make the paper self-contained, we first introduce some useful concepts
and recall our approximation method.

2 Total Visibility, Visibility by Sections and Dominance

Given two points x and y in a simple polygon P , we say that x sees y (or y is visible
to x) iff the closed segment xy does not intersect the exterior of P . The set V (v) of all
points of P visible to a vertex v ∈ P is the visibility region of v. If V (v) is the union of
a polygon Q ⊆ P and some line segments, we restrict V (v) to Q, so that V (v) will be
a simple polygon.

A partition Π of polygon P is a division of P into sub-polygons (called pieces)
that do not overlap except on their boundaries. A piece R ∈ Π is totally visible from v
iff v sees all points of R. It is partially visible iff v sees just a section V s

R(v) of R whose
interior is nonempty. V s

R(v) is called a visibility section. A piece is visible by sections iff
it is union of visibility sections. Γ Π

∞ refers to the set of pieces in Π that are not visible
by sections and Γ Π

0 consists of those that are partially visible from at most one vertex.
Clearly, Γ Π

0 ⊆ Γ Π
∞ .

Our method performs lazy evaluation of visibility by sections, delaying the analysis
of pieces not in Γ Π

0 until it becomes relevant. Some pieces or vertices may be found
redundant in the meanwhile, that is dominated by other ones. In order to introduce this
concept we need some further notation: Gt

v (and Gs
v) are the sets of all pieces that are

totally (partially) visible from v and Gt
R (and Gs

R) are the sets of all vertices that are
visible from every point of R (and from only part of the interior points of R). Thus, a
vertex v ∈ Gt

R iff R ⊆ V (v) and v ∈ Gs
R iff there are points p and q in the interior

of R such that p is visible from v but q is not.

Definition 1. Two vertices vi and vj are equivalent if V (vi) = V (vj) and 2-equivalent
if Gt

vj
= Gt

vi
. If V (vj) ⊂ V (vi) then vi strictly dominates vj . If Gt

vj
⊂ Gt

vi
then vi

is 2-dominant over vj . Two pieces Ri, Rj ∈ Π are 2-equivalent if Gt
Ri

= Gt
Rj

.

If Gt
Ri

⊂ Gt
Rj

then Ri 2-dominates Rj . If R ∈ Γ Π
∞ and R′ ∈ Π , then R strictly

dominates R′ when Gt
R ⊂ Gt

R′ (implying that R′ is necessarily guarded whenever R is
guarded). If R, R′ ∈ Γ Π

∞ and Gt
R = Gt

R′ , then R and R′ are equivalent.

Example 1. In order to illustrate these notions, we present as small example in Fig. 1.

112 1 12

1

23

4

567

8

4

Fig. 1. The initial partition Πr-cut and the visibility regions of vertices 1 and 12 (in CCW order).
Pieces 1 and 8 are in Γ Π

0 , as well as 2 and 7. Gt

R1
= {v1, v2, v3, v4} and Gs

R1
= {v12}.

Gt

R2
= {v1, v2, v3, v4, v5, v8, v9, v12} and Gs

R2
= {v7}. Piece 2 is redundant since piece 1

strictly dominates (and 2-dominates) it. Gt

R4
= {v5, v6, v7, v8} and Gs

R4
= {v1, v12}. Piece 4

is visible by sections: the partition induced by its visibility sections (V s

R4
(v1) and V s

R4
(v12)) is

shown also on the right, the triangle in the center being redundant.

3 Solving Minimum Vertex Guard by Successive Approximations

Our method solves a sequence of MINIMUM VERTEX GUARD problems, each one
with the additional restriction that guards will not cooperatively guard pieces that they
do not totally see on their own (i.e., visibility by sections is disregarded). Such a prob-
lem is called MINIMUM VERTEX GUARD WITH PIECE RESTRICTION. Given a set of
pieces F , OPT (F) and OPT2(F) refer to the optimal values of MINIMUM VERTEX

GUARD and of MINIMUM VERTEX GUARD WITH PIECE RESTRICTION w.r.t. F , for
guards located in vertices of P . If each piece in Π is totally visible from at least one
vertex of P , which is true for Πr-cut, then OPT (F) ≤ OPT2(F), for all F ⊆ Π . We
now present the skeleton of our approximation algorithm.

APPROXMINVERTEXGUARD(P)
Π := DECOMPOSE(P) (each piece must be totally visible from some vertex)
Compute Gt

v , Gs
v , for all vertices v

Compute Gt
R and Gs

R for all R ∈ Π
(delay decomposition of pieces by visibility sections)

Γ := Γ Π
0

while (OPT2(Γ) < OPT2(Π)) do
Γ, Π := REFINE(Π).

The algorithm obtains a sequence of non-increasing intervals that enclose OPT (P) and
such that

OPT2(Γi) ≤ OPT2(Γi+1) ≤ OPT (P) ≤ OPT2(Πi+1) ≤ OPT2(Πi),

where Γi is the set of pieces of the current partition Πi that are known to be not visible
by sections, up to iteration i.

If for some i, the solver finds that OPT2(Γi) = OPT2(Πi), the approximation
stops, because OPT (P) was achieved.

If OPT2(Γi) < OPT2(Πi), the partition Πi will be refined: a piece will be decom-
posed to obtain a finer partition Πi+1. For that, we consider pieces that are 2-dominant
in ∆i+1 with

∆i+1 = (Πi \ Γi) \ {R | R is 2-dominated by a piece in D(Γi)},

where D(Γi) is a maximal set of strictly dominant pieces in Γi. We select a 2-dominant
piece R ∈ ∆i+1, compute the partition ZR determined by its visibility sections and
check whether each piece of ZR is visible from any vertex in Gs

R.
If this is the case, R is visible by sections and, since each piece in ZR satisfies PIECE

RESTRICTION, we define Πi+1 := (Πi \ {R}) ∪ D(ZR) and Γi+1 := Γi ∪ D(ZR).
Otherwise, Πi+1 := Πi and Γi+1 := Γi ∪ {R}. When ∆i+1 = ∅, the dominant classes
in Γi and Πi coincide and OPT2(D(Γi)) = OPT (D(Πi)) = OPT (P).

Finding OPT2(F). The reformulation of MINIMUM VERTEX GUARD WITH PIECE

RESTRICTION as MINIMUM SET COVER allows us to model it as a Constraint Satisfac-
tion Optimization Problem (CSOP) and to solve it using Constraint Programming tech-
niques [14]. If VF is the set of vertices that totally see pieces of F , the decision variables
are: Xv ∈ {0, 1}, for v ∈ VF (1 iff a guard is placed at vertex v) and YR ∈ {0, 1}, for
R ∈ F (1 iff piece R is guarded). The constraints are (1)–(3)

∑

R∈F

YR = |F| (1)

∑

v∈Gt
R

Xv ≥ YR, for all R ∈ F (2)

∑

R∈Gt
v

YR ≥ Xv |G
t
v|, for all v ∈ VF (3)

and state that all pieces must be visible, that R is visible only if there exists v ∈ Gt
R

with Xv = 1, and that a guard at v sees all pieces in Gt
v, respectively. The goal is

to minimize
∑

v∈VF
Xv, that is to find OPT2(F), as well as an optimal guard set.

Additional constraints may be imposed here to reduce the search space. For orthogonal
polygons, Kahn et al. [11] showed that OPT (P) ≤ bn

4 c. The upper and lower bounds
on OPT (P) that we obtain in each approximation step, impose stronger constraints.

In order to keep the models small, instead of using F and VF to formulate and
solve this CSOP model, we consider relevant sets D2(F) and D2(VF). To obtain them,
2-dominance for vertices and for pieces in F is applied jointly until the dominant sets
get invariant [21].

Example 2. For the polygon given in Example 1, R7 and R2 are strictly dominated by
R8 and R1 (so that, they will be discarded) and R5 is 2-dominated by R4, for instance,
meaning that it is irrelevant during the computation of OPT2(Π0). If we apply jointly
2-dominance for pieces and for vertices, we get

Gt
[R8]

= {v9, v10, v11, v12}

Gt
[R1]

= {v1, v2, v3, v4}

Gt
[R6,R3] = {v1, v4, v5, v8, v9, v12}

Gt
[R4]

= {v5, v6, v7, v8}

where [R6, R3] means that these pieces are 2-equivalent. Then, for vertices, we obtain

Gt
[v1,v4] = {[R1], [R6, R3]}

Gt
[v5,v8] = {[R4], [R3, R6]}

Gt
[v9,v12] = {[R8], [R3, R6]}

Gt
[v2,v3] = {[R1]}, 2-dominated by [v1, v4]

Gt
[v6,v7] = {[R4]}, 2-dominated by [v5, v8]

Gt
[v10,v11] = {[R8]}, 2-dominated by [v9, v12].

If we remove the 2-dominated vertices and apply 2-dominance again, we obtain

for pieces for vertices
Gt

[R8]
= {[v9, v12]} Gt

[v1,v4] = {[R1]}

Gt
[R1]

= {[v1, v4]} Gt
[v5,v8] = {[R4]}

Gt
[R4]

= {[v5, v8]} Gt
[v9,v12] = {[R8]}

Gt
[R6,R3] = {[v1, v4], [v5, v8], [v9, v12]}

2-dominated by, e.g., [R4]

so that, the reduced CSOP model, will just involve six decision variables, namely Y[R8],
Y[R1], Y[R4], X[v1,v4], X[v5,v8] and X[v9,v12], yielding OPT2(Π0) = 3.

When we apply a similar procedure to Γ Π0

0 = {[R8], [R1], [R5], [R7], [R2]}, we
will find that the classes of 2-dominant pieces and vertices are:

Gt
[R8] = {[v9, v12]}

Gt
[R1] = {[v1, v4]}

Gt
[v1,v4]

= {[R1]}

Gt
[v9,v12] = {[R8]}

This means that the reduced CSOP for OPT2(Γ Π0

0) involves four decision variables
only. We see that OPT2(Γ Π0

0) = 2.
Since 2 = OPT2(Γ Π0

0) ≤ OPT (P) ≤ 3 = OPT2(Π0), the partition must be
refined: either R3, R4 or R6 will be then decomposed and the approximation proceeds.

4 Computing Visibility

There exist linear algorithms that compute the visibility region of a point in a poly-
gon [10, 12]. We are interested in finding the relative location of each piece of Πr-cut,

within each visibility region and these methods do not answer directly this question.
So, we designed a new method, adapting work by Aronov et al. [1], whose main idea
is the propagation of visibility cones (as shown in Fig. 2). Pieces that are adjacent to v

v v v

Fig. 2. Finding the visibility region of v by propagation of visibility cones.

(that is, that have v as vertex) propagate visibility to their neighbours and successively.
The dual graph of the partition (that translates the adjacency relation) will be explored
in breadth-first, starting from the pieces that are adjacent to v.

When v is a convex vertex there is a single piece, say R0,0, to start the propagation.
We mark R0,0 as totally visible and put its adjacent pieces in the queue (in Fig. 2, R0,0

has a single adjacent, which is enlighted on the left). R0,0 determines the search direc-
tions: they are defined by the relative position of the vertex of R0,0 that is diametrically
opposite to v. In Fig. 2, these directions are (West,South).

Every reflex vertex has three adjacent pieces. The three quadrants they define may
be explored at the same time. We just need to mark each adjacent piece as totally visible
and insert their adjacent ones in the queue to start the propagation. Only pieces that are
partially visible or totally visible may propagate visibility. Not all pieces will be visited,
in general, but all that are visible from v will be visited. If Ri,j is the head of the queue
at a given step, the relative position of its centroid (wrt. v) determines the quadrant Ri,j

belongs to and the corresponding directions, say (d1, d2), of search. We determine the
visibility section V s

Ri,j
(v) by finding the intersection of Ri,j with a visibility cone. This

cone is defined by v and the visible part (i.e., window) of the edges shared by Ri,j

and its adjacent pieces in the directions (−d1,−d2), which have been already visited.
The propagation method ensures that Ri,j was enqueued by some previously visited
neighbour (either by Ri−1,j or Ri,j−1).

After characterizing the visible section of Ri,j , we mark Ri,j as already visited,
enqueue each of its adjacent pieces, say Ri+1,j and Ri,j+1, in the directions (d1, d2),
provided they exist, are not already in the queue, and share with Rij an edge that is
visible (either totally or partially) from v. We say that an edge is visible if at least two
of its interior points are visible from v. The method stops when the queue gets empty.

The propagation method may be slightly adapted to deal with other kind of parti-
tions, namely the partition determined by extending the horizontal (or vertical) edges
only, which has at most r + 1 pieces (where r is the number of reflex vertices), or trian-

gulations. To simplify the analysis of the visibility section, it is important that the pieces
are convex.

5 Finding the Partition Induced by Visibility Sections

We now describe the algorithm used for finding the partition ZR induced by the set of
visibility sections on R (ie., by {V s

R(v) | v ∈ Gs
R}), and to determine the vertices that

see each piece of ZR. The example given in Fig. 3 illustrates its main idea. The depicted

Fig. 3. The construction of ZR. In this case, R is not visible by sections. We show the insertion
of the third visibility section (i.e., fourth segment) in the arrangement step by step and the faces
it sequentially splits. The dual graph represented will be used to “propagate” visibility.

rays support the oblique edges of three visibility sections, one of them being defined by
the two dotted rays. The visible part is to the left of each cutting ray (considering the
CCW orientation for the visibility sections).

The pieces of ZR are the faces of the arrangement of line segments that define the
edges of the visibility sections and of R itself. Each visibility section is a simple convex
polygon, always perfectly determined by one or two oriented oblique edges. Indeed,
we saw that the section V s

R(v) is the intersection of R and a visibility cone, so that it
has at most two oblique edges. Since R belongs to Πr-cut, the horizontal and vertical
edges of its visibility sections are necessarily contained in its boundary. Thus, these
edges are redundant for the arrangement. When the vertices of V s

R(v) are labeled in
counterclockwise order, V s

R(v) is to the left of each of its (oriented) edges, and, thus, it
is to the left of its oblique edges. Lemma 1 states that ZR satisfies PIECERESTRICTION,
a property that has been proved and used in previous works, namely by Ghosh [8], Bosé
et al. [4] and Guibas et al. [9].

Lemma 1. Any two points in the interior of each face C of ZR see exactly the same
vertices of P . The interior of C is either totally visible or invisible to each vertex of P .

This results is helpful for finding the vertices that see each piece of ZR, since it im-
plies that we may decide whether a face C is totally visible from a vertex by checking
visibility for a single point w in its interior. As the faces are convex sets [8], we could

choose the witness point w as 1
3 (w1+w2+w3), for any three noncollinear (e.g., consec-

utive) vertices w1, w2 and w3 of C, based on a classical theorem by Carathéodory [16].
The algorithm we implemented for finding ZR and the set of vertices of P that

see each of its faces is essentially the algorithm for constructing line arrangements,
described by Berg et al. [3]. We have adapted it to cope with data about visibility.
The arrangement is constructed incrementally, starting from R. In each iteration, we
consider a new section and insert its oblique edge(s), obtaining a new arrangement.
As we saw, one or two oblique segments are inserted per iteration. When we insert
a segment, at most a linear number of faces are splitted. The order in which they are
visited is fixed by the segment’s orientation, as we see in Fig. 3.

At each step, every face has an associated guard set, that consists of the vertices v
in Gs

R from which it is (totally) visible, V s
R(v) being a visibility section already analy-

sed. When a face is split, the two new faces inherit its guard set. Once we have finished
the insertion of the oblique edges that define the current visibility section V s

R(v′), we
update the guard sets. The vertex v′ will be added to the guard sets of the faces that
are visible to v′. For that, we visit the dual graph of the arrangement in breadth-first,
starting from the subface of the face that was splitted first and that is visible from v ′.

Based on Lemma 1, when we reach a face C, we decide whether it is visible from v ′

by computing its witness point and checking whether such point is visible from v ′. It
is easy to analytically check the position of v′ wrt V s

R(v′), using the algebraic expres-
sion(s) that defines the oblique edge(s). If C is visible, its adjacent faces are added to the
queue (if they are not already there). If C is not visible, then none of its adjacent faces
is added to the queue. In this way, we avoid visiting many faces that are not visible
from v′, without loosing the faces that are visible. The dual graph is a connected graph
and the visibility region is connected also, so that, all visible faces are accessible from
the first one.

6 Implementation and Experimental Results

We developed a prototype implementation of our method with a graphical interface,
using Java and SICStus Prolog in an hybrid way. The Prolog system is essentially ap-
plied for finding OPT2(Π) and OPT2(Γ) for the sequence of partitions, by solving
the associated CSOPs using clpfd (a SICStus module for dealing with constraints in
finite domains [6]). SICStus is invoked from Java, using files to pass the relevant data,
namely the program that defines the CSOP model (which SICStus then compiles and
executes).

To carry out the experiments we used three kinds of polygons, all of them being
grid n-ogons i.e., n-vertex orthogonal polygons that may be placed in a n/2×n/2 unit
square grid and that do not have collinear edges [20]. One sample consists of randomly
generated n-ogons created using RANDOM INFLATE-CUT [20]. The other two samples
consist of MINAREA and FAT grid n-ogons: the classes for which the number of pieces
of Πr-cut is minimum and maximum, the former restricted to have area 2r + 1. Fig. 4
contains the first members of these classes.

The maximum number of pieces of Πr-cut is (3r2 + 6r + 4)/4 if r is even and
3(r + 1)2/4 if r is odd, being r = (n − 4)/2 the number of reflex vertices [2].

Fig. 4. The unique FAT and MINAREA grid n-ogons for n = 4, 6, 8, 12, 14 (up to symmetry).

We think FAT and MINAREA are representative of extremal behaviour, as the ex-
perimental results given in Fig. 5 show.

0

40000

80000

120000

160000

200000

240000

0 20 40 60 80 100

Number of Vertices

E
x

e
c

u
ti

o
n

T
im

e
s

(m
s

)
.

Randomly Generated Polygons FAT MINAREA

Fig. 5. Execution time for the three classes of samples, showing an exponential increase for FAT.

Although each FAT n-ogon requires only two guards for n ≥ 12, the computational
cost of the construction and update of Hasse diagrams for the dominance relations be-
comes too high in the current implementation. The reduced CSOP models are then
solved quite quickly, but we think that the dominance checking module needs some
improvement.

In contrast, for both MINAREA and randomly generated samples, the results show
almost linear growth in the execution time: the correlation coefficient is 0.955 and
0.9996, respectively. The value OPT (P) is close to n

7 , although a bit greater. This
value was suggested by the empirical results of Canales [5], but it is quite less than the
theoretical bound bn

4 c. These results are given in Fig. 6.
In Fig. 7 we present the average number of iterations that were needed to reach

OPT (P), again with almost linear growth, for all samples, with correlation coefficients
0.999, 0.943 and 0.999, respectively.

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200
Number of Vertices

O
p

ti
m

u
m

V
a
lu

e
b

y
C

la
s
s

f(n) = n/4 f(n) = n/7

Fig. 6. Average number of guards.

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100
Number of Vertices

A
v

e
ra

g
e

N
u

m
b

e
r

o
f

It
e

ra
c

ti
o

n
s

Randomly Generated Polygons FAT MINAREA

Fig. 7. Average number of iterations.

7 Conclusions and Future Work

We addressed the MINIMUM VERTEX GUARD problem, reviewing an anytime method
we proposed in [21], that solves the problem by reduction to a sequence of MINIMUM

SET COVER problems. This sequence is created by successive refinements of a partition
of the given polygon. We reported on results of its experimental evaluation. For that
purpose, we focused on the case of rectilinear polygons, and analysed in detail some
of the algorithms developed for the implementation of the method. Neverthless, both
our approximation method and the algorithms described in the paper for the analysis of
visibility extend to generic simple polygons and partitions. The sole requirement is that
each piece in the initial partition be convex and totally visible from at least one vertex.
It is also possible to apply our approximation method when polygons have holes.

Each MINIMUM SET COVER problem is solved as a constraint satisfaction opti-
mization problem. In order to keep its dimension small, we exploit visibility domi-
nance, ordering vertices and pieces accordingly. Experiments have shown that this may
become quite a burden when the number of pieces of the initial partition is large, so that
we plan to improve this issue in future implementations.

No specific heuristics were designed to drive the refinement of the partition. We
simply selected any of the dominant (more precisely 2-dominant) pieces that is likely
visible by sections, starting from the ones that are (partially) visible from less vertices.
We think it may be still worthwhile to devise heuristics for choosing a piece among
these minimal ones, although the computational results point to a linear increase in
the number of iterations (i.e., decomposition steps) with the number of vertices, for
randomly generated polygons.

Our current work is also focusing on extensions of our method to solve problems
where the visibility range is limited to π or π/2.

References

1. Aronov B., Guibas L., Teichmann M., Zang L.: Visibility queries and maintenance in simple
polygons. Discrete and Computational Geometry, 27 (2002) 461–483.

2. Bajuelos A.L., Tomas A.P., Marques F.: Partitioning orthogonal polygons by extension of
all edges incident to reflex vertices: lower and upper bounds on the number of pieces. In
A. Laganà et al. (eds): Proc. of ICCSA 2004, LNCS 3045, Springer Verlag (2004) 127–136.

3. De Berg M., Van Kreveld M., Overmars M., and Schwarzkopf O.: Computational Geometry
(Algorithms and Applications), Springer-Verlag (1997).

4. Bose P., Lubiw A., and Munro J. I.: Efficient visibility queries in simple polygons. Proc. 4th
Canad. Conf. Comput. Geom. (1992) 23–28.

5. Canales S.: Metodos Heuristicos en Problemas Geometricos: Visibilidad, Iluminacion y Vigi-
lancia. PhD Thesis, Universidad Politecnica de Madrid, Spain (2004).

6. Carlsson M., Ottosson G., Carlson B.: An Open-Ended Finite Domain Constraint Solver. In
Proceedings of PLILP’97, LNCS 1292. Springer-Verlag, (1997) 191–206.

7. Eidenbenz S.: Aproximation algorithms for terrain guarding. Information Processing Letters
82 (2002) 99–105.

8. Ghosh, S. K.: Approximation algorithms for art gallery problems. Proc. Canadian Information
Processing Society Congress. (1987) 429–434.

9. Guibas L. J., Motwani R., Raghavan P.: The robot localization problem in two dimen-
sions.Proc. 3rd ACM–SIAM Symp. Discrete Algorithms (1992) 259–268.

10. Joe B., Simpson R.B.: Corrections to Lee’s Visibility Polygon Algorithm. BIT 27 (1987)
458–473.

11. Kahn, J., Klawe, M., Kleitman, D.: Traditional galleries require fewer watchmen. SIAM J.
Algebraic and Discrete Methods 4 (1983) 194–206.

12. Lee, D. T.: Visibility of a simple polygon. Computer Vision, Graphics, and Image Processing
22 (1983) 207–221.

13. Lee, D. T., Lin, A. K.: Computational complexity of art gallery problems. IEEE Transaction
on Information Theory IT-32 (1986) 276–282.

14. Marriott K., Stuckey P.: Programming with Constraints – An Introduction. MIT Press (1998).
15. O’Rourke J.: Art Gallery Theorems and Algorithms. Oxford University Press (1987).
16. Schrijver A.: Theory of Linear and Integer Programming, Wiley-Interscience (1986).
17. Schuchardt D., Hecker H.: Two NP-hard problems for ortho-polygons. Math. Logiv Quart

41 (1995) 261–267.
18. Shermer T.: Recent results in art galleries. Proc. IEEE 80:9 (1992) 1384–1399.
19. Urrutia, J.: Art gallery and illumination problems. In J.-R. Sack and J. Urrutia, editors, Hand-

book on Computational Geometry. Elsevier (2000).
20. Tomas, A. P., Bajuelos, A. L.: Quadratic-Time Linear-Space Algorithms for Generating Or-

thogonal Polygons with a Given Number of Vertices. In A. Laganà et al. (Eds): Proc. of ICCSA
2004, LNCS 3045, Springer-Verlag (2004) 117–126.

21. Tomas A. P., Bajuelos A. L., Marques F.: Approximation algorithms to minimum vertex
cover problems on polygons and terrains. In P.M.A Sloot et al. (Eds): Proc. of ICCS 2003,
LNCS 2657, Springer-Verlag (2003) 869-878.

