
Towards a Unified Theory of State Abstraction for MDPs

Lihong Li Thomas J. Walsh Michael L. Littman

Department of Computer Science
Rutgers University,

Piscataway, NJ 08854
{lihong,thomaswa,mlittman}@cs.rutgers.edu

Abstract

State abstraction (or state aggregation) has been
extensively studied in the fields of artificial intel-
ligence and operations research. Instead of work-
ing in the ground state space, the decision maker
usually finds solutions in the abstract state space
much faster by treating groups of states as a unit
by ignoring irrelevant state information. A num-
ber of abstractions have been proposed and studied
in the reinforcement-learning and planning litera-
tures, and positive and negative results are known.
We provide a unified treatment of state abstraction
for Markov decision processes. We study five partic-
ular abstraction schemes, some of which have been
proposed in the past in different forms, and analyze
their usability for planning and learning.

1 Introduction

State abstraction (or state aggregation) has been
widely studied in artificial intelligence (e.g., [10])
and operations research [25] as a technique for ac-
celerating decision making. Abstraction can be
thought of as a process that maps the ground rep-
resentation, the original description of a problem,
to an abstract representation, a much more com-
pact and easier one to work with [10]. In other
words, abstraction allows the decision maker to dis-
tinguish relevant information from irrelevant infor-
mation. From a computational perspective, state
abstraction is a technique for making learning and
planning algorithms practical in large, real-world
problems.

In this paper, we will focus on state abstraction
in Markov decision processes [22], where different
types of abstraction have been proposed, including
bisimulation [11], homomorphism [23], utile distinc-

tion [18], and policy irrelevance [14]. Given the di-
versity of choices, natural questions arise such as:

• Is there a unified definition of state abstrac-
tion?

• What are the relationships among these ab-
stractions?

• How does a solution to the abstract MDP relate
to the ground MDP? What guarantees can be
made?

• How can we select among abstraction schemes?

With the different types of abstractions being de-
veloped rather independently, a unified treatment is
not yet available. Although there are results for es-
timating and bounding approximation errors with
state abstraction [1, 2, 30], we seek to answer quali-
tative questions like “What information is lost when
an abstraction is applied?” and “When is the opti-
mal policy still preserved?” In fact, lacking such
qualitative insights about state abstractions can
lead to negative results when using state abstrac-
tion. For example, McCallum [18] has observed
that aggregating states using one form of state ab-
straction makes it impossible to find the optimal
policy using value iteration [22] or Q-learning [31];
Gordon [12] reported a chattering phenomenon of
SARSA(λ) [26] when combined with improperly
constrained state abstraction.

The major contribution of this paper is a general
treatment of state abstraction that unifies many
previous works on the topic. Instead of providing
immediately available algorithms for solving more
concrete problems, we will focus on the abstraction
theory itself, including formal definitions, relation-
ships, and qualitative properties (such as preserva-
tion of optimality and learnability).

The rest of the paper is organized as follows. Sec-
tion 2 presents notation and reviews previous work.
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Section 3 studies state abstraction formally and ex-
amines five particular types of abstraction in some
detail. Section 4 discusses concrete examples and
illustrates how these abstractions affect the size of
the abstract state space. Finally, we give some con-
cluding remarks and mention future research direc-
tions in Section 5.

2 Background & Prior Work

In this paper, we will focus on sequential decision
making problems and the concrete model of Markov
decision processes (MDPs) [22]. An MDP can be
described as a five-tuple 〈S, A, P,R, γ〉 where S is a
finite set of states; A is a finite set of actions; P is
the transition function with P a

ss′ denoting the next-
state distribution after taking action a in state s; R

is a bounded reward function with Ra
s denoting the

expected immediate reward gained by taking action
a in state s; and γ ∈ [0, 1] is a discount factor.

A policy is a mapping from states to actions:
S 7→ A. Given a policy π, we define the state-
value function, V π(s), as the expected cumulative
reward received by executing π from state s. Sim-
ilarly, the state-action value function, Qπ(s, a), is
the expected cumulative reward received by taking
action a in state s and following π thereafter. A
reinforcement-learning agent [27] attempts to learn
an optimal policy π∗ whose value functions are de-
noted by V ∗(s) and Q∗(s, a), respectively. It is well-
known that V ∗ = maxπ V π and Q∗ = maxπ Qπ.

Given the full model of an MDP (i.e., the five-
tuple), a set of standard algorithms exists for find-
ing the optimal value function as well as the optimal
policy, including linear programming, value itera-
tion, and policy iteration [22]. However, if the tran-
sition and/or reward functions are unknown, the de-
cision maker has to gather information by interact-
ing with the environment. In fact, a reinforcement-
learning agent is able to compute the optimal policy
by such interaction [27].

2.1 Previous Work

The problem of defining state abstraction rules has
been the focus of previous work. Boutlier et al. [3]
introduced an algorithm, stochastic dynamic pro-
gramming, that built aggregation trees in the fac-
tored setting to create an abstract model where
states with the same transition and reward func-
tions under a fixed policy were grouped together.
This work was identified by Givan et al. [11] as a

special case of their own form of abstraction, bisim-
ulation, where states with the same transition and
reward functions are aggregated. Given a flat rep-
resentation of an MDP, this partitioning can be ac-
complished in polynomial time.

Although such partitioning provides a compact
representation of the ground MDP, bisimulation is
a very strict criterion for aggregation. As such, sev-
eral adaptations have been proposed. Ravindran et
al. [23] examined state aggregation based on homo-
morphisms of the model, rather than strict action
matching. They also propounded the use of options
[29] as a mechanism for encapsulating abstraction
information. We note here that such a vehicle can
be used independently of the type of abstraction
being performed. Givan et al. [5] analyzed approx-
imate bisimulation, which drops the exact equiva-
lence requirement in favor of a bound, as a method
for producing boundedly accurate MDPs (BMDPs).
Similarly, Ferns et al. [8] proposed bisimulation
metrics, which use statistical semi-metrics [9] to
determine the similarity between two states’ transi-
tion functions. This measure is then combined with
the difference in the reward functions to decide ag-
gregation. We note that this criterion comes very
close to comparing the actual value functions of the
two states, an idea we will return to shortly.

Several of these algorithms can be used to ag-
gregate states between iterations of model-based
planning algorithms like value iteration or policy
iteration. This approach is reminiscent of a pre-
viously proposed adaptive aggregation strategy [2],
which groups states in between runs of value iter-
ation based on Bellman residuals. This algorithm
was unique both in its criterion and its allowance
for states to be aggregated or disaggregated at every
abstraction step. Dietterich’s MAXQ hierarchy [6]
effectively aggregates states within a subtask only if
their reward and transition functions are the same
for any policy consistent with the hierarchy. Mc-
Callum [18] proposed a less strict criterion, aggre-
gating only states that have the same optimal ac-
tion and similar Q-values for these actions, based
on a statistical test. McCallum allowed such aggre-
gation to occur while the system was learning the
MDP itself. Using statistics to do the abstraction
online was a feature of earlier works including the
G-algorithm [4], which aggregated states with the
same reward and Q-values for each action.

A more recent online aggregation strategy us-
ing statistical tests was provided by Jong and
Stone [14], which groups states based on “Policy
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Abstraction Mecha-
nism

Criterion Exactness MDP
given?∗

Notes

Bisimulation [11] Model equivalence Exact Yes Strictest measure

Homomorphisms [23] Model equivalence Exact, match-
ing of actions
flexible

Yes Accounts for spacial relations
(e.g. symmetry)

Approximate Bisimula-
tion [5]

Model similarity Bounded Yes Builds BMDPs

Bisimulation Metrics [8] Model similarity Statistically
tested

Yes Error bounds deducible

MAXQ [6] Model equivalence for
hierarchically consistent
policies

Exact Yes Integrated into the MAXQ hi-
erarchy

Stochastic Dynamic Pro-
gramming [3]

Equivalent models given a
policy

Exact Yes Covered by bisimulation

G Algorithm [4] Equivalent rewards and
Q-values

Statistically
tested

No Each feature’s relevance must
be independent

Utile Distinction [18] Equivalent best actions
with similar Q-values

Statistically
tested

No Aggregation occurs online

Policy Irrelevance [14] Equivalent best actions Statistically
tested

No May not yield optimal policy
for ground MDP

Adaptive Aggregation [2] Similar Bellman residuals Bounded Yes States can be (dis)aggregated
dynamically

* I.e., does abstraction discovery require the MDP model?

Table 1: Selected previous strategies for state aggregation

Irrelevance”—states are aggregated if they have the
same optimal action. However, if such abstract
MDPs are used to learn a policy for the larger MDP,
they may not yield optimal policies [14, 18] and may
even prevent some algorithms from converging [12].

A summary of the properties of the aforemen-
tioned work is presented in Table 1. The table or-
ders the algorithms roughly from strictest to coars-
est abstractions. It has been noted that coarser
abstractions methods, although providing a better
potential for computational efficiency and general-
ization, have looser performance loss bounds on the
value function [30]. These methods overlap consid-
erably, and in this paper we endeavor to formalize a
unified theory of abstraction to better understand
these similarities, and the differences.

3 A State Abstraction Theory

We adopt the viewpoint of Giunchiglia and
Walsh [10], who argue that abstraction is in gen-
eral a mapping from one problem representation to
a new representation, while preserving some prop-
erties. In this work, we focus on the preservation of
properties that are needed for an agent to make de-
cisions that lead to optimal behavior. Previous ab-
straction definitions have applied this insight. For
example, bisimulation is essentially a type of ab-
straction that preserves the one-step model of an
MDP (i.e., the transition and reward functions),
while policy-irrelevance types of abstraction at-
tempt to preserve the optimal actions. Many of

the methods we have cited attempt “fuzzy conser-
vation” of such properties through statistical tests
and notions of bounding, but in the interest of de-
veloping a formalism we choose to focus on abstrac-
tion schemes where states are only aggregated when
they have exact equality over the parameters of the
abstraction scheme.

3.1 A General Definition of State
Abstraction

The definition of state abstraction in MDPs we give
here is not novel. However, based on this definition,
we are able to study formal properties of abstraction
itself in subsequent sections.

Definition 1 Let M = 〈S, A, P,R, γ〉 be the
ground MDP and its abstract version be M̄ =
〈S̄, A, P̄ , R̄, γ〉. Define the abstraction function as
φ : S 7→ S̄; φ(s) ∈ S̄ is the abstract state corre-
sponding to ground state s, and the inverse image
φ−1(s̄), with s̄ ∈ S̄, is the set of ground states that
correspond to s̄ under abstraction function φ. Note
that under these assumptions, {φ−1(s̄) | s̄ ∈ S̄}
partitions the ground state space S. To guaran-
tee P̄ and R̄ are well-defined, a weighting func-
tion is needed: w : S 7→ [0, 1], where for each
s̄ ∈ S̄,

∑
s∈φ−1(s̄) w(s) = 1. With these definitions

at hand, we can define the transition and reward
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functions of the abstract MDP as follows:

R̄a
s̄ =

∑
s∈φ−1(s̄)

w(s)Ra
s ,

P̄ a
s̄s̄′ =

∑
s∈φ−1(s̄)

∑
s′∈φ−1(s̄)

w(s)P a
ss′ .

It is easy to verify that P̄ a
s̄s̄′ is a well-defined next-

state distribution by checking that
∑

s̄′ P̄
a
s̄s̄′ sum up

to 1 for any a and s̄ ∈ S̄:∑
s̄′

P̄ a
s̄s̄′ =

∑
s̄′

∑
s∈φ−1(s̄)

∑
s′∈φ−1(s̄)

w(s)P a
ss′

=
∑

s∈φ−1(s̄)

w(s)
∑
s′∈S

P a
ss′

=
∑

s∈φ−1(s̄)

w(s) = 1.

Intuitively, w(s) measures the extent to which a
state s contributes to the abstract state φ(s). In
the rest of the paper, we will only mention w when
necessary; otherwise, it can be any valid weighting
function.

Next, we consider how policies π̄ in the abstract
MDP translate to policies π in the ground MDP.
Since all ground states in φ−1(s) are treated iden-
tically, it is natural to translate policies by the fol-
lowing rule: π(s, a) = π̄(φ(s), a) for all s and a.

Finally, value functions for the abstract MDP M̄

can be defined in the straightforward way and are
denoted V π̄(s̄), V ∗(s̄), Qπ̄(s̄, a), and Q∗(s̄, a), re-
spectively.

3.2 Topology of Abstraction Space

In this subsection, we are concerned with the ques-
tion of how these abstractions relate to each other.
Let ΦM denote the abstraction space—the set of ab-
stractions on MDP M . We will need the following
definition.

Definition 2 Suppose φ1, φ2 ∈ ΦM . We say φ1

is finer than φ2, denoted φ1 � φ2, iff for any
states s1, s2 ∈ S, φ1(s1) = φ1(s2) implies φ2(s1) =
φ2(s2). If, in addition, φ1 6= φ2, then φ1 is strictly
finer than φ2, denoted φ1 � φ2. We may also say
φ2 is (strictly) coarser than φ1, denoted φ2 � φ1

(φ2 ≺ φ1). We say φ1 and φ2 are comparable if
either φ1 � φ2 or φ2 � φ1.

It is obvious from Definitions 1 and 2 that the
relation � satisfies reflexibility, antisymmetry, and
transitivity. Therefore, we arrive at the following
theorem.

Theorem 1 The finer relation � is a partial or-
dering.

In other words, if we depict the topology of the
abstraction space ΦM as a graph, we would obtain
a directed acyclic graph (DAG) with a self-loop at
each node; each edge points from an abstraction φ1

to another abstraction φ2 � φ1. At the very end
is the finest representation (the ground representa-
tion) we denoted φ0 (i.e., φ0 is the identity mapping
and S̄ = S), and at the other extreme is the coarsest
representation (the null representation consisting of
a single abstract state).

3.3 Five Types of Abstraction

There are many abstractions for an MDP, because
there are many possible ways to partition the state
space. However, not all abstractions appear to be
equally important. A useful abstraction has to pre-
serve some information that is critical for solving
the original MDP. In this subsection, we will see
how five pieces of important information in MDPs
lead to respective abstractions, as defined below. 1

Definition 3 Given an MDP M = 〈S, A, P,R, γ〉,
and any states s1, s2 ∈ S, we define five types of
abstraction as below, with an arbitrary but fixed
weighting function w(s).2

1. A model-irrelevance abstraction φmodel is such
that for any action a and any abstract state s̄,
φmodel(s1) = φmodel(s2) implies Ra

s1
= Ra

s2
and∑

s′∈φ−1
model(s̄)

P a
s1s′ =

∑
s′∈φ−1

model(s̄)
P a

s2s′ .

2. A Qπ-irrelevance abstraction φQπ is such that
for any policy π and any action a, φQπ (s1) =
φQπ (s2) implies Qπ(s1, a) = Qπ(s2, a).

3. A Q∗-irrelevance abstraction φQ∗ is such that
for any action a, φQ∗(s1) = φQ∗(s2) implies
Q∗(s1, a) = Q∗(s2, a).

4. An a∗-irrelevance abstraction φa∗ is such that
every abstract class has an action a∗ that is
optimal for all the states in that class, and
φa∗(s1) = φa∗(s2) implies that Q∗(s1, a

∗) =
maxa Q∗(s1, a) = maxa Q∗(s2, a) = Q∗(s2, a

∗).

1Similar definitions are possible with state value func-
tions, but we focus on state-action value functions because of
their key role in popular planning and learning algorithms.

2Although w does not appear important in the definition,
it can play an important role in affecting planning and/or
learning efficiency [30].
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5. A π∗-irrelevance abstraction φπ∗ is such that
every abstract class has an action a∗ that
is optimal for all the states in that class,
that is φπ∗(s1) = φπ∗(s2) implies that
Q∗(s1, a

∗) = maxa Q∗(s1, a) and Q∗(s2, a
∗) =

maxa Q∗(s2, a).

Intuitively, φmodel preserves the one-step model
(e.g., bisimulation [11]); φQπ preserves the state-
action value function for all policies; φQ∗ pre-
serves the optimal state-action value function (e.g.,
stochastic dynamic programming with factored rep-
resentations [3] or the G-algorithm [4]); φa∗ pre-
serves the optimal action and its value (e.g., utile
distinction [18]); and φπ∗ attempts to preserve the
optimal action [14]. 3

3.4 Properties of the Abstractions

In the previous subsection, we introduced a collec-
tion of state abstractions. Below we study their
properties formally, which provides insights into
some previous findings.

The first question we address is how the abstrac-
tions relate to one another. The following theorem
states that they form a chain under the partial or-
der �. Furthermore, there exist examples showing
that they are not equal to each other in general.

Theorem 2 For any MDP, we have φ0 � φmodel �
φQπ � φQ∗ � φa∗ � φπ∗ .

As a consequence, any one of the five abstractions
is a special case of other finer abstractions. For ex-
ample, an instance of φQ∗ is also an instance of φa∗ -
and φπ∗ -irrelevance abstraction, but is not necessar-
ily a φmodel- or φQπ -irrelevance abstraction. This
observation is helpful when we consider the learning
and planning problems below, that is, if we prove
some property of an abstraction, this property au-
tomatically applies to the finer abstractions.

The second question is related to planning. More
specifically, given an abstract MDP M̄ , we may use
standard dynamic-programming algorithms such as
value iteration and policy iteration to solve it, ob-
taining an optimal abstract policy π̄∗. With what
abstractions will π̄∗ be guaranteed to be optimal in
the ground MDP M? We have the following results:

Theorem 3 With abstractions φmodel, φQπ , φQ∗ ,
and φa∗ , the optimal abstract policy π̄∗ is optimal

3We note that several of these examples are not the coars-
est possible implementations of their respective abstractions,
including those listed for φQ∗ and φπ∗ .

in the ground MDP. However, there exists exam-
ples where the optimal policy with abstraction φπ∗

is suboptimal in the ground MDP [14] (see also Fig-
ure 1(b)).

Proof (sketch) We are able to show that the value-
iteration operator on the state-action value func-
tions in the abstract MDP is a contraction map-
ping, of which the optimal value function is the
fixed point [22]. The optimality then follows from
the fact that the optimal actions as well as their
Q-values are preserved after abstraction. �

Finally, we consider the learning problem, where
the agent estimates the optimal value function
based on experience. In the abstraction case, Q-
learning requires some modification. After observ-
ing a transition (st, at, rt, st+1), the agent does the
following backup in the abstract state-action space:

Q(φ(st), at)
αt←− rt + γ max

a′
Q(φ(st+1), a′),

where αt is an appropriately decaying step-size pa-
rameter such that

∑
t αt = ∞ and

∑
t α2

t < ∞.
Using standard tools in stochastic approximation
theory [13, 17, 24], we obtain the following results
for Q-learning:

Theorem 4 Assume that each state-action pair is
visited infinitely often and the step-size parameters
decay appropriately.

1. Q-learning with abstractions φmodel, φQπ , or
φQ∗ converges to the optimal state-action value
function in the ground MDP. Therefore, the re-
sulting optimal abstract policy is also optimal
in the ground MDP.

2. Q-learning with abstraction φa∗ does not neces-
sarily converge. However, if the behavior pol-
icy is fixed, Q-learning converges to Q̄∗ with
respect to some weighting w(s), and the greedy
policy is optimal in the ground MDP, although
Q̄∗ may not predict the optimal values for sub-
optimal actions in the ground MDP.

3. Q-learning with abstraction φπ∗ can converge
to an action-value function whose greedy policy
is suboptimal in the ground MDP. However, we
note that policy-search methods (e.g. [28]) may
still find the optimal policy in this case.

Proof (sketch) The first part of the theorem fol-
lows earlier convergence results [17, Theorem 1],
since the conditions in the theorem are all satis-
fied. For the second part, since we assume that each
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(s, a) is visited infinitely often and a fixed behavior
policy is being followed, the learner must run into a
steady state-occupation distribution µ(s) > 0 for all
s ∈ S. The weighting function w(s) associated with
φa∗ is in proportion to µ(s) and fixed in the limit.
So, the resulting abstract MDP is well-defined and
stationary. The convergence of Q-learning then fol-
lows from previous analyses under these conditions.
If the behavior policy is not fixed, however, we have
empirically observed a chattering phenomenon sim-
ilar to what Gordon observed [12], as illustrated in
Figure 1(c). The third part of the theorem comes
from existing examples [14] or the one shown in Fig-
ure 1(b). More details are given below. �

The negative learning results described above for
φa∗ and φπ∗ stem from similar causes, although φπ∗

introduces a pitfall beyond non-convergence: con-
vergence to a suboptimal policy. We investigate
both cases through the examples in Figure 1. First,
there is the possibility under φa∗ or φπ∗ that Q-
learning will fail to converge. An example MDP and
abstraction, along with a sample run of Q-learning
under a periodically changing policy is provided in
Figures 1(a and c). For φa∗ this malady can only af-
flict the suboptimal actions, but in φπ∗ all state ac-
tion pairs are susceptible. Removing action 1 from
the aggregate state in Figure 1(a) provides such an
example. Gordon [12] observed this behavior for
the combination of SARSA and φπ∗ . One might
think that because Q-learning’s backups are off-
policy, this behavior would not be possible. How-
ever, the chattering phenomena is actually caused
not by the learning algorithm, but by partial ob-
servability introduced by the abstraction function
(or more generally, function approximator).

Suppose, using φa∗ , we combine two state-action
pairs that have different Q-values (say, (s1, a) and
(s2, a)), making the Q-value of the abstract state:
Q(s̄, a) = w(s1) · Q(s1, a) + w(s2) · Q(s2, a). If
these weights are based on state occupation prob-
abilities and a changing policy is used (as in our
example) these weights may not come from a sta-
tionary distribution, causing Q-learning to chatter.
The cause of chatter under φπ∗ is similar, but the
weighted sum above does not hold strictly in this
case. Thus, neither φa∗ nor φπ∗ can guarantee Q-
learning convergence unless a fixed policy is used.
To our knowledge, this is the first time such be-
havior has been catalogued for Q-learning or for an
abstraction scheme guaranteed to preserve the Q-
values of the optimal actions. We also note that
our results hold not just for Q-learning, but for any

learning algorithm based on on-trajectory sampling,
combined with a non-stationary policy.

φπ∗ introduces a new liability for Q-learning be-
yond the possible chattering of optimal action Q-
values. Under φπ∗ it is possible for Q-learning to
converge to values that indicate an optimal action
in M̄ that is suboptimal in M . This shortcoming
of policy irrelevance has been noted previously by
others [14, 18]. The crux of this failure is that the
combination of two such states can lead to a Q-value
for the aggregate state, Q′ = Q∗(s̄, a∗) > Q∗(s, a∗),
if the state s is aggregated with another state that
has a higher Q-value. Since Q′ corresponds to the
optimal action, it will be used to define the Q-values
of other state-action pairs recursively through the
Bellman equation. Hence in the one-step case, as in
Figure 1(b), since r1 = Ra1

s0
> r2 = Ra2

s0
and hence

r1 + γQ′ > r2 + γQ′, a1 is the optimal action in s0

of M̄ , but indeed is suboptimal in M . We note this
concern is not limited to the one-step backup case,
but to all state-action pairs that receive a backup
from s̄ (i.e., all states with a path leading to s̄).
Also notice that suboptimal action selection is im-
possible under φa∗ because under this abstraction
scheme, Q′ = Q∗(s̄, a∗) = Q∗(s, a∗).

In contrast to model-free reinforcement learn-
ing (e.g., Q-learning) is model-based learning (e.g.,
Prioritized Sweeping [19]), where the agent first
builds an empirical model to approximate the MDP
through interaction experience, and then solves this
model. In the context of state abstraction, the
agent first builds an empirical abstract model of M̄

and then solves for π̄∗, which will be translated back
into a ground policy. For such a class of learning
algorithms, we have the following results:

Theorem 5 With abstractions φmodel, φQπ , φQ∗ ,
and φa∗ , the empirical model built from experience
converges to the true abstract model with infinite
experience, if the weighting function w(s) is fixed.
Furthermore, model-based reinforcement learning
converges to the optimal abstract value function
whose greedy policy is optimal in the ground MDP.
For φπ∗ , optimality is not guaranteed in general.

Proof (sketch) If the weighting function is fixed,
the abstract MDP is well-defined, regardless of the
policy used to collect the empirical data, and the
empirical model converges asymptotically to the
true abstract MDP given enough samples. There-
fore, with abstractions φmodel, φQπ , φQ∗ , and φa∗ ,
the optimal policy in the empirical abstract MDP
converges to the optimal policy in the true abstract
MDP, which in turn is optimal in the ground MDP
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Figure 1: (a) An example problem where φa∗ is applied but Q-learning may fail to converge. The solid
and dashed lines represent actions 1 and 2 respectively. The corresponding graph shows the value function
in the aggregated (middle) state for each of its actions. The policy is changed every 2000 steps from “do
action 1 w.p. 1 − ε” to “do action 2 w.p. 1 − ε”. With probability ε = .1, a random action is selected.
Notice the instability (chattering) of the suboptimal action value. (b) An MDP that when subjected to
φπ∗ yields an optimal policy for M̄ that is suboptimal in M . Both of these examples are modifications
of the MDP investigated by Gordon [12].

by Theorem 3. With abstraction φπ∗ , the empir-
ical abstract model is inherently flawed (c.f. Fig-
ure 1(b)), and therefore, a planning algorithm may
fail to find the optimal policy in the ground MDP.
�

3.5 Necessary Conditions for Locally
Checkable Abstraction

Since φa∗ is the coarsest abstraction function listed
in Theorem 5 as being sufficient for convergence in
a model-based setting for convergence to a policy
that is also optimal in the ground MDP, one may
speculate whether the conditions defining φa∗ are
also necessary for this guarantee. This harkens back
to an open question posed by McCallum [18] ask-
ing if Utile Distinction (his instantiation of φa∗) is a
necessary and sufficient condition for preserving the
optimal policy. In a limited sense, we find that the
answer is “yes”. We define the set of locally check-
able abstractions, Φlc to be those that use only the
one-step reward and transition, the abstract class of
the one-step reachable states, and the optimal Q-

function values of the two candidate states to decide
whether these two states should be aggregated. No-
tice that Φlc contains all the abstraction functions
defined in Definition 3. Investigating this class, we
come to the following conclusions:

Theorem 6 Within Φlc, φa∗ is the coarsest pos-
sible abstraction with which it is guaranteed that
model-based reinforcement learning algorithms un-
der the conditions in Theorem 5, or Q-learning
with a fixed policy, will converge to a value func-
tion whose greedy policy is optimal in the ground
MDP.

Theorem 6 follows from the fact that if even one
of the optimal action’s Q-values were changed, we
can construct a malicious example in the spirit of
Figure 1(b) where the new Q-value causes a state
in a trajectory leading to the aggregated state to
promote a sub-optimal action in M to optimality
in M̄ . This lower bound on the coarseness stands
as necessary in this class because reasoning on the
transition or reward function from the states being
aggregated cannot ensure optimality without also
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ensuring the preservation of the optimal action’s Q-
value.

3.6 Summary

We have introduced a general definition of state ab-
straction and used it to derive formal properties of
several natural types of abstraction. Given a num-
ber of choices of abstractions, an important ques-
tion is: which one shall we prefer? As can be seen
from the analysis above, more and more information
about the problem (the MDP) is lost with coarser
and coarser abstractions. For example, φmodel gives
the opportunity to recover essentially the entire
model, while it is only possible to represent and
learn the optimal state-action value function with
φQ∗ . The coarser φa∗ ceases to guarantee learn-
ability of the value function for suboptimal actions,
but does allow for planning (i.e., value iteration).
Finally, at the very end of the chain, even opti-
mal planning is generally lost with φπ∗ , although
an optimal policy is still representable. However,
a coarser abstraction results in a larger reduction
in the state space, which in turn translates into ef-
ficiency of solving the problem. Therefore, there
is a tradeoff between minimizing information loss
and maximizing state space reduction when select-
ing abstractions. In the next section, we will exam-
ine several examples that will shed some light on
how much state space reduction could be achieved
with these abstractions.

4 Case Studies

Here, we consider three concrete, widely studied ex-
amples, and study how different types of abstrac-
tion affect the size of abstract state space. Since it
is an open question how to find Qπ-irrelevance ab-
stractions efficiently without enumerating all possi-
ble policies, we will not give results for φQπ below.
However, we should note that the size of the ab-
stract state space with φQπ is between the sizes of
abstract state spaces with φmodel and φQ∗ .

The first problem is the taxi domain [6], where
a taxi is to navigate in a 5 × 5 grid world, pick up
a passenger and then deliver her to the destination.
There are 500 states in the ground state space and
6 actions. The agent is charged a reward of −1 for
each action and a final +20 for successfully deliver-
ing the passenger to her destination.

Another problem is known as the coffee do-
main [3], several versions of which have been studied
in the literature. We consider a simplified scenario

where a robot is wandering around five locations:
lab, office, coffee room, mail room, and hallway. Its
goal is three-fold: to tidy up the lab, to deliver cof-
fee and mail to the user sitting in the office. There
are a total of 400 ground states and the robot is
able to perform 7 actions (although not all actions
are allowed in all states). It receives a −1 reward
upon taking any single action, and is rewarded when
coffee and mail are delivered, and when the lab is
tidy. We use two reward functions and obtain two
versions of this problem.

The last problem is called bitflip, variations of
which have been studied under other names [11, 16].
In this problem, the agent is given a binary vec-
tor of 10 bits. Its goal is to reach the zero vector
by flipping bits that are 1’s; it is illegal to flip a
bit that is 0. At any moment it has three actions
to choose from: flip highest bit, flip lowest bit, and
flip random bit, each of which results in an imme-
diate reward of −1. If the bit to flip, say bit k, is
the highest bit (namely, all bits j > k are 0’s), it is
reset to 0 and other bits are unchanged; otherwise,
all higher bits j ≥ k are set to 1 and lower bits i < k

remain unchanged. The optimal action in all states
is flip highest bit and the optimal value of a state is
the negative of the number of 1’s in the state.

The sizes of the coarsest abstract state space of
each type of abstraction in all three problems are
shown in Table 2. Note that φ0 corresponds to no
abstraction, and the coarsest studied abstraction,
φπ∗ , always has a size no greater than |A|. The
results have several implications. First, φmodel and
φQ∗ do not appear to provide great opportunity for
state-space reduction, compared to φa∗ and φπ∗ .
In the taxi domain, for example, the abstract state
space is (almost) as large as the ground state space.

Second, φπ∗ seems to provide the greatest op-
portunity of state space reduction. However, as
we have shown in previous theorems, φπ∗ does
not guarantee that dynamic programming and Q-
learning will converge to the optimal policy and/or
value function.

These two observations, when combined together,
and also considering Theorem 5, imply that φa∗ ab-
straction may be a useful type of abstraction, which
not only possesses guaranteed optimality but also
leads to significant state space reduction.

5 Conclusions

We have introduced a theory of state abstraction
for Markov decision processes. In particular, we
gave a formal definition of state abstraction and
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domains φ0 φmodel φQ∗ φa∗ φπ∗

taxi (5× 5) 500 500 489 381 6
coffee (v1) 400 296 256 124 7
coffee (v2) 400 296 256 132 7
bitflip (10) 1024 513 257 11 1

Table 2: Sizes of abstract state spaces.

analyzed the properties of general abstractions as
well as some specific abstractions. Equipped with
this theory, more insights and a better understand-
ing are obtained. We have provided the beginnings
of a formal foundation and classification for state
abstraction, which we hope will spur more efforts
in formal analysis for state abstraction and novel
powerful algorithms.

One important problem we did not address is
the discovery problem. That is, given a model
or interaction experience, how does the agent dis-
cover a specific abstraction? Efficient discovery al-
gorithms exist for some abstractions such as bisimu-
lation [11]; however, it is not obvious at present how
to efficiently discover some other types of abstrac-
tion, for example, φQπ , without exhaustively com-
puting all value functions. Givan et al. [11] voiced
such concerns regarding abstraction measures based
on Q-functions. However, there has been significant
work in approximate tests for value-function-based
irrelevance notions [8, 18]. So, although we con-
cede that the discovery problem for these abstrac-
tions is an open problem, we believe this avenue
of research merits further exploration, particularly
given our results regarding φQ∗ and φa∗ . We would
like to emphasize that discovering abstractions can
be important for solving sets of related MDPs. For
example, abstractions can be a form of knowledge
transferred across a set of related tasks [14].

We have only presented a set of basic results of
the abstraction theory. In fact, there are several in-
teresting extensions. First, the abstractions in Def-
inition 3 are based on exact equivalence of certain
quantities. This definition is often too stringent in
practice, especially in stochastic domains and dis-
counted MDPs. One possible extension is to relax
the exactness and allow some form of approximate
or soft abstraction [5, 7, 8]. Second, we can ex-
tend the definition of abstraction using action ho-
momorphisms [23]. Third, it is important to see
how state abstraction theory could be used in hier-
archical reinforcement learning [6, 21, 29]. Fourth,
there could be theoretical interest in investigating
operations on abstractions, such as intersection and

composition. Finally, we would like to mention a
connection between state abstraction and factored
representations [3] as well as state-space partition-
ing in continuous MDPs [15, 20].
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