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Abstract

In the papers [6, 7] we have established linear and quadratic bounds, in k, on

the growth of the Lebesgue constants associated with the k-sections of Leja sequences

on the unit disc U and ℜ-Leja sequences obtained from the latter by projection into

[−1, 1]. In this paper, we improve these bounds and derive sub-linear and sub-quadratic

bounds. The main novelty is the introduction of a “quadratic” Lebesgue function for

Leja sequences on U which exploits perfectly the binary structure of such sequences and

can be sharply bounded. This yields new bounds on the Lebesgue constants of such

sequences, that are almost of order
√
k when k has a sparse binary expansion. It also

yields an improvement on the Lebesgue constants associated with ℜ-Leja sequences.

1 Introduction

The growth of the Lebesgue constant of Leja sequences on the unit disc and ℜ-Leja sequences
was first studied in [3, 4]. The main motivation was the study of the stability of Lagrange

interpolation in multi-dimension based on intertwining of block unisolvent arrays. Such

sequences, more particularly ℜ-Leja sequences, were also considered in many other works

in the framework of structured hierarchical interpolation in high dimension. Although not

always referred to as such, they are typically considered in the framework of sparse grids

for interpolation and quadrature [10, 11]. Indeed, the sections of length 2n + 1 of ℜ-Leja
sequences coincide with the Clenshaw-Curtis abscissas cos(2−njπ), j = 0, . . . , 2n which are

de facto used, thanks to the logarithmic growth of their Lebesgue constant.
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Motivated by the development of cheap and stable non-intrusive methods for the treat-

ment of parametric PDEs in high dimension, we have also used these sequences in [9, 5]

with a highly sparse hierarchical polynomial interpolation procedure. The multi-variate in-

terpolation process is based on the Smolyak formula and the sampling set is progressively

enriched in a structured infinite grid ⊗d
j=0Z together with the polynomial space by only one

element at a time. The Lebesgue constant that quantifies the stability of the interpolation

process depends naturally on the sequence Z. We have shown in [7] that it has quadratic

and cubic bounds in the number of points of interpolation when Z is a Leja sequence on

U or an ℜ-Leja sequence, thanks to the linear and quadratic bounds on the growth of the

Lebesugue constant of such sequences, also established in [6, 7]. We refer to the introduction

and section 2 in [7] for a concise description on the construction of the interpolation process

and the study of its stability.

The present paper is also concerned with the growth of the Lebesgue constant of Leja

and ℜ-Leja sequences. We improve the linear and quadratic bounds obtained in [7]. In

particular, we show that for ℜ-Leja sequnences, the bound is logarithmic for many values of

k which may be useful for proposing cheap and stable interpolation scheme in the framework

of sparse grids [11].

1.1 One dimensional hierarchical interpolation

Let X be a compact domain in C or R, typically the complex unit disc U := {|z| ≤ 1} or the

unit interval [−1, 1], and Z = (zj)j≥0 a sequence of mutually distinct points in X . We denote

by IZk
the univariate interpolation operator onto the polynomials space Pk−1 associated with

the section of length k, Zk := (z0, · · · , zk−1). The interpolation operator is given by Lagrange

interpolation formula: for f ∈ C(X) and z ∈ X

IZk
f(z) =

k−1
∑

j=0

f(zj)lj,k(z), lj,k(z) :=
k−1
∏

i=0
i6=j

z − zj
zi − zj

, j = 0, . . . , k − 1. (1.1)

Since the sections Zk are nested, it is convenient to give the operator IZk
using Newton

interpolation formula which amounts essentially writing: ∆0f := IZ1f ≡ f(z0) and

IZk+1
= IZk

+∆k =
k

∑

l=0

∆l, where ∆l(Z) := IZl+1
− IZl

, l ≥ 1, (1.2)

and computing the operators ∆l using divided differences, see [12, Chapter 2] or equivalently

the following formula which are differently normalized, see [7, 9],

∆lf =
(

f(zl)− IZl
f(zl)

)

l−1
∏

j=0

(z − zj)

(zl − zj)
, l ≥ 1, (1.3)
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The stability of the operator IZk
depends on the positions of the elements of Zk on X ,

in particular through the Lebesgue constant associated with Zk, defined by

LZk
:= max

f∈C(X)−{0}

‖IZk
f‖L∞(X)

‖f‖L∞(X)

= max
z∈X

λZk
(z), (1.4)

where λZk
is the so-called Lebesgue function associated with Zk defined by

λZk
(z) :=

k−1
∑

i=0

|li,k(z)|, z ∈ X. (1.5)

We also introduce the notation

Dk(Z) := max
f∈C(X)−{0}

‖∆kf‖L∞(X)

‖f‖L∞(X)

. (1.6)

In the case of the unit disk or the unit interval, it is known that Lk the Lebesgue constant

associated with any set of k mutually distinct points can not grow slower than 2 log(k)
π

and it is

well known that such growth is fulfilled by the set of k-roots of unity in the case X = U and

the Tchybeshev or Gauss-Lobatto abscissas in the case X = [−1, 1], see e.g. [2]. However

such sets of points are not the sections of a fixed sequence Z.

In [3, 4], the authors considered for Z Leja sequences on U initiated at the boundary

∂U and ℜ-Leja sequences obtained by projection onto [1, 1] of the latter when initiated

at 1. They showed that the growth of LZk
is controlled by O(k log(k)) and O(k3 log(k))

respectively. In our previous works [6, 7], we have improved these bounds to 2k and 8
√
2k2

respectively. We have also established in [7] the bound Dk ≤ (1 + k)2 for the difference

operator, which could not be obtained directly from Dk ≤ LZk+1
+LZk

and which is essential

to prove that the multivariate interpolation operator using ℜ-Leja sequences has a cubic

Lebesgue constant, see [7, formula 25].

1.2 Contributions of the paper

In this paper, we improve the bounds of the previous paper [3, 4, 6, 7]. Our techniques

of proof share several points with those developed in [6, 7], yet they are shorter and relies

notably on the binary pattern of Leja sequences on the unit disk. The novelty in the present

paper is the introduction of the “quadractic” Lebesgue constant

λZk,2(z) :=
(

k−1
∑

i=0

|li,k(z)|2
)

1
2
, z ∈ X, (1.7)

where li,k are the Lagrange polynomials as defined in (1.5). We study this function and its

maximum

LZk,2 := max
z∈X

λZk,2(z). (1.8)
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We establish in §2 in the case where Z is any Leja sequence on U initiated on the boundary

∂U the “sharp” inequality

λZk
(zk) ≤ LZk ,2 ≤ 3λZk

(zk), and λZk
(zk) :=

√

2σ1(k) − 1, (1.9)

where σ1(k) denote the number of ones in the binary expansion of k. Cauchy-schwatrz

inequality applied to the Lebesgue function λZk
defined in (1.5) yields λZk

≤
√
k λZk,2. This

shows that we also establish

LZk
≤ 3

√
k
√

2σ1(k) − 1, (1.10)

for Leja sequences on U , which improves considerably the linear bound 2k established in [6]

when the binary expansion of k is very sparse. For example, for k = 2n + 3 with n large,

we get LZk
≤ 3

√
7k << k. Using the bound (1.9), we establish in §3 a new bound on the

growth of Lebesgue constants of ℜ-Leja sequences that implies

Lk ≤ 6
√
5 k 2σ1(l), where l = k − (2n + 1), (1.11)

where n is the integer such that 2n + 1 ≤ k < 2n+1 + 1. Again, we remark that the previous

bound improves the bound 8
√
2k2 established in [7] when l is small compared to 2n or very

sparse in the sense of binary expansion. We actually prove a bound that is logarithmic for

many values of k other than the values 2n + 1, see Theorem 3.2.

Finally, we provide in §4 new bounds on the growth of Dk the norm of the difference

operators. We provide the bounds

Dk ≤ 1 +
√

k(2σ1(k) − 1), Dk ≤ 2σ1(k)2n, k ≥ 1. (1.12)

in the case of Leja sequences on U and the case of ℜ-Leja sequences respectively where for

the latter n is defined as above.

1.3 Notation

In the remainder of the paper, we work with the following notation. For an infinite sequence

Z := (zj)j≥0 on X , we introduce the section Zl,m := (zl, · · · , zm−1) for any l ≤ m − 1.

Given two finite sequences A = (a0, . . . , ak−1) and B = (b0, . . . , bl−1), we denote by A ∧ B

the concatenation of A and B, i.e. A ∧ B = (a0, . . . , ak−1, b0, . . . , bl−1). For any finite set

S = (s0, · · · , sk−1) of complex numbers and ρ ∈ C, we introduce the notation

ρS := (ρs0, · · · , ρsk−1), ℜ(S) := (ℜ(s0), · · · ,ℜ(sk−1)), S := (s0, · · · , sk−1). (1.13)

Throughout this paper, to any finite set S of numbers, we associate the polynomial

wS(z) :=
∏

s∈S

(z − s), with the convention w∅(z) := 1 (1.14)
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Any integer k ≥ 1 can be uniquely expanded according to

k =

n
∑

j=0

aj2
j , aj ∈ {0, 1} (1.15)

We denote by σ1(k), σ0(k) the number of ones and zeros in the binary expansion of k and

by p(k) the largest integer p such that 2p divide k. For k = 2n, . . . , 2n+1 − 1 with binary

expansion as above, one has

σ1(k) =

n
∑

j=0

aj and σ0(k) =

n
∑

j=0

(1− aj) = n+ 1− σ1(k). (1.16)

We should finally note that, unless stated otherwise, we only work with complex numbers

z belonging to the unit circle ∂U . This is because in the complex setting we investigate supre-

mums of sub-harmonic functions, λZk
and λZk,2, which is always attained on the boundary.

2 Leja sequences on the unit disk

Leja sequences E = (ej)j≥0 on U considered in [3, 4, 6, 7] have all their initial value e0 ∈ ∂U
the unit circle. They are defined inductively by picking e0 ∈ ∂U arbitrary and defining ek
for k ≥ 1 by

ek = argmaxz∈U |z − ek−1| . . . |z − e0|. (2.1)

The maximum principle implies that ej ∈ ∂U for any j ≥ 1. Also, the previous argmax

problem might admit many solutions and ek is one of them. We call a k-Leja section every

finite sequence (e0, . . . , ek−1) obtained by the same recursive procedure. In particular, when

E := (ej)j≥1 is a Leja sequence then the section Ek = (e0, . . . , ek−1) is k-Leja section.

In contrast to the interval [−1, 1] where Leja sequences cannot be computed explicitly,

Leja sequences on ∂U are much easier to compute. For instance, if e0 = 1 then we can

immediately check that e1 = −1 and e2 = ±i. Assuming that e2 = i then e3 maximizes

|z2 − 1||z − i|, so that e3 = −i because −i maximizes jointly |z2 − 1| and |z − i|. Then

e4 maximizes |z4 − 1|, etc. We observe a “binary patten” on the distribution of the first

elements of E.

By radial invariance, an arbitrary Leja sequence E = (e0, e1, . . .) on U with e0 ∈ ∂U is

merely the product by e0 of a Leja sequence with initial value 1. The latter are completely

determined according to the following theorem, see [1, 3, 6].

Theorem 2.1 Let n ≥ 0, 2n < k ≤ 2n+1 and l = k − 2n. The sequence Ek = (e0, . . . , ek−1),

with e0 = 1, is a k-Leja section if and only if E2n = (e0, . . . , e2n−1) and Ul = (e2n , . . . , ek−1)

are respectively 2n-Leja and l-Leja sections and e2n is any 2n-root of −1.
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In the light of the previous theorem, a natural construction of a Leja sequence E := (ej)j≥0

in U follows by the recursion

E1 := (e0 = 1) and E2n+1 := E2n ∧ e
iπ
2n E2n , n ≥ 0. (2.2)

This recursive construction of the sequence E yields an interesting distribution of its ele-

ments. Indeed, by an immediate induction, see [1], it can be shown that the elements ek are

given by

ek = exp
(

iπ

n
∑

j=0

aj2
−j
)

for k =

n
∑

j=0

aj2
j, aj ∈ {0, 1}. (2.3)

The construction yields then a low-discrepancy sequence on ∂U based on the bit-reversal

Van der Corput enumeration.

As already mentioned above, Theorem 2.1 characterizes completely Leja sequences on

the unit circle. It has also many implications that turn out to be very useful in the analysis

of the growth of Lebesgue constants.

Theorem 2.2 Let E := (ej)j≥0 be a Leja sequence on U initiated at e0 ∈ ∂U . We have:

• For any n ≥ 0, E2n = e0U2n in the set sense where U2n is the set of 2n-root of unity.

• For any k ≥ 1, |wEk
(ek)| = supz∈∂U |wEk

(z)| = 2σ1(k).

• For any n ≥ 0, E2n,2n+1 := (e2n , · · · , e2n+1−1) is a 2n-Leja section.

• The sequence E2 := (e22j)j≥0 is a Leja sequence on ∂U .

Such properties can be easily checked for the simple sequence defined in (2.3) and are

given in [3, 6] for more general Leja sequences.

2.1 Analysis of the quadratic Lebesgue function

It is proved in [6] that given two k-Leja sections Ek and Fk, one has Fk = ρEk in the set

sense for some ρ ∈ ∂U . This means that the sequence Fk can be obtained from Ek by a

permutation and the product by ρ. By inspection of the quadratic Lebesgue function (1.8),

we have then that

λFk,2(z) = λEk,2(z/ρ), z ∈ U =⇒ LFk,2 = LEk ,2. (2.4)

In order to compute the growth of LEk,2 for arbitrary Leja sequences E, it suffices then to

consider E to be the simple sequence given by (2.3). Unless stated otherwise, for the rest of

this section, E is exclusively used for this notation. Let us note that

E2 := (e22j)j≥0 = E. (2.5)
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In order to study the functions λEk,2, we adopt the methodology that we introduced in

[6]. Namely, we study the implication of E being a Leja sequence in general, on the growth

of λEk,2, then we use the implication of the particular binary distribution of E to derive such

growth.

Lemma 2.3 Let Z be a Leja sequence on a real or complex compact X. For any k ≥ 1 and

any z ∈ X, it holds

λZk+1,2(z) ≤ λZk,2(z) + λZk,2(zk) + 1. (2.6)

Proof: We fix k ≥ 1 and denote by l0, . . . , lk−1 the Lagrange polynomials associated with

the section Zk and by L0, . . . , Lk the Lagrange polynomials associated with the section Zk+1.

By Lagrange interpolation formula, for j = 0, . . . , k − 1

lj =

k
∑

i=0

lj(zi)Li = Lj + lj(zk)Lk ⇒ Lj = lj − lj(zk)Lk.

We have then for any z ∈ X

(

k−1
∑

j=0

|Lj(z)|2
)1/2

≤
(

k−1
∑

j=0

|lj(z)|2
)1/2

+ |Lk(z)|
(

k−1
∑

j=0

|lj(zk)|2
)1/2

.

where we have merely applied triangular inequality with the euclidean norm in Ck. This

also writes
(

|λZk+1,2(z)|2 − |Lk(z)|2
)

1
2 ≤ λZk,2(z) + |Lk(z)|λZk,2(zk).

We conclude the proof using a ≤
√
a2 − b2 + b for a ≥ b ≥ 0, and the inequality

|Lk(z)| =
|wZk

(z)|
|wZk

(zk)|
≤ 1,

which follows from the Leja definition (2.1). �

The previous result shows that given Z a Leja sequence over X , the growth of LZk ,2 is

monitored by the growth of λZk,2(zk). In particular, it is easily checked using induction on

k that

λZk,2(zk) = O(log(k)) =⇒ LZk,2 = O(k log(k)), (2.7)

and

λZk,2(zk) = O(kθ) =⇒ LZk ,2 = O(kθ+1). (2.8)
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In the following, we show basically that the previous implication holds with θ = 1/2 for

Leja sequences on U . However, we use the particular structure of such sequences in order to

show that the exponent θ = 1/2 is not deteriorated and that it is also valid for LEk,2. We

recall that we work with the simple sequence E given in (2.3) for which E2 = E. The binary

patten of the distribution of E on the unit disc yields the following result.

Lemma 2.4 Let E be as in (2.3). For any N ≥ 1, one has

λE2N ,2(z) = λEN ,2(z
2), z ∈ ∂U . (2.9)

Proof: Let l0, . . . , l2N−1 be the Lagrange polynomials associated with E2N and L0, . . . , LN−1

be the Lagrange polynomials associated with EN . Since e2j+1 = −e2j for any j ≥ 0, then in

view of (2.5)

wE2N
(z) = wE2

N
(z2) = wEN

(z2).

Deriving with respect to z and using (e2j+1)
2 = (e2j)

2 = ej for any j ≥ 0, we deduce that

|w′
E2N

(e2j+1)| = |w′
E2N

(e2j)| = 2|w′
EN

(e22j)| = 2|w′
EN

(ej)|, j ≥ 0. (2.10)

We have for any j = 0, . . . , N − 1

|l2j(z)| =
|wE2N

(z)|
|w′

E2N
(e2j)||z − e2j |

, |l2j+1(z)| =
|wE2N

(z)|
|w′

E2N
(e2j+1)||z − e2j+1|

.

Therefore in view of the previous equalities

|l2j(z)|2+|l2j+1(z)|2 =
|wEN

(z2)|2
4|w′

EN
(ej)|2

[ 1

|z − e2j |2
+

1

|z + e2j |2
]

=
|wEN

(z2)|2
|w′

EN
(ej)|2|z2 − ej|2

= |Lj(z
2)|2,

(2.11)

where we have used |a− b|2 + |a+ b|2 = 4 for a, b ∈ ∂U and e22j = ej. Summing the previous

identities for the indices j = 0, . . . , N − 1, we get the result. �

We note that the previous result combined with E2n = U2n in the set sense implies that

2n−1
∑

j=0

∣

∣

∣

z2
n − 1

2n(z − ej)

∣

∣

∣

2

= λE2n ,2(z) = λE1,2(z
2n) = 1, (2.12)

for any z ∈ ∂U . We now turn to the growth of λEk,2(ek), which as mentioned earlier monitor

the growth of LEk,2.
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Lemma 2.5 For the Leja sequence E defined in (2.3), we have for any k ≥ 1,

λEk,2(ek) =
√

2σ1(k) − 1 (2.13)

Proof: First, by Lemma 2.4 and e22N = eN , one has

|λE2N ,2(e2N )|2 = |λEN ,2(eN )|2, N ≥ 1. (2.14)

Let now k be an odd number and we write k = 2N + 1 with N ≥ 1. Let l0, . . . , l2N be the

Lagrange polynomials associated with Ek and L0, . . . , LN−1 be the Lagrange polynomials

associated with EN . For any m = 0, . . . , 2N , one has

lm(ek) =
wEk

(ek)

(ek − em)w
′
Ek
(em)

=
w′

Ek+1
(ek)

w′
Ek+1

(em)
⇒ |lm(ek)| =

|w′
EN+1

(e2k)|
|w′

EN+1
(e2m)|

,

where we have used k + 1 = 2(N + 1) and (2.10). Using e2k = eN and (e2j+1)
2 = (e2j)

2 = ej
for any j, we get for m = 2j or m = 2j + 1 with j = 0, . . . , N − 1

|lm(ek)| =
|w′

EN+1
(eN)|

|w′
EN+1

(ej)|
= |Lj(eN )| and also |l2N (ek)| =

|w′
EN+1

(eN )|
|w′

EN+1
(eN )|

= 1.

Summing the numbers |lm(ek)|2 over m = 0, . . . , 2N , we infer

|λE2N+1,2(e2N+1)|2 = 2|λEN ,2(eN )|2 + 1. (2.15)

In view of the above and λE1,2(e1)=1, the sequence α := (αk := |λEk,2(ek)|2)k≥1 satisfies:

α1 = 1 and α2N = αN , α2N+1 = 2αN + 1, N ≥ 1.

We have σ1(1) = 1 and σ1(2N) = σ1(N), σ1(2N + 1) = σ1(N) + 1 for any N ≥ 1. It is

then easily checked that (2σ1(k) − 1)k≥1 satisfies the same recursion as α. This shows that

αk = 2σ1(k) − 1 for any k ≥ 1 and finishes the proof. �

We are now able to conclude the main result of this section, which states basically that

for the sequence E or more generally any Leja sequence on U initiated at the boundary ∂U ,
the value of LEk,2 = maxz∈U λEk,2(z) is almost equal to λEk,2(ek).

Theorem 2.6 For the Leja sequence E defined in (2.3), we have for any k ≥ 1

1 ≤ LEk ,2

λEk,2(ek)
=

LEk,2√
2σ1(k) − 1

≤ 3 (2.16)
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Proof: The first part of the inequality is immediate from the definition of LEk,2. Also in

view Lemma 2.4 and formula (2.14), we only need to show (2.16) when k is an odd number.

Let k = 2N + 1 with N ≥ 1. Using Lemma 2.3, Lemma 2.4 and formula (2.14), we have

λEk,2(z) ≤ λE2N ,2(z) + λE2N ,2(e2N) + 1 = λEN ,2(z
2) + λEN ,2(eN ) + 1.

If we assumes that λEN ,2(z
2) ≤ 3λEN ,2(eN ), we get

λEk,2(z) ≤ 4λEN ,2(eN ) + 1 ≤ 3
√

2|λEN ,2(eN)|2 + 1,

where we have used the elementary inequality 4t + 1 ≤ 3
√
2t2 + 1 for any t ≥ 0. In view

of (2.15), one then gets λEk,2(z) ≤ 3λEk,2(ek). The verification LE1,2 = λE1,2(e1) = 1 shows

that the result follows using an induction on k ≥ 1. �

2.2 Implications on the Lebesgue constant

The methodology we have provided so far for bounding LEk,2 is not new, we have developed

it in [6] in order to give linear estimate for LEk
, namely LEk

≤ 2k. Theorem (2.6) has

also implications on the growth of the Lebesgue constant LEk
. Indeed, Cauchy Schwartz

inequality applied to the Lebesgue function λEk
implies λEk

≤
√
k λEk,2, so that

LEk
≤

√
k LEk,2 ≤ 3

√

k(2σ1(k) − 1). (2.17)

The Cauchy Schwartz formula λEk
≤

√
k λEk,2

is possibly not very pessimistic. It has been

recently proved that the Lagrange polynomials are uniformly bounded, see [14] We shall

observe in particular, see Figure, that the binary pattern observed for the exact value of LEk

is captured by the previous bound. Moreover, we are able to provide a lower bound for LEk
,

that is comparable to the previous upper bound for values of k with full binary expansion.

Proposition 2.7 For the Leja sequence E defined in (2.3), we have for any k ≥ 1

2σ1(k) − 1 ≤ λEk
(ek) ≤ LEk

. (2.18)

Proof: We let N ≥ 1 and we use the notation of the proof of Lemma 2.4. As for formula

(2.11) and since |a− b|+ |a+ b| ≥ 2 for any a, b ∈ ∂U , one has

|l2j(z)|+ |l2j+1(z)| =
|wEN

(z2)|
2|w′

EN
(ej)|

|z − e2j |+ |z + e2j |
|z − ej |

≥ |Lj(z
2)|.

This implies λE2N
(z) ≥ λEN

(z2) and more particularly λE2N
(e2N ) ≥ λEN

(eN). As in the proof

of Lemma 2.5, we have also λE2N+1
(e2N+1) = 2λEN

(eN)+1. The sequence (bk := λEk
(ek))k≥1

satisfies:

b1 = 1 and b2N ≥ bN , b2N+1 = 2bN + 1, N ≥ 1.

10



The sequence b then satisfies bk ≥ 2σ1(k) − 1 for any k ≥ 1. �

The previous theorem combined with Theorem 2.6 and (2.17) implies

√
2σ1(k) − 1

3
LEk,2 ≤ LEk

≤
√
k LEk,2. (2.19)

Cauchy Schwartz inequality is then satisfactory when k ≃ 2σ1(k), that is when k has a full

binary expansion.

Remark 2.8 For integers k = 2n, . . . , 2n+1 − 1, if k = 2n+1 − 1 in which case σ1(k) = n+1

is the largest possible, the bound (2.17) merely implies LEk
≤ 3k which is worse than the

bound 2k established [6] and the exact value LEk
= k of this case, see [3]. However, since

σ1(k) = n+ 1− σ0(k) for any k = 2n, . . . 2n+1 − 1, then by (2.17)

LEk
≤

√

18

2σ0(k)

√
2nk ≤

√

18

2σ0(k)
k. (2.20)

This shows in particular that LEk
≤ k whenever σ0(k) ≥ 5. This last result answers partly

the conjecture raised in [3] and which states that LEk
≤ k for any k ≥ 1.

For the purpose of the next section, we improve the bound (2.17) in the case where k is

an even number. We recall that we have shown in [6, Theorem 2.8]

LE2pl
≤ L2pLEl

, p ≥ 0, l ≥ 1, (2.21)

where L2p is the Lebesgue constant associated with the set of 2p-roots of unity. The value

L2p can be computed easily for small values of p and it grows logarithmically in 2p, see e.g.

[6, formula 2.25],

L1 = 1, L2 =
√
2, and L2p ≤

2

π

(

log(2p) + 9/4
)

, p ≥ 2. (2.22)

Since σ1(k) = σ1(k/2
p(k)), we have then in view of (2.17) and (2.21) the following theorem

Theorem 2.9 Let E be the Leja sequence defined in (2.3) or any Leja sequence on U initiated

at ∂U . We have

LEk
≤ 3

√

k

2p(k)
(2σ1(k) − 1) L2p(k) , k ≥ 1. (2.23)

We should mention that our primary interest in studying λEk,2 was the improvement of

the results of [7] concerned with the Lebesgue constants of ℜ-Leja sequences. This will be

11



made clear in the proof of Theroem 3.2. For the sake of the same theorem, we need also to

provide a growth property of Leja sequences on the unit disc.

We let E = (ej)j≥0 be the simple Leja sequence defined by (2.3). For m ≥ 0 and

1 ≤ l ≤ 2m−1, we introduce the notation K = 2m + l and Fm,l = E2m,K and define the

quantity

γm,l =
1

4m

K−1
∑

j=0

4

|wFm,l
(ej)|2

. (2.24)

The quantity γm,l is well defined. Indeed, by the particular structure of the sequence E, we

have E2m+2m−1 = E2m ∧ e
iπ
2m E2m−1 , so that E2m+2m−1 = U2m ∧ e

iπ
2m U2m−1 in the set sense. We

have then for j = 0, . . . , 2m + l − 1, ej is in U2m ∧ e
−iπ
2m U2m−1 which does not intersect with

Fm,l ⊂ e
iπ
2m U2m−1 . We have the following growth for γm,l.

Lemma 2.10 For any m ≥ 1 and any 1 ≤ l ≤ 2m−1, we have

γm,l ≤
5

2σ1(l)+p(l)+1
(2.25)

Proof: Since (e0, e1, e2) = (1,−1, i), it can be checked that γ1,1 = 5/4. We then fix m ≥ 2.

We define ρ = e2m = eiπ/2
m

, so that Fm,1 = {ρ}. We have

γm,1 =
2m
∑

j=0

4

(2m|ej − ρ|)2 = |λE2m ,2(ρ)|2 +
4

(2m|ρ− ρ|)2 = 1 +
1

|2m sin(π/2m)|2

where we have used (2.12) and used that ρ is a 2m-root of −1. Since 2m sin(π/2m) ≥ 2 then

γm,1 ≤ 5/4. For the other values of l = 2, . . . , 2m−1, we have

• If l = 2N , we have for any j ≥ 0 that wFm,l
(e2j+1) = wFm,l

(e2j) = wE2m−1,2m−1+N
(ej).

Pairing the indices in (2.24) as 2j and 2j + 1 with j = 0, . . . , 2n−1 +N − 1, we deduce

γm,l =
γm−1,N

2
.

• If l = 2N + 1 with N ≥ 1, we may write

γm,l =
1

4m−1

K−1
∑

j=0

|eK − ej |2
|wFm,l+1

(ej)|2
≤ 1

4m−1

K
∑

j=0

|eK − ej|2
|wFm,l+1

(ej)|2
= γm−1,N+1,

where we have again paired the indices by 2j and 2j+1 for j = 0, . . . , 2n+(N +1)−1

and used e2j+1 = −e2j and the identity |a+ b|2 + |a− b|2 = 4 for any a, b ∈ ∂U .

12



Therefore

γm,l ≤
5

4
am,l, 1 ≤ m, 1 ≤ l ≤ 2m−1,

where (am,l) 1≤m

1≤l≤2m−1
is the sequence that saturates the previous inequalities and hence is

defined by the following recursion:

am,1 = 1, m ≥ 1 and

{

am,2N = am−1,N/2 n ≥ 1, N = 1, . . . , 2m−2,

am,2N+1 = am−1,N+1 n ≥ 1, N = 1, . . . , 2m−2 − 1.

The sequence (am,l) has no dependance on m and it is equal, in the sense am,l = al, to the

sequence (al)l≥1 which satisfies the recursion: a1 = 1, a2N = aN/2, a2N+1 = aN+1. Since

σ1(1) + p(1) = 1, σ1(2N) + p(2N) = σ1(N) + p(N) + 1 and

σ1(2N + 1) + p(2N + 1) = σ1(2N + 1) = σ1(N) + 1 = σ1(N + 1) + p(N + 1),

then an immediate induction shows that al = 21−σ1(l)−p(l), which finishes the proof. �

3 ℜ-Leja sequences on [−1, 1]

ℜ-Leja sequences were introduced and studied in [4]. Such sequences are simply defined

as the projection, element-wise but without repetition, into [-1,1] of Leja sequences on U
initiated at 1. More precisely, given E = (ej)j≥0 a Leja sequence on U initiated at 1, the

ℜ-Leja sequence R = (rj)j≥0 associated with E is obtained progressively by: r0 = ℜ(e0) = 1,

J(0) = 0 and

rk = ℜ(eJ(k)) where J(k) = min{j > J(k − 1) : ℜ(ej) 6∈ Rk}, k ≥ 1. (3.1)

This means one projects ej if and only if ej 6= ei for all i < j. The projection rule that

prevents the repetition is provided in [4, Theorem 2.4]. One has

R = ℜ(Ξ), with Ξ := (1,−1) ∧
∞
∧

j=1

E2j ,2j+2j−1 . (3.2)

Using a simple cardinality argument, see [4, Theorem 2.4] or [7, Formula 40], this implies

that the function J used in (3.1) is given by: J(0) = 0, J(1) = 1 and

J(k) = 2n + k − 1, n ≥ 0, 2n + 1 ≤ k < 2n+1 + 1. (3.3)

In view of (3.2) and the properties of Leja sequences on U , any ℜ-Leja sequence R satisfies

r0 = 1, r1 = −1, r2 = 0 and r2j−1 = −r2j for any j ≥ 2. An accessible example of an ℜ-
Leja sequence is the one associated with the simple Leja sequence given by the bit-reversal

13



enumeration (2.3). We have shown in [6] that R = (cos(φj))j≥0 where the sequence of angles

(φk)k≥0 is defined recursively by φ0 = 0, φ1 = π, φ2 = π/2 and

φ2j−1 =
φj

2
, φ2j = φ2j−1 + π, j ≥ 2. (3.4)

This recursion provides a simple process to compute an ℜ-Leja sequence. We can also

construct a Leja sequence by simply using the recursion r0 = 1, r1 = −1, r2 = 0 and

r2j−1 =

√

rj + 1

2
, r2j = −r2j−1, j ≥ 2. (3.5)

One can check that the last sequence is obtained from the Leja sequence F which is con-

structed recursively by F1 = {1} and F2n+1 = F2n∧e
iπ
2n F2n . Both ℜ-Leja sequences R satisfies

2r20 − 1 = 1, 2r22 − 1 = −1 and more generally 2r22j − 1 = 2r22j−1 − 1 = rj for any j ≥ 2,

thanks to the trigonometric identity 2 cos2(θ/2)− 1 = cos(θ). This shows that in both cases

R satisfies the property

R2 = R where R2 := (2r22j − 1)j≥0, (3.6)

In general, given a Leja sequence E in U initiated at 1 and R the associated ℜ-Leja
sequence, we have that R2 is an ℜ-Leja sequence and it is associated with E2 which, in view

of Theorem 2.2, is also a Leja sequence initiated at 1. This result is given in [7, Lemma 3.4]

and it has many useful implications that we have exploited in order to prove that Dk(R)

grows at worse quadratically.

For all Leja sequences E on U initiated at 1, the section E2n+1 is equal in the set sense

with the set of 2n+1-roots of unity, therefore for all ℜ-Leja sequences R, the section R2n+1 is

equal to the set of Gauss-Lobatto abscissas of order 2n, i.e.

R2n+1 =
{

cos(jπ/2n) : j = 0, . . . , 2n
}

, (3.7)

in the set sense. This set of abscissas is optimal as far as Lebesgue constant is concerned, in

the sense LR2n+1
≃ 2 log(2n+1)

π
. More precisely, we have the bound

LR2n+1
≤ 1 +

2

π
log(2n), (3.8)

see [13, Formulas 5 and 13]. This suggests that the sequence R might have a moderate

growth of the Lebesgue constant of its section Rk.

In the paper [4], it has been proved that LRk
= O(k3 log(k)). We have improved this

bound in [6, 7] and showed that LRk
≤ 8

√
2 k2 for any k ≥ 2. Here we again exploit

our approach of [7] which, using simple calculatory arguments, relate the analysis of the
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Lebesgue function associated with Rk to that of the Lebesgue function associated with the

smaller Leja section that yields Rk by projection. This approach allows us to circumvent

cumbersome real trigonometric functions which arise in the study λRk
, see [4, 6], and to take

full benefit from the machinery developed for Leja sequence on U .

Remark 3.1 Without loss of generality, we assume for the remainder of this section that E

is the simple Leja sequence in (2.3) and R the associated ℜ-Leja sequence. All our arguments

hold in the more general case, the assumption is essentially for notational clearness. It allows

us, in view of (2.5), to use E instead for E2 and more generally instead of E2p which is defined

by E2p := ((e2pj)
2p)j≥0.

The bound (3.8) is sharp and we are only interested in bounding LRk
when k − 1 is not

a power of 2. For the remainder of this section, we use the notation

n ≥ 0, 2n < k − 1 < 2n+1, 0 < l := k − (2n + 1) < 2n

K := 2n+1 + l, Gk := EK , FK := E2n+1,K .
(3.9)

We should note that in [7] we have used k′ and Fk to denote l and FK . In view of (3.3),

we have K = J(k), so that EK is the smallest section that yields Rk by projection into

[−1, 1]. We denote by L0, L1, L2, · · · , LK−1 the Lagrange polynomials associated with EK .

The inspection of the the proof of [7, Lemma 6] shows that for z ∈ ∂U and x = ℜ(z),

λRk
(x) ≤ γK(z) + γK(z), γK(z) := |wFK

(z)|
K−1
∑

j=0

|Lj(z)|
|wFK

(ej)|
. (3.10)

In the proof of [7, Lemma 6], we have bounded the functions |wFk
|/|wFk

(ej)| in the previous

sum by 2n+
1
2
−p(l). This implied the result of [7, Theorem 5], namely LRk

≤ 2n+
3
2
−p(l)

LEK
.

In view of the new bound (2.23) and the facts that p(K) = p(l), σ1(K) = 1 + σ1(l) and

K = 2n + k − 1 ≤ 3× 2n, the previous bound implies

LRk
≤ 12

√
3 2

3n−3p(l)+σ1(l)
2 L2p(l) , k ≥ 1, (3.11)

where L2p is bounded as in (2.22). We propose to improve slightly the previous inequality

by applying rather Cauchy Schwartz inequality when bounding the function γK .

Theorem 3.2 Let R be an ℜ-Leja sequence and n, k and l as in (3.9). We have

LRk
≤ 6

√
5 2n+σ1(l)−p(l)

L2p(l) , (3.12)

where L2p is bounded as in (2.22).
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Proof: In order to lighten the notation, we use the shorthand p in order to denote p(l). We

introduce l′ and K ′ and FK ′ defined by

l′ := l/2p, K ′ := K/2p = 2n−p+1 + l′, FK ′ := E2n−p+1,K ′.

The sequence E satisfies E2 = E and one can check that wFK
(z) = wFK′ (z

2p). Also by

e22j = e22j+1 = ej, one has (e2pj+q)
2p = ej for any q = 0, . . . , 2p−1. Moreover, ifM1, . . . ,MK ′−1

are the Lagrange polynomials associated with EK ′, then

2p−1
∑

q=0

|L2pj+q(z)| ≤ L2pMj(z
2p), j = 0, . . . , K ′ − 1,

see the proof of [6, Theorem 2.8]. Therefore by pairing the indices in the sum giving γK by

2pj + q for j = 0, . . . , K ′ − 1 and q = 0, . . . , 2p − 1, we infer

γK(z) ≤
(

|wFK′ (ξ)|
K ′−1
∑

j=0

|Mj(ξ)|
|wFK′ (ej)|

)

L2p = L2pγK ′(ξ), with ξ = z2
p

.

In view of (3.10), this implies that LRk
≤ 2L2p supξ∈U γK ′(ξ). Applying Cauchy Schwatrz

inequality to γK ′ and using that FK ′ is an l′-Leja sequence, we have for any ξ ∈ U

γK ′(ξ) ≤ 2σ1(l′)
(

K ′−1
∑

j=0

1

|wFK′ (ej)|2
)1/2(

K ′−1
∑

j=0

|Mj(ξ)|2
)1/2

= 2σ1(l′)+n−p√γn−p+1,l′ λEK′ ,2(ξ),

where γn−p+1,l′ is defined as in (2.24) with m = n−p+1 and λEK′ ,2 is the quadratic Lebesgue

function associated with EK ′. In view of the bounds we have for these quantities and in view

of σ1(K
′) = 1 + σ1(l

′) and σ1(l
′) = σ1(l), we get

γK ′(ξ) ≤ 2σ1(l)+n−p

√

5

2σ1(l′)+1
3
√

21+σ1(l′) − 1 ≤ 3
√
5 2σ1(l)+n−p.

The proof is then complete. �

The bound in (3.12) improves the bound in (3.11) by 2
σ1(l)+p(l)−n

2 . The bound can also

yield linear estimates for LRk
, for instance when l is such that 2σ1(l)−p(l)L2p(l) ≤ 1, which is

the case if for example p(l) ≥ 2σ1(l). However, if 0 < l < 2n is the integer with the most

number of ones in the binary expansion, i.e. σ1(l) = n or l = 2n−1 and k = 2n+1, we merely

get the quadratic bound

LRk
≤ 6

√
5 22n =

3
√
5

2
k2. (3.13)

In [4], section 3.4, it is shown that for the values k = 2n, in other words Rk is the set of

Gauss-Lobatto abscissas (3.7) missing one abscissa, one has LRk
≥ λRk

(rk) = k − 1. As a
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consequence, the growth of LRk
for k ≥ 1 can not be slower than k. However, for this case,

we can prove LRk
≤ 3k, see (4.11), showing that (3.13) is rather pessimistic.

The estimate in (3.12) is logarithmic for many values of the integer k. For instance, if

k = (2n + 1) + 2n−pk′ for some p = 1, . . . , n and some k′ = 0, . . . , 2p − 1, then we have

l = 2n−pk′, so that n− p ≤ p(l) ≤ n and σ1(l) = σ1(k
′) ≤ p implying that

LRk
≤ 6

√
5 22p L2p(l) ≤ 6

√
5 22p L2n ≤ 6

√
5 22p

2

π

(

log(2n) + 9/4
)

. (3.14)

For a small value of p, the previous estimate is as good as the optimal logarithmic estimate
2 log(k)

π
for large values of n. Given then p fixed, one has 2p intermediate values between 2n+1

and 2n+1 + 1, which are the numbers k = (2n + 1) + 2n−pk′ for k′ = 0, . . . , 2p − 1, for which

the Lebesgue constant is logarithmic. This observation can be used in order to modify the

doubling rule with Clemshaw-Curtis abscissas in the framework of sparse grids, see [11].

4 Growth of the norms of the difference operators

In this section, we discuss the growth of the norms of the difference operators ∆0 = IZ1 and

∆k = IZk+1
− IZk

for k ≥ 1, associated with interpolation on Leja or ℜ-Leja sequences. We

are interested in estimating their norms Dk defined in (1.6). Elementary arguments, see [7],

show that

Dk(Z) =
(

1 + λZk
(zk)

)

sup
z∈X

|wZk
(z)|

|wZk
(zk)|

, k ≥ 1. (4.1)

In particular if Z is a Leja sequence on the compact X , then

Dk(Z) = 1 + λZk
(zk). (4.2)

In [6], we have established that λEk
(ek) ≤ k if E is a Leja sequence on U initiated at ∂U ,

which implies Dk(E) ≤ 1+k. Here, we improve slightly this bound. As for the improvement

of (2.17) into (2.23), we have

Theorem 4.1 Let E be a Leja sequence on the unit disk initiated at e0 ∈ ∂U , One has

D0(E) = 1 and

Dk(E) ≤ 1 +

√

k

2p(k)
(2σ1(k) − 1) L2p(k) (4.3)

For ℜ-Leja sequences R on [−1, 1], we have shown in [7] using a recursion argument based

on the fact that R2 defined as in (3.6) is also an ℜ-Leja sequence, that

Dk(R) ≤ (1 + k)2, k ≥ 0. (4.4)
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In view of the new bounds obtained in this paper for Lebesgue constant of ℜ-Leja sections,

the previous bound is not sharp. Indeed, we have Dk ≤ Lk + Lk−1 ≤ 12
√
5 k3/2, for k

such that l = k − (2n + 1) ≤ 2n/2. We give here a sharper bound for Dk(R). We recall

that up to a rearrangement in the formula (4.1), see [7] for justification, we may write

the quantities Dk(R) in a more convenient form for ℜ-Leja sequences. We introduce the

polynomial WRk
:= 2kwRk

, we have

Dk(R) = 2βk(R) sup
x∈[−1,1]

|WRk
(x)|, βk(R) :=

1 + λRk
(rk)

2|WRk
(rk)|

, (4.5)

We have already proved in [7, Lemma 7] that

β2n(R) = 1/4 and βk(R) ≤ 2σ0(k)−p(k)−1, for k 6= 2n. (4.6)

Here we provide a sharper bound for Dk(R) by slightly improving the estimate 4σ1(k)+p(k)−1

that we have established in [7] for supx∈[−1,1] |WRk
(x)|.

Lemma 4.2 Let R be an ℜ-Leja sequence in [−1, 1], n ≥ 1, 2n + 1 ≤ k < 2n+1 + 1 and

l = k − (2n + 1). One has supx∈[−1,1] |WRk
(x)| ≤ 2n+3 if k = 2n+1, else

sup
x∈[−1,1]

|WRk
(x)| ≤ 22σ1(k)+p(k)−1. (4.7)

Proof: We use the notation K, Gk and FK as in (3.9) and introduce Gk+1 := EK+1 and

FK+1 := E2n+1,K+1. In view of [7, Lemma 5], one has for z ∈ ∂U and x = ℜ(z)

|WRk
(x)| = |z2 − 1||wGk

(z)||wFK
(z)| = |z − z||wGk

(z)||wFK
(z)|.

Also since |z − z| ≤ |z − eK |+ |z − eK |, then

|WRk
(x)| ≤ |wGk+1

(z)||wFK
(z)|+ |wGk

(z)||wFK+1
(z)|.

In the two previous inequalities, one has FK = ∅ and wFK
≡ 1 in the case k = 2n + 1. We

have that Gk, Gk+1, FK and FK+1 are all Leja sections with length K, K + 1, l and l + 1

respectively. Therefore, by the second property in Theorem 2.2

|WRk
(x)| ≤ min

(

21+σ1(K)+σ1(l), 2σ1(K+1)+σ1(l) + 2σ1(K)+σ1(l+1)
)

= 22+σ1(l) min(2σ1(l), 2σ1(l+1)),

where we have used σ1(K) = 1 + σ1(l) and σ1(K + 1) = 1 + σ1(l + 1) since K = 2n+1 + l

and l < 2n. If k = 2n+1, i.e. l = 2n − 1, then |WRk
(x)| ≤ 23+n. Else by k = 2n + (l + 1) and

0 ≤ l < 2n − 1,

σ1(k)− 1 = σ1(l + 1) and σ1(k)− 2 + p(k) = σ1(k − 1)− 1 = σ1(l).
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Therefore

|WRk
(x)| ≤ 22σ1(k)+p(k)−1 min(2−1+p(k), 1),

which completes the proof. �

By injecting the estimate of the previous lemma and the estimate of (4.6) in formula

(4.5) and by using the identity σ0(k) + σ1(k) = n + 1 for 2n ≤ k < 2n+1, we are able to

conclude the following result.

Corollary 4.3 Let R be an ℜ-Leja sequence in [−1, 1]. The norms of the difference operators

satisfy, D0(R) = 1 and for 2n ≤ k < 2n+1

Dk(R) ≤ 2σ1(k)2n (4.8)

The previous estimates can be used in order to provide estimates for LRk
that can be

sharper than (3.12). We have ∆k = Ik − Ik−1, therefore

|LRk+1
− LRk

| ≤ Dk(R), k ≥ 1. (4.9)

In particular, the estimate in the previous corollary combined with the sharp bound (3.8)

implies that for the value k = 2n, we get

LRk
≤ 1 +

2

π
log(2n) + 2n+1 ≤ 3k (4.10)

This shows that in the case k = 2n which corresponds to Rk being the set of Gauss-Lobatto

abscissas (3.7) missing one abscissas and for which LRk
≥ k, the previous bound is satisfac-

tory. This also confirm that the estimates (3.12) is indeed pessimistic in this case, see the

inequality (3.13). This added to the observed growth of LRk
for values k ≤ 128, Figure 4.1,

suggests that the bound

LRk
≤ 3k, k ≥ 1, (4.11)

might be valid for any ℜ-Leja sequence R. We conjecture its validity.

In Figure 4.1, we also represent for the values k ≤ 128, the growth of the Lebesgue

constant LEk
(in blue) and the estimate

√

k(2σ1(k) − 1) (in red) which multiplied by 3 bounds

LEk
, see (2.17). We observe that the regular patterns in the graph of k 7→ LEk

, which reveals

the particular role of divisibility by powers of 2 in k, is caught by the estimate. The worst

values of LEk
appear for the values k = 2n − 1 for which it was proved in [3] that LEk

= k

and which is also equal to
√

k(2σ1(k) − 1) since σ1(k) = n.
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Figure 4.1: Exact Lebesgue constants associated to the k-sections of the Leja sequence E

and the assciated ℜ-Leja sequence R for k = 1, 3, . . . , 129.
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