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 Abstract— Personal autonomous vehicles are cars, trucks 

and bikes capable of sensing their surrounding 

environment, planning their route, and driving with little or 

no involvement of human drivers. Despite the impressive 

technological achievements made by the industry in recent 

times and the hopeful announcements made by leading 

entrepreneurs, to date no personal vehicle is approved for 

road circulation in a ‘fully’ or ‘semi’ autonomous mode 

(autonomy levels 4 and 5) and it is still unclear when such 

vehicles will eventually be mature enough to receive this 

kind of approval. The present review adopts an integrative 

and multidisciplinary approach to investigate the major 

challenges faced by the automative sector, with the aim to 

identify the problems that still trouble and delay the 

commercialization of autonomous vehicles. The review 

examines the limitations and risks associated with current 

technologies and the most promising solutions devised by 

the researchers. This negative assessment methodology is 

not motivated by pessimism, but by the aspiration to raise 

critical awareness about the technology’s state-of-the-art, 

the industry’s quality standards, and the society’s demands 

and expectations. While the survey primarily focuses on the 

applications of artificial intelligence for perception and 

navigation, it also aims to offer an enlarged picture that 

links the purely technological aspects with the relevant 

human-centric aspects, including, cultural attitudes, 

conceptual assumptions, and normative (ethico-legal) 

 
 

frameworks. Examining the broader context serves to 

highlight problems that have a cross-disciplinary scope and 

identify solutions that may benefit from a holistic 

consideration. 
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1. Introduction 

1.1. Context and Goals of the Survey 

In recent years, autonomous vehicles (also known as 

“intelligent”, “self-driving”, or “driverless” vehicles) and their 

underlying technologies underwent remarkable development 

[1]–[3], which was not, however, sufficient to make them road-

ready. This review specifically focuses on personal 

autonomous vehicles (PAVs), i.e. autonomous cars, trucks, and 

bikes (as opposed to uncrewed cargos and collective passenger 

transports like autonomous coaches, trains, and trams) that rely 

on artificial intelligence (AI) to sense their surrounding 

environment, plan their route, and transport their passengers to 

destination with little or no supervision by human drivers. The 



2 

 
goal is to highlight the limitations and the shortcomings that 

still delay the large-scale implementation and the 

commercialization of PAVs. This investigation is motivated by 

the growing tension between the expectations bestowed on 

PAVs and the difficulty to meet them. 

To begin with, PAVs are expected to alleviate human 

driver’s burden and assist people with disabilities or driving 

constraints (e.g., people legally prevented from driving) 

through performing some or all the intelligent operations 

required for driving, such as adaptive cruise control, lane keep 

assist, pre-collision avoidance, and traffic sign recognition. 

Thanks to the superior precision, accuracy, consistency, and 

velocity of their responses, PAVs are, in principle, likely to 

commit on average fewer errors than humans (especially the 

humans susceptible to fatigue, distraction, poor driving 

behaviors, substance abuse, adverse weather, etc.), thus 

providing increased safety [4]. That is why, once sufficiently 

mature, PAVs are expected to improve driving safety by 

reducing road accidents and human error injuries, which in turn 

could alleviate traffic congestion, improve viability, minimize 

fuel consumption and reduce air pollution [166]. While the 

desiderata are clear, assessing the current state of PAVs’ 

development is not easy, as their readiness for 

commercialization and large-scale adoption does not depend on 

a single technological variable, but on a multiplicity of deeply 

intertwined, complex, sometimes intangible, factors, ranging 

from implementational to economical, socio-technical, human, 

and normative factors [480]. 

Large-scale programs for testing PAVs in urban 

environments and on motorways have been running in the US 

[167], China [168], the UAE [169], Europe [170], and Japan 

[171], among others. These programs aim to evaluate the safety, 

efficiency, and adaptability of PAVs under diverse traffic 

conditions and regulatory frameworks. In addition, robot-taxi 

services are currently being tested in cities like Beijing and 

Wuhan (China) [172], Dubai (UAE) [173], San Francisco 

(California) [174], and Tokyo (Japan) [175], where PAVs 

navigate complex urban layouts and interact with real traffic. 

These tests are critical for refining autonomous technology and 

preparing for widespread deployment, as they provide valuable 

data on vehicle performance, public safety, and regulatory 

compliance in a range of real-world settings. However, results 

are mixed and show diverse critical areas: on the one hand, self-

driving cars seem able to navigate traffic and deal appropriately 

with standard driving scenarios while preserving a satisfactory 

level of safety [477]; on the other hand, several accidents have 

been caused by the unexpected failure of autonomous vehicles 

on American roads, which involved severe damage to property 

and casualties [483, 484, 485, 486]. In the cities where robot-

taxis were tested, frequent incidents and malfunctions (often 

involving delays and traffic congestion) have been reported 

[478], [479]. 

Responses by users and bystanders and perceptions by 

prospective users and investors are also heterogenous [176], 

with reported levels of trust and acceptance fluctuating 

significantly [176]. Remarkably, some developers, enthused by 

the successes of the newest technological solutions, have 

indicated that PAVs equipped with ‘full’ or ‘high’ driving 

automation were almost ready for commercialization [177], at 

a time when some of the major car makers decided to 

temporally divest from ‘full’ or ‘semi’ autonomy (automation 

levels 5 and 4, respectively, see Section 2.1) mode to focus on 

simpler assistive technologies (automation levels 1-3) to 

manage risk and optimize the allocation of R&D resources. 

Despite some impressive technological achievements and the 

optimistic announcements made by some entrepreneurs, to date 

only a very few models of private cars equipped with 

automation level 3 (‘conditional driving automation’, see 

Section 2.1) are legally allowed to circulate, and anyway with 

limitations (e.g., only in restricted areas, with speed limited to 

95km/h) [481, 482], while no private vehicle is licensed to roam 

public roads in ‘full’ or ‘semi’ autonomous mode (automation 

levels 4 and 5), and it is still unclear when privately-owned 

PAV equipped with automation levels 3, 4 and 5 will be mature 

enough to operate universally and without restrictions [178]. 

Even the extensive experimentation with company-owned 

robotaxis conducted in San Francisco has offered mixed results 

so far, with licenses initially granted and then temporarily 

revoked by local transport authorities after attracting strong 

negative responses by the city’s inhabitants: even though robot-

taxis prevalently operate in fully autonomous mode, the 

problems they tend to generate (frequent traffic congestions, 

occasional accidents), their standing restrictions (speed 

limitations and functioning limited to specific urban areas, 

without an option for highways), and their persisting need for 

human supervision (onboard safety drivers or remote drivers 

intervening when required) cast doubts on their overall 

maturity. Experts debate whether the development of the most 

advanced forms of autonomous drive constitutes a long-term, 

complex challenge requiring profound and capillary 

transformations of the general transportation infrastructure. The 

unreadiness of PAVs technology is apparent but its causes are 

not entirely obvious and there is no consensus about the nature 

of the critical obstacles or which of them need being prioritized. 

1.2. Research Questions and Scope 

The present review mainly tackles five research questions: 

(Q1) What is still needed to make PAVs real and accessible to 

anybody? (Q2) What are the most persistent obstacles faced by 

developers and makers? (Q3) Are these problems structural in 

nature (i.e., universal and permanent) or contingent upon 

specific technological approaches? (Q4) Are they entirely 

distinct problems or are they characterized by a communal root 

and similar patterns?  (Q5) Should they be addressed using 

short-termed, local fixes or long-termed, global strategies? Our 

review adopts an integrative and multidisciplinary approach to 

investigate the major challenges faced by the automative sector, 

with the aim to identify the problems that still trouble and delay 

the commercialization of autonomous vehicles.  

Our review is primarily meant to examine the limitations and 

risks of current technologies and the most promising solutions 
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devised by the researchers: our negative methodological 

approach is not motivated by pessimism toward the ambitions 

of autonomous drive (in fact, we are eager to recognize that 

many problems have already been or are on the way to being 

permanently solved) but, on the contrary, by the desire to 

support research & development through a greater critical 

awareness of his historical successes and failures. Our review 

particularly focuses on the applications of AI for perception and 

navigation, as the main shortcomings have been imputed to core 

areas concerning environment scene understanding and 

decision-making. However, it also aims to offer an enlarged 

picture that links the purely technological aspects with the 

relevant human-centric, conceptual, and normative aspects. 

Examining the broader context serves to highlight problems 

that have a cross-disciplinary scope and identify solutions that 

may benefit from a holistic approach. 

This survey is designed to connect ten different domains in 

which PAV’s research still struggles. It is organized as follows: 

Section 2 introduces the main conceptual challenges in PAV’s 

research and defines key notions adopted in this area (the 

subsections cover: 2.1 the problem of quantifying and assessing 

autonomy; 2.2 the challenges of advanced driver assistance 

systems); Section 3 explores the challenges concerning 

environment perception (3.2 challenges related to sensors; 3.3 

challenges related to data sets and neural networks; 3.4 

challenges related to environment perception); Section 4 

deepens the problems concerning AI for path planning (4.2 path 

planning challenges; 4.3 sensor uncertainty; 4.4 balancing 

safety and efficiency; 4.5 real time localization and mapping 

challenges, 4.6 large scale map updates challenges); Section 5 

addresses commonsense reasoning and its limitations (5.1 

grounding problem; 5.2 semantic integration problem; 5.3 

defining the research agenda; 5.4 corner cases; 5.5 safety, 

reliability and feasibility; 5.6 vulnerable road users; 5.7 narrow 

and general AI theoretical challenge); Section 6 discusses the 

uncertain role of road infrastructure (6.2 inconsistency and 

unclarity challenge; 6.3 unpredictable conditions challenge; 6.4 

digital infrastructure fragility challenge; 6.5 road design 

challenge); Section 7 is about connected autonomous vehicles 

and the challenges associated with traffic management (7.2 

adaptivity challenge; 7.3 intelligent intersection management 

challenge; 7.4 traffic control challenge; 7.5 automated 

negotiation challenge); Section 8 is about human factors and 

interfaces (8.2 the cognitive workload challenge; 8.3 the 

situational awareness challenge; 8.4 the human-machine 

interface challenge; 8.5 autonomy level 4 and 5 human factors 

challenges); Section 9 discusses how users’ attitudes and 

perceptions can negatively impact the adoption of PAVs (9.2 

the trust challenge; 9.3 scarce familiarity; 9.4 technology 

resistance; 9.5 cultural prejudices); Section 10 faces the ethical 

dilemmas (10.2 the trolley problem; 10.3 the value alignment 

problem; 10.4 the accountability problem); Section 11 reviews 

public policy and governance issues (11.2 Safety and licensing; 

11.3 Liability and insurance; 11.4 Data privacy and 

cybersecurity). 

1.3. General Methodological Notes 

The number of literature reviews related to autonomous 

driving is breathtaking. Several surveys concerning 

autonomous vehicles have been published over the last ten 

years (for example, Table II summarizes the main surveys on 

computer vision). Most of these surveys focus only on one or 

two applications of a specific technology (e.g., computer vision 

or deep learning) for autonomous driving: for example, Arnold 

et al. [8] reviewed the application of 3D object detection in 

autonomous driving; in, Zhang et al. reviewed deep learning-

based lanes marking detection methods [9]; several studies 

reviewed vehicle detection methods for autonomous driving 

[10]–[12]; and Ranft et al. investigated the role of machine 

vision in intelligent vehicles [13]. 

Also, the majority of the available surveys address the 

technical problems most frequently faced by the autonomous 

driving systems, while only some of them address the human-

centric and societal problems. However, we have never 

encountered a survey that tries to identify the communal root of 

the merely technological, the conceptual/theoretical, and the 

socio-technical problems, combining the understanding of 

problems as different as computer vision, mapping, road 

infrastructure, connectivity, situational awareness, trust, and 

moral dilemmas to identify communal patterns, unobvious 

links, and analogous trajectories.  

Our review adopts a cross-disciplinary approach to achieve 

this integrative goal. Also, it offers a map of the efforts made 

by the major automotive manufacturers and by several 

countries to promote the development of autonomous driving 

systems, with a view to distinguish their distinctive approaches. 

To identify the root causes of the problems that still afflict 

autonomous driving systems we will replicate the following 

schema through all the sections of the survey: we first identify 

the major challenges faced by autonomous driving systems in 

each area; then we review how these challenges have been 

addressed; finally, we attempt to recognize, when possible, the 

connections and similarities between different areas. In this 

work, instead of covering every state-of-the-art paper, we apply 

discipline-specific sets of selection criteria, with each thematic 

section adopting different criteria. Independently of this 

specificity, all sections prioritize the latest papers (from 2013 to 

2024) and those published in prestigious journals (with impact 

factors greater than 3.5) or reputable international conferences. 

2. Fundamental Notions and Concept-Level 

Challenges 

2.1. Levels of Driving Automation: the Problem of 

Quantifying Autonomy 

Conceptually differentiating between increasing levels of 

autonomy represents a theoretical and taxonomical challenge in 

itself. Establishing a universal method to measure and assess an 

agent’s level of autonomy is challenging for at least three 

reasons: first, unlike automation (which is a merely objectual 

property), autonomy is an inherently relational property (its 

nature requires to specify both what makes an agent 
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independent and from what). Secondly, the application of this 

notion in the context of AI does not necessarily coincide with 

the way it is typically applied in the context of human agency: 

unlike traditional automated technologies (which involve only 

mechanisms capable to blindly-repeat predefined routines in ad 

hoc synthetic environments), in order to be considered 

autonomous artificial agents must demonstrate intent, 

capability, and awareness somehow comparable to the 

analogous qualities of human agents. Each of these qualities is 

a complex notion in its own respect, which constitute a third 

challenge [179]. 

 

Fig. 1. SAE categories of autonomous driving system. 

 

 

Despite these complexities, the subject matter experts 

conventionally refer to the standard taxonomy established by 

the Society of Automotive Engineers (SAE), which categorizes 

autonomous driving systems based on their amount of 

automation, distinguishing between six levels that range from 

“level 0” (no driving automation) to “level 5” (fully driving 

automation) [7]: 

• Level 0 (no driving automation): warnings and momentary 

assistance. The vehicle has no driving automation technology, 

the human driver entirely operates the vehicle’s movement, 

such as steering, accelerating, braking, etc. 

• Level 1 (driver assistance): steering or brake/acceleration 

support. This is the lowest level of automation, where one 

aspect of the driving process is operated using data from sensors 

and cameras, while the driver retains entire control of the 

vehicle. The main challenge at this level is to inform the driving 

with one or more driving automation systems (see next section) 

that are transparent, simple to implement, useful to improve 

safety and driving performing, and not causing distraction or 

interfering with the normal driving routine. The information 

from sensors must be processed in a reliable and fast manner to 

provide useful input to control the vehicle. 

• Level 2 (partial driving automation): steering and 

brake/acceleration support. At this level, advanced driver 

assistance systems (ADAS) undertake a significant portion of 

the driver’s responsibilities. ADAS controls speed and steering 

simultaneously by relying on multiple data sources such as 

cameras, radar, LiDAR, and GPS, while drivers must keep their 

eyes on the driving environment. The driver is responsible for 

monitoring all operations and always must be ready to take over 

control of the vehicle. The system collects information on the 

driving environment and provides assistance such as 

acceleration, deceleration or steering to the driver. Compared to 

level 1, the main challenge at level 2 consists in augmenting the 

driving experience with more structured assistance that 

combines different sources and input and offering different 

services in a way that reduces the cognitive burden for the 

driver, instead of increasing. The information from different 

types of sensors must be integrated consistently and allow for 

accurate recognition of environmental features. 

• Level 3 (conditional driving automation): the automated 

driving system performs the entire driving task without driver 

supervision, but only in limited conditions. Compared to level 

2, the driver is no longer obliged to constantly monitor the 

driving environment but must be always present when an 

intervention request is made. The system undertakes most of the 

operations and monitors surrounding conditions with onboard 

sensors to make informed decisions in particular conditions. 

Drivers can take their hands off the steering wheel and eyes off 

the road but have to take control of the vehicle when an 

intervention request is made. As level 3 is between assisted and 

automated drive, its distinctive challenge is to implement a fluid 

transition of between human control and AI-based drive, 

ensuring both that the human is immediately available when 

needed and that control can be safely handed over to the AI. 

• Level 4 (high driving automation): the vehicle can drive 

without driver supervision under all conditions and takeover 

requests can be ignored by the driver. The vehicle is capable of 

driving fully autonomously in proper settings and does not 

require any human interaction. The vehicle is competent at 

dealing with most problems on its own, so it asks the driver to 

take over only in some particular cases. At this stage, the 

distinctive challenge is to train several narrow AIs to be 

sufficiently developed to promptly initiate and reliably 

completely different goal-specific tasks (e.g., overtaking, 

parking, negotiating a roundabout, etc.). 

Level 5 (full driving automation): like level 4, but the vehicle 

does not issue any takeover request. Vehicles equipped with 

this level of autonomy are driverless vehicles in a true sense. 

They are capable to reach the selected destination in any road 

conditions so that the intervention or even the attention of the 

driver are superfluous. At this stage, the distinctive challenge is 

to have a general AI system sufficiently developed to integrate 

all the tasks controlled at level 4 into a consistent plan of action 

while comprehending the overall context (e.g., distinguishing 

between waiting in line in the traffic vs being stuck in a 

procession) so to effectively adapt to complex, dynamic, and 

largely unpredictable circumstances. This level of autonomy 

are driverless vehicles in a true sense. They are capable to reach 

the selected destination in any road conditions so that the 

intervention or even the attention of the driver are superfluous. 

At this stage, the distinctive challenge is to have a general AI 

system sufficiently developed to integrate all the tasks 

controlled at level 4 into a consistent plan of action while 
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comprehending the overall context (e.g., distinguishing 

between waiting in line in the traffic vs being stuck in a 

procession) so to effectively adapt to complex, dynamic, and 

largely unpredictable circumstances.  

This categorization allows us to conceptually distinguish 

between automated vehicles (SAE levels 1-3), which use 

electronic or mechanical devices to replace some human driving 

functions, and autonomous vehicles (SAE levels 4-5), which 

replace all human driving functions [355, p. 190]. Autonomous 

vehicles can drive themselves and do not strictly need to 

communicate or cooperate with other vehicles or infrastructure 

in order to complete their basic functions autonomously. To 

date, most of the existing driving systems advertised as 

“autonomous” are in fact equipped with level 2 or level 3 

driving automation features that allow these systems to deal 

with some specific driving tasks in a minimally autonomous 

way. Both level 2 and level 3 systems depend on multiple 

sensors and computer vision algorithms to understand the 

driving environment. The levels of automation and the 

challenges related to autonomy will be further discussed in 

Section 8, concerning human factors and interfaces. 

2.2. Development of Automated Driving Systems (ADSs) 

and Related Problems 

In recent years, more and more vehicles equipped with 

technologies that assist human drivers or operate the vehicle 

under the supervision of human drivers are produced and 

delivered to the market. These “driving automation systems” 

are a set of technologies that provide drivers with assistance or 

warning in the process of driving. They are intended to enhance 

driving and road safety through efficacious and easy-to-adopt 

human-machine interfaces. Different levels of driving 

automation rely on different driving automation systems, which 

is why we distinguish between ADAS, that levels 1 and 2 of 

driving automation primarily rely on, and automated driving 

systems (ADSs), that are additionally involved in levels 3 to 5. 

Compared to ADAS, ADS may ultimately be able to operate a 

vehicle without the intervention of a human driver [5]. 

ADAS uses technical elements such as sensors, cameras, and 

computer vision algorithms to detect nearby obstacles or driver 

errors and respond accordingly. As a key underlying technology 

for autonomous vehicles, ADAS are designed to automate, 

adapt, and enhance vehicle technology for safety and better 

driving [5]. ADAS technologies are usually classified into two 

types: passive ADAS technologies alert the driver to a 

dangerous situation (so the driver must take actions to avoid an 

accident caused by this situation); instead, active ADAS 

technologies enable the vehicle to actively decide how to avoid 

the worst-case scenarios. For instance, if the pre-collision 

avoidance system detects an impending collision and the driver 

has failed to take evasive action, brakes can be applied 

automatically without the driver’s interaction. 

The origin of ADAS begun in 1948 when Ralph Teetor 

invented the modern cruise control system. In 1971, Daniel 

Wisner designed the electronic cruise control system that uses 

electric pulses to enable a vehicle to move at a constant speed. 

In 1984, Carnegie Mellon University (CMU) started the 

NavLab project that aims to use computer vision to achieve 

autonomous navigation [33]. The NavLab project developed 

the first modern autonomous vehicle that was featured with 

level 1 autonomy. In 1987, Mercedes-Benz developed the first 

level 2 autonomous vehicle that was able to simultaneously 

control steering and acceleration under the supervision of 

human driver [34]. 

In 1990, William Chundrlik and Pamela Labuhn invented the 

adaptive cruise control (ACC) system, which enables a vehicle 

to maintain a pre-set speed in the absence of a detected there is 

a preceding vehicle and maintains a preset following distance. 

Motivated by the advancement of the modern era and demand 

for new technology, more advanced system was invented. In 

1995, the OnStar company introduced the collision avoidance 

system which utilizes a computer-operated system consisting of 

radar, laser, and/or vision technology to detect whether or not 

 

Fig. 2. Levels of Vehicle 

Autonomy: the figure 

illustrates the six levels of 

vehicle autonomy, from 

Level 0 (no automation) to 

Level 5 (full automation). 

Each level represents a 

progressive increase in 

automation and reduction in 

the need for human driver 

intervention. 



6 

 

the vehicle has collision risk. In 2008, Volvo invented the 

Automatic Emergency Braking (AEB) system, and its XC60 

was the first vehicle to be launched with AEB system. Two 

years later, Volvo introduced pedestrian detection with full auto 

brake, which applies radar and cameras to warn a driver if 

pedestrians appear in front of the vehicle and then brakes 

automatically if the driver fails to stop. This is a milestone in 

the automotive industry, acknowledging computer vision as 

central components of autonomous driving. 

In 2014, Tesla became the first company to release 

commercial autonomous vehicles. These vehicles were 

equipped with Autopilot system [35], which has lane keep 

assistance, adaptive cruise control, and traffic sign recognition 

functions. The Autopilot system is classified as level 2, as it 

requires human drivers to be paying attention and ready to 

resume control at all times. Since October 2016, vehicles 

manufactured by Tesla were equipped with eight cameras, 

twelve ultrasonic sensors, and a radar for environment 

perception to enable autonomous driving. 

2.2.1. ADAS and Their Challenges 

Until now, the popular ADAS features that have been 

delivered to the market include: 

Adaptive Cruise Control (ACC) – A feature that 

automatically adjusts the vehicle’s speed to maintain a safe 

distance from vehicles ahead. However, ACC can struggle with 

poor weather conditions (e.g., rain, fog, snow) that impact 

sensor accuracy. Moreover, in heavy traffic, the system may 

react too slowly or fail to response to sudden changes, resulting 

in jerky accelerations or braking. Drivers might also become 

over-reliant on ACC, leading to reduced attentiveness, which is 

risky if manual intervention is required. 

High Beam Assist (HBA) – A feature that automatically 

adjusts the headlamp range (switches between high beam and 

low beam) depending on the brightness of detected vehicles and 

certain road conditions. However, the system may occasionally 

misinterpret reflective surfaces, street signs, or distant vehicles, 

resulting in inappropriate headlight adjustments. This can cause 

temporary blindness for oncoming drivers or insufficient 

illumination in certain conditions, potentially compromising 

safety. 

Lane Departure Warning (LDW) – A feature that uses one 

or more cameras to detect lane markings ahead of the vehicle 

and alerts the driver with visual, audible, and/or vibration 

warnings if the vehicle begins to drift out of its lane. The system 

may struggle with faded or poorly marked roads, making it less 

reliable in areas with poor road infrastructure. False warnings 

can also occur if the lane markings are unclear or during 

intentional lane changes without signaling, which can frustrate 

drivers and reduce trust in the system. 

Lane Keep Assist (LKA) – A feature that uses one or more 

cameras to detect the lane markings ahead of the vehicle and 

monitor the vehicle’s position within the lane. If the vehicle 

leaves its lane and the driver fails to take corrective action, the 

system can automatically provide steering adjustments to help 

Table I: main characteristics of the autonomous driving systems developed by 18 automotive manufacturers. We compare these systems in terms of the types 

of sensors, the functions, and SAE levels of autonomy. Information sources: Audi [41], BMW [42], Fiat [43], Ford [44], Honda [45], Hyundai [46], Kia 

[47], Land Rover [48], Lexus [49], Mazda [50], Mercedes-Benz [51], [52], Mitsubishi [53], Nissan [54], [55], Subaru [40], [56], Tesla [57], TOYOTA 

[58], Volkswagen [59], and Volvo [37]. 

Company Country System Sensors Functions Level 
ACC DAM HBA LDW LKA PCW TJA TSR 

Audi Germany Pre-Sense Camera, Radar, 

Ultrasonic Sensor 

√ − √ √ √ √ √ √ Level 2 

BMW Germany Driving Assistant 
plus 

Camera, Radar 
Ultrasonic Sensor 

√ − − √ √ √ − √ Level 2 

Fiat Italy Ducato Camera, Radar √ √ √ √ √ √ √ √ Level 2 

Ford USA Co-Pilot360 Camera, Radar √ √ √ − √ √ − √ Level 2 

Honda Japan SENSING Camera, Radar √ − √ √ √ √ √ √ Level 2 

Hyundai South Korea Smart Sense Camera, Radar √ √ √ − √ √ − √ Level 2 

Kia South Korea Kia Drive Wise Camera, Radar √ √ √ √ √ √ − − Level 2 

Land Rover UK InControl Camera √ √ − √ √ √ − √ Level 2 

Lexus Japan Lexus Safety 

System+ 

Camera, Radar √ − √ √ √ √ − √ Level 2 

Mazda Japan i-ACTIVSENSE Camera, Radar, 
Ultrasonic Sensor 

√ √ √ √ √ √ − √ Level 2 

 

Mercedes-Benz 

 

Germany 

 

Drive Pilot* 

Camera, LiDAR, 

Radar, Ultrasonic 

Sensor 

 

√ 

 

√ 

 

√ 

 

√ 

 

√ 

 

√ 

 

√ 

 

√ 

 

Level 3 

Mitsubishi Japan MiTEC Camera, 

Ultrasonic Sensor 

√ − √ √ − √ − − Level 2 

Nissan Japan ProPILOT Camera, Radar √ − √ √ √ √ − √ Level 2 

Subaru Japan Preventative 

Safety** 

Camera √ √ √ √ √ √ − − Level 2 

Tesla USA Autopilot Camera, Radar, 

Ultrasonic Sensor 
√ √ √ √ √ √ − √ Level 2 

TOYOTA Japan Toyota Safety 

Sense 

Camera, Radar √ − √ √ √ √ − √ Level 2 

Volkswagen Germany IQ.DRIVE Camera, Radar √ √ − √ √ √ √ − Level 2 

 

Volvo 

 

Sweden 

 

Ride Pilot* 

Camera, LiDAR, 

Radar, 
Ultrasonic Sensor 

 

√ 

 

− 

 

− 

 

√ 

 

√ 

 

√ 

 

− 

 

− 

 

Level 3 
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keep the car securely within the detected lane. The system 

depends on clear lane markings, which may be absent or faded 

in certain areas. When lane markings are unclear, the system 

may not function correctly and fail to provide necessary 

steering corrections. In addition, excessive reliance on LKA 

could lead to reduced driver attentiveness. 

Pre-Collision Warning (PCW) – A feature that uses one or 

more cameras or radar to detect a potential collision with a 

vehicle or pedestrian in front of the vehicle. If the system 

determines the driver has failed to take evasive action, the 

brakes can be applied automatically. The key issue of PCW is 

false positives, where the system detects a threat that does not 

exist, resulting in unnecessary braking that might confuse the 

driver. Furthermore, PCW may struggle with detecting smaller 

objects or fast-moving targets like motorcycles. 

Traffic Sign Recognition (TSR) – A feature that recognizes 

and relays traffic sign information to drivers via the instrument 

panel. It may not work effectively in areas where traffic signs 

are obscured, damaged, or placed in non-standard positions. 

False recognition can cause the system to misreport speed limits 

or other critical signs, potentially leading to confusion or non-

compliance with traffic rules. 

Driver Attention Monitor (DAM) – A camera-based 

technology that tracks driver alertness. One major concern is 

the possibility of false alarms, where the system incorrectly 

interprets normal driver actions, like checking mirrors or 

adjusting controls, as signs of distraction. On the other hand, 

the system may fail to detect actual drowsiness if the driver’s 

face is not clearly visible to the camera. 

Traffic Jam Assist (TJA) – A feature that uses one or more 

camera(s) to monitor lane markings and the vehicle ahead. TJA 

can automatically brake and steer if the driver does not react in 

time. The system's main limitation is its performance in rapidly 

changing traffic conditions or complex environments with 

multiple lane changes. Poor weather conditions or unclear lane 

markings can also reduce its accuracy, leading to delayed or 

incorrect responses. 

It can be observed that most of the autonomous driving 

systems are level 2, except for the Drive Pilot and the Ride Pilot 

developed by Mercedes-Benz and Volvo, respectively. The 

level 3 systems apply multiple sensors, including cameras, 

radar, LiDAR, and ultrasonic sensors, to acquire real-time data 

from the surrounding environment. Moreover, these systems 

rely on high-definition (HD) maps, which provide detailed 

information on road geometry, route profiles, traffic signs, and 

unexpected traffic events. A key feature of level 3 systems is 

the integration of high-accuracy LiDAR with HD maps. In 

these systems, LiDAR scans are continuously matched to the 

HD map, allowing for precise vehicle positioning. It is worth 

noting that the Drive Pilot system has been approved for use on 

specific freeway sections in Nevada, US, but only at speeds up 

to 40 mph (64.37 km/h). This system is expected to feature in 

Mercedes’s high-end S-Class and EQS sedan vehicles, and it 

costs 5320 euro for the S-Class and 7448 euro for the EQS in 

Germany [36]. 

The Ride Pilot system includes five radar sensors, eight 

cameras, 16 ultrasonic sensors, and a LiDAR for 

comprehensive data collection [37]. However, this system faces 

several challenges in real-world applications. While the sensor 

array aims to provide robust environmental perception, each 

sensor type has limitations under varying conditions, such as 

poor visibility or adverse weather, which can impact detection 

accuracy. Besides, the integration of data from multiple sensors 

requires complex data fusion algorithms to handle calibration, 

synchronization, and the resolution of conflicting data. This 

complexity can impact the reliability of object detection and 

classification. Moreover, as the Ride Pilot system is still 

undergoing road tests in Sweden, regulatory approval and 

safety validation remain necessary steps, potentially delaying 

deployment. 

2.2.2. Persisting Challenges 

Despite these advancements, significant challenges remain, 

especially as systems progress toward level 4 and level 5 

autonomy. Compared to level 3 systems, level 2 systems 

primarily depend on cameras, radar, and ultrasonic sensors 

rather than LiDAR and HD maps. In April 2023, Audi 

abandoned its plan to introduce level 3 autonomy in its A8 

sedan, reverting to its Pre Sense system, which supports level 2 

autonomy [38].  The Pre Sense system includes additional 

features, such as a night vision assistant that uses a long-range 

infrared camera to detect heat-emitting objects, providing 

visual information to the driver in low-light conditions. In 

addition to the features listed in Figure 1, the Pre Sense system 

has the night vision assistant function which uses a long-range 

infrared camera to sense the thermal energy emitted by objects. 

The EyeSight system, developed by Subaru, relies solely on 

stereo RGB cameras (i.e., capturing light in Red, Green, and 

Blue wavelengths) to detect pedestrians, cyclists, and other 

vehicles, assessing their distance, shape, and speed to help 

avoid potential collisions [40]. In addition, EyeSight can detect 

the sudden activation of brake lights in the vehicle ahead, 

helping to avoid potential collisions. However, both systems 

exemplify the limitations of level 2 autonomy, as they depend 

on human oversight and cannot operate independently in all 

driving conditions. 

To sum up, most of the current autonomous driving systems 

provide assistive functions to support human drivers to drive 

safely. Features such as ACC, LDW, LKA, and PCW have been 

solved by most of the current ADAS systems. Vehicles are 

equipped with these features that can control their steering, 

accelerating, and braking under the monitor of human drivers. 

These systems materially depend on sensors such as cameras, 

radar, ultrasonic sensors, and LiDAR to collect data from the 

surrounding environments. In addition, the listed features 

heavily depend on computer vision applications such as depth 

estimation, object detection, lane detection, and traffic sign 

recognition algorithms to extract information from the collected 

data. The extracted relevant information is then used by the 

vehicle’s computer to make driving decisions. Thus, the main 
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challenge to ensure the correct functioning of ADAS is that the 

underlying sensors and computer vision applications work 

accurately (precise and consistent), reliably (robust and 

flexible), efficiently (processing information parsimoniously 

and cost-effective), and easily integrated (interoperable, 

replaceable) [18] [5]. 

The level 3 system, Drive Pilot, represents a milestone in the 

development of autonomous driving. However, it can only 

operate at speeds up to 40 mph (64.37 km/h) on suitable 

freeway sections. Besides, the Drive Pilot system uses 

computer vision applications to sense the environment around 

the vehicle, and a HD map to estimate the position of the 

vehicle. Therefore, multiple information fusion is indispensable 

for achieving the aim of autonomous driving. The high-level 

computer vision tasks such as vision-based path planning, and 

visual localization and mapping that enable vehicles to 

autonomously plan their trajectories or localize their positions 

have been widely explored in academic community [180]. 

Information fusion plays a critical role in autonomous 

driving. It integrates data from various sensors, such as 

cameras, radar, LiDAR, and HD maps, to achieve a 

comprehensive understanding of the vehicle's surroundings 

[181]. This allows the system to make more accurate decisions 

in terms of lane detection, obstacle detection, traffic sign 

recognition, and position localization. However, the 

complexities of processing multi-modal data in real time results 

in significant computational burdens. Moreover, misalignments 

between data sources, sensor noise, and latency issues can 

degrade the accuracy and safety of autonomous driving systems 

[182]. 

Effective information fusion must address these challenges 

by ensuring that the data from different sensors is synchronized 

and correctly interpreted. Achieving this milestone would 

enable higher-level tasks, such as vision-based path planning 

and visual localization, allowing vehicles to autonomously plan 

their trajectories and localize their positions. Although these 

tasks have been widely explored in the academic community, 

practical implementation still faces significant obstacles due to 

the challenges arising from information fusion. Therefore, the 

integration of information fusion into real-world autonomous 

systems remains an area that requires further development. 

2.3 Conclusions and the Way Forward 

The development of autonomous driving has encountered 

notable challenges, particularly in progressing beyond levels 2 

and 3 systems. Although levels 4 and 5 enable fully self-driving 

vehicles, they demand exceptionally high standards of 

reliability, real-time processing, and decision-making across 

diverse and unpredictable driving scenarios, such as densely 

populated urban environments and complex road networks 

[178]. The remaining of this review will document how current 

sensor technologies (Section 3), AI (Section 4), and information 

fusion techniques (Sections 3-5) have not yet matured to the 

point where they can ensure safety under these conditions. Not 

only because of these technical limitations but also because of 

regulatory barriers (Section 11) and users’ perceptions about 

safety (Section 9) and ethical worries (Section 10), 

manufacturers have shifted their focus toward enhancing levels 

2 and 3 systems. These systems, while still requiring human 

intervention, can autonomously manage specific driving tasks 

such as steering, acceleration, and braking under certain 

conditions. This approach is more feasible with the current state 

of technology and, as we will see in Section 11, is better aligned 

with existing regulatory approval processes. Also, as discussed 

in Section 8, gaining consumer trust is easier with these systems 

since they maintain human involvement, improving both safety 

and user experience. 

In contrast, levels 4 and 5 autonomy require vehicles to 

operate entirely without human intervention under all 

conditions. This requires integrating data from multiple sensors, 

such as cameras, LiDAR, radar, and HD maps, to enable precise 

and reliable real-time decision-making. However, challenges in 

information fusion, including synchronization issues, sensor 

noise, and latency, have hindered progress. Achieving full 

autonomy remains the ultimate goal, but progress is slow, and 

a clear timeline for widespread deployment has not yet been 

established. While research efforts to develop technologies for 

levels 4 and 5 have are discontinuing, manufacturers are 

currently prioritizing the improvement of level 2 and 3 systems. 

These systems offer a more immediate path to enhancing safety 

and the driving experience, while the complex requirements for 

full autonomy continue to present significant challenges for the 

future. Considering the delays in the development of level 4 and 

level 5 system, and that their functions remain largely 

speculative, in the following sections we will review the 

commonly used sensors, data sets, and environment perception 

tasks for current autonomous driving systems. 

3. Environment Perception and Sensors 

3.1. Introduction and Methodology 

PAVs rely on a range of sensors and computer vision 

algorithms to interpret and respond to their environments. This 

section provides an overview of widely used sensors [60], 

highlighting their operating mechanisms, sensing modalities, 

data sizes, and challenges associated with each. We then present 

key data sets [15] developed for AV perception tasks and 

investigate their unique attributes, helping to inform suitable 

selection for various applications. 

For papers on computer vision and environment perception 

we chose IEEE Xplore as the primary repository, given its 

influential role in the fields of computer science, electrical 

engineering, electronics, and related areas [21]. To focus on the 

applications of computer vision in autonomous vehicles, we 

selected "computer vision," "autonomous vehicle," 

"autonomous driving," and "ADAS" as the foundational 

keywords. These were combined with terms related to computer 

vision applications, such as "pedestrian detection", "cyclist 

detection", "vehicle detection", "lane detection", "traffic sign 

recognition", "sensor", and "dataset" for advanced searches 

through Google Scholar. Additionally, we reviewed several 
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preprint papers [6], [22]–[32] widely recognized in the field for 

introducing state-of-the-art research or datasets. 

3.2. Sensors and Related Challenges 

3.2.1. Cameras 

Cameras are the most commonly used image sensors that 

sense the visible light spectrum reflected from objects [60]. 

Compared with Radar and LiDAR, cameras are relatively 

cheap. Images from the camera give straightforward 2D 

information, which can be applied to object detection or lanes 

detection. The measure distance of cameras ranging from 

several centimeters to 100m. However, the performance of 

cameras is greatly reduced by light or weather conditions such 

as fog, haze, smock, and smog, which limits their applications 

to daytime and clear skies. Moreover, cameras also suffer from 

huge data management problems, due to the large volume of 

data they generate. A single high-resolution camera usually 

generates 20-60 MB data per second [61]. It poses great 

challenge to data processing systems as analyzing and 

interpreting high volumes of data in real-time requires 

significant computational resources. 

3.2.2. LiDAR 

LiDAR is an active ranging sensor that measures the distance 

TABLE II: A summarization of a number of surveys related to autonomous vehicle perception published from 2013 to 2023. The surveys covered in this table 

are selected based on the relevancy to the main topic of this work, publication year, and reputation of the publisher. “AD”: Autonomous Driving, “ADS”: 

Autonomous Driving System, “AV”: Autonomous Vehicle, “CAS”: Collision Avoidance System, “PD”: Pedestrian Detection, and “SOTA”: State-of-the-art. 

 
Title Year Description Remarks 

Looking at vehicles on the road: A 
Survey of Vision-Based Vehicle Detection, 

Tracking, and Behavior Analysis [10] 
2013 

Investigating vision-based 
methods for vehicle detection, 

tracking, and behavior understanding 

Surveyed vision-based methods for vehicle 
detection, tracking, and behavior understanding. 

Only traditional methods are covered. 

Recent Progress in Road and 
Lane Detection: A Survey [14] 

2014 

Survey on approaches 
and algorithms for 

road and lane detection 

Analyzed the road and lane detection methods 
from the perspective of different function 

modules. Only traditional methods are covered. 

Vehicle Detection Techniques for 
Collision Avoidance Systems: A Review [11] 

 
2015 

Survey on vision-based vehicle 
detection and tracking 

algorithms for CAS 

Analyzed vehicle detection methods for CAS. 
Compared the performance of different sensors. 

Discussed motorcycle detection and 
tracking methods. 

The Role of Machine Vision 
for Intelligent Vehicles [13] 

2016 
Reviewing machine vision for 

driver assistance and automated driving 

Outlined the present and the 
potential future role of machine 

vision for driver assistance and AD. 

When to Use What Data Set for Your 
Self-driving Car Algorithm: An Overview 

of Publicly Available Driving Datasets [15] 
2017 

Analyzing 27 publicly 
available data sets for AD 

Compared 27 data sets from different 
perspectives. Provided guidelines for 
selecting data set for different tasks. 

Autonomous Vehicle Perception: The 
Technology of Today and Tomorrow [16] 

2018 Reviewing the AV perception methods 
Presented an overview of the sensor, localization 

and mapping techniques for AVs. Discussed 
improvements for sensors and AV perception. 

A Survey on 3D Object Detection Methods 
for Autonomous Driving Applications [8] 

2019 
Survey 3D object detection 

methods for AD applications 

Reviewed 3D object detection in AVs. 
Analyzed the pros and cons of sensors. 

Discussed standard data sets. 

Pedestrian Detection in Automotive 
Safety: Understanding State-of-the-Art [17] 

2019 
Survey pedestrian detection 

methods in the automotive application 

Investigated the techniques used in PD for 
automotive application. Highlighted the 

demand for low-cost and robust PD solutions. 

A Survey of Deep Learning 
Techniques for Autonomous Driving [18] 

2020 
Survey the current SOTA deep 

learning technologies used in AD 

Investigated different AI and deep learning 
technologies used in AD. Tackled 

challenges in designing AI architectures for AD 

LiDAR for Autonomous Driving: The 
Principles, Challenges, and Trends for 

Automotive LiDAR and Perception Systems [3] 
2020 

Reviewing LiDAR technologies 
and perception algorithms for AD 

Introduced the principle of how LiDAR 
works. Analyzed the main development 

directions of LiDAR technology. 

A Progressive Review: Emerging 
Technologies for ADAS Driven Solutions [5] 

 
2021 

Reviewing different functionalities 
of ADAS and its levels of autonomy 

Progressively reviewed the principle of 
different sensors, and important ADAS 
features. Examined various multi-sensor 

systems used in ADAS. 

Deep Learning in Lane 
Marking Detection: A Survey [9] 

2021 
Survey the deep learning-based 

methods for lane marking detection 

Focused on deep learning-based lane marking 
detection. Provided in-depth analysis 
lane marking detection algorithms. 

Deep Neural Network Based 
Vehicle and Pedestrian Detection for 
Autonomous Driving: A Survey [19] 

2021 
Survey the DNN-based methods for 

pedestrian and vehicle detection 
Performed experimental comparison of several 

mainstream detectors for pedestrian and vehicle. 

Detection of Motorcycles in Urban 
Traffic Using Video Analysis: A Review [20] 

2021 
Reviewing algorithms for 

motorcycle detection and tracking 

Investigated the algorithms for motorcycle 
detection and tracking from videos. 

Motorcycle detection in urban environments. 

A Review of Vehicle Detection 
Techniques for Intelligent Vehicles [12] 

2022 
Reviewing the vehicle detection 
methods for intelligent vehicles 

Investigated vehicle detection with different 
sensors. Compared the performance of classical 

methods and deep learning-based methods. 

Camera-Radar Perception for 
Autonomous Vehicles and ADAS: 

Concepts, Data sets and Metrics [6] 

 
2023 

Survey the camera and radar-based 
perception methods for ADAS and AVs 

Analyzed the pros and cons of different 
sensing modalities. Presented an overview 

of the deep learning-based detection 
and segmentation methods. 
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to objects based on the round-trip time of a laser light pulse 

[60]. Laser beams are low divergence to reduce power decay 

with distance, thus, it enables LiDAR to measure distance up to 

200m. Benefit from the high accuracy distance measure ability, 

LiDAR is commonly applied to construct accurate and high-

resolution maps. However, the LiDAR suffers from sparse 

measurements which is not suitable for detecting small targets. 

Furthermore, its measurement range and measurement accuracy 

could be influenced by weather conditions [62]. Finally, the 

high costs restrict the wide deployment of LiDAR on 

autonomous vehicles [63]. Specifically, the 16 lines Velodyne 

LiDAR costs almost $8000, while the Velodyne VLS-128E 

costs over $100000. LiDAR produces about 10-70 MB data per 

second, which is a challenge because today’s onboard 

computing platforms are not always powerful enough to 

achieve a real-time processing speed [61]. 

Beyond traditional LiDAR applications, AI-driven 

algorithms have expanded LiDAR’s potential by improving 

real-time data processing and navigation capabilities. For 

example, Zhang et al. [148] developed an AI-driven approach 

to process LiDAR data in real time, creating accurate 3D 

reconstructions of the environment. This combination of AI and 

LiDAR data enables PAVs to navigate complex terrains with 

improved precision, facilitating obstacle identification and path 

planning. By merging LiDAR data with AI techniques, we can 

overcome some inherent limitations of LiDAR, enhancing the 

AV's perception and decision-making processes. 

3.2.3. Radar  

Radar uses electromagnetic or radio waves to detect objects 

[60]. It can not only measure the distance to an object but also 

detect the angle and relative speed of the moving object. 

Generally, the working frequency of radar system is 24 or 77 

GHz. The maximum measure distance of 24 GHz radar is 70m, 

while the maximum measure distance increases to 200m for the 

77 GHz radar. Compared with LiDAR, radar is well suited for 

measurements in conditions with dust, smoke, rain, adverse 

Table III: this table summarizes some data sets for the perception tasks of autonomous vehicles that collected in the period from 2013 to 2023. The table 

presents types of sensors, the presence of adverse conditions (e.g., time, weather), the data set size, and the position of data collection. It also shows the types 

of the intended applications and annotation format. Therefore, Table III provides guidelines for readers to select the appropriate data set for the related 

applications. “Sensors”: only visual sensors are illustrated in the Table, “K”: thousand, “M”: million, “USYD”: The University of Sydney, “–”: represents that 

no information is provided, and “♢”: More than 1.5 years once a week continuously updated. “IS”: Instance Segmentation, “LD”, Lane Detection, “OD”: 

Object Detection, “PD”: Pedestrian Detection, “SS”: Semantic Segmentation, “TLD”: Traffic Light Detection, “TSD”: Traffic Sign Detection, “VD”: Vehicle 

Detection, “VP”: Visual Perception. 

 

Year Data set Application Sensors Time Weather 
Image 
Frames 

Annotation 
Type 

Locations 

2013 KITTI [64] VP 
RGB Camera 

LiDAR 
Day Real 44K 

2D Boxes, 3D Boxes 
Road Surface, Pixel 

Karlsruhe 

2016 LISA TL [65] TLR RGB Camera Day, Night Real 43016 2D Boxes San Diego 

2016 TT100K [66] TSD Panorama Camera Diverse Diverse 100K 2D Boxes, Pixel Mask China 

2017 BOSCH [67] TLD RGB Camera – Diverse 13427 2D Boxes San Francisco 

2018 BDD100K [25] VP RGB Camera Diverse Diverse 100K 
2D Boxes, Lane Markings, 

Drivable Area, Pixel 
New York 

San Francisco 

2018 KAIST [68] VP 
RGB Camera 

Thermal Camera 
LiDAR 

Diverse – 95000 2D Boxes Seoul 

2019 D2-City [26] 2D OD, OT RGB Camera – – 
1000 
clips 

2D Boxes 5 China cities 

2019 NightOwls [69] PD RGB Camera Down, Night Diverse 279K 2D Boxes Europe 

2019 STL [70] TLD RGB Camera Diverse Diverse 14800 2D Boxes, Pixel – 

2020 A2D2 [28] VP 
RGB Camera, 

LiDAR 
Day – 41277 

3D Boxes 
Pixel 

3 Germany cities 

2020 A*3D [71] 3D OD 
RGB Camera 

LiDAR 
Diverse Diverse 39k 3D Boxes Singapore 

2020 MTSD [72] TSD RGB Camera Diverse Diverse 105K 2D Boxes Global 

2020 USyd [73] VP 
RGB Camera, 

LiDAR 
Diverse Diverse ♢ Pixel USYD 

2021 PVDN [74] PVD Gray Camera Night – 59746 Keypoints – 

2022 OpenMPD [75] 
2D/3D OB 
2D/3D SS 

RGB Camera 
LiDAR 

Day Sunny 15000 2D Boxes, Pixel Beijing 

2022 CeyRo [76] TSD, TLD RGB Camera Diverse Diverse 7984 2D Boxes Sri Lanka 

2022 DualCam [31] TLD RGB Cameras – – 1845 2D Boxes – 

2022 KITTI-360 [77] VP 
RGB Camera 

LiDAR 
– – 150K 3D Boxes, Pixel Karlsruhe 

2022 K-Lane [78] LD 
RGB Camera 

LiDAR 
Day, Night – 15382 Lane lines – 

2023 S2TLD [79] TLD RGB Camera Diverse Diverse 5786 2D Boxes China 

2023 ZOD [32] 
2D/3D OD 

IS, SS 
TSR, RC 

RGB Camera 
LiDAR 

Day, Night 
Twilight 

Diverse 100K 
2D/3D Boxes, 
Classification, 

Pixel 
Europe 

 

 



11 

 
light or rough surfaces [60]. In terms of the data size, each radar 

produces 10-100 KB per second [61]. 

3.2.4. Ultrasonic Sensors  

Ultrasonic sensors measure the distance of objects via emitting 

ultrasonic waves [2]. The sensor head emits an ultrasonic wave 

and receives the wave reflected from the target. Therefore, the 

distance can be calculated by measuring the time between the 

emission and reception. Ultrasonic sensors are widely used in 

automobile self-parking and anti-collision safety systems. 

Ultrasonic sensors have the merit of being easy to use, highly 

accurate, and can detect very small changes in position. 

However, it has limited measure distance (less than 20m), and 

inflexible scanning methods. The price of an ultrasonic sensor 

is usually less than $100. The ultrasonic sensor has a similar 

data size as radar, which is 10-100 KB per second [61]. 

3.3. Data Sets 

A crucial component for the safety of autonomous driving is 

the perception of the environment around the autonomous 

vehicles. In general, autonomous vehicles are equipped with 

multiple sensors along with sophisticated computer vision 

algorithms to capture necessary information from the driving 

environment. However, these algorithms usually depend on 

deep learning techniques, especially convolutional neural 

networks (CNNs), which drives the requirement for benchmark 

data sets. Some data sets are better suited for specific tasks than 

others, which is why several data sets for evaluating different 

components of autonomous driving systems have been 

collected by researchers from both academia and industry. 

Table II summarizes various data sets used for perception tasks 

in autonomous driving, collected between 2013 and 2023. In 

this table, we analyze these data sets based on sensor types, the 

presence of adverse conditions (e.g., time of day, weather), data 

set size, and data collection locations. Furthermore, we 

summarize the intended applications and annotation formats. 

Therefore, Table II is expected to serve as a guideline for 

readers in selecting an appropriate data set for their specific 

applications. 

3.4. Environment Perception and Related Challenge 

Perception refers to the ability of an autonomous vehicle to 

gather data through onboard sensors, extract necessary 

information and gain the understanding of the environment 

around the vehicle [2]. It is a fundamental component of PAVs 

because it provides them with necessary information on the 

driving environment for safe driving, thus unsafe behavior of 

existing PAVs has often been imputed to incomplete or 

undeveloped perceptual capabilities [183]. A PAV requires the 

capability to correctly interpret the driving environment, 

recognizing elements such as obstacles, traffic signs, and the 

free drivable areas in front of the vehicle. In general, 

environmental perception tasks are associated with computer 

vision, deep learning, and CNNs [183]. To operate safely, 

PAVs are expected to successfully complete four key computer 

vision tasks: depth estimation, object detection, lane detection, 

and traffic sign recognition. In this section, we provide an 

overview of these tasks. 

3.4.1. The Depth Estimation Challenge 

The objective of depth estimation is to estimate a dense depth 

map from the input RGB image(s) [80]. Active methods use 

sensors such as RGB-D cameras, LiDAR, or radar to measure 

the depth information from the environment. However, RGB-D 

cameras suffer from a limited measurement range which is not 

suitable for autonomous vehicles that run at high speed in 

outdoor environments. LiDAR and radar are limited to sparse 

coverage. Besides, the price of high accurate LiDAR is 

extremely expensive which increases the cost of autonomous 

vehicles. Compared with LiDAR and radar, RGB cameras are 

cheaper, and they can provide richer information about the 

environment. Therefore, passive depth estimation methods 

based on cameras have been developed by both academia and 

industries. 

The most common passive methods for depth estimation are 

based on stereo vision or monocular vision. Stereo depth 

estimation aims to find the correspondence between two 

rectified images from two cameras to predict the disparity 

between these two images [81]. The foundation of stereo depth 

estimation is similar to the depth perception of human eye and 

is on the basis of triangulation of rays from two overlapping 

viewpoints. In recent years, many stereo depth estimation 

methods [82]–[85] have been developed. The produced depth 

maps contain distance information from the surface of objects 

to the camera, which is of great importance for the PCW system 

in ADAS. For example, Subaru’s EyeSight driver assist system 

utilizes stereo RGB cameras to determine the distance between 

the vehicle and pedestrians, cyclists and vehicles. 

The stereo depth estimation algorithms require that both 

images have been rectified. The transformation process 

necessary to rectify the image is contingent upon the calibration 

process. However, the calibration process requires taking 

several images of a known calibration pattern (e.g., the 

checkerboard method), which makes the calibration relatively 

tedious. Therefore, stereo depth estimation methods are 

sensitive to various environmental conditions (e.g., mechanical 

shock) that can potentially change the physical structure of the 

camera [81]. 

Due to the recent advances in computer vision and deep 

learning, estimating depth maps from monocular RGB images 

is becoming more convenient. As a class of deep learning 

algorithm, CNNs use convolutional operation to replace matrix 

multiplication to process data with the format of multiple 

arrays, such as a RGB image consisting of three 2D arrays 

including pixel intensities in three color channels [86]. 

Therefore, they are specifically used for image recognition and 

tasks that involve the processing of pixel data. In 2014, Eigen 

et al. [87] developed the first CNN-based monocular depth 

estimation method and demonstrated the prospect of using 

CNN to predict depth maps from monocular RGB images. 

Then, inspired by [87], many monocular depth estimation 

networks [23], [88] have been introduced. However, these 
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methods depend on extremely deep and complex network 

architectures that require high performance GPUs to run in real-

time. To improve the running speed of monocular depth 

estimation, real-time CNNs [29], [89]–[91] have been 

developed. Compared to stereo depth estimation, monocular 

depth estimation does not require extrinsic calibration but 

usually achieves inferior depth accuracy. 

3.4.2. Object Detection Challenges 

3.4.2.1. Generic Object Detection Challenge  

Generic Object Detection aims to search for the instances of 

objects from a set of predefined classes (e.g., cat, dog, 

basketball, fridge) from input images. If present, the detector 

returns the spatial location and extent of each instance [92]. It 

places emphasis on detecting a broad range of classes of 

objects. The detectors are divided into two groups: two-stage 

detectors and one-stage detectors. The two-stage detectors 

begin by extracting a set of region proposals and then classify 

each of them via a separate network, while the single-stage 

detectors directly predict class probabilities and bounding box 

offsets from the input image in a unified network. The 

representative two-stage detectors are R-CNN [93] and its 

successors [94], [95]. 

R-CNN [93] first applies selective search algorithm [96] to 

extract a set of region proposals from the input image. The 

extracted region proposals are then resized to a fixed size and 

passed through a CNN to extract feature maps. Finally, the 

class-specified linear SVM classifiers are applied to predict the 

presence of an object within each region and to recognize object 

classes. One year later, He et al. [97] developed the spatial 

pyramid pooling network (SPPNet). The core contribution of 

the SPPNet is a spatial pyramid pooling (SPP) layer that allows 

CNNs to produce a fixed- length feature representation from the 

entire image. Based on the R-CNN and SPPNet, Girshick 

proposed Faster R-CNN [94]. Instead of separately learning a 

detector and a bounding box regressor as in R-CNN or SPPNet, 

Fast R-CNN jointly to learn classify object proposals and 

regress their spatial locations. Meanwhile, Ren et al. [95] 

designed a Region Proposal Network (RPN) for generating 

region proposals. RPN shares the fully convolutional layers 

with the detection network, therefore it works with little or no 

additional computations. 

In 2016, Joseph et al. [98] treated object detection as a 

regression problem and designed the first CNN-based one-stage 

object detector, named YOLO. Unlike two-stage detectors, 

YOLO divides the input image into regions and simultaneously 

predicts bounding box and probability for each region. Liu et 

al. [99] introduced the SSD algorithm, which achieves better 

performance than YOLO in terms of running speed and 

accuracy. Benefitting from the multi-reference and multi-

resolution detection techniques, SSD achieves competitive 

accuracy with two-stage detectors such as Faster R-CNN. The 

subsequent versions [24], [27], [100], [101] of YOLO that were 

developed after SSD outperform most of existing object 

detection algorithms in inference speed and accuracy through 

applying optimized structures. 

Recently, YOLO-v8 [183] has been introduced with 

significant advancements over previous versions, including an 

improved model architecture and training techniques. It 

incorporates an enhanced backbone and neck structure with 

improved feature pyramid network (FPN) and path aggregation 

network (PANet) components, allowing for better handling of 

multiscale features. Besides, YOLO-v8 introduces more 

efficient loss functions and anchor-free prediction mechanisms, 

enabling it to handle variable object sizes and shapes with 

increased precision. YOLO-v8 achieves state-of-the-art 

performance in both accuracy and inference speed, making it a 

competitive choice among single-stage detectors. Based on 

these generic object detectors, detectors aim to search specific 

class of object from images have been developed. Readers can 

refer to [92], [102] for more details on generic object detection. 

The key challenges associated with generic object detection 

stem from the difficulty of accurately identifying objects across 

a wide variety of classes while maintaining efficiency in 

inference speed. One major problem lies in the trade-off 

between accuracy and speed. Specifically, two-stage detectors 

such as Faster R-CNN [95], produce high accuracy but are 

computationally expensive due to the dependence on region 

proposals and subsequent classification. This makes them 

slower and less suited for real-time applications. By contrast, 

one-stage detectors like YOLO [98] and SSD [99] are designed 

to be faster by avoiding the region proposal stage and directly 

predicting bounding boxes and class probabilities. However, 

this often results in lower precision, particularly when detecting 

smaller or cluttered objects. 

Another key issue is the difficulty in balancing the detection 

of objects across various scales and aspect ratios. Object 

detectors must be robust across different sizes, orientations, and 

occlusions of objects, which complicates the task. For instance, 

while SSD benefits from multi-resolution detection, ensuring 

consistency across scales remains a significant challenge. 

Furthermore, detecting objects in cluttered or complex 

environments introduces further difficulty, as occlusion and 

background noise can mislead detectors, resulting in false 

positives or missed detections. Therefore, improving the ability 

of detectors to cope with such variations without sacrificing 

speed or accuracy is a persistent problem in object detection. 

3.4.2.2. Class-Specific Object Detection Challenge 

Compared with generic object detection, the objective of 

class-specific object detection is to detect a specific class of 

object such as cyclist, pedestrian or vehicle. In the PCW feature 

of ADAS, the class-specific object detection enables the 

vehicles to detect the appearance of the cyclist, pedestrian or 

vehicle in front of it. When the PCW determines that the 

probability of a frontal collision with the detected frontal 

pedestrian, cyclist or vehicle is high, it activates the visual and 

audible alerts to remind the driver to take evasive action. If the 

system detects the driver failed to take evasive action, the AEB 

system can be applied automatically to stop the vehicle. 
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Besides, if an insufficient braking input is detected, the system 

can increase the braking force to provide full braking response. 

Therefore, it can help reduce the risk of a frontal collision. In 

real-world environments, cyclists, pedestrians and vehicles may 

be moving in any direction.  

As a result, the possibilities of the shape of these objects are 

unlimited. Additionally, different dressing styles or colors of 

pedestrians and cyclists, and different colors of vehicles, makes 

it complex to represent cyclists, pedestrians and vehicles with a 

unique set of templates. In this subsection, we review 

algorithms for cyclist detection, pedestrian detection and 

vehicle detection. Those algorithms have characteristics and 

challenges in the real-world, such as vastly different scales, 

poor appearance conditions, and extremely severe occlusion in 

crowd scenarios [103]. 

Class-specific object detection, particularly for detecting 

cyclists, pedestrians, and vehicles, faces several critical 

challenges in real-world environments. One major issue is the 

variability in the appearance and movement of these objects. 

Cyclists, pedestrians, and vehicles can move in any direction, 

and their shapes can vary significantly due to different 

orientations and poses. Moreover, the variety in clothing styles, 

colors, and vehicle types increases further complexity, making 

it difficult to represent these objects with a fixed set of 

templates. Furthermore, detecting these objects in adverse 

conditions, such as varying lighting, weather, and crowded 

scenes, is particularly challenging. Severe occlusion, especially 

in cluttered environments, further improves detection difficulty, 

as parts of the objects may be obscured, leading to potential 

false negatives or inaccurate localization. These problems 

highlight the requirement for robust algorithms that can adapt 

to the dynamic nature of real-world scenarios and ensure 

reliable detection in complex, unpredictable environments. 

3.4.2.2.1. The Pedestrian Detection Problem 

Pedestrian detection refers to the task of detecting 

pedestrians from images, which is a basic component of the 

PCW system. Besides, the automotive night vision system in 

some certain premium vehicles also featured pedestrian 

detection [104]. In the field of computer vision, Dalal and 

Triggs [105] proposed the classical pedestrian detection method 

that combines histograms of oriented gradients (HOGs) and 

linear support vector machine (SVM). This work is a milestone 

in pedestrian detection and has been cited more than 46,000 

times. The proposed method produces promising accuracy, but 

it is difficult to run in real-time. Besides, Zhang et al. [106] 

analyzed the relation between body parts and different channels 

of features produced by pedestrian detector and proposed to use 

channel-wise attention to solve the occlusion problem for 

pedestrian detection. Later, Li et al. [107] developed a YOLO-

based method for pedestrian detection in hazy weather. 

Furthermore, they collected a data set that includes 1195 

pedestrian images in hazy weather. This data set is further 

augmented through six image augmentation techniques to train 

the developed pedestrian detector. In 2020, Zhang et al. [103] 

designed a pedestrian detector for crowded scenes. In 

particular, they treat pedestrian detection as a feature detection 

problem that combines semantic features to model the semantic 

differences between each instance in crowed environments. 

The abovementioned methods all detect pedestrians from 

RGB images. Compared to RGB cameras, thermal cameras are 

insensitive to ambient light and capture less texture. Therefore, 

they are robust in bright sun glare scenarios. In 2020, 

Nowosielski et al. [108] developed a nighttime pedestrian 

detection system for supporting the driver during night driving. 

The developed system detects pedestrians from thermal images 

through YOLOv2 detector in an ODROID XU4 microcomputer 

platform. Later, Kim et al. [109] introduced an uncertain-aware 

multi-modal (color and thermal) pedestrian detection 

framework, which includes an uncertainty-aware feature fusion 

(UFF) module and an uncertainty-aware cross- modal guiding 

(UCG). Based on the aleatoric uncertainty that measures the 

uncertainty in the observations, the UFF defines a Region of 

Interest (RoI) uncertainty to quantify the ambiguity of the 

detected RoIs. In addition, the UCG applies predictive 

uncertainty to alleviate the discrepancy between the color 

modality and thermal modality, which makes the feature 

distributions of the two modalities become similar. Therefore, 

the features of the pedestrians and background are easily 

distinguished. Recently, Dasgupta et al. [110] designed a 

multimodal feature fusion-based pedestrian detection method. 

To fuse the features extracted from RGB and thermal images, a 

feature embedding module is designed to get the multimodal 

features. Then, the multimodal features are passed to the 

detection decoder to produce pedestrian bounding boxes. 

3.4.2.2. The Cyclist Detection Problem 

In one of the early studies on cyclist detection, a vision-based 

cyclist detection method was developed by Tian et al. [111]. 

The authors applied cascaded detectors with different classifiers 

and shared features to detect cyclists from multiple viewpoints. 

One year later, Li et al. [112] collected a stereo vision-based 

cyclist detection data set that includes 22161 annotated cyclists 

instances. Besides, they designed a stereo-proposal based Fast 

R-CNN (SP-FRCN) to detect cyclists in images. The SP-FRCN 

uses stixel representation to generate region proposals from 

stereo data. 

Meanwhile, Li et al. [113] proposed a unified framework to 

simultaneously detect cyclists and pedestrian from images. The 

proposed framework applies a detection proposal method to 

produce a series of object candidates. Then, these object 

candidates are fed to a Faster R-CNN based model for 

classification. Finally, a post-processing step is used to further 

improve the detection performance. Wang and Zhou [114] 

proposed a Fast R-CNN [94] based unified framework for 

cyclist and pedestrian detection in driving environments. The 

proposed framework uses a multilayer feature fusion method to 

tackle the challenges of small-sized targets and changeable 

background environment. Two years later, Annapareddy et al. 

[115] proposed a pedestrian and cyclist detection method from 

thermal images through Faster R-CNN. The proposed method 

produces promising results on the KAIST Multispectral 
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Pedestrian dataset [68]. 

3.4.2.3. The Vehicle Detection Problem  

Garcıa et al. [116] proposed a sensor fusion method for 

detecting vehicles in inter-urban scenarios. The proposed 

method applies the unscented Kalman filter (UKF) and joint 

probabilistic data association to fuse the data from 2D LiDAR 

and monocular camera and achieves promising vehicle 

detection results in single-lane roads. In [117], Yang et al. 

presented a YOLOv2 based real- time detector for the joint 

detection of pedestrian and vehicle. Wang et al. [118] 

performed a comparative evaluation for five popular deep 

learning-based object detectors, (e.g., Faster R-CNN [95], R-

FCN [119], SSD [99], RetinaNet [120], and YOLOv3 [24]) in 

vehicle detection on the KITTI dataset [64]. They compared the 

performance of these detectors in terms of the detection time, 

recall, and precision metrics. We suggest readers refer to [118] 

for more details. Wu et al. [121] presented a fully convolutional 

neural network, named SqueezeDet, to simultaneously detect 

vehicle, pedestrian and cyclist in images. Being designed as a 

single-stage detector and using the SqueezeNet as the 

backbone, SqueezeDet achieves real-time speed (57.2 fps on an 

Nvidia Titan X GPU) and reduces the model size for energy 

efficiency.  

Chen et al. [122] constructed a lightweight vehicle detector 

which achieves three-times faster than YOLOv3 [24] while 

only having 1/10 size of model. Murthy et al. [123] proposed a 

lightweight real-time method for pedestrian and vehicle 

detection and named as EfficientLiteDet. EfficientLiteDet is 

built on top of Tiny-YOLOv4 through inserting one more 

prediction head to achieve multi-scale object detection. The 

conventional vehicle detection methods depend on directly 

visible vehicles in images, which is a drawback com- pared to 

human visual perception. Because humans usually use visual 

cues caused by objects to reason about information or anticipate 

occurring objects. This phenomenon is more obvious in 

nighttime driving scenarios where human drivers foresee the 

oncoming vehicles through analyzing illumination changes in 

the environment or the light reflections caused by the 

headlamps of oncoming vehicles [124]. Drivers utilize this 

provident information to adapt their driving operation 

accordingly, for example, switch the high beam to low beam in 

advance to avoid glares for the oncoming drivers. While the 

computer vision systems are usually trained to solve one 

specific task, which is formulated as a mathematical problem. 

For instance, in object detection, the objects are annotated by 

bounding boxes, and the task is to predict and classify these 

bounding boxes [92]. 

According to [125], human drivers detect the oncoming 

vehicles on average 1.7s faster than the computer vision system. 

This non-negligible time discrepancy could be attributed to the 

characteristic that ordinary object detection systems assume 

that objects have clear and visible boundaries. To solve the 

discrepancy between human and ordinary vehicle detection 

algorithms, especially the vehicle detection at nighttime, many 

researchers presented their works in provident vehicle detection 

(PVD) [30], [74], [124]–[126]. PVD is a technique that detects 

the appearance of vehicles through the light reflections caused 

by their headlamps. It is the foundation of the HBA system 

which uses a front-mounted camera located in the upper-portion 

of the windscreen to detect the light sources head of the vehicle 

and automatically switch the headlamps between low beams 

and high beams to avoid blinding of oncoming drivers [127]. 

3.4.2.4. The Lane Detection Problem 

The task of lane detection is to detect the lane areas or lane 

markings through camera or LiDAR [128]. Lane detection 

allows the vehicle to properly localize itself within the road 

lanes, it is a fundamental component for LDW and LKA 

systems, minimizing the chances of collision. The LDW system 

detects the lane markings while the vehicle is on a straight or 

slightly curved road. When the LDW system determines that 

the vehicle deviates from its lane, it notifies the driver through 

audible and visual alerts. While LKA is more advanced than 

LDW, as it can apply corrective steering to help guide the 

vehicle back to the middle of detected lanes. According to the 

type of sensing sensors, the current lane detection methods can 

be categorized into three types, camera-based methods, 

LiDAR-based methods, and multi- modal fusion-based 

methods.  

In 2014, Kim and Lee [129] developed a lane detection 

method that combines a CNN with random sample consensus 

(RANSAC) algorithm. The RANSAC algorithm works through 

randomly selecting a subset of samples from the given data set 

and uses the selected samples to estimate model parameters. 

This process is repeated a large number of times until the best 

model is found. CNN is used to extract lane candidates in the 

image. Subsequently, the extracted lane candidates are passed 

to the RANSAC algorithm to detect road lanes. The proposed 

method can be regarded as an approximation of the mapping 

function between the input and output. Two years later, 

Gurghian et al. [130] proposed an image classification-based 

lane detector and named as DeepLanes. DeepLanes is a deep 

CNN that trained on a data set consisting of RGB images from 

two laterally mounted down-looking cameras. Benefiting from 

the more complex network, DeepLanes achieves better 

performance than [129]. However, it depends on laterally 

mounted down-looking camera, which limits its application 

scenario. 

Neven et al. [131] formulate lane detection as an instance 

segmentation problem where each lane is treated as an in- 

stance within the lane class. They designed an end-to-end multi-

task network which consisting of a lane segmentation branch 

and a lane embedding branch. The lane segmentation branch 

produces a binary lane mask indicating which pixels are located 

in a lane and which not. The lane embedding branch clusters the 

segmented lane pixels into different lane instances. By splitting 

the lane detection task into two steps, the proposed method 

alleviates the lane change problem and can detect a variable 

number of lanes. Recent advancement of object detection 

motivates researchers detect lanes through detecting a series of 

points (e.g., every 10 pixels in the vertical axis) [132]. Inspired 
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from the region-based object detector, Faster R-CNN [95], Li 

et al. [133] developed a one-stage lane line detector, named 

Line-CNN. Line-CNN runs at about 30 fps on an Nvidia Titan 

X GPU. Later, Tabelini et al. [132] proposed an anchor-based 

mechanism to aggregate global information for lane detection. 

It achieves state-of-the-art accuracy performance through using 

a lightweight backbone network. 

The camera-based lane detection methods can meet the high 

frame rate requirements of driving scenes. Using RGB cameras, 

these methods are sensible to environment illumination, 

especially the dramatic changes in light. Therefore, their 

performance may decrease considerably at nighttime. LiDAR 

sensors perceive the environment through emitting light, which 

are not sensitive to environment illumination. Hence, lane 

detection also has been solved through using LiDAR 

measurement as the input [134], [135]. Hata and Wolf [134] 

proposed an Otsu thresholding-based method to segment 

LiDAR point clouds into asphalt and road markings. [135] cast 

road area detection as a pixel-wise semantic segmentation task 

in point cloud’s bird’s eye view (BEV) images through a fully 

convolutional network (FCN). 

Compared to camera, LiDAR provides accurate distance 

measurement and retains rich 3D information in the 

environment. However, it only produces sparse and irregular 

point cloud data, which can result in the existence of empty 

voxels. Therefore, multi-modal fusion-based methods have 

been developed. Bai et al. [136] introduced a method that 

combines camera with LiDAR to detect lane boundaries in 3D 

space. They first convert the point cloud data to BEV and 

predict a dense ground height using a CNN. The predicted 

dense ground height is then fused with the BEV image to 

perform lane detection. Zhang et al. [137] designed a channel 

attention-based multi-modal information fusion method for 

lane detection. Unlike [136], they fused features learned from 

RGB image and point cloud data through a channel attention 

mechanism that enables camera and LiDAR fusion information 

to be used simultaneously across channels. 

3.4.2.5. The Traffic Sign Recognition Problem 

Traffic signs are signs put at the side of roads bearing 

symbols or words of warning or direction to pedestrians and 

drivers. A traffic sign recognition system usually concerns two 

related subjects: traffic sign recognition (TSR) and traffic sign 

detection (TSD). TSR is a fine-grained classification to identify 

the type of the detected traffic signs, while TSD aims to localize 

the traffic signs in an image. We review publications on TSR 

and TSD in this subsection. In autonomous driving systems, 

TSR is a safety component that recognizes traffic signs through 

a camera and conveys the information displayed on the sign to 

the driver via the multi-information display. TSR helps prevent 

the driver from overlooking traffic signs. The current ADAS 

systems apply TSR algorithm to recognize speed limit, do not 

enter, and traffic stop signs. When TSR determines the vehicle 

speed exceeds the speed limit sign indicated in the active 

driving display, the system notifies the driver through visual 

and audible warning. Therefore, it can enhance driving safety 

and comfort by helping drivers adapt the maximum speed of the 

vehicle to a particular limit. 

Both TSR and TSD have been explored by researchers from 

the communities of computer vision and autonomous driving. 

In 2011, Stallkamp et al. [138] introduced the German Traffic 

Sign Recognition Benchmark (GTSRB), a large scale and real-

world data set containing 50,000 traffic sign images in 43 

classes. Two years later, Houben et al. [139] released the 

German Traffic Sign Detection Benchmark (GTSDB) which 

has 900 images containing 1206 traffic signs. These two data 

sets enabled researchers to analyze and compare the 

performance of different algorithms on the same benchmarks. 

It is worth noting that traffic signs in the GTSRB benchmark 

occupy most of the image, algorithms only need to classify the 

subclass of the sign. Furthermore, the GTSDB benchmark only 

annotated four categories of traffic signs. Therefore, these 

benchmarks are not representative for the real-world tasks 

where traffic signs in an ordinary image are usually less than 

1% of the image [66]. 

In 2016, Zhu et al. [66] collected a large-scale traffic sign 

data set from Tecent Street View panoramas, named TT100K. 

The TT100K data set has 100000 images containing 30000 

traffic sign instances. Based on the TT100K data set, they 

trained two CNNs for TSR. One year later, Luo et al. [140] 

proposed a TSR system to recognize both symbol-based and 

text-based signs in video sequences. They first use MESRs to 

extract traffic sign regions of interest (ROIs) from images. 

Then, a multi-task CNN is trained to refine and classify the 

ROIs. Lee and Kim [141] designed a CNN to simultaneously 

detect the position and boundary of traffic signs. 

 
Fig. 3. Example image with sun glare. The image is from the RobotCar data 

set [163]. 
 

Meanwhile, Li and Wang [142] designed a real-time TSR 

method through combining Faster R-CNN [95] with MobileNet 

[22]. Furthermore, they applied the color and shape information 

to refine the localization of small traffic signs. Kamal et al. 

[143] formulated the TSD as an image segmentation problem 

and designed a modular CNN architecture that stacks SegNet 

and U-Net to solve it. To tackle the mis- recognition of small 
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traffic signs in the image, Min et al. [144] combined the 

semantic scene understanding and structural traffic sign 

location for TSR. They designed a lightweight RefineNet to 

segment objects from the scene to obtain the information 

regarding the spatial positional at pixel level. Subsequently, a 

scene structure model which is based on the constraints of 

spatial positional relationships between traffic signs and other 

objects is built to establish the trusted search regions. 

Experimental results demonstrated that the proposed method 

could alleviate the mis-recognition of small traffic sign in 

straight road and curvy road scenes. While for complex scenes 

such as intersections, it still has ineffective recognition. 

3.4.3. Additional challenges and problems for environment 

perception 

3.4.3.1. The Sun Glare Problem 

Sun glare is a commonly encountered environmental hazard, 

it brings about over-exposure in the image and degrades the 

performance of computer vision algorithms [162]. In 

autonomous driving scenarios, the influence of sun glare can be 

classified into two categories, direct and indirect. The direct 

influence occurs in cases where the sun is low, and the glare 

directly hits the onboard camera. For the indirect influence, it 

results from the sunlight reflected from the wet road or highly 

specular surface. The indirect influence may result in the 

detection of lane boundary or road markings impossible, 

because the region with the glare effect is overexposed. In some 

situations, the misdetection of lane markings may negatively 

influence the decision on driving direction of autonomous 

vehicles. 

3.4.3.2. The Adverse Weather Problem  

Autonomous driving systems typically depend on cameras 

and LiDAR to sense the environments around vehicles. 

However, in cases where the weather is poor, such as heavy rain 

or thick fog, the information captured by these sensors can be 

disrupted and thereby impact the accuracy of the detection. 

Specifically, cameras tend to perform poorly in low-visibility 

conditions like heavy fog, rain, or snow, where the captured 

images become blurred. LiDAR is also particularly impacted by 

adverse weather, as laser pulses can be scattered by rain, snow, 

or fog, leading to noisy or incomplete data that complicates 

accurate object detection. These conditions pose significant 

challenges for both sensors, as degraded detection accuracy 

may result in incorrect driving decisions and compromise the 

safety of autonomous driving [60]. Therefore, autonomous 

systems must be designed with advanced algorithms and feature 

fusion techniques to mitigate these effects and maintain reliable 

performance in adverse weather. 

3.4.3.3. The oversimplified testing conditions problem 

Until August 2020, there were five fatalities happened for 

level 2 autonomous driving [63]. Among those fatalities, four 

of them were from Tesla and one from Uber. Specifically, all 

four Tesla accidents were attributed to perception failure, while 

Uber’s fatality resulted from the system’s failure to correctly 

detect pedestrian behavior. These failures highlight the 

limitations of autonomous systems in real-world environments, 

which are far more complex and unpredictable than the 

controlled conditions often used in field testing, such as good 

weather or light traffic. 

The failure of perception systems can be attributed to several 

factors. Autonomous driving relies heavily on sensors, such as 

cameras, LiDAR, and radar, to perceive the surroundings. 

However, these sensors are susceptible to various challenges in 

real-world scenarios. For instance, dynamic environments with 

a variety of pedestrians, cyclists, vehicles, and unpredictable 

human behavior can lead to misclassification. Poor weather 

conditions, such as rain, fog, or snow, further degrade sensor 

performance, while occlusion by other vehicles or obstacles can 

prevent the system from fully perceiving critical elements in the 

environment. 

Furthermore, the complexity of the world lies in the variety 

of objects, diverse road structures, and ever-changing 

environmental conditions, all of which create scenarios that 

autonomous systems may not have encountered during training 

[189]. This complexity makes it difficult for systems to 

generalize effectively, leading to detection errors and incorrect 

decision-making. As a result, the gap between controlled testing 

environments and real-world conditions poses a significant 

challenge to the development and safety of autonomous driving 

systems. Therefore, improving the robustness of perception 

algorithms and ensuring better real-world adaptability remains 

 
 

Fig. 4. Examples of adverse weather. From top to bottom: images with rainy weather [78] and images with foggy weather [161]. 
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crucial. 

3.4.3.4. The Data Size Problem  

The size of the datasets to be manipulated represents a problem 

in terms of both storage capability and real-time processing 

speed. In order to achieve the objective of fully autonomous 

driving, autonomous vehicles are equipped with multiple 

sensors such as camera, LiDAR, radar, and ultrasonic sensor to 

perceive the driving environment. According to [61], an 

autonomous vehicle produces about 4000 GB of data a day, 

which is equal to the mobile data produced by almost 3000 

people. The huge amounts of data pose significant challenges 

to communication, storage, and computing platforms [163]. 

Although onboard computing and storage technologies have 

been developed rapidly, they are still limited compared with the 

scale of data to be stored and processed. To achieve better 

driving performance than the best human driver who takes 

actions within 0.1 to 0.15s, the autonomous driving systems 

must achieve a real-time running speed in real-world traffic 

environment within 0.1s [164]. This requires a significant 

amount of computing power. Although the high-performance 

GPUs can provide the low latency computation, their high-

power consumption (e.g., the power of Nvidia Drive AGX is 

300W) may significantly degrade the driving range and fuel 

efficiency of autonomous vehicles. 

3.4.3.5. The Affordability Problem  

High costs associated with technology discourage users from 

buying PAVs and, subsequently, deter developers from 

investing in R&D of new models. High costs may derive from 

the inherent price of the raw materials, the hardware 

components (especially sensors), or the software development 

(especially those require large datasets and great computing 

power and time for training and optimization) and testing for 

compliance. Autonomous vehicles depend on a series of 

onboard devices to support their normal functions. In addition 

to various sensors such as cameras, LiDAR, radar, and 

ultrasonic sensor, autonomous vehicles also require 

communication devices, computing platform, and extra power 

supply. According to [165], the average cost to build a 

conventional non-luxury vehicle in the US is around $30000, 

while for a fully autonomous vehicle, the total cost is increased 

to $250000. However, some surveys [148], [149], [154] on 

public opinion on autonomous vehicles demonstrate that a 

majority of people are unwilling to pay extra money for 

autonomous vehicles (see Section 9). To gain the trust of 

consumers, automotive manufacturers must explore new 

solution to reduce the cost of sensors mounted of PAVs.                    

3.5. Future Directions and Promising Approaches to 

Environment Perception 

3.5.1. Universal Data Sets for Long-term Autonomous 

Driving  

Autonomous vehicles significantly rely on extensive real-

world data to develop, test, and validate the performance of 

algorithms. However, as shown in Table II, existing data sets 

collected from 2013 to 2023 largely focus on immediate 

algorithmic needs, emphasizing controlled scenarios in specific 

urban areas. This narrow focus limits their applicability to the 

diverse and evolving challenges in long-term autonomous 

driving, particularly the variation in visual perception caused by 

environmental changes, such as seasonal shifts and construction 

[184] [185]. Addressing this limitation requires large-scale, 

diverse data sets that capture a wide range of driving conditions 

across locations and timeframes, providing critical insights for 

both academia and industry. The primary challenge lies in the 

sheer scale and complexity of such data collection, including 

the difficulty of capturing and maintaining data that reflects a 

constantly changing environment. 

3.5.2. Mobile Edge Computing for Autonomous Vehicles 

To support the safety and reliability of PAVs, onboard 

sensors produce vast quantities of data that must be processed 

by deep neural networks (DNNs) at real-time speeds. However, 

balancing the high-volume cost of computing devices with the 

processing power needed for these complex models presents a 

major challenge. Mobile edge computing (MEC) emerges as a 

promising solution, integrating telecommunications with cloud 

capabilities to offer processing services directly from the 

network edge [188]. This approach reduces latency, supporting 

the delay-sensitive applications critical for AV operations. The 

edge servers serve as processing hubs, while PAVs act as clients 

accessing this processed data. However, MEC introduces 

challenges, including maintaining network reliability, 

managing data transfer latency, and ensuring robust security at 

the edge, all essential to meet the safety requirements of 

autonomous driving. 

3.5.3 Real-time and Lightweight CNNs for Autonomous 

Driving 

To enhance perception accuracy, autonomous vehicles 

usually employ CNNs to process sensor data from cameras and 

LiDAR. In general, the development trend of CNNs is to design 

very deep networks to boost accuracy [189]. However, these 

networks demand significant memory and computational 

power, resulting in challenges for AV applications that rely on 

resource-constrained hardware. Developing real-time, 

lightweight CNNs address these constraints by enabling faster, 

more energy-efficient models that enhance safety and 

robustness. The primary challenge in creating these lightweight 

architectures is achieving a balance between reduced 

computational demands and maintaining sufficient accuracy to 

detect objects, pedestrians, and obstacles under diverse 

conditions. 

3.5.4. Risk Assessment for Autonomous Vehicles 

The performance of PAVs is significantly affected by 

varying weather, lighting, road condition, and other highly 

dynamic aspects of the real-world driving environment, such as 

the unpredictable behaviors of other vehicles, pedestrians, and 

cyclists. These critical factors introduce substantial variability 

and uncertainty, increasing the possibility of autonomous 

driving errors. Addressing these issues requires sophisticated 

risk assessment mechanisms that can adapt to and anticipate 



18 

 
changes in environmental conditions and human behavior 

[186]. Without such measures, PAVs may be less able to 

respond appropriately to sudden changes, resulting in increased 

risk to passengers and other road users. 

To enhance safety, risk assessment algorithms should focus 

on monitoring and evaluating specific elements that impact 

autonomous decision-making [186]. This includes real-time 

analysis of weather patterns, changes in visibility, and road 

surface quality, which may impact vehicle stability and sensor 

accuracy. In addition, these algorithms should assess the 

behavior of surrounding agents such as vehicles, pedestrians, 

and cyclists to predict potential conflicts or unexpected 

maneuvers. Through continuous data collection and advanced 

predictive modeling, risk assessments can identify hazardous 

situations, allowing PAVs to respond ahead of time. This aims 

to reduce accidents by analyzing dangerous conditions and 

activating adaptive responses, ultimately contributing to a safer 

autonomous driving experience (see Section 8). 

3.5.5. Conclusions and the Way Forward 

PAVs rely heavily on visual and sensory data to understand 

their environment and make decisions. Traditional perception 

systems primarily use separate modalities, such as cameras, 

LiDAR, and radar, to perceive scenes. However, to enhance 

situational awareness (see Section 8) and contextual 

understanding (Sections 4 and 5) is crucial to appropriately 

interpret and navigate complex driving scenarios. As we will 

discuss in detail in Section 5, integrating vision-language 

models probably represents the most promising approach to 

achieve this goal. Multimodal large vision-language models, 

which can process and interpret data from various sources and 

associate it with language-based context, represent a promising 

future direction for autonomous driving [187]. As discussed in 

greater detail in Section 5, these models enable PAVs to 

understand more abstract cues, such as road signs, pedestrian 

behaviors, and complex scene elements that require both visual 

features and semantic context. By leveraging language-based 

prompts and descriptors, these systems could interpret subtle 

situations, providing PAVs with a deeper and more adaptable 

understanding of their surroundings. 

Considering the high computational demands and hardware 

limitations in PAVs, the primary challenges lie in developing 

and training large-scale multimodal models capable of real-time 

processing. In addition, ensuring these models' interpretability 

and reliability across varied driving conditions, such as 

different weather, lighting, and traffic scenarios, remains a 

critical challenge. In the future, overcoming these challenges 

could improve AV safety and decision-making by enabling a 

richer understanding of dynamic environments. 

4. AI for Path Planning and Mapping 

4.1. Introduction and Methodology 

Path planning and mapping are foundational to the 

operational capabilities of autonomous vehicles (AVs), 

enabling safe and efficient navigation through dynamic 

environments. Path planning involves the computation of 

feasible, collision-free trajectories, while mapping focuses on 

constructing accurate representations of the vehicle's 

surroundings. Both tasks are inherently challenging due to 

uncertainties in dynamic environments, sensor inaccuracies, 

and computational constraints. This section critically reviews 

AI-driven approaches to path planning and mapping, 

emphasizing their contributions, limitations, and unresolved 

challenges. 

Publications reviewed in this section were selected based on 

their relevance to AI applications in path planning and mapping 

for PAVs. Searches were conducted using IEEE Xplore, 

Google Scholar, and SpringerLink with keywords such as "path 

planning," "autonomous vehicles," "AI for mapping," 

"reinforcement learning in AV," and "SLAM for AV." 

Emphasis was placed on peer-reviewed journals and high-

impact conferences from 2010 to 2024. Widely cited technical 

reports and preprints were included selectively to ensure 

groundbreaking contributions were considered. 

4.2. Path Planning Challenges and Attempted Solutions 

4.2.1. Real-time Decision-Making in Dynamic 

Environments 

Autonomous vehicles must make rapid, accurate decisions 

while navigating dynamic environments with moving 

obstacles, erratic human behaviour, and fluctuating traffic 

conditions. These challenges, exacerbated by computational 

constraints and unpredictable scenarios, require advanced 

solutions that traditional rule-based systems struggle to address. 

Attempted solutions include Reinforcement Learning, Model 

Predictive Control, Behaviour Cloning. 

4.2.1.1. Reinforcement Learning (RL) 

Reinforcement Learning (RL) [230] is a data-driven 

approach that enables PAVs to learn optimal driving behaviours 

through interactions with simulated environments. In RL, an 

agent explores different driving scenarios, receiving rewards 

for successful actions (e.g., avoiding collisions) and penalties 

for failures (e.g., violating traffic rules). Over time, this trial-

and-error process allows the agent to develop policies that 

maximize long-term safety and efficiency. For example, RL 

models such as Deep Q-Networks (DQN) and Proximal Policy 

Optimization (PPO) has been applied to train PAVs for tasks 

such as merging into dense traffic by simulating millions of 

scenarios where vehicles must balance caution with 

assertiveness [190, 191, 193, 194]. Despite its adaptability, RL 

faces challenges in real-world deployment, including the need 

for significant computational resources and struggles with rare 

or unforeseen scenarios. 

4.2.1.2. Model Predictive Control (MPC)  

MPC formulates path planning as an optimization problem, 

predicting future vehicle states over a finite time horizon to 

generate optimal trajectories [195]. This method excels in 

handling dynamic constraints, such as navigating intersections 

and highway lane changes, where it continuously adjusts 
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trajectories to ensure safety and compliance with traffic rules 

[191]. However, computational demands can limit real-time 

applicability, prompting recent advances like parallel 

processing and adaptive horizon lengths to mitigate this issue 

[196, 200]. 

4.2.1.3. Behaviour Cloning 

Behaviour cloning leverages supervised learning to train 

PAVs to mimic human drivers. Using large datasets of recorded 

human driving behaviours, this approach creates models that 

map sensory inputs to corresponding driving actions [197, 198, 

201]. For example, Tesla’s Autopilot system employs elements 

of behaviour cloning to handle tasks like lane following and 

stop-and-go traffic [202]. While it facilitates rapid policy 

development, its reliance on training data limits generalization 

to unfamiliar scenarios, posing safety risks. Enhancements, 

including diverse data augmentation and fail-safe mechanisms, 

aim to enhance robustness. 

4.2.1.4. Hybrid Approaches 

Reinforcement Learning offers adaptability for complex 

behaviour but requires substantial resources and faces real-

world deployment challenges. MPC provides a robust 

framework for dynamic constraints, though computationally 

intensive. Behaviour Cloning accelerates policy development 

but risks overfitting. Integrating RL, MPC, and Behaviour 

Cloning can harness their respective strengths, enhancing AV 

path-planning robustness and efficiency. Combining RL with 

MPC integrates the adaptability of RL with MPC's trajectory 

optimization capabilities. For example, hybrid models have 

demonstrated up to a 15% reduction in energy consumption and 

smoother transitions in lane changes compared to standalone 

RL systems in eco-driving scenarios in dense traffic by 

balancing strategic planning and trajectory control [203, 204, 

205, 206]. These findings underscore the computational trade-

offs necessary to achieve a balance between high-level strategic 

planning and the demands of real-time operational 

responsiveness. 

4.3. Handling Sensor Uncertainty and Failures 

Environmental factors such as fog, rain, or sun glare can 

degrade the performance of sensors like LiDAR, radar, and 

cameras. These inaccuracies affect obstacle detection, lane 

recognition, and overall situational awareness. Sensor failures 

or misreading may lead to poor decision-making and unsafe 

trajectories. Addressing this issue requires robust algorithms 

and systems that can account for and mitigate uncertainty. 

Solutions include Probabilistic Path Planning Algorithms, 

Sensor Fusion, AI-augmented perception, and Redundant 

Sensory Systems. 

4.3.1. Probabilistic Path Planning Algorithms 

Probabilistic algorithms, such as Partially Observable 

Markov Decision Processes (POMDPs), explicitly account for 

uncertainties in sensor inputs. POMDPs model possible states 

of the environment and compute policies that maximize 

expected outcomes despite incomplete or noisy data. For 

example, POMDP-based approaches have been used to 

navigate PAVs in low-visibility conditions by considering 

probabilities of obstacles being present in ambiguous regions. 

These algorithms enhance robustness but often require 

significant computational resources to evaluate multiple 

possibilities in real time. [207, 208]. 

4.3.2. Sensor Fusion 

Sensor fusion techniques combine data from multiple 

sensors, such as LiDAR, cameras, and radar, to create a more 

reliable representation of the environment. By integrating 

inputs from sensors with complementary strengths, sensor 

fusion reduces the impact of individual sensor failures. For 

instance, radar performs well in adverse weather, while cameras 

excel in detecting fine details under clear conditions. Fusion 

algorithms, such as Bayesian inference or neural network-based 

methods, merge these inputs to provide PAVs with robust 

situational awareness [209, 210, 211, 212]. 

4.3.3. AI-Augmented Perception 

AI models can augment sensor capabilities by predicting or 

reconstructing missing data. Deep learning algorithms trained 

on large datasets of diverse weather conditions can infer likely 

obstacles or road markings, even when direct observations are 

obscured. For example, convolutional neural networks (CNNs) 

have been used to reconstruct lane markings in foggy conditions 

by analyzing visible patterns in adjacent areas [213]. 

4.3.4. Redundant Sensor Systems 

Redundancy in sensor systems mitigates the risk of single-

sensor failures. For instance, combining stereo cameras with 

radar ensures that critical information, such as obstacle distance 

and speed, is still available even if one system malfunctions. 

This approach enhances system reliability but increases 

hardware costs and power consumption [212]. 

Sensor uncertainty and failures remain critical challenges for 

PAVs, as perception systems must reliably interpret 

environmental data under diverse conditions. Probabilistic path 

planning algorithms, such as POMDPs, effectively handle 

uncertainty by modelling multiple possible environmental 

states, making them suitable for low-visibility scenarios. 

However, their high computational complexity limits real-time 

applications, requiring further optimization [214, 215]. Sensor 

fusion offers a robust solution by combining data from LiDAR, 

radar, and cameras to reduce the impact of individual sensor 

failures. Neural network-based fusion techniques have shown 

significant improvements in adverse weather conditions, 

though challenges remain in calibration and cost. Similarly, AI-

augmented perception enhances situational awareness by 

reconstructing missing or obscured data using deep learning. 

While effective, these models depend on diverse training 

datasets to ensure reliability in edge cases. Redundant sensor 

systems provide fail-safes against single-sensor failures, 

increasing system reliability but at a cost of higher complexity 

and energy demands. Advances in lightweight and cost-

efficient sensors could make this approach more viable for 
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mass-market PAVs. 

4.4. Balancing Safety and Efficiency 

PAVs must balance safety and efficiency, particularly in 

scenarios like merging, overtaking, and navigating 

intersections. Overly cautious behaviour may lead to inefficient 

driving, causing delays and disrupting traffic flow, while 

aggressive manoeuvres can increase the risk of collisions. 

Striking the right balance between these competing objectives 

is a critical challenge for PAVs, requiring advanced algorithms 

that can adapt to dynamic environments while maintaining both 

safety and operational efficiency. Solutions include Game-

theoretic approaches, Risk-aware Planning Algorithms, Driver 

Behaviour Prediction, and Personalized Driving Strategies.  

4.4.1. Game-Theoretic Approaches 

Game-theoretic approaches model interactions between 

PAVs and other road users as multi-agent games. These models 

optimize decision-making by predicting the actions of other 

agents (e.g., human drivers) and selecting strategies that 

minimize conflict. For example, researchers have used Nash 

equilibria to enable PAVs to choose manoeuvres that are both 

safe and efficient in scenarios like highway merging and 

roundabouts [206, 207]. While game-theoretic models excel in 

representing interactive behaviours, they can be 

computationally expensive in real-time applications, especially 

with multiple agents [208]. 

4.4.2. Risk-Aware Planning Algorithms 

Risk-aware algorithms quantify safety metrics, such as time-

to-collision or safe following distance, and integrate these into 

the decision-making process. These models prioritize safety by 

penalizing high-risk actions while optimizing for efficiency 

within acceptable risk thresholds. For instance, adaptive risk 

metrics allow PAVs to navigate aggressively in low-risk 

conditions (e.g., sparse traffic) but cautiously in high-risk 

environments (e.g., crowded intersections). Studies have shown 

that this approach enhances both safety and throughput in urban 

traffic scenarios [219]. 

 

4.4.3. Driver Behaviour Prediction 

Understanding and predicting the behaviour of human 

drivers is essential for balancing safety and efficiency. Machine 

learning models trained on real-world driving data can 

anticipate lane changes, braking, or acceleration patterns of 

surrounding vehicles. These predictions may enable PAVs to 

adjust their actions, such as yielding to aggressive drivers or 

merging into faster lanes. Recent advancements in recurrent 

neural networks (RNNs) and transformers have improved the 

accuracy of such predictions, leading to smoother and safer 

interactions on the road [220, 221].  

4.4.4. Personalized Driving Strategies 

Personalized driving strategies allow PAVs to adjust their 

level of assertiveness based on user preferences or the 

situational context. For example, some users may prioritize 

safety over efficiency, while others may prefer more assertive 

behaviours to minimize travel time. These strategies are 

implemented using customizable parameters in the decision-

making algorithms, enabling PAVs to dynamically adapt to 

individual preferences without compromising general safety. 

For example, studies conducted on personalized driving 

behaviour for PAVs, proposing a user-oriented approach that 

adjusts driving assertiveness based on passenger preferences 

[222]. Decision-making algorithms incorporate customizable 

parameters to adapt the AV’s level of assertiveness. For 

example, a passenger might indicate a preference for highly 

cautious driving in busy urban areas, while another might 

prioritize efficiency on highways to reduce travel time.  

The balance between safety and efficiency is critical for 

ensuring that PAVs integrate seamlessly into mixed traffic 

environments without causing disruptions or safety concerns. 

Game-theoretic models provide foundation for strategic 

decision-making in interactive scenarios, but their 

computational demands limit real-time applications. Risk-

aware algorithms address this by quantifying safety metrics and 

optimizing for efficiency within defined thresholds, making 

them practical for real-time deployment. However, these 

models often require fine-tuning to avoid overly conservative 

behaviour that reduces throughput. Driver behaviour prediction 

adds a proactive dimension to AV decision-making, enabling 

smoother interactions with human drivers. The use of machine 

learning models to anticipate human actions has proven 

effective in reducing conflicts and enhancing traffic flow.  

Similarly, personalized driving strategies contribute to user 

satisfaction, a key factor for public acceptance of PAVs. By 

allowing dynamic adjustment of assertiveness levels, these 

strategies can address diverse user expectations while 

maintaining overall safety. Combining these solutions offers 

the most promise for balancing safety and efficiency. For 

instance, integrating driver behaviour prediction with risk-

aware decision-making can improve AV adaptability in 

complex scenarios. Furthermore, advancements in 

computational efficiency and real-time processing will be 

essential for deploying game-theoretic models at scale. 

Addressing these challenges will require interdisciplinary 

collaboration across fields such as AI, human factors, and 

traffic engineering. 

4.5. Real-Time Localization and Mapping Challenges 

PAVs depend on accurate, up-to-date maps for navigation 

and decision-making. Creating and maintaining these maps in 

real-time remain two critical challenges, particularly in 

dynamic environments where the landscape changes frequently. 

Below, we address two major challenges in mapping and 

explore solutions supported by recent advancements in the 

literature. Simultaneous Localization and Mapping (SLAM) is 

a critical component for PAVs to perceive their environment 

and localize within it. SLAM algorithms allow PAVs to build 

maps of their surroundings while maintaining real-time 

awareness of their position. However, achieving high accuracy 

under dynamic and cluttered conditions remains a significant 
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challenge. Moving objects, changing environments, and 

computational constraints often degrade SLAM performance. 

Possible solutions include AI-Augmented SLAM and Multi-

Modal SLAM.  

4.5.1. AI-Augmented SLAM 

AI-augmented SLAM integrates AI, particularly deep 

learning, into traditional SLAM pipelines to improve feature 

extraction, loop closure detection, and robustness in dynamic 

environments. Traditional SLAM methods rely on fixed 

algorithms for detecting features and aligning them, which can 

struggle in low-visibility or rapidly changing conditions. Deep 

learning models address these limitations by learning complex 

patterns in data. For example, ORB-SLAM2, a widely used 

SLAM system, was enhanced by integrating deep neural 

networks for key point detection and semantic understanding. 

This integration reduced localization errors in cluttered 

environments by better handling ambiguous or dynamic 

features [222].  Similarly, Tang et al. [223] proposed LCDNet, 

a deep learning-based loop closure detection method for 

LiDAR-based SLAM. Their method significantly improved 

performance in highly dynamic settings, such as urban traffic, 

by learning discriminative features that distinguish between 

static and moving objects. 

4.5.2. Multi-Modal SLAM 

Multi-modal SLAM combines data from multiple sensor 

types, such as LiDAR, cameras, and inertial measurement units 

(IMUs), to enhance robustness and scalability. Each sensor type 

has unique strengths: LiDAR provides accurate depth 

information, cameras offer high-resolution visuals, and IMUs 

deliver motion data. By fusing these modalities, multi-modal 

SLAM systems address limitations of individual sensors, such 

as LiDAR’s sensitivity to rain or cameras’ poor performance in 

low light. Campos et al. [224] introduced ORB-SLAM3, which 

integrates visual-inertial and multi-map SLAM capabilities to 

improve performance in challenging environments, such as 

tunnels or poorly lit areas. Leutenegger et al. [225] developed 

Semi-Direct Visual-Inertial Odometry (SVO), combining 

visual and inertial data to achieve accurate localization even in 

GPS-denied environments. These methods enable robust and 

scalable SLAM in diverse scenarios. AI-augmented and multi-

modal SLAM approaches have advanced mapping capabilities. 

However, ensuring computational efficiency and robustness in 

real-world conditions requires further innovation. Balancing 

the complexity of AI models with real-time processing 

constraints remains a critical area of research.  

4.6. Large-Scale Map Updates Challenge 

AVs rely on high-definition (HD) maps for navigation, 

which provide detailed representations of roads, traffic signs, 

lane boundaries, and other critical information. However, 

maintaining up-to-date maps in dynamic environments, such as 

urban areas with frequent construction or temporary obstacles, 

is a logistical and computational challenge. Attempted solutions 

include strategies based on Crowdsourced Mapping and Edge 

Computing. 

4.6.1. Crowdsourced Mapping 

Crowdsourced mapping involves collecting and aggregating 

data from a fleet of PAVs to dynamically update HD maps. As 

PAVs traverse various routes, their onboard sensors—such as 

cameras, LiDAR, and GPS—capture real-time environmental 

data. This information is then transmitted to a central server, 

where it is processed to detect changes in the environment, such 

as new road features or alterations due to construction. By 

leveraging the collective data from multiple vehicles, 

crowdsourced mapping enables rapid and scalable updates to 

HD maps, ensuring they reflect the current state of the road 

network. For instance, Dabeer et al. [226] presented an end-to-

end system that utilizes consumer-grade components to 

crowdsource precise 3D maps with semantically meaningful 

landmarks, such as traffic signs and lane markings. Their 

approach demonstrated that a fleet of vehicles equipped with 

standard sensors could collaboratively generate and update HD 

maps efficiently, reducing reliance on specialized mapping 

vehicles. Similarly, Liu et al. [227] proposed LiveMap, a real-

time dynamic mapping system that aggregates perception data 

from connected vehicles within an edge computing framework. 

LiveMap processes data from multiple vehicles to create an up-

to-date representation of the driving environment, enhancing 

the AV ability to navigate dynamic and complex scenarios. 

4.6.2. Edge Computing 

Edge computing involves processing data closer to its 

source—such as on the vehicle itself or nearby edge servers—

rather than relying solely on centralized cloud servers. This 

approach reduces latency, conserves bandwidth, and enables 

real-time data processing, which is crucial for the timely 

updating of HD maps in rapidly changing environments. By 

decentralizing computations, edge computing allows PAVs to 

receive and contribute to map updates more efficiently, 

enhancing their responsiveness to environmental changes. For 

example, Zhang et al. [228] introduced EdgeMap, a 

crowdsourcing-based edge computing framework designed for 

real-time HD map updates. EdgeMap processes data locally on 

edge servers, minimizing the bandwidth required for cloud 

communication and ensuring low-latency updates. This system 

effectively balances computational demands across the 

network, allowing vehicles to access accurate maps without 

overburdening central infrastructure. Additionally, Liu et al. 

[229] developed LiveMap, a real-time dynamic mapping 

system that operates within an automotive edge computing 

network. LiveMap detects, matches, and tracks objects on the 

road by processing data from connected vehicles, thereby 

enhancing the AV situational awareness and ability to navigate 

complex environments.  

Both crowdsourced mapping and edge computing offer 

promising solutions to the challenges of maintaining up-to-date 

HD maps for PAVs. Crowdsourced mapping leverages the 

collective data from multiple vehicles to provide 

comprehensive and timely updates, enhancing the scalability 

and accuracy of map maintenance. However, it requires robust 

data aggregation methods and mechanisms to ensure data 
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quality and security. Edge computing complements this 

approach by enabling real-time data processing closer to the 

data source, reducing latency and bandwidth usage. This 

decentralization allows for more responsive map updates, 

which is critical in dynamic environments.  

4.7. Conclusions and the Way Forward 

Integrating crowdsourced mapping and edge computing can 

potentially provide a more robust framework for HD map 

maintenance. As documented in Section 6, implementing edge 

computing requires substantial investment in infrastructure and 

effective management of distributed resources. By combining 

the scalability of crowdsourced data collection with the 

responsiveness of edge computing, PAVs can achieve a more 

accurate and up-to-date understanding of their operating 

environments, thereby enhancing navigation safety and 

efficiency. As documented in Section 7, future research should 

focus on developing standardized protocols for data sharing and 

distributed processing, as well as addressing challenges related 

to data privacy, security, and the interoperability of systems 

across different vehicle manufacturers and service providers. 

5. Common Sense Reasoning 

5.1. Introduction and Methodology 

Despite the significant improvements of sensors and machine 

learning applications, perceptual systems for autonomous 

driving still fall short of human drivers’ capabilities. Besides 

the inherent difficulty to detect and recognize objects and 

environmental features, human-like driving also presuppose the 

capability to respond appropriately to the presence of these 

objects and features. This implies an understanding of the 

interrelations among objects or objects’ properties; the 

intentions and proximal aims manifested by agents; the 

practical significance of the scenario at hand. This 

amalgamation of seemingly mundane yet intricately 

interconnected concepts, including the nuanced understanding 

of our environment and the mental states of other interacting 

agents, has posed a longstanding challenge for AI since its 

inception.  

Researchers in AI usually refer to commonsense [231] to 

indicate the comprehensive reservoir of practical knowledge 

that artificial systems need to successfully navigate complex 

and open-ended real-life scenarios characterized by a great 

number of massively interconnected variables [232]. 

Commonsense has continued to be one of the thorns in the side 

of AI [233, 234], until the advent of LLMs [235]. Already by 

2021 they achieved the same success of humans on the 

Winograd Schema Challenge [236], since then the standard test 

of commonsense unreachable by AI, prompting soon for much 

more demanding tests [237]. 

In light of this new scenario, this section focuses exclusively 

on language models—specifically, Multimodal Language 

Models (MLMs) with visual capabilities—as they are currently 

the only technologies capable of providing a degree of common 

sense. This is a rapidly expanding yet relatively nascent line of 

research. A search on Google Scholar for the terms 

“multimodal large language models” and “autonomous 

driving” yielded 60 hits up to 2023, which increased to ∼500 

by October 2024. Interestingly, a comparison with the number 

of hits for the term “multimodal large language models” alone 

returned ∼4000 hits. This indicates that approximately 10% of 

MLM research is primarily applied to autonomous driving. The 

following section briefly characterizes the type of tools 

represented by MLMs, providing some technical details, and 

then addresses the areas where common sense would be most 

beneficial in autonomous driving systems, particularly in corner 

cases. 

5.2. The Grounding Problem 

From a theoretical standpoint, the introduction of MLMs 

offers a solution to the long-standing problem in AI known as 

the Grounding Problem, which pertains to how to create a 

connection between the internal representations of an AI system 

and the real-world entities [238]. Traditionally, this issue was 

referred to as the Symbol Grounding Problem, due to the 

symbolic nature of conceptual representations in classical AI. 

In the context of LLMs, it has been rebranded as the Vector 

Grounding Problem [239]. Equipping a system with the ability 

to perceive the external world necessitates creating the most 

effective connections with real-world objects, thereby 

addressing the grounding problem, whether symbolic or 

vectorial. However, this path presents significant challenges, as, 

until a few years ago, effective vision systems were primarily 

based on deep convolutional neural networks (DCNNs), 

including those used for autonomous driving, whereas LLMs 

are built on the Transformer architecture [240]. 

A significant first step was realized with the Vision 

Transformer (ViT) [241], which adapted the attention 

mechanism of the Transformer from language to vision for the 

first time. In ViT, instead of operating on word embedding 

vectors, the model processes 16x16 patches of the input image. 

While ViT does not handle language processing and serves 

primarily as an alternative to established DCNNs, its 

introduction laid the groundwork for integrating the 

Transformer architecture with images. Notably, ViT has 

become a crucial component in facilitating true integration 

between language and vision, as exemplified by CLIP 

(Contrastive Language-Image Pre-training) [242]. In CLIP, 

contrastive learning ensures that outputs are similar when 

derived from the same input entity and dissimilar when derived 

from different entities. This involves separate encoders for the 

text describing an image and the image itself, generating latent 

vectors of equal length. Initially employed for tasks such as 

image captioning, simple question answering, and selecting 

images based on textual descriptions, CLIP’s significance 

extends beyond these applications. It represents an effective 

approach to progressively integrating linguistic and visual 

domains. Variants of CLIP, such as ALIGN (A Large-scale 

Image and Noisy-text embedding) [243], have further advanced 

this integration. 
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5.3. The Semantic Integration Problem 

The need to simultaneously train the visual and linguistic 

components presents a challenge, as it often requires sacrificing 

the robust inferential semantic network characteristic of 

advanced LLMs, which is typically built upon extensive text 

corpora. To preserve this valuable knowledge base, various 

strategies have been explored to minimize the impact on the 

synaptic weights of the linguistic module when exposed to 

visual stimuli. For instance, in [244], the linguistic encoder 

remains unaffected, with only the gradients in the attention 

layer used for backpropagation of errors in the visual encoder. 

Alternatively, the LLaMAAdapter V2 model [245] takes a 

middle-ground approach, where only selected Transformer 

layers within the linguistic module are influenced by visual 

exposure during training. 

LLaMA-Adapter V2, alongside GPT-3.5, is central to Drive 

Like A Human, one of the first partial adoptions of MLM in 

autonomous driving [246]. Prior to this, LLMs had already been 

tested in the driving loop, as seen with GPTDriver [247], which 

required a separate system, called Unified Autonomous Driving 

(UniAD) [248], capable of interpreting the scene due to the 

model’s inherent lack of perceptual abilities. This setup 

involved a detailed translation process that converted all 

relevant information into a linguistic format, including salient 

objects, their spatial coordinates, and velocities. Drive Like A 

Human marks a step forward, operating in a closed loop that 

achieves full integration—not in the perceptual realm, but in the 

domain of control. It utilizes the ReAct system [249], which 

introduces a general prompting paradigm for combining 

reasoning and action with LLMs to tackle diverse decision-

making tasks. Through the synergy of LLaMA-Adapter V2, 

GPT-3.5, and ReAct, Drive Like A Human demonstrates its 

ability to leverage common sense reasoning in specific 

scenarios. For instance, when presented with an image of a 

pickup truck carrying several traffic cones in its bed, the system 

does not mistakenly interpret the presence of the traffic cones 

as a hazard. The purpose of this pioneering work was explicitly 

to promote a new research direction, and it has indeed done so. 

5.4. Towards the Development of a Research Agenda 

In early 2024, the introduction of GPT-4V marked a 

significant milestone—a comprehensive MLM capable of 

processing linguistic inputs, including conversational 

interactions, alongside multiple images [250]. Shortly after its 

release, open-source alternatives became available, such as 

LLAVa (Large Language-andVision Assistant), which uses 

Vicuna for the language component and CLIP for the vision 

component [251], and InternVL, based on ViT and Llama-2 

[252]. It was at this point that the avalanche effect in research 

proliferation occurred, as mentioned at the beginning of the 

section, with a jump from 85 works in 2023 to 573 as of 

September 2024. Notably, more than half of these publications 

are surveys, reviews, and position papers. Among the most 

recent and comprehensive surveys, we recommend [253, 254, 

255]. Of those focusing on actual developments, only a few of 

the most significant are briefly listed here. 

The DME-Driver (Decision-Maker Executor-Driver) system 

[256] is based on GPT-4V and tested on a dataset created by the 

authors, HBD (Human-Driver Behavior and Decision-Making), 

which integrates human driver behavior logic with detailed 

environmental perception. Both the dataset and the system’s 

testing environment are based in the CARLA simulator [257]. 

Despite its name, the system DriveGPT4 [258] is not based on 

GPT-4; it is a smaller MLM trained directly using 56K samples 

from the BDDX (Berkeley DeepDrive eXplanation) dataset 

[259] and an additional 223K samples of general multimedia 

instruction-following examples. Similarly, DriVLMe [260] 

relies on the BDD-X dataset for training Vicuna7B, but with 

additional training from what the authors call “embodied” and 

“social” experiences. The former refers to a collection of ego-

car data in the CARLA simulator, while the latter involves real 

human dialogues during driving. 

Fig. 5. Representation of areas with more complex or underdeveloped road networks 
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The work in [261] aims to adopt MLMs while keeping 

computational demands manageable, using video token 

sparsification and leveraging InternVL [252]. Two other 

systems, AgentsCoMerge [262] and LMMCoDrive [263], focus 

on vehicle communication. The former specializes in 

collaborative decision-making for ramp merging, while the 

latter is a more general MLM-based approach to cooperative 

motion planning for fleets of vehicles. In [34], a dataset called 

DrivingContexts is created, featuring a classification of 24 

driving and environmental contexts, along with 2.6 billion 

context-query pairs relevant to driving. The ContextVLM 

system, based on LLAVa, classifies the current context 

accordingly. Thus, over the past year, there has been a 

progressive consolidation of the research agenda regarding the 

use of MLMs in autonomous driving, with the establishment of 

specific benchmarks and cross-comparisons among various 

proposed solutions. The next subsection addresses some 

particular cases. 

5.5. Corner Cases 

In the context of driving, the absence of a comprehensive 

framework rooted in common sense leaves autonomous driving 

systems ill-equipped, particularly when confronting what are 

often termed cornercase scenarios, uncommon situations that 

differ from the more limited reality captured by the datasets 

used to train vision systems. The conventional approach to 

addressing these corner cases—augmenting datasets to 

encompass a wider range of situations—yields incremental 

improvements. However, it falls short of overcoming the 

fundamental challenge of navigating an open world akin to the 

dynamic environments encountered on roadways. A striking 

example of a corner case can be found in one of the early 

exploratory studies on using GPT-4V in autonomous driving 

[265], which employed real-world video clips. In one of these 

clips, a small airplane performs an emergency maneuver on the 

highway, ending up in the outer lane with a wing extending into 

the driving lane. This scenario would pose a significant 

challenge for traditional visual recognition systems. Yet, GPT-

4V accurately identifies the airplane and provides appropriate 

driving instructions to safely navigate around the obstacle. 

The first step toward moving beyond anecdotal cases like the 

one described above is the creation of corner-case benchmarks. 

The initial benchmark, CODA [266], contains about 1,500 

videos with cases grouped into 30 categories. From this, 

CODA-LM [267] was later derived, tailored for testing MLMs 

by supplementing each case in CODA with textual annotations 

concerning both the perception of the event and driving 

suggestions. In September 2024, as part of the European 

Conference on Computer Vision, a challenge based on CODA-

LM was organized. The winning system [268] uses a twostage 

approach: first, LLaVA is fine-tuned to generate a coarse 

textual description and driving suggestion, followed by GPT-4 

refining the output. This system achieved an accuracy of 83% 

for corner-case perception and 74% for driving suggestions 

compared to CODA-LM annotations. Meanwhile, the system in 

[269] is based on the current most advanced MLM from 

OpenAI, GPT-4o. Additionally, the LiteViLA (Lightweight 

Vision-Language model) system [270] aims to reduce 

computational demand, leveraging the TinyLLaVA MLM 

[271], with only a limited drop in performance to 66% in 

driving suggestions. 

5.6. Safety, Reliability, and Feasibility Challenges 

The need for safety in autonomous driving imposes 

particularly stringent accuracy requirements, and it remains an 

open question whether MLMs can meet these standards. While 

their integration as a source of common sense offers the 

potential to enhance safety, the system becomes impractical if 

the accuracy is insufficient to substantially reduce false 

positives. From the perspective of on-board deployment, the 

same precautions applied to other deep learning modules in 

autonomous vehicle perception, such as protections against 

adversarial attacks, should be considered. These attacks involve 

minor disturbances in visual signals—such as altered road 

signs—that can induce significant errors in the visual 

recognition system [272, 273]. Although there have been no 

documented instances of such attacks being executed, they 

remain a potential vulnerability. Some studies [274, 275] 

suggest that MLMs, rather than introducing new vulnerabilities, 

could serve as an additional layer of defense. Nonetheless, this 

area requires further investigation. 

5.7. Supporting Vulnerable Road Users 

Given the critical importance of safety, autonomous driving 

systems pay special attention to vulnerable road users (VRUs), 

particularly pedestrians and cyclists [276]. Pedestrians display 

less predictable behaviors compared to other road users, whose 

movements more closely align with standard traffic patterns 

and are only partially influenced by road features. As a result, 

interactions between vehicles and pedestrians present a 

significant challenge for autonomous driving systems [277, 

278]. It is, therefore, unsurprising that researchers are exploring 

how language models might address this challenge. In a study 

leveraging GPT-4V [279], driving scene frames are fed directly 

into the MLM. This primarily exploratory study involves 

designing prompt templates that end with questions like, “Is the 

pedestrian crossing in front of our car?” or “What is the 

pedestrian’s action (standing/walking)?” These templates draw 

examples from standard pedestrian behavior datasets such as 

JAAD, WiDEVIEW, and PIE. Even in complex and ambiguous 

scenarios, GPT-4V demonstrates an ability to offer plausible 

interpretations of pedestrian behavior, thereby providing 

optimal suggestions for driving actions. 

5.8. In-between Narrow and General AI: a Theoretical 

Challenge 

Leveraging MLMs in autonomous driving systems presents 

considerable theoretical challenges, particularly when it comes 

to accurately capturing the nuanced patterns of human 

cognition. Efforts to emulate human drivers’ cognitive abilities 

have historically focused on replicating individual functions 

one at a time [280]. However, achieving commonsense 

reasoning requires MLMs to simulate a broader range of 

cognitive processes that humans engage in during driving. 

Specializing an MLM for driving while retaining its broader 
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commonsense capabilities is not straightforward. The challenge 

aligns with the classic tension between Artificial General 

Intelligence (AGI) and Narrow AI [281]. AGI aims for 

intelligent behavior across any context, while Narrow AI 

focuses on specific applications. While common sense is central 

to AGI, autonomous driving falls within the domain of Narrow 

AI. Among the research efforts discussed, some lean heavily 

toward Narrow AI [258], with concerns that a model 

specialized solely for driving tasks might fail when confronted 

with unexpected situations. In contrast, other approaches, such 

as those in [255], aim to infuse domain-specific expertise into 

MLMs while preserving their general adaptability. 

A key advantage of Narrow AI is its lower computational 

demand, a critical benefit for in-vehicle applications. On the 

AGI side, however, current high-performing MLMs with 

advanced commonsense capabilities are often unsuitable for 

real-time use due to their extensive inference times. There is 

hope in ongoing efforts to create language models that balance 

high performance with reduced computational requirements 

[282, 271], as seen in the LiteViLA system [270] and 

techniques like video token sparsification [261]. 

In summary, while the commonsense reasoning that MLMs 

could bring to autonomous driving systems has the potential to 

greatly improve their ability to handle a wide range of 

scenarios, including challenging corner cases, their widespread 

integration into vehicular systems remains a longer-term 

objective. 

6. Road Infrastructure 

6.1. Introduction and Methodology 

Despite significant advancements in the underlying 

technologies, the widespread deployment of advanced 

autonomous driving systems has been hindered by a multitude 

of challenges, many of which are inextricably linked to the state 

of our current road infrastructure, which encompasses elements 

such as road geometry, cross-section design, pavement quality, 

markings, signage, intersections, and traffic control systems. To 

address these challenges, a systematic review of top-tier 

research articles from the past decade has been conducted to 

investigate the compatibility issues and integration solutions 

between current road infrastructure and Level 4 and Level 5 

autonomous vehicles. This review extracts articles from 

reputable databases like Scopus and Web of Science (WoS) to 

understand how key infrastructure components—such as road 

geometry, pavement conditions, signage, and traffic control 

systems—affect the performance of advanced autonomous 

driving technologies. The literature review presented in this 

section uses a search strategy with keywords like "autonomous 

vehicles," "Level 4," "Level 5," "road infrastructure," 

"compatibility," "adaptations," and "futureproofing." It focuses 

on articles that examine how existing infrastructure affects the 

performance of PAVs and suggest improvements for better 

integration. 

Road infrastructure plays a critical role in enabling the safe 

and efficient operation of PAVs. These physical and digital 

components act as the foundational framework upon which 

PAVs must navigate, perceive their surroundings, and make 

informed decisions. However, the existing infrastructure, 

primarily designed with human drivers in mind, may not be 

fully compatible with the unique requirements and capabilities 

of Level 4 and Level 5 PAVs [283].  

One of the primary challenges is the inconsistency and 

unpredictability of current road conditions, which humans are 

very good at handling. Faded or obstructed markings, non-

standard signage, and temporary construction zones can 

confuse the perception systems of PAVs, hindering their ability 

to accurately interpret the road environment [284]. 

Furthermore, unexpected events such as traffic accidents, road 

closures, or the presence of human-driven vehicles can 

introduce dynamic and unpredictable situations that 

autonomous systems may struggle to anticipate and respond to 

appropriately [285]. 

Moreover, the transition to higher levels of automation 

necessitates a re-evaluation of existing design standards and 

guidelines. Many of these standards are based on human driver 

characteristics, such as perception-reaction times and eye 

heights, which may no longer be relevant in the context of 

PAVs [286], [287]. As a result, a comprehensive review and 

potential revision of design philosophies, specifications, and 

guidelines are required to accommodate the unique operational 

requirements of Level 4 and Level 5 PAVs [288], [289]. One of 

the most challenging issues is how an autonomous vehicle 

could adapt itself to the dynamics of road regulation and traffic 

conditions. Such a situation can happen anytime and anywhere 

because 

• Road regulations (right of road) may vary with countries, 

states, regions or even segments of a road (see Figure XXX 

for an example and Section 11) [290]. 

• Owners may not be aware of changing traffic rules for old 

vehicles [291]. 

• Emergency situations can occur any time [292]. 

• Road infrastructure may not be available in all segments of 

a road (see Figure 1 for another example)[293]. 

In the future, when all cars are autonomous, the situation of road 

traffic can be dramatically different from what we have now 

and, therefore, will require different methods and 

infrastructures for road management and traffic control [294, 

295].  

In the next section, we will see that with the new 

technologies for vehicle-based communication and intelligent 

traffic control, traditional vision-based traffic control facilities, 

such as traffic lights, roundabouts, and stop signs, are likely to 

be replaced by less visible but more efficient and more effective 

algorithmic controlled road facilities [313]. This section, 

however, delves uniquely with road infrastructures and how 

they are required to implement higher levels of vehicle 

automation. By examining the current state of physical and 

digital infrastructure elements, identifying potential challenges 

and limitations, and exploring the necessary adaptations and 
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upgrades, we aim to shed light on the critical factors impeding 

the widespread adoption of Level 4 and Level 5 PAVs. Through 

a comprehensive analysis of existing research literature, this 

section seeks to provide insights into the infrastructure-related 

barriers and propose strategies to overcome them, paving the 

way for a future where fully autonomous vehicles can 

seamlessly navigate our transportation networks. 

6.2. The Inconsistency and Unclarity Challenge: Road 

Markings, Signage, and Traffic Control Systems 

Proper delineation, consistent standards, and maintenance of 

road markings, traffic signs, and control signals are critical for 

the current operation of PAVs [294]. These physical elements 

serve as crucial visual cues that allow PAVs to navigate, 

interpret traffic rules, and make informed decisions [284]. 

However, the presence of faded or missing lane markings, such 

as those on heavily weathered highways, can lead to erratic 

lane-keeping behavior or unintended lane departures by PAVs 

[284], [294]. Obstructed or non-standard signs, like a yield sign 

obscured by vegetation or temporary construction zone 

markings deviating from standard practices, can confuse the 

perception systems of PAVs, hindering their deployment [290]. 

Therefore, the readiness and adoption of PAVs can vary 

significantly between regions based on the condition of their 

road infrastructure [295]. Well-maintained and clearly defined 

road markings and signage in regions like Abu Dhabi may 

facilitate faster adaptation of AV technology, enabling seamless 

navigation and adherence to traffic rules. In contrast, areas with 

more complex or underdeveloped road networks, characterized 

by faded markings, non-standard signage, and intricate road 

layouts, may require extensive infrastructure upgrades before 

widespread AV deployment can be achieved [296]. 

6.3. The Unpredictability Challenge: Poor Road Conditions 

and Messy Human-Vehicle Interactions 

Level 4 and Level 5 PAVs need to be able to address dynamic 

and unpredictable road conditions seamlessly, which is a 

significant challenge with the current infrastructure. 

Unexpected events such as road closures due to construction or 

detours due to accidents can introduce unforeseen situations 

that PAVs may struggle to navigate. For instance, an AV 

encountering a sudden detour with minimal signage may fail to 

reroute effectively [295]. Similarly, the presence of human 

drivers can introduce unpredictability, like a driver waving 

another car through at an uncontrolled intersection, a subtle 

human cue that PAVs find difficult to interpret [297]. These 

complex driving scenarios often rely on subtle human cues, 

gestures, and unspoken agreements that are difficult to replicate 

in autonomous systems. For example, in a merge scenario, 

human drivers may use eye contact or hand gestures to negotiate 

the right of way, which current AV systems cannot comprehend 

reliably. Improving road infrastructure by implementing 

strategic approaches that facilitate safer and more efficient 

interactions between human-driven and autonomous vehicles, 

such as dedicated AV lanes or intelligent traffic management 

systems, is crucial for widespread AV deployment, especially 

in complex traffic situations like roundabouts or merging lanes 

[298]. 

6.4. The Digital Infrastructure Fragility Challenge: Lack of 

Robust Connectivity 

Higher levels of AV require reliable and low-latency 

connectivity for high-definition mapping, real-time traffic data, 

and communication with other vehicles and infrastructure, 

emphasizing the need for real-time information exchange and 

integration of heterogeneous technologies for achieving higher 

levels of autonomous driving [299]. For instance, an AV 

without reliable connectivity may struggle to receive up-to-date 

high-definition maps or traffic data, leading to navigation issues 

or delayed responses to dynamic traffic conditions. The current 

digital infrastructure, including cellular network coverage, 

fiber-optic cable networks, and dedicated short-range 

communication (DSRC) infrastructure for vehicle-to-

infrastructure (V2I) communication, may need to be improved 

in many areas to support the data demands of Level 4 and Level 

5 PAVs [300]. For example, in areas with limited cellular 

coverage or outdated DSRC infrastructure, PAVs may face 

challenges in communicating with traffic signals or receiving 

crucial information from roadside units [301]. 

This aligns with the abstract's focus on addressing the 

challenges of technological augmentation of road infrastructure 

to support intelligent transport system (ITS) services and the 

need for enhancements in CCAM (Connected Cooperative and 

Automated Mobility) infrastructure imperative for intelligent 

Geometric Element Potential Problem 

with Current 

Standards 

 

Suggested 

Considerations 

/Adaptations  

Sight Distances Designed for human 

perception-reaction 

time, which is longer 

than PAVs 

Shorter sight 

distances may be 

feasible due to PAVs' 

quicker reactions 

[286], [289], [293] 

Horizontal Curves Not all horizontal 

curves accommodate 

PAVs' predictable 

path following 

Incorporate AV 

kinematic models for 

optimized curve 

design [289], [293] 

Vertical Curves Crest vertical curves 

can limit sensors' 

line of sight 

Design revisions for 

consistent visibility 

and speed 

maintenance [286, 

[293] 

Lane Widths Wider lanes cater to 

human driver error 

margins 

Narrower lanes may 

suffice for PAVs with 

precise locational 

capabilities [289] 

Intersection Design Complicated designs 

may result in 

suboptimal path 

prediction for PAVs 

Simplification or 

inclusion of AV-

guidance signals 

could improve flow 

[289] 

 

Table IV: Various Geometries and Their Respective Problems for 

Autonomous Vehicles 
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road systems and decision-making of PAVs. Additionally, real-

time data from sensors, IoT devices, and other sources are 

crucial for PAVs to navigate and make decisions effectively, 

echoing the abstract's emphasis on integration of various 

disciplines and technologies, such as sensors, communication, 

computation, and AI, to achieve higher levels of AV [302], 

[303]. Without a robust and widespread digital infrastructure in 

place, addressing the integration of these heterogeneous 

technologies and enhancing CCAM infrastructure, the 

deployment of higher levels PAVs will be restricted [302]. For 

instance, in areas with limited connectivity and outdated 

infrastructure, PAVs may not be able to leverage real-time 

sensor data or communicate effectively with other vehicles and 

road systems, hindering their ability to operate at higher levels 

of autonomy [283]. 

6.5. The Road Design Challenge: Re-Evaluation of 

Standards and Geometric Elements 

Current road design standards and geometric elements, such 

as sight distances, horizontal and vertical curves, are largely 

based on human driver characteristics. However, with PAVs' 

enhanced perception abilities through sensors, shorter reaction 

times, and different operational requirements, a re-evaluation 

and potential revision of design philosophies, specifications, 

and guidelines will be necessary [286], [289], [293]. For 

instance, the required sight distance for a horizontal curve, 

which is determined based on human perception-reaction times, 

may need to be reduced for PAVs due to their faster reaction 

capabilities as depicted in Table IV. Standard reaction times are 

generally assumed to be around 2.5 seconds for perception and 

reaction under good conditions. This includes time for the 

driver to perceive a situation and initiate a response [287]. AV 

systems, like those from Tesla, can process information and 

react within milliseconds. While specific numbers vary 

depending on the situation, PAVs typically have significantly 

shorter reaction times due to their advanced sensor suites and 

processing capabilities [292]. 

In another scenario, the design of lane widths and shoulder 

widths, which are currently based on human driver behavior 

and vehicle dimensions, may require modifications to cater to 

the precise maneuvering capabilities and potentially smaller 

form factors of PAVs [304], [305]. By re-evaluating and 

revising these design standards and geometric elements, the 

infrastructure can be better optimized for the integration of 

PAVs, ensuring safer and more efficient operations as their 

adoption increases on public roads [306]. 

6.5.1. Modifications to Road Cross-Section Elements and 

Pavement Design 

Current road cross-sectional elements, such as lane widths, 

shoulders, medians, and barriers, were originally designed with 

human drivers in mind, accounting for human perception and 

reaction times, as well as variability in steering accuracy [307], 

[308]. However, these standards may not fully align with the 

precise positioning capabilities of PAVs, which are less prone 

to lane wandering and can maintain consistent paths [309]. This 

difference creates a need to adjust certain elements to 

accommodate AV-specific requirements. For instance, in areas 

with dedicated AV lanes, narrower lane widths could be 

feasible due to PAVs’ ability to maintain precise positioning. 

Additionally, in scenarios like vehicle platooning, where 

multiple PAVs travel closely together, the lanes could be 

designed for optimal alignment and spacing.  

At the same time, wider shoulders or designated stopping 

areas may be necessary to allow PAVs to pull over safely when 

they encounter situations beyond their operational design 

domain, such as unexpected obstacles, severe weather, or 

construction zones. These modifications would help ensure that 

road infrastructure supports the unique operational needs of 

PAVs. Additionally, PAVs' reduced wheel wander and precise 

positioning could accelerate pavement rutting and deterioration, 

necessitating optimized pavement designs based on variables 

like speed limits, lane widths, and loading patterns [310], [311]. 

For example, in high-speed AV-only lanes, where vehicles are 

expected to maintain tight formations and precise positioning, 

pavement designs may need to be reinforced to withstand the 

concentrated loads and minimize rutting. Skid resistance 

requirements may also need re-evaluation to ensure safe AV 

operation [297]. In scenarios where PAVs need to perform 

emergency maneuvers or braking, higher skid resistance may 

be required to maintain control and avoid collisions, especially 

in adverse weather conditions [284], [288]. 

6.5.2. Other Infrastructural Elements 

Intersections, junctions, and parking facilities pose 

considerable challenges for PAVs due to their complexity and 

the need for real-time interpretation of dynamic traffic 

situations [312]. For instance, intersections often become 

bottlenecks, as PAVs must navigate intricate scenarios 

involving multiple vehicles, pedestrians, and signals. This 

complexity creates a need to redesign these areas to better 

accommodate PAVs and enable smoother traffic flow. Possible 

solutions include implementing dedicated AV lanes or 

enhancing infrastructure connectivity to facilitate 

communication between PAVs, traffic signals, and surrounding 

vehicles [313]. Additionally, parking facilities may need 

upgrades to support autonomous valet parking, allowing PAVs 

to independently drop off and pick up passengers without 

requiring human input [313]. These adaptations would help 

integrate PAVs more effectively into urban environments.  

6.6. Conclusions and the Way Forward  

In the future, all critical infrastructure elements, including 

bridges, tunnels [314], drainage systems, road lighting, roadside 

equipment, and facilities for vulnerable road users will have to 

be assessed thoroughly and upgraded to accommodate the 

needs of PAVs [315], [316]. Based on the data presented in 

Section 4 and the consideration offered in Section 7, bridges 

and tunnels will require enhanced connectivity and safety 

features to ensure that PAVs can navigate them reliably. These 

structures often have limited GPS and sensor functionality due 

to their design, which can hinder PAVs’ ability to maintain 

positioning and detect obstacles accurately, aggravating the 
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detection problems reviewed in Section 3: for example, 

roadside equipment and facilities for pedestrians and cyclists 

will have be designed or upgraded to ensure safe interactions 

with PAVs [318]. Also, drainage systems must be regularly 

monitored to prevent water accumulation that could affect AV 

sensors and road lighting improvements will be necessary to 

ensure PAVs environment perception operate safely at night 

[317]. In Section 7 we will argue that a key intervention for 

improving navigation and safety for PAVs consists in  installing 

dedicated PAV communication systems, such as vehicle-to-

infrastructure (V2I) technology or enhanced lane markings and 

lighting, could [314].  

As discussed in Section 11, transportation agencies and 

policymakers, in collaboration with the manufacturers, will be 

able to address these key aspects of road infrastructure only if 

they systematically coordinate to proactively plan and 

implement the necessary changes, upgrades, and 

standardizations. This coordinate planning will ensure a smooth 

transition to a future with widespread deployment of Level 4 

and Level 5 autonomous vehicles while maintaining safety, 

efficiency, and accessibility for all road users. 

7. Connected Autonomous Vehicles and Traffic 

Management 

7.1. Introduction and Methodology  

The advancement of PAVs technology is driven not only by 

innovation in AI and sensors but also by progress in 

telecommunication, mobile networking, and roadside 

infrastructure. These advancements enable intelligent traffic 

control and management systems. The new era of autonomous 

driving presents opportunities for both centralised and 

distributed traffic control systems, each with its own set of 

advantages and challenges. These challenges include various 

technical limitations and a trade-off between autonomous 

decision-making and system-wide optimization. With recent 

developments in communication technology, PAVs are now 

interconnected, which introduces new complexities in traffic 

management. For example, it involves a more complex version 

of the “Vehicle Routing problem” (VRP), a class of problems 

that require designing routes for a fleet of vehicles to serve 

customers. The VRP for PAVs is a particularly complex 

subclass of problems involving multiple autonomous vehicles 

entering and exiting a network and designing the best routes for 

them to bring the passengers to their destination. Solving this 

problem means optimizing the traffic flow coordinating the 

movements of PAVs to maximize efficiency and safety for each 

vehicle involved. This problem can be addressed using a variety 

of computer science models, including static routing game 

models, evolutionary dynamics of repeated games models, 

queuing models, and online routing game models [346, 347, 

348]. Note that VRP differs from path planning (Sections 3 and 

4) because the former involves finding the path, from origin to 

destination in the network, that is optimal for a flux of 

coordinated vehicles, while the latter is about calculating the 

best trajectory for a vehicle’s movement in each particular 

manoeuvre. 

As mentioned in Section 6, traditional traffic control systems 

(traffic lights, stop signs, and roundabouts) may soon become 

outdated, necessitating their replacement with smart roadside 

infrastructure. A related but distinct issue is that intelligent 

traffic control will be essential for the widespread deployment 

of PAVs. This new era of transportation calls for novel 

technologies and theories supporting smart roadside 

infrastructure and effective traffic control, both of which 

require robust systems for communication and coordination 

among vehicles. These solutions can generally be implemented 

in two ways: centralized control and distributed decision-

making [327]. In a centralized system, a central entity manages 

traffic, potentially outperforming decentralized systems, where 

individual vehicles make autonomous decisions through 

automated negotiations with each other and with roadside 

infrastructure. Balancing these approaches presents additional 

challenges for government authorities and road users. In this 

section, we will briefly discuss on current development and 

future challenges with the technologies of Connected 

Autonomous Vehicles (CAVs). 

7.2. Connected Autonomous Vehicles: the Adaptivity 

Challenge 

CAVs technologies combine autonomous driving 

capabilities with advanced connectivity, offering substantial 

potential to improve road safety by reducing accidents through 

real-time data exchange and predictive algorithms. CAV 

communication can be categorized into three main types: 

Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), and 

Vehicle-to-Everything (V2X) [334, 335, 336]: 

• Vehicle-to-Vehicle (V2V) – This communication allows 

vehicles to directly exchange information on speed, location, 

direction, and other critical data to prevent collisions, enhance 

safety, and improve traffic flow. V2V enables collision 

avoidance, real-time traffic information sharing, and 

cooperative adaptive cruise control. 

• Vehicle-to-Infrastructure (V2I) – V2I communication 

connects vehicles with infrastructure elements such as traffic 

lights, road signs, and parking meters. This helps optimize 

traffic flow, reduce congestion, and provide timely 

information on road conditions and traffic signals. 

Applications include smart traffic signal systems, real-time 

parking information, toll collection, and hazard warnings. 

• Vehicle-to-Everything (V2X) – V2X is an umbrella term that 

includes V2V and V2I, as well as other communication forms 

like Vehicle-to-Pedestrian (V2P) and Vehicle-to-Network 

(V2N). V2X aims to establish a fully connected transportation 

ecosystem where vehicles, pedestrians, network services, and 

other entities can interact seamlessly, enhancing safety and 

efficiency. Beyond V2V and V2I, V2X includes 

communication with mobile devices for pedestrian safety, 

network-based data processing, and interaction with 

emergency services and bicycles. 

 

While V2V, V2I, and V2X communication technologies enable 
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seamless connectivity among vehicles and infrastructure, fully 

harnessing the potential of CAVs to improve traffic efficiency 

and road safety remains challenging. Integrating these 

communication systems into autonomous driving is essential 

for smarter traffic management and roadside assistance. These 

efforts are vital for achieving widespread adoption and effective 

implementation of CAV technologies [319, 321, 323, 330, 331]. 

Additionally, the deployment of CAV technologies requires a 

robust regulatory and legal framework to address critical issues 

such as liability, data privacy, and cybersecurity (Section 7.6). 

As we have mentioned earlier, the challenges to traffic 

management introduce by autonomous vehicles on roads 

largely depend on the scarce adaptivity of these systems to 

varying conditions. New theories for better understanding of the 

new era of transportation and new technologies for smart 

roadside infrastructures and intelligent traffic control are crucial 

for development and deployment of autonomous vehicles with 

the necessary adaptive qualities. As discussed in Section 6.1, 

adaptivity involves up-to-date knowledge of changing road 

regulation and real-time sensitivity to unexpected traffic 

conditions. Thanks to the constant flux of information they 

share with the network and with other vehicles, CAVs represent 

a new approach to meet these requirements and thus achieve 

smarter traffic control. In the following sections, we will 

discuss the related issues and challenges. 

7.3. The Intelligent Intersection Management Challenge 

The direct application for CAV technologies is smarter 

intersection control. Intersections are critical points in traffic 

control systems, often causing significant delays and accidents. 

Modern traffic signal systems have evolved from fixed timing 

signals to those that adjust based on various parameters, 

including time of day and traffic density. Common intersection 

traffic management strategies include Cybercars-2, Intersafe-2, 

Autonomous Intersection Management [329, 334], and the 

Intelligent and Cooperative Intersection Collision Avoidance 

System [350]. Vision-based systems utilize sensors to monitor 

traffic flow, but they typically manage individual intersections 

independently.  

However, current road infrastructures and traffic control 

technologies are designed for human drivers, and even self-

driving cars are trained to recognize human-oriented traffic 

signals, which may not be necessary for future CAV traffic 

management. New traffic management protocols have been 

proposed in the literature specifically for traffic with 

autonomous vehicles, such as first-come first-served (FCFS), 

virtual traffic light, virtual roundabout and priority-based 

protocols, and so on [337, 338, 339]. Beyond these protocols, 

more sophisticated intersection management systems are being 

developed that integrate V2X communication. This approach 

can significantly enhance traffic flow and safety by enabling 

coordinated manoeuvres and dynamic adjustment to dynamic 

traffic conditions [331]. Designing and developing traffic 

management protocols for fully autonomous vehicles is more 

challenging than anticipated, primarily due to the limited 

number of such vehicles currently on the roads. To address this 

issue, simulators are employed to generate data and enable 

comparisons with existing traffic management systems. 

Commonly used simulators include aimsun [487], AIM4 [488], 

SUMO [489], and CARLA [490]. 

7.4. The Traffic Control Challenge: Balancing Centralised 

and Decentralised Control 

Optimising the efficiency of complex traffic systems ideally 

involves centralised control. However, implementing 

centralised control over human-driven vehicles is challenging, 

as enforcing real-time decisions on individual drivers is nearly 

impossible. With connected vehicles, centralised traffic control 

becomes feasible in certain contexts, such as at intersections, 

though it requires additional investments in communication and 

infrastructure [349, 350]. Alternatively, each connected and 

autonomous vehicle (CAV) can function as an intelligent agent, 

capable of making safe driving decisions, predicting traffic 

flow, and selecting optimal routes. In this setup, traffic 

involving CAVs can be modeled as a multi-agent system, 

allowing traffic analysis through equilibrium calculations 

[333]. 

Centralised control generally provides better efficiency in 

terms of minimizing traffic delays [320]. The challenge lies in 

determining when centralised control should be applied versus 

decentralized, agent-driven control. Roughgarden proposed 

addressing this question with the concept of the Price of 

Anarchy (PoA) [342]. The PoA is defined as the ratio of system 

cost under decentralised control to that under centralized 

control, serving as an index to identify which traffic situations 

allow for self-determined vehicle decisions and which require 

centralised control. When the PoA is low, the difference in 

system cost between decentralized and centralized control is 

minimal, allowing vehicles to make independent decisions. 

Conversely, when the PoA is high, self-determination becomes 

inefficient, and centralized control can achieve better traffic 

flow. 

The PoA concept can be extended by incorporating real-time 

data and adaptive control strategies. By continuously 

monitoring traffic conditions and calculating the PoA, traffic 

management systems can dynamically switch between 

centralised and decentralised control modes. This adaptive 

approach enhances traffic flow, reduces congestion, and 

improves overall travel times. 

7.5. Automated Negotiation Challenges and Potential 

Solutions 

One of the most challenging issues for PAVs and AV traffic 

control is enabling PAVs to navigate roads with unknown 

traffic rules or situations they were never trained for. Currently, 

no PAVs can operate under such conditions autonomously. 

Developing PAVs capable of handling unknown environments 

requires automated negotiation between vehicles or between 

vehicles and roadside infrastructure. Automated negotiation is 

essential for agents in a multi-agent system to collaborate and 

reach mutually beneficial solutions [322]. This method uses 

computational approaches to facilitate decision-making and 
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coordination in scenarios involving PAVs, traffic management, 

and logistics. Agents can propose solutions that are either 

accepted or rejected, with accepted proposals associated with 

utility values. Automated negotiation offers a promising 

solution, enabling PAVs to communicate, coordinate, and make 

collective real-time decisions. Beyond traffic control, 

automated negotiation is also applicable in logistics [324, 325, 

326, 328]. 

However, current technology does not yet support PAVs 

traveling on completely unknown roads. New approaches are 

required. A similar problem has been explored by researchers 

in General Game Playing (GGP), which addresses how a 

computer player can engage in a game without knowing the 

rules until the game begins [340]. In GGP, any game is 

described in Game Description Language (GDL), allowing a 

general game player to interpret the rules and devise effective 

strategies autonomously. Extensions of GDL [341, 342, 343, 

344, 345] have successfully been applied in various areas, 

including financial markets [341], auctions [343], and 

automated negotiation [344]. It is feasible to extend GDL 

further to describe road segments and traffic control protocols, 

supporting automated negotiation mechanisms for PAVs. 

Research on automated negotiation for PAVs can be divided 

into three main directions: 

7.5.1. Description of Road Networks 

One approach to modeling traffic information involves 

representing road segments as grids and expressing traffic flow 

through spatiotemporal relationships. By extending GDL to 

include these elements, we can enable PAVs to interpret diverse 

traffic situations. This spatiotemporal extension could also 

support the description of traffic management protocols in 

terms of negotiation mechanisms. 

7.5.2. V2I Negotiation 

With connected PAV technology, vehicles can negotiate 

travel permissions with roadside infrastructure when 

centralized or semi-centralized control is enforced. This is 

particularly useful in complex scenarios, such as multi-way 

intersections, roadwork zones, emergencies, or unusual weather 

conditions. A GDL-based description of road configurations 

and negotiation protocols could facilitate negotiation between 

PAVs and roadside infrastructure. 

7.5.3. V2V Negotiation 

Vehicle-to-vehicle (V2V) negotiation can be advantageous 

in unsignaled intersections or rural areas. In simpler traffic 

scenarios, V2V negotiation is straightforward to implement. 

PAVs could automatically generate negotiation mechanism 

descriptions from predefined templates and share these with 

nearby vehicles [349]. 

The GGP-based approach enables PAVs to interpret and 

engage in negotiation mechanisms without predefined scenario-

specific facilities. When a vehicle approaches a road segment 

or intersection, it could automatically request a traffic 

management description from roadside infrastructure, if 

available. Alternatively, it could generate a traffic management 

description to initiate negotiation with other vehicles. A GDL 

parser and state-machine solver would enable an PAV to 

interpret any valid negotiation mechanism and devise its own 

strategy for traffic agreement negotiation. 

7.6. Data Privacy and Cybersecurity 

Cybersecurity vulnerabilities pose critical and multifaceted 

threats to the safe and reliable operation of these vehicles. 

Various cybersecurity challenges face CAVs, including attack 

vectors, vulnerability types, and emerging solutions. As smart 

vehicles increasingly leverage interconnectivity—through 

vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and 

vehicle-to-everything (V2X) communications—the attack 

surface expands, creating both novel cybersecurity threats and 

amplifying existing ones [414]: CAVs rely heavily on a 

complex network of sensors (e.g., LiDAR, radar, cameras) and 

high-performance computing platforms to make safety-critical 

decisions [415]; in addition, communication with centralized 

data centers or roadside units (RSUs) for real-time traffic 

information, software updates, and maintenance tasks further 

complicates the cybersecurity landscape. Hence, safeguarding 

CAVs from malicious actors and sophisticated cyberattacks has 

become a priority for researchers because without robust 

cybersecurity frameworks for data confidentiality, integrity, 

and availability the technological promise of CAVs could be 

severely [416]. 

7.6.1. Attack Vectors and Vulnerabilities 

Attacks on autonomous and connected vehicles can target 

hardware, software, or the communication channels linking 

these systems. Hardware-oriented attacks exploit 

vulnerabilities in electronic control units (ECUs), onboard 

diagnostic (OBD-II) ports, or external interfaces that lack 

rigorous authorization checks. A study by Zhang & colleagues 

[417] highlights the risk posed by side-channel attacks, where 

attackers monitor power usage or electromagnetic emissions to 

compromise cryptographic keys. On the software side, 

researchers have identified vulnerabilities in the operating 

systems, firmware, and various application-level modules that 

govern the vehicle’s functionality [418]. These weaknesses can 

include poor coding practices, unpatched software libraries, and 

misconfigurations in safety-critical functions (e.g., brake or 

steering control). For instance, an often-cited study by Miller & 

Valasek [419] demonstrated how attackers could remotely seize 

control of a vehicle’s steering and braking systems by 

exploiting the vehicle’s telematics control unit. Meanwhile, 

research on advanced driver assistance systems reveals that 

deep learning frameworks used for object detection and sensor 

fusion can be susceptible to adversarial inputs. Attackers can 

craft perturbations in sensor data—sometimes imperceptible to 

the human eye — to induce misclassification in neural networks 

[420].  

An equally significant concern is the communication 

network itself. The V2X ecosystem relies on DSRC, cellular 

networks, or emerging technologies such as 5G to transmit data. 

However, wireless protocols are inherently susceptible to 
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eavesdropping, spoofing, Denial of Service (DoS) attacks, and 

data injection [421]. Some research points out that multi-hop 

communications, where data travels through intermediate 

nodes, further expand the attack surface, enabling attackers to 

intercept or manipulate data in transit [422]. Cyberattacks on 

CAVs can have immediate, severe consequences. In the realm 

of personal vehicles, compromised steering or braking systems 

pose direct risks to the safety of passengers, pedestrians, and 

other road users. For instance, a successful DoS attack could 

freeze critical sensor data or disrupt vehicle decision-making at 

high speed, leading to collisions and potentially catastrophic 

results [423].  

The interplay between physical safety and cybersecurity 

becomes even more pressing in the commercial sector, 

particularly for autonomous trucks. A cyberattack on a fleet of 

trucks can produce large-scale disruptions to supply chains, 

cause severe road accidents, or inflict considerable economic 

damage [424]. Beyond physical harm, there are major concerns 

about the privacy of user data. Autonomous and connected 

vehicles generate and process large amounts of sensitive 

information, such as routes, destinations, user preferences, and 

even biometric data for driver authentication [433]. Such data 

can be exploited to track individuals, commit fraud, or execute 

identity theft if adequate encryption and data-protection 

measures are not in place. Additionally, as more ACVs 

integrate with smart city infrastructures, a breach in the 

transportation network could propagate to other critical 

systems, including emergency services, power grids, and 

telecommunication networks. 

7.6.2. Key Security Challenges 

One of the most commonly cited challenges in the literature 

is the resource-constrained environment of some automotive 

components, which limits the feasibility of strong 

cryptographic algorithms. Embedded systems in vehicles often 

operate under tight constraints regarding memory, processing 

power, and energy consumption [416]. Sophisticated 

encryption or frequent key rotations may exceed system 

capacity or negatively affect latency—both of which can 

degrade real-time vehicular performance. Another substantial 

challenge is the vehicular supply chain’s fragmented nature. 

Components originate from diverse manufacturers, and 

software often integrates proprietary and open-source code. 

According to Kaiwartya & colleagues [425], the lack of 

standardized security protocols and interoperability 

frameworks creates patchwork solutions that hackers can 

exploit. 

Moreover, automotive systems are expected to have 

extended lifespans (ten to fifteen years or more), which 

complicates over-the-air updates and security patch 

management. There is also a skills gap in cybersecurity for the 

automotive sector. As vehicles transition from mechanical 

machines to interconnected computing platforms, a specialized 

workforce with expertise in both automotive engineering and 

cybersecurity is needed. Industry reports and scholarly 

investigations alike emphasize the urgent necessity to educate 

and train a new generation of professionals who can apply 

advanced cryptographic, machine learning, and systems 

engineering knowledge to secure ACVs [426]. 

7.6.3. Mitigation Strategies and Proposed Solutions 

Peer-reviewed literature presents a broad range of solutions, 

from hardware-based defenses to sophisticated intrusion 

detection systems leveraging artificial intelligence. Hardware 

security modules integrated into the ECU can store 

cryptographic keys securely and enable hardware-based trust 

anchors, preventing unauthorized tampering [414]. On the 

communication front, secure key management schemes using 

lightweight cryptography, such as elliptic-curve cryptography, 

have been explored to achieve strong security without 

overburdening system resources [427]. Meanwhile, machine 

learning (ML) and deep learning (DL) techniques are 

increasingly proposed for real-time anomaly detection. 

Researchers highlight the promise of deep neural networks for 

identifying unusual behaviors in sensor readings or CAN 

(Controller Area Network) bus traffic [428]. Similarly, 

blockchain-based frameworks have been considered for 

ensuring trustworthy data exchange in V2X communications. 

These decentralized ledgers allow for tamper-proof transaction 

records, authenticating data broadcasted across multiple 

vehicles and infrastructure nodes [429]. Moreover, the adoption 

of formal verification methods has garnered interest to 

rigorously validate the correctness of safety-critical software. 

While formal methods can be computationally intensive, some 

studies demonstrate their use in checking system-level 

properties, such as ensuring that messages or software tasks 

remain within trusted boundaries [430]. These strategies, 

combined with frequent security audits and multi-layer defense 

architectures, form the foundation of a holistic approach to 

protecting autonomous and connected vehicles.  

As we will see in Section 11, security measures in ACVs 

extend beyond technical solutions. Policy and regulatory 

frameworks, such as the ISO/SAE 21434 “Road Vehicles—

Cybersecurity Engineering” standard, outline requirements for 

vehicle manufacturers and suppliers to establish secure 

software development life cycles and risk management 

practices [431]. Additionally, institutions like the National 

Highway Traffic Safety Administration (NHTSA) and the 

European Union Agency for Cybersecurity (ENISA) have 

published guidelines recommending layered security designs, 

third-party testing, and mandatory reporting of cyber incidents. 

Standardization remains a work in progress, however. Given 

the different communication protocols, vehicle architectures, 

and regional regulations, the automotive industry faces 

challenges in converging on a unified set of cybersecurity 

standards. Still, there is consensus among stakeholders that 

government and industry collaboration is key to achieving a 

robust cybersecurity posture across brands and borders [432]. 

7.6.4. Future Directions in Cybersecurity 

The body of scientific literature underscores that 

cybersecurity for autonomous and connected vehicles is 

inherently complex, driven by the interplay of hardware 
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limitations, sophisticated software stacks, and multi-channel 

communications. Attack vectors can encompass everything 

from physical tampering with onboard components to 

adversarial manipulation of sensor inputs and malicious 

exploitation of wireless networks. The consequences, from 

direct threats to passenger safety to large-scale disruptions of 

commercial fleets, highlight the critical nature of securing 

ACVs against cyberattacks. 

Emerging research provides a raft of potential mitigation 

strategies, including hardware security modules, advanced 

cryptographic protocols, AI-driven intrusion detection, and 

blockchain-based frameworks. Nevertheless, further work is 

essential, especially in standardizing security practices, 

ensuring the sustainability and longevity of security measures, 

and cultivating the necessary expertise in this interdisciplinary 

area. As regulatory bodies, manufacturers, and researchers 

converge on robust cybersecurity solutions, the ultimate goal 

remains the same: realizing the full promise of autonomous and 

connected vehicles while preserving public safety, privacy, and 

trust. Only through a concerted, collaborative effort can the 

transportation sector fully harness the transformative benefits 

of ACVs without succumbing to the cyber threats that currently 

loom over this promising technology. 

7.7 Conclusions and the Way Forward 

By facilitating real-time communication and coordination 

among PAVs, automated negotiation can reduce traffic 

bottlenecks, enhance responses to road hazards, promote 

energy-efficient driving, and ensure equitable road use. 

However, successful implementation requires overcoming 

technical challenges, such as developing robust negotiation 

algorithms that can handle complex, dynamic traffic scenarios 

and process large data volumes in real-time. Furthermore, 

public acceptance is crucial for widespread adoption of these 

technologies (see Section 9). Future research should prioritize 

refining coordination and negotiation algorithms and 

integrating them seamlessly into existing transportation 

infrastructures (as seen in Section 6). To build trust and 

acceptance among the public is equally important, as we will 

see in Sections 9: this endeavour involves not only 

technological advancements but also addressing socio-cultural, 

ethical, and regulatory concerns (as discussed in Sections 9-11) 

Continued exploration and development of these systems can 

help pave the way for safer, more efficient, and equitable 

transportation. 

8. Human Factors and Interfaces 

8.1. Introduction and Methodology  

The road to PAVs is developing into an engineering reality. 

However, until fully autonomous vehicles are developed, they 

are expected to be limited in their capabilities, requiring 

humans to attend to unexpected traffic situations beyond the 

capabilities of PAVs (i.e., deteriorated weather conditions, 

roadworks, disorderly parking lots, etc.). Human factors, a 

multidisciplinary field focusing on understanding the 

interactions between humans and other system elements, plays 

an important role in the design of safe, user-centric and 

effective automated vehicle technology [351, 352]. The 

transition from human-driven to autonomous vehicles presents 

a complex array of human factors challenges, as the technology 

is not yet 100% reliable and safe [353, 354]. The integration of 

human factors knowledge is crucial when developing safety-

critical systems, such as automated vehicles. 

This Section provides a brief review of published literature 

on some key human factors issues and challenges associated 

with the transition from manually driven to autonomous 

driving, including ways to address these challenges: cognitive 

workload; situational awareness; the Human-Machine Interface 

(HMI) challenge. The review considered the Human Factors & 

Ergonomics literature of the last 10 years, including peer-

reviewed research publications. Keywords like “cognitive 

workload”, “situational awareness”, “Human-Machine 

Interface” have been chosen to identify the most relevant 

advancements in the space of human factors and autonomous 

vehicles. Three databases were interrogated: ‘PubMed’, ‘Web 

of Science’, ‘Google Scholar’. 

8.2. The Cognitive Workload Challenge: Human 

Performance Issues 

Cognitive load refers to the amount of mental effort required 

to process information and perform tasks and can impair 

performance and decision-making if it is too high or too low 

[356]. 

8.2.1. Cognitive Underload 

High levels of automation can reduce the driver’s cognitive 

load, potentially leading to complacency and decreased 

vigilance. If the workload is low during automated driving, the 

driver may experience passive fatigue or lack of direct control 

over the task [357]. Previous research focusing mainly on SAE 

Level 3 equipped vehicles has highlighted that increased 

vehicle automation is associated with reduced driver vigilance 

as shown by increased braking and steering reaction times in 

response to a sudden critical event [358]. Recent studies have 

also shown that, because of low workload in periods of 

automated driving, drivers engage in secondary tasks as 

opposed to monitoring and supervising autonomous driving 

[359]. These studies suggest that drivers can be more vulnerable 

to distractions and inattention during periods of driving 

automation, compromising their ability to suddenly regain 

control of the vehicle when needed [360]. 

8.2.2. Cognitive Overload 

In contrast, the transition between automated and manual 

control, particularly in SAE Level 3 vehicles, can significantly 

increase cognitive load. Drivers need to quickly reorient 

themselves to the driving environment, when requested by the 

automation, and make immediate decisions, which can be 

challenging if they have been disengaged during automated 

driving. This sudden increase in cognitive load can lead to 

performance deficits [361]. In addition, the requirement to 

supervise automation can increase cognitive load [362]. 
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8.2.3. The Interface Design Challenge 

The design complexity of HMIs can either mitigate or 

exacerbate cognitive load. Generally, poorly designed 

interfaces that require significant mental effort to understand 

and operate can overwhelm drivers, while well-designed 

interfaces can help distribute cognitive load more effectively 

[363]. Developing adaptive interfaces that adjust the amount 

and type of information based on the driver’s current cognitive 

state and situational context can help manage cognitive load. 

For example, the interface could provide more detailed 

information in complex situations and reduce information flow 

during routine operations [360]. Implementing real-time 

feedback mechanisms that alert drivers to changes in the driving 

environment or system status can help maintain situational 

awareness and manage cognitive load. Providing timely support 

and guidance can ensure that drivers are prepared to take back 

control of a vehicle when necessary [365]. Finally, providing 

comprehensive training and opportunities for users to become 

familiar with automated systems can help them manage 

cognitive load more effectively. Training programs should 

focus on helping users understand how to interact with the 

system and what to expect during automated and manual 

driving phases [366, 354]. 

8.3. The Situational Awareness Challenge 

Situational awareness refers to the perception of 

environmental elements, comprehension of their meaning, and 

projection of their future status. High levels of situational 

awareness are crucial for making informed decisions and 

responding effectively to dynamic driving situations [367].  

When operating PAVs, Kyriakidis et al. [369] suggested 

determining the individual capabilities of human drivers (i.e., 

level of situation awareness and reaction times, time to ensure 

safety while maintaining changing driving modes). It would be 

unrealistic to expect human drivers to constantly monitor the 

automation system when operating PAVs at Level 3. According 

to Reed [369], although it is feasible to deploy conditionally 

automated vehicles (i.e. SAE Level 3), the expectation that a 

human driver can remain alert and rapidly regain situation 

awareness following a request by the system is unrealistic.  

In addition, the authors advised that it is important to define 

the minimum time requirements for human drivers to return in 

the control loop, for several driving scenarios. It would be 

important to determine the type and frequency of information 

that human drivers should be receiving to facilitate and 

maintain their situation awareness, primarily when they are not 

engaged in the driving task [369]. Merat and colleagues [369] 

suggested that, for the next 5-10 years, the research should be 

focusing on providing solutions for maintaining human drivers’ 

situation awareness, when they are engaged in the driving task. 

Importantly, improvements in the design and performance of 

HMIs are required to establish the type and amount of 

information that drivers should receive to cope with any 

unexpected situation [370]. The most common issues 

associated with situational awareness in automated vehicles 

may include loss of situational awareness, appropriate attention 

allocation, mode confusion, and transition periods between 

automated and manual control. 

8.3.1. Reduced situational awareness is a serious risk for 

automated systems, as drivers may become overly reliant on 

automation and disengage from the driving task. This can result 

in drivers being unaware of critical changes in the driving 

environment, which is particularly problematic in situations 

where manual intervention is required [367]. 

8.3.2. Appropriate allocation of attention is necessary to 

maintain an adequate level of situational awareness. Automated 

systems that demand too much or too little attention can disrupt 

this balance. Drivers may either become overloaded with 

information, or when cognitive resources are underutilized, 

both of which can impair their ability to maintain situational 

awareness [365]. 

8.3.3. Mode confusion occurs when drivers are uncertain about 

the current state of the automated system, such as whether the 

vehicle is in manual or automated mode; or in which automated 

mode it is in. This confusion can lead to incorrect assumptions 

about the vehicle's behavior and reduce situational awareness 

[368]. 

8.3.4. Transitioning between automated and manual control 

is a critical period for situational awareness. Drivers need to 

rapidly reacquire situational awareness, which can be 

challenging if they have been disengaged from the driving task 

during automation. This can lead to delays in recognizing and 

responding to hazards [361]. 

8.4. The Human-Machine Interface (HMI) Challenge: 

Design and Usability Issues 

From the human factors perspective, the design of HMIs 

plays a significant role in ensuring effective interaction between 

drivers and automated systems [379]. Effective HMI design is 

crucial for ensuring that users can easily and intuitively control 

and monitor operations, maintain situational awareness, and 

respond to system alerts and notifications [362]. 

8.4.1. Lack of clarity and simplicity 

Clear, intuitive displays and controls are essential for 

conveying critical information about the status of the vehicle 

automation and any required driver actions. Poorly designed 

interfaces can lead to confusion, errors, and delayed response 

times [362, 363]. The HMI must provide clear and 

unambiguous information about the vehicle’s status, intended 

actions, and any required human interventions. Therefore, HMI 

design must prioritize user-centered principles to enhance 

usability and safety [30]. Poorly designed HMIs can increase 

cognitive load by overwhelming users with excessive 

information, not presenting information required or presenting 

information in a confusing manner. Complex interfaces can 

hinder user comprehension and decision-making, leading to 

errors and reduced trust in the technology [362]. For example, 

in recent years, the designers of smart cars’ interfaces have 

transferred to touchscreens several basic functions that 

traditionally were entrusted to physical buttons and levers (e.g., 
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signals and wipers). However, safety concerns were recently 

raised in relation to this trend, with experts emphasizing that 

screen-based controls significantly increase the risk of 

distraction and recommending the return of levers and physical 

buttons to reduce partially or completely the driver’s reliance 

on screens [411]. 

8.4.2. Lack of consistency 

Furthermore, lack of consistency across HMIs in different 

automated vehicle models or manufacturers can confuse users 

and increase the learning curve. Inconsistent placement of 

controls, varying visual styles, and different interaction 

methods can make it challenging for users to transfer their 

knowledge and skills between different automated vehicle 

systems [364]. In addition, transitioning between automated 

and manual driving modes can pose usability challenges. Users 

must quickly adapt to changes in interface behavior and 

understand when manual intervention is required. Poorly 

managed transitions can disrupt driving tasks and reduce 

overall system usability [377]. For partially automated vehicles 

(SAE Levels 1-3], issues here include which driving functions 

should be allocated, why, when and who is responsible for the 

allocation [372]. The appropriate allocation of function to 

human drivers and automation is also a fundamental issue in 

HMI design: humans and machines have different capabilities, 

strengths and limitations and automated driving systems, at 

least for partially automated vehicles (SAE Levels 2 and 3) 

should be designed to optimize the performances of both human 

and machine. Hence, more research is needed in fully 

immersive PAV simulation and traffic flow simulations to 

predict road safety effects of PAVs [369]. 

Ways forward in improving HMI design and usability 

include consistency and standardization, simplification of 

information presentation, and a user-centered design approach 

which caters for all users, including the fitness impaired [381] 

and people with disabilities [382]. Establishing consistency and 

standardization in HMI design elements across different PAV 

models and manufacturers improves usability. Standardized 

icons, control placements, and interaction methods help users 

quickly learn and operate PAV systems, reducing confusion and 

enhancing user confidence [364]. Adopting a user-centered 

design approach ensures that HMIs are designed based on user 

needs, preferences, and cognitive capabilities, and there are 

various human factors considerations that need to be taken into 

account in scientifically testing and evaluating automated 

driving systems [376]. Involving users in the design process 

through iterative testing and feedback helps identify usability 

issues early and refine interface designs accordingly [362]. 

8.5. Human Factors Challenges in SEA Levels 4 and 5 

Human factors will not cease to be relevant when, and if, the 

entire vehicle fleet becomes entirely autonomous. Building 

human trust in their ability to operate and interact safely with 

other vehicles and road users will continue to be a major 

challenge. The HMI through which people summon, interact, 

communicate and are physically accommodated by them will 

need to be designed for easy and comfortable interaction for a 

wide range of able and not so able users, both of whom may 

require some level of training in how to safely and comfortably 

interact with them. Occupants will need to be alert, and 

understand how to respond, to unexpected events (e.g., 

emergencies and breakdowns), which may also require some 

level of training.  

Likewise, vehicles will need to be trained to manage 

unexpected events within the vehicle cabin (e.g., sick 

occupants). Humans will still be required to monitor the 

movements of PAVs along the road network, as “ground traffic 

controllers”, and in some circumstances (e.g., if they 

breakdown and cannot park themselves in a safe location) pilot 

them remotely to safety, like drones; and, of course, humans 

will continue to be required for some time to design the very 

algorithms that drive fully automated vehicles. Performance of 

these new human activities will bring with them a whole new 

range of human factors issues and challenges. 

8.6. Conclusions and the Way Forward 

The shifting role of the human driver from one in which they 

are in total control to one in which they are responsible 

primarily for monitoring and supervising the driving task 

performed by automation may lead to problems of inattention, 

reduced situational awareness and manual skill degradation. By 

incorporating human factors into the design, testing, and 

deployment of highly automated vehicles, stakeholders can 

create systems that not only enhance transportation efficiency 

but also foster a positive user experience and societal 

acceptance.  

A significant challenge remains with SAE Level 3 vehicles, 

where human drivers must resume manual control if the 

automated driving system fails or reaches the limits of its 

competence. As technology advances, resolving human factors 

considerations becomes increasingly critical [383, 384]. 

Seamless transition between human and autonomous control is 

essential. This involves clear communication about when and 

why humans should take over. Sudden requests for human 

intervention can be problematic if the driver is not adequately 

prepared [385]. The road to fully autonomous driving is 

complex, and for various reasons slower than predicted. 

Without a comprehensive understanding of human factors and 

socio-cultural attitudes towards autonomy (Section 9), it will 

not be possible to navigate these challenges and realize the 

potential benefits of this transformative technology. 

9. Attitudes and Perceptions 

9.1. Introduction and Methodology  

This section investigates the attitudes and perceptions of the 

public in relation to PAVs, as widespread opinions, perceptions, 

and feelings about autonomous technologies are likely to 

influence the propensity of the prospective users to adopt self-

driving cars and rely on them. Despite their potential 

advantages, the adoption of PAVs has been slow [146] and 

experts whether this is caused by the negative psychological 

socio-cultural attitudes of the public, more than the objective 
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limitations of the current technologies. Some of the attitudes 

studied by social robotics and Human-Robot Interaction 

scholars are particularly relevant in this context as they directly 

impact on the adopt propensity of people: the most important 

constructs to be considered in this context are Trust, 

Acceptance, Tolerance [412]. 

Other attitudes may play a secondary role as they indirectly 

shape the propensity of people to adopt autonomous cars and 

rely on them: these tendencies are studied under the label of 

“anthropomorphism” and concern the attribution of human-like 

qualities, like intelligence or empathy, to machines [413]. 

Attitudes and perceptions may vary significantly based on the 

demographical factors like age, sex, cultural background, etc. 

For instance, a survey conducted by the Australian Automobile 

Association (AAA) [147] revealed that 60% of respondents 

were open to using PAVs as an alternative to public 

transportation. However, 86% of American drivers expressed 

fear about riding in fully autonomous vehicles, demonstrating 

regional differences in attitudes towards PAVs. These regional 

differences suggest that cultural values, technological 

familiarity, and trust in institutional frameworks play a 

significant role in shaping public attitudes toward PAVs. 

To address these challenges in the adoption of PAVs, it is 

critical to understand the interaction between public attitudes, 

external narratives, and policy considerations. Narratives 

delivered through media and public discourse can shape 

perceptions of PAVs, either positively or negatively, thereby 

influencing trust and acceptance of the technology. For 

example, media narratives often utilize framing effects to 

highlight either benefits, such as reduced traffic accidents, or 

risks, such as data security concerns, directly affecting public 

perception. Moreover, policy and regulatory frameworks play a 

vital role in establishing safety and performance standards, 

which directly impact public confidence in PAVs. These 

aspects must be considered together with factors such as 

affordability, safety concerns, privacy risks, and cultural 

influences, as they collectively shape public acceptance. In this 

context, societal and cultural factors further influence adoption. 

For example, in collectivist societies like China, social 

influence and peer approval significantly impacts individuals’ 

attitudes toward new technologies [155]. Conversely, in 

individualistic societies, personal experiences and trust in 

institutions may play a more prominent role [159]. Finally, 

individual factors such as age and education level also influence 

adoption rates, with younger and more highly educated 

individuals generally being more receptive to PAVs. 

This section adopts a comprehensive methodological 

framework to investigate the factors contributing to low public 

trust and limited PAV adoption. The analysis integrates 

findings from surveys and studies conducted across diverse 

geographic and cultural contexts, focusing on public 

perceptions, attitudes, and behavioral intentions. The data 

sources include responses from thousands of participants in 

countries such as China, India, Japan, the US, the UK, 

Australia, and Israel, as well as insights from global studies 

spanning over 100 countries. By combining quantitative 

analyses of large-scale survey data with qualitative insights into 

psychological and socio-cultural dimensions, such as trust, 

acceptance, and anthropomorphism, this framework provides a 

comprehensive understanding of the key factors shaping public 

attitudes and adoption of PAVs. This approach not only 

identifies universal trends but also highlights context-specific 

challenges, providing valuable insights for stakeholders to build 

public trust in PAVs. 

9.2. The Trust Challenge: Overreliance and Under-reliance 

Trust is a pivotal element in the adoption and acceptance of 

autonomous driving technology [359]. Trust in the context of 

automated and autonomous vehicles refers to the degree of 

confidence that users place in the vehicle's ability to perform 

driving tasks safely and reliably [352]. Trust is a critical factor 

influencing the acceptance of automated and autonomous 

vehicles, impacting both individual users and broader societal 

adoption. Human trust in automation is not entirely calibrated: 

sometimes it is too low (under-trust), and sometimes too high 

(overreliance). Overreliance occurs when a driver does not 

question the performance of automation and insufficiently 

counterchecks the automation status [371]. Overreliance results 

in drivers ignoring system limitations and failing to take over 

control when necessary [352, 372]. In contrast, under-trust 

occurs when drivers do not trust the automated system 

sufficiently, leading them to intervene unnecessarily or avoid 

using the technology altogether. This behavior can disrupt the 

vehicle's operations and reduce the perceived benefits of 

automation [373]. Hence, only a well-balanced amount of trust, 

motivated by knowledge, can produce the optimal diffusion of 

a new technology. 

Trust is not static; it evolves based on users’ experiences with 

technology. Positive experiences can build trust [374]. Trust 

issues indeed pose significant barriers to the rapid deployment 

of automated and autonomous vehicles. Users are more likely 

to adopt these technologies if they trust them to be safe and 

reliable. Conversely, mistrust can lead to resistance and slow 

adoption rates [354]. This challenge is particularly pronounced 

at the current stage of development, where the vehicles are not 

yet fully autonomous and require occasional human 

intervention (SAE Level 3). Trust issues in fully autonomous 

vehicles (SAE Level 5) will be critical but different in nature, 

as there will be no driver controlling the vehicle. Trust must be 

calibrated appropriately to the system’s capabilities and 

limitations. Mismatches between user expectations and system 

performance can lead to dissatisfaction and misuse of the 

technology [375].  

Hancock and colleagues indicated that transparent 

communication about the system’s capabilities and limitations 

would be key to fostering appropriate levels of trust [376]. In 

addition to communication, Hoff and Bashir highlighted that 

education is important in ensuring that users know when and 

how autonomous vehicles make decisions [374]. Fagnant and 

Kockelman pointed out the important role of regulatory bodies’ 

in ensuring that PAVs of Level 4 and 5 meet stringent safety 
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criteria before they are widely deployed [377]. Burke outlines a 

range of human factors considerations in preparing policy and 

regulation for automated vehicles [378]. Establishing clear 

regulations and industry standards for AV performance and 

safety can help build public trust. It is human nature that a 

driver, who is relieved even briefly from their driving task, will 

engage in other distracting tasks. From a liability standpoint, 

the industry will not introduce such a distraction-inducing 

system unless the automation can bring the vehicle to a minimal 

risk condition if no driver response is detected. Fisher et al. 

[352] suggested that little opportunity to ‘communicate with 

Level 5 vehicle’ might lead to feelings of ‘dread risk’ that can 

undermine trust. Hence more research is needed on public 

acceptance and trust in automation, the interaction of the PAVs 

with other vehicles and road users, and the amount and type of 

information that the human drivers shall be receiving by the 

automated system. 

9.3. Scarce Familiarity Problem 

Lack of trust towards PAVs might derive from scarce 

familiarity with automation and poor knowledge of the 

technology, as only a very tiny percentage of the populace has 

had any direct experience of autonomous drive to date. This 

lack of direct experience is often filled up by narratives and 

opinions that are not necessarily accurate. The problem of 

limited familiarity and inadequate knowledge about PAVs 

significantly affects their acceptance and adoption. Due to the 

lack of direct experience, individuals often rely on external 

narratives (many of which are inaccurate or misleading) to 

form their perceptions. Schoettle and Sivak [148] conducted a 

survey to investigate public opinion on PAVs across six 

countries: China, India, Japan, the US, the UK, and Australia. 

While most respondents expressed positive attitudes toward 

PAVs, the study reflected a significant issue of limited 

familiarity with PAVs across these countries. For instance, 87% 

of respondents in China had heard of PAVs prior to the survey, 

compared to only 57.4% in Japan, illustrating a considerable 

disparity in awareness. In addition, knowledge of automation 

levels was notably lacking. Among Japanese respondents, 

50.6% reported using vehicles without any automation (Level 

0), and 10.8% were uncertain about the level of automation in 

their vehicle's. This limited familiarity and practical exposure 

suggest that public opinions are often shaped by external 

narratives and media coverage rather than firsthand experience, 

which could lead to misunderstanding or suspicion toward 

PAVs. 

Kyriakidis et al. [149] conducted a global survey involving 

5,000 participants from 109 countries to explore public opinion 

on PAVs. The findings revealed that unfamiliarity with PAV 

technology significantly impacts its acceptance. For example, 

although most of respondents found the idea of fully automated 

driving fascinating, only 52.2% were aware of Google's 

Driverless Car, reflecting significant gaps in knowledge about 

autonomous technologies. Furthermore, participants expressed 

a preference for manual driving as the most enjoyable mode 

(mean value = 4.04 on a 1-5 scale), indicating limited awareness 

of the potential benefits of PAVs. The study further revealed 

that many respondents lacked understanding of existing 

automation levels in vehicles, and 22% indicated that they 

would not pay for fully automated driving systems. Haboucha 

et al. [150] found that limited familiarity with PAVs has a 

significant impact on adoption rates.  

A survey of 721 participants from Israel and North America 

revealed that 44% consistently chose traditional vehicles in all 

scenarios, demonstrating hesitations resulting from a lack of 

knowledge. The study further revealed that individuals with 

lower education levels, less technological exposure, or limited 

understanding of PAV capabilities were less likely to adopt 

PAVs. Furthermore, 25% of respondents indicated they would 

refuse to use shared autonomous vehicles even if provided free 

of charge, revealing a lack of trust rooted in unfamiliarity. Lee 

et al. [151] conducted a large-scale survey of 1,765 participants 

in the United States to explore how age and technological 

experience influence perceptions of and attitudes toward PAVs. 

The study found that limited familiarity with technology 

significantly hinders the acceptance of PAVs, especially among 

older generations. For instance, older respondents reported 

lower general trust in technology (mean = 2.93 on a 1-5 scale) 

and less confidence in learning and using new technologies 

compared to Millennials (mean = 3.15 vs. 3.78 on a 1-5 scale). 

Furthermore, older adults were more likely to view PAVs as 

less useful, reliable, and compatible with their lifestyles. 

In conclusion, the limited public familiarity and knowledge 

of PAVs represent significant barriers to their acceptance and 

adoption. Addressing these challenges requires a 

comprehensive strategy, including public education activities 

and interactive demonstrations. By providing opportunities for 

hands-on experiences with autonomous technologies and 

delivering accurate, transparent information, particularly on 

safety, reliability, and potential benefits, these efforts can 

effectively increase public familiarity, clarify misconceptions, 

and build trust in PAVs. 

9.4. Low Acceptance and Technology Resistance Problem 

Besides the lack of trust, a low propensity to adopt PAVs 

may derive from widespread narratives and beliefs that are 

hostile to the introduction of autonomous technologies, for 

example when they are associated in public discourse with 

technological unemployment or threats to human uniqueness. 

Lee et al. [152] examined the influencing factors on PAVs 

through collecting responses from 459 South Koreans over 20 

years of age. The survey results shown that factors directly 

related to drivers such as anxiety, carelessness, ease of driving 

and driving education influence the acceptance of partial 

autonomous vehicles, while external environmental factors 

such as extra expenses and infrastructure affect the acceptance 

of full autonomous vehicles.  

Kaye et al. [153] found that individuals residing in France 

have greater intentions to use PAVs compared to individuals 

residing in Australia and Sweden. At the same time, Potoglou 

et al. [154] investigated the consumers’ intentions to pay for 

both autonomous and alternative-fuel vehicles through 

performing an experiment in six countries, Germany, India, 
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Japan, Sweden, the UK and the US, and found significant 

heterogeneity both within and across the samples. In particular, 

consumers in Japan are willing to pay for PAVs, while 

consumers in most European countries need to be compensated 

for automation. As regards samples from the same country, the 

consumers most enthusiastic about PAVs usually have a 

university degree and are more interested in novel technologies. 

Man et al. [155] applied a technology acceptance model to 

identify the factors influence the acceptance of PAVs among 

Hong Kong drivers. They found that trust and perceived 

usefulness positively determine the attitudes and attentions to 

use PAVs. Zhang et al. [156] reported an investigation of the 

automated vehicle acceptance in China from the perspectives of 

social influence and initial trust. They conclude that both social 

influence and initial trust play important role in determining 

users’ intention to use PAVs. First, due to the influence of 

collectivist culture, the individual’s decision is likely to be 

influenced by other people’s opinion because of face saving and 

group conformity. Hence, social influence has a stronger impact 

on technology acceptance behavior in Chinese culture than it in 

western culture. Moreover, users with an openness to new 

experiences are more likely to accept PAVs and have a higher 

intention to trust them. 

9.5. Cultural Prejudices Problem 

Due to different value-systems and practices, different 

cultures may have different attitudes and perceptions towards 

the adoption of emerging technologies, with certain cultural 

traditions more inclined to trust innovative and disruptive 

solutions than others. This might be an issue for establishing 

international standards and policies. In 2021, Huang and Qian 

[157] performed a nation-wide survey in China to investigate 

the influence of reasoning process on consumer’s attitude and 

intentions towards PAVs. They found that one of the Chinese 

cultural values, “face consciousness”, positively influence the 

adoption of PAVs from dual perspectives because of the 

competing perception on the desirability of adopting PAVs: 

“face” represents an individual’s desire to gain, maintain, and 

avoid losing face in relation to others in social activities, and 

refers to a sense of favorable social self-worth that an individual 

desires others to have of him or her in a relational and network 

context [158].  

More specifically, PAVs are priced with high premiums and 

equipped with rich applications of novel technologies (e.g., 

vision-based driver assist features), and will be a symbol of 

trendy technological product. Under this condition, the feeling 

of pride, dignity, and vanity derived from self-driving vehicles 

may drive consumers to adopt the technology. At the same time, 

PAVs are still considered as a risk-taking choice which are 

connected with legal and ethical doubt. Therefore, face 

consciousness may lead consumers to choose more mature and 

widely accepted vehicles. 

Escandon et al. [159] investigated the influence of the 

indulgence dimension on the relationship between risk 

perception (e.g., financial, psychological, and time) and 

purchase intention in autonomous vehicles in Vietnam and 

Colombia. As a psychological metric, indulgence refers to the 

cultural dimension that emphasizes the gratification of human 

desires and enjoyment of life: it is associated with societies that 

prioritize leisure, pleasure, and the pursuit of happiness, 

contrasting with cultures that value restraint and self-control. 

The study collected questionnaires from 800 Colombian and 

Vietnamese car drivers aged 18 or over and found that 

indulgence directly affect the adoption of autonomous vehicles. 

In low indulgence country, Vietnam, consumers tend to pay 

more attention to financial and psychological risks. In high 

indulgence country, Colombia, irrational emotion (e.g., 

fulfilling desire) is the decisive factor for purchase intention. 

However, for the time risk, the influence of indulgence exists in 

both countries.  

Yun et al. [160] investigated the relationship between culture 

difference and public opinion on PAVs in China, India, Japan, 

the US, the UK and Australia. The investigation demonstrated 

that cultural difference plays an important role in the acceptance 

of PAVs. Specifically, more individualized societies are less 

willing to pay for autonomous vehicles, and more indulgent and 

less hierarchical societies are less willing to pay for and less 

concerned about PAVs. However, the uncertainty avoidance 

that refers to the degree to which the individuals of a society 

feel uncomfortable with uncertainty and ambiguity is 

insignificant for willingness to pay and levels of concern about 

PAVs. 

Gopinath and Narayanamurthy [146] indicated that the 

adoption of PAVs is moderated by the level of automation, 

vehicle ownership, and culture. Taniguchi et al. [145] 

investigated the acceptance of PAVs in Japan, the UK and 

German. They found that cultural differences have an important 

influence on the attitude towards PAV in these three countries. 

In particular, the Japanese participants are broadly positive, the 

British participants are broadly neutral, and the Germany 

participants are broadly negative. The result suggests that 

participants from a more hierarchical and more “masculine” 

nation are more likely to accept PAVs (according to Hofstede's 

cultural dimensions theory, a high masculinity society is a 

society in which social gender roles are clearly distinct and 

people tend to hold strong opinions about the occupation of men 

and women). 

9.6. Conclusions and the Way Forward 

This section explores public attitudes and perceptions toward 

PAVs, focusing on trust, familiarity, acceptance, and the 

cultural factors influencing adoption rates. While PAVs offer 

substantial social and economic benefits, such as reducing road 

accidents, improving mobility, and minimizing environmental 

impact, their widespread adoption faces challenges rooted in 

technical, psychological, and socio-cultural factors. 

Trust plays a pivotal role in PAV adoption, influenced by 

both under-reliance and over-reliance on PAV systems. Studies 

emphasize the importance of calibrated trust, transparent 

system functionality, and robust safety regulations to build 

confidence in PAV technology. Limited exposure to PAV 

technology and insufficient understanding of automation levels 
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deepens public scepticisms, often leading individuals to rely on 

inaccurate narratives. Cultural factors also impact public 

attitudes. For example, in collectivist societies like China, 

social norms strongly influence acceptance, whereas 

individualistic cultures, such as those in the United States, show 

greater resistance to additional costs associated with PAVs. 

Variations in cultural values, including face consciousness and 

indulgence, complicate the development of universal standards 

and policies. Furthermore, public narratives emphasizing either 

benefits (e.g., reduced traffic accidents) or risks (e.g., data 

security concerns) significantly shape trust and perceptions of 

PAVs.  

In conclusion, to address these challenges, governments and 

technological firms will need to cooperate to design education 

programs tailored to the public’s needs, community 

engagement activities, and collaborative efforts among 

researchers working in the public and in the private sector. As 

suggested in Section 8, providing hands-on experiences and 

transparent information about safety, reliability, and potential 

benefits, is a necessary measure to build trust, address public 

concerns, and pave the way for widespread PAV adoption. 

10. Ethical Dilemmas 

10.1. Introduction and Methodology  

This section considers the ethical challenges and moral 

problems relating to the development and implementation of 

autonomous personal vehicles. Following the characterisation 

of Chella et al [387], ethics pertains to creating and deploying 

AI that is “safe, lawful, just, respectful of the rights of users, 

culturally sensitive, non-discriminatory” and promotes the 

wellbeing of individuals and society. We are interested in the 

ethical complexities when designing or implementing PAVs – 

in particular, situations where it is not immediately clear what 

the right or best course of action might be. Such problems are 

pertinent not only for direct users of PAVs, but for 

governments, policymakers and the broader public, as well as 

the manufacturers, engineers and designers behind PAVs.  

The main ethical problems regarding PAVs today are 

addressing trolley problems, social acceptability and the 

question of accountability. The trolley problem is a thought 

experiment initially conceived by Philippa Foot [393], where a 

moral decision must be made between different combinations 

of lives being saved and sacrificed [400]. With respect to PAVs, 

trolley problems are discussed as moral dilemmas which arise 

from extreme traffic scenarios (e.g. when an accident is 

unavoidable, whether swerve to hit two elderly people or 

sacrifice a sole younger passenger). Social acceptability is 

similarly an ethical issue as reluctance from the public will slow 

down PAV implementation timelines, even if such vehicles are 

proven to be safer than human drivers. Considering 

accountability also presents an ethical challenge – who will be 

held responsible for accidents caused by PAVs in the future? 

Published works discussed in this section were chosen 

according to the following criteria: published since 2019, peer 

reviewed, journal impact factor greater than one. The keywords 

searched were: “ethical challenges”; “moral issues”; 

“autonomous vehicles”; “trolley problem”; “accountability”. A 

few exceptions were made to include landmark papers in the 

field, such as the Moral Machines experiment [386]. 

10.2. The Trolley Problem 

Let us first consider the perennial and oft-discussed issue for 

autonomous personal vehicles – the trolley problem. Although 

initially an ethical thought experiment, the trolley problem has 

very real-world implications for autonomous technologies. In a 

PAV context, a trolley problem is an extreme traffic event 

where some sort of accident or collision is likely unavoidable. 

The PAV system must reconcile how to prioritise the safety of 

passengers and any number of pedestrians involved [409]. We 

can appreciate the infinite number of complex extreme traffic 

scenarios that could arise and necessarily warrant some sort of 

ethical decision-making from a PAV system (involving 

different combinations of vehicles, surrounding infrastructure, 

passengers and pedestrians).  

Cuneen et al. describe how the current state of PAV 

technology operates with a “shared responsibility” between the 

driver and the PAV system [388, p. 66]. This is expected to 

remain the case until PAVs are able to perceive their 

environment and navigate as effectively and safely as humans. 

We are particularly interested in this ethically complex future 

where agency will inevitably shift from a human driver to the 

PAV system.  

How will a PAV make decisions in complex traffic 

scenarios? One approach will be for PAVs to act in accordance 

with some sort of preprogrammed ethical decision-making 

calculus. Several different approaches have been debated for 

this programming. These include selection of normative 

theories (e.g. utilitarian or deontological) or the aggregation of 

societal preferences. So, how do we choose between these 

approaches? This was the question asked by Awad et al. in the 

“Moral Machine (MM) experiment” – a piece of research that 

aimed to determine collective ethical preferences to inform AV 

system design and has greatly influenced the field of PAV 

ethics research. Although Awad et al. found an overall 

preference for PAVs sparing more lives and sparing young 

lives, there were significant variations across cultures. Many 

scholars agree that no single normative theory is a sufficient or 

appropriate decision-making calculus for a PAV but are also 

wary of deferring to majority public opinion [391, 392, 386]. A 

combination of these two approaches is likely the best way 

forward. Recent methods such as the Ethical Valence Theory 

[392] and integrated path-planning that considers future actions 

[410] aim to more effectively automate trolley-like decision 

making – but there is little consensus on the best course of 

action.  

Further, who gets to ultimately choose the decision-making 

calculus of a PAV? Whether this choice lies with the owner, the 

car itself, the manufacturer, the government or another 

authority will be influenced by the conversation around 

autonomy and liability (see Section 10.4 and Section 11.3 for 
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discussion). We may reach a point in the future where PAV 

systems will make ethical decisions based on their own free 

reflection – i.e. decision-making in real time. This would of 

course require a level of system sophistication that would go 

beyond mere pre-programming of a PAV (requiring a sufficient 

amount of common sense reasoning, as per Section 5).  

PAV trolley problems have also come under a host of 

scrutiny, with suggestions that they are unrealistic and have 

been unhelpfully framed by the media and academics alike 

[388, 397, 395, 389, 400]. De Freitas et al. argue that trolley 

problems are unlikely to occur on real roads, difficult to detect, 

and too hard to control or respond to reliably [389]. Cunneen et 

al. concur, advocating for more realistic framing of PAV-

related ethical issues as determined by current technological 

progress [388]. For example, the notion that PAVs will be 

sophisticated enough to classify pedestrians and other agents 

(i.e. as young/old or male/female) will rely on vehicle-to-

vehicle and vehicle-to-infrastructure sharing of data, which 

remains decade/s in the future [388]. PAVs today, by contrast, 

are still refining accurate perception of the environment [394]. 

Königs (2023) similarly makes the case that trolley problems 

are too unlikely to give any meaningful moral guidance, 

however believes they are methodologically important as they 

reveal that our instincts/prejudices can lead us astray [399]. 

It should also be noted that there is comparatively little 

discussion of trolley problems in PAV industry reports [400]. 

In their comprehensive document review of PAV manufacturer 

reports, Martinho et al. (2021) found no mentioned of trolley 

problems – rather, ethically complex extreme traffic scenarios 

were often mentioned as edge cases (including by General 

Motors, Nvidia, and AutoX) [400]. Some manufacturers offer 

more transparency on this topic than others. For example, in 

PAV manufacturer Nuro’s Delivering Safety: Nuro’s Approach 

report [404] the company stipulates that its vehicles can self-

sacrifice: “in the unlikely case of a vehicle ever encountering 

an unavoidable collision scenario, a driverless, passengerless 

vehicle also has the unique opportunity to prioritize the safety 

of humans, other road users, and occupied vehicles over its 

contents” (p. 9).                                                                     

Despite academic critique of sensationalised trolley 

problems, discussion remains ongoing: the nature of such 

problems is of poignant interest to the public and poses genuine 

pragmatic challenges for policymakers and manufacturers 

alike. Rather than waiting for consensus on a PAV ethical 

decision-making process, however, manufacturers are likely to 

proceed with basic measures such as optimising radars, speed 

reduction and avoidance of vulnerable agents (i.e. cyclists, 

pedestrians) to deal with crash scenarios [400, 408]. Mobileye, 

for instance, asserts that a PAV “should adjust its speed such 

that if a child would emerge from behind some [occluded] 

object, then there would be no accident” [402, p.14]. 

Additionally, many manufacturers, including Toyota [406], 

Mobileye [402], and Mando [401], describe their vision of a 

PAV future which has no accidents at all [400]. 

10.3. The Value Alignment Problem 

Let us discuss the role that public opinion plays in PAV 

development and deployment, and how this can be considered 

its own ethical challenge. While accidents will not be avoided 

altogether, it is widely accepted that adoption of PAVs will 

make roads significantly safer than they are today [392, 408, 

400]. Once PAVs become safer than human drivers, are we 

morally obligated to roll them out? At this milestone, in the 

interest of saving lives, we could even make the case for 

relaxing PAV regulations, lowering manufacturer liability or 

phasing out human driving altogether – which would also make 

traffic more sustainable, safer and more inclusive [391].  

Robinson et al. [405] point out that unless PAVs are embraced 

by the public, they will not realise their full potential or be 

successfully integrated. Nevertheless, we should not 

underestimate the challenge of aligning PAVs with a diversity 

of social values. Not only must PAV development be sensitive 

to cultural differences, as demonstrated in the MM experiment, 

it must also be distanced from human bias, prejudice, ignorance 

and egoism [392]. One of the major cultural differences 

observed is the way those from more individualist cultures 

prioritise protecting the greatest number of people, while those 

from collectivist nations believe elderly people are due a certain 

respect [386]. In addition, many prospective PAV users would 

prefer others to ride in utilitarian PAVs which protect as many 

lives as possible, while others would prefer to ride in PAVs that 

prioritize themselves [408]. 

The over-reporting or incorrect framing of trolley-like 

problems, together with high-profile fatalities such as that of an 

Arizonian pedestrian during Uber testing in 2018, do have large 

effects on public trust and will decelerate or even stall PAV 

adoption [395]. It has also been shown that we have higher 

standards for AV driving than human driving, which will 

similarly contribute to delayed implementation [397]. Given the 

significant impact that social acceptance of PAVs will have, it 

is important that this technology is explainable [388] and 

communicated in an effective way. Several scholars [407, 396] 

advocate for Value Sensitive Design –integrating the values of 

various stakeholders – throughout the design and development 

of PAVs. In addition to explainability, Umbrello and 

Yampolskiy argue that PAV systems must have “traceable lines 

of decision-making logic that are…repeatable and consistent in 

order to be verifiable” [407, p. 316]. Value Sensitive Design is 

particularly important as we envision PAVs of the future that 

may be able to exercise common sense. Until then, we continue 

to maintain a level of meaningful human control over the 

decision-making systems employed by artificial systems – in 

order to ensure a level of value alignment, and, importantly, 

safety.  

Regardless, at some point we will need to more honestly 

reflect on the point at which delaying PAV roll-out in the name 

of safety becomes just the opposite. Evans et al. describe this 

challenge as “striking a balance” between public acceptability 

and the moral requirement to introduce PAVs [392]. 

10.4. The Accountability Problem: Apportionment of 

Responsibilities 
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The final conflict we will examine is that which emerges 

around accountability. The evolution of autonomous driving 

technology brings forth the imperative of accountability, as AI-

powered systems increasingly assume control over critical 

driving functions. We are particularly interested in 

accountability in relation to questions of control, blame and 

compensation (note that the term accountability will be used 

interchangeably with responsibility here). Present day testing of 

PAVs still relies on a human passenger as a fallback system to 

take control if need be. However, when PAVs transition from 

SAE Levels 0-2, where control remains with the driver, to 

Levels 4-5, where the vehicle is making decisions [403], who is 

responsible? We see what de Jong (2020) and others call a 

responsibility-gap arise here; the answer is not ultimately clear 

[390]. 

While the most obvious and most likely candidate for 

accountability is the vehicle manufacturer, other important 

players to remember are the road system facilitators (e.g. 

vehicle communication and guidance systems), policymakers 

and the AI built into the PAV – plus even pivoting to instead 

view AV traffic accidents as natural accidents like one would a 

cyclone or tsunami [397, 403]. Assigning responsibility also 

has very important consequences in a legal sense. In complex 

or trolley-like situations, what may be a more ethical course of 

action for a PAV (e.g. more lives saved) will not always have 

lower associated liability or be easier to defend in a lawsuit 

[409]. We will see tensions emerge between ensuring PAVs 

align with social values and dealing with situations fairly in our 

legal systems. There is clearly a conflict of interest between 

user desire for AV safety and manufacturers’ vested interest in 

strategies with the lowest liability [405, 409]. Regulators will 

need to be proactive as PAV technology evolves. A lack of 

explicit policy will exacerbate uncertainty in this space, leaving 

important technological decisions to approaches that are 

market-driven and socially palatable [403].  

Wu suggests that the law may even need to be altered to 

provide manufacturers immunity from liability for PAVs 

carrying out an approved ethical decision (2020). Future 

directions for enhancing accountability will involve the 

formulation these new legal and ethical frameworks that 

delineate the responsibilities of autonomous vehicle 

manufacturers, developers, and operators based on AI system 

autonomy levels. The integration of AI and ethical frameworks 

will enable vehicles to tackle moral dilemmas, making 

decisions that align with societal values and prioritise human 

safety. It is important to remember, however, that assigning 

blame is perhaps not as important as victim compensation or 

taking steps to prevent or reduce the risk of similar accidents in 

the future [397]. For now, preserving a level of meaningful 

human oversight fosters accountability through shared 

decision-making and the preservation of human agency. This 

allows users of PAVs to intervene in driving manoeuvrers, 

thereby sharing responsibility and enabling a dynamic 

collaboration between AI and human drivers. 

10.5. Conclusions and the Way Forward 

This section has reviewed three key ethical challenges to 

designing and implementing PAVs: reconciling AV trolley 

problems (Section 10.2), social palatability of the AV 

technology (Section 10.3) and the question of accountability 

(Section 10.4). However, the ethics of PAVs will need to 

address also other kinds of considerations. For example, as is 

typical of safety-critical technology, various concerns emerge 

from the understandable interest in maintaining a level of 

meaningful human control and oversight – highlighting our 

general wariness to defer decision-making power to an PAV 

[407]. We must be careful, however, not to reduce ethical 

concerns to risk management, or reduce risk management to 

safety considerations, as overemphasizing safety might, 

paradoxically, slow down the deployment of a technology that 

has the potential to make roads much safer in the future.  

How will these challenges be addressed moving forward? 

With respect to trolley-like problems, research will continue to 

emerge where PAVs must exercise caution in dealing with 

increasingly complex situations (e.g. predicting pedestrian and 

cyclist intentions) [398]. We will also see AV technical 

solutions focus on combatting accountability concerns, such as 

with responsibility-focused decision-making algorithms or 

“black-boxes” akin to those on flights [400]. Further, linked to 

the challenge of accountability is the growing concern around 

AV data ownership, privacy and potential misuse of 

information, given the large volume of person-related 

geospatial data that will be available [397, 391, 409]. As we will 

see in Section 11, conversations around PAVs require a more 

sophisticated legal perspective that can incorporate liability as 

well as these security and data concerns. Many scholars call for 

greater collaboration across the board in the field of PAV ethics, 

in particular between academia, manufacturers and 

policymakers [408, 386, 388]. Efforts to roll out electric 

vehicles represent a significant term of comparison, as they 

have highlighted how the importance of public awareness, 

attitudes, and education cannot be understated, and a one-size-

fits-all solution is not to be expected. 

11. Policy and Regulation 

11.1. Introduction and Methodology  

The development and deployment of PAVs challenges 

policymakers internationally to formulate regulations, 

standards, and governance frameworks that maximize the 

anticipated benefits of the rapidly developing technology while 

guarding against potential negative impacts [434], [435]. This 

section reviews the literature on the main emerging policy 

issues to date, considers the extent to which each issue is putting 

breaks on the roll-out of PAVs, and highlights existing 

solutions. It concludes by identifying potential ways forward 

that could help policymakers design and adopt policies and 

standards to unlock the potential of automated driving 

technology and facilitate its widespread adoption. The main 

policy challenges identified in the literature can be grouped into 

the following three categories: safety and licensing, liability and 

insurance, and cybersecurity and privacy [436]. These issues 
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“represent substantial barriers to widespread [autonomous 

vehicle] technology implementation… [and] should be 

addressed to give manufacturers and investors more certainty in 

development” [437, p.16]. Focusing on these three issues is not 

intended to downplay the other challenges that policymakers 

will be required to solve, such as those related to the costs, 

infrastructural requirements, and sustainability of PAVs [438], 

[436]. However, those three issues have been selected for this 

review as they are the priorities that must be addressed rapidly 

to enable PAVs to move successfully from the current testing 

phase to widespread commercial deployment [439], [440].  

When considering each of these issues, it is also necessary to 

be cognizant of the overarching challenges of policymaking in 

this field, which include the following: the insufficiency of 

existing regulations as distinctions between vehicle and driver 

become increasingly blurred [441]; the speed at which the 

technology is developing and outpacing regulatory efforts 

[442], [403], [440]; the challenge of regulating for an uncertain 

future [443], [444]; the complexity of harmonizing regulations 

across different jurisdictions [445]; and the cross-over between 

issues affecting PAVs and rapidly developing policy responses 

in related fields, most notably the AI systems upon which PAVs 

are almost entirely dependent [446]. We will return to each of 

those cross-cutting issues when reviewing the literature on the 

specific policy challenges and solutions. 

The publications reviewed in the following sections were 

identified through searches of online databases, including 

Google Scholar and JSTOR, focusing on the years 2013–2024. 

Keywords searched included “autonomous vehicles” OR “self-

driving car” AND “policy” OR “regulation.” The articles 

selected were all published in journals with impact factors equal 

to or over 3.5. However, given the nascency of the field, the 

search was extended beyond such articles to include books, 

consultancy reports, and government publications to ensure that 

wide-ranging, relevant contributions were included. 

11.2. Safety and Licensing 

Unsurprisingly, the safety of PAVs’ users is policymakers’ 

key priority, and failing to address it satisfactorily would render 

all other policy developments irrelevant [436]. Safety concerns 

will potentially put major breaks on the roll-out and 

commercialization of SAVs if they undermine public trust in 

the technology and deter regulators from granting licenses for 

its usage [447]. Permissive regulations may appear to be in the 

industry’s interests, but that would only be in the short term if 

they lead to safety issues that destroy public confidence in 

PAVs, which explains why the stricter safety regimes of 

jurisdictions like the EU may give them advantages over the 

relatively permissive US in terms of developing PAVs that 

consumers trust [448].  

However, overly cautious safety regulations, especially in 

the testing phase, risk undermining the innovation that is 

essential if PAVs’ positive potential is to be realized [445]. The 

challenge here is balance, but achieving it is complicated by the 

multi-level regulatory environment in which PAV 

manufacturers must operate. Shladover and Nowakowski [439] 

identified the two main elements of automotive safety as 

mechanical faults and drivers’ competency. But in the US 

technological aspects of vehicles are regulated at the federal 

level by the National Highway Traffic Safety Administration 

(NHTSA) whereas the training of drivers, licensing, evaluation, 

and vehicle registration are the responsibility of the fifty state 

governments’ departments of motor vehicles [449], [450]. The 

complexity of this situation with regard to PAVs—in which the 

technology increasingly is the driver—is clear. 

That complexity is increased by the differing safety policies 

issued at different regulatory levels. Most national governments 

that have issued policies have made them non-binding [451], 

such as the NHTSA’s guidelines to manufacturers and states 

[452]. State-level regulations meanwhile range on a continuum 

from California, which has set its own, binding, regulations on 

automated vehicle testing and deployment, to states such as 

Delaware and Indiana which have made no regulations [453]. 

Those risks creating what Anderson et al. [450, p. xxiv] called 

“a crazy quilt of different, and perhaps incompatible, 

requirements.” This lack of harmonization could create 

unnecessary overlaps and regulatory uncertainty for the 

manufacturers of PAVs [454], limiting their abilities to 

develop, commercialize, and roll out the technology. 

Nevertheless, citing a lack of demonstrated problems with 

automated vehicles, Anderson et al. [450] argue in favor of 

holding off from attempting to impose federal standards across 

the country as such standards may both stifle innovation and 

become rapidly outdated as the technology develops. 

In terms of solutions, Koopman [448] has called for 

increased regulatory oversight to ensure the safety of automated 

vehicles and create the levels of public trust required to support 

their deployment. Koopman [448] argues that policies to 

improve safety regulations for automated vehicles should have 

two elements: requiring the industry to self-certify conformity 

with its own safety engineering standards (an approach already 

proposed by the US Department of Transportation with its 

automated vehicle framework) and setting data reporting 

standards regarding accidents. The transparent sharing of such 

data increases accountability and allows potential risks to be 

identified and mitigated [436], [435].   

Another solution is highlighted by Wansley’s [455] study of 

the NHTSA’s “novel regulatory strategy,” which it has applied 

since 2021, which balances ordering daily crash reporting with 

the threat of rapid recalls in cases of technological failure. 

Wansley [455] argues that the strategy can be transformed into 

effective regulation by increasing the flow of safety data and 

enforcing the threat of recalls if manufacturers’ vehicles create 

unacceptable levels of risk. Such an approach would pressure 

manufacturers to prioritize safety during development as a 

means of decreasing the costs and reputational damage 

associated with recalls. Other recommended safety solutions 

being applied in various jurisdictions include the following. 

California requires safety drivers and remote monitors to 

undergo additional training and stipulates that shifts from using 

the former to the latter require the issuance of new licenses with 
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extra provisions [436]. Australia requires testing companies to 

develop comprehensive safety management plans which are 

monitored by recording trials, failures to comply with safety 

rules are also punishable with substantial fines and sanctions 

[436]. 

11.3. Liability and Insurance 

Dentons [453] describes liability as one of the “twin pillars” 

that regulators of PAVs must address but argues it has been thus 

far neglected in favor of a primary focus on the other pillar: 

safety. That position is supported by international analysis 

showing that, despite much discussion, jurisdictions have been 

slow to adopt new liability provisions that specifically address 

the cases of autonomous vehicles [456]. As indicated above, the 

question of liability in the case of automation that blurs the 

distinction between vehicle and driver becomes increasingly 

complex as the level of automation increases [436], [446], 

especially because the potentially liable parties include not only 

the vehicle’s manufacturer and its occupants but also other third 

parties along the supply chain [451].  

Failing to create clarity in such cases or applying liability 

requirements that manufacturers deem overly threatening could 

restrict the commercialization of automated vehicles. Although 

one of the main arguments in favor of automation is that it will 

be much safer than human driving, Fagnant and Kockelman 

[437] have argued that holding PAVs to a much higher standard 

than humans when it comes to accident liability will increase 

the costs of the technology to such an extent that it will only be 

affordable by a select few. For that reason, Gless et al. [457] 

argued in favor of limiting manufacturers’ liability provided 

they undertake to implement reasonable risk-control measures. 

Relatedly, Contissa [458] has argued that standards that limit 

manufacturers’ design options can help to reduce their liability 

and thus encourage them to invest in PAV production and bring 

attractively priced vehicles to market. However, imposing such 

limitations comes with an obvious trade-off in terms of limiting 

innovation. To allay manufacturers’ fears regarding liability 

while avoiding that trade-off, policymakers could consider 

placing limits on the amount of damages victims of accidents 

could claim due to PAVs’ faults and governments could 

incentivize insurance companies to provide attractive policies 

for the makers of automated vehicles [452]. 

Koopman [448] makes the case that the lobbying efforts of 

manufacturers attempting to reduce their liability in the case of 

accidents are largely responsible for the patchwork of different 

approaches to questions of liability that can be found from state 

to state in the US. He argues that placing computer drivers 

under explicit duties of care at a federal level, with the 

manufacturer held responsible for any breaches of that duty, 

would resolve questions of liability. Rather than limiting the 

spread of automated vehicles, such approaches could enhance 

it by providing potential purchasers of such cars with clarity and 

reassurance regarding situations in which the manufacturer will 

be found liable for problems. In terms of specific solutions 

being implemented, California stipulates that testing permits 

will only be granted to companies that have substantial 

insurance [436]. Further, requirements to install black boxes 

can help to determine liability in the event of an accident [440]. 

Dentons [453] identifies Germany’s three-pillar liability model 

(manufacturer, owner, driver) as an example of a balanced 

distribution of risk from which other jurisdictions could learn. 

11.4. Data Privacy and Cybersecurity 

The third main policy issue related to the widespread 

deployment of PAVs concerns the related challenges of data 

privacy and cybersecurity [436]. Autonomous vehicles are 

dependent upon gathering and analyzing data to complete their 

journeys. However, that results in the collection of a substantial 

quantity of personal data, primarily, but not exclusively, related 

to the location of the vehicle’s users. Such data collection and 

storage create the potential for violations of individuals’ rights 

regarding data privacy [459] and could facilitate a range of 

unwanted violations from targeted advertising to unlawful 

monitoring and stalking [437]. This raises questions about how 

to apply existing laws in this field, such as the European 

Union’s General Data Protection Regulation, to automated 

vehicles [446]. Given that the AI systems upon which 

automated vehicles are reliant need data to function, learn, and 

improve, any restrictions placed on the gathering and use of 

such data to comply with regulation risks undermining 

innovation in the sector.  

However, failure to regulate appropriately around issues of 

data privacy could generate resistance to the adoption of PAVs 

[445]. Sever and Contissa’s [440] analysis of countries’ acts 

related to self-driving vehicles shows that they do not include 

rules that explicitly address the protection of users’ data. 

Exceptions to that include Germany and Australia, which has 

more actively engaged with the public regarding data privacy 

issues in the context of automated vehicles and formulated 

recommendations [451]. But perhaps the general lack of action 

to explicitly address such issues reflects the fact that questions 

of personal data are of less concern during the testing phase 

[436]; nevertheless, that gap will need to be filled as PAVs 

move toward more widespread deployment.  

Relatedly, the possession of valuable personal data 

incentivizes hackers to attempt cybersecurity breaches [415]. 

Given the cybersecurity risks related to data, Lee [460] argues 

for national governments to take responsibility for creating 

regulatory frameworks that address cybersecurity and data 

privacy issues in the specific context of autonomous vehicles. 

Cybersecurity threats could also, potentially, involve hackers 

forcing automated vehicles to crash [437]. Koopman [448] 

claims that, despite such risks, the industry has underinvested 

in addressing cybersecurity and needs to be required to conform 

to its own cybersecurity standard, which is set out in ISO/SAE 

21434. Taeihagh and Lim’s [451] analysis of governmental 

responses to cybersecurity issues internationally reveals the 

familiar mix of depending on non-automated-vehicle-specific 

regulations, further researching the issues through working 

groups, and offering non-binding principles to manufacturers. 

Such reticence to take decisive action reflects another familiar 

response to the policy challenges associated with PAVs: 
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 D
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n
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fear of curtailing that development or being left with regulations 

that fail to meet the capacity of technology. According to Mateo 

Sanguino et al. [461] increased investments in fighting these 

forms of cybercrime are required alongside improved 

collaboration between manufacturers, regulators, and 

researchers. 

11.5. Conclusions and the Way Forward 

The current capabilities of PAVs must balance automation 

with human inputs. Similarly, striking the right balance 

between safety and security, on the one hand, and innovation 

and cost, on the other, is essential when it comes to addressing 

policy and regulatory challenges in the sector in ways that will 

permit the successful commercialization of the technology and 

the realization of its potential. This section has reviewed both 

the overarching issues that present policy challenges in the PAV 

field (such as the speed of technological development and the 

need for regulatory harmonization across jurisdictions) and the 

three main specific policy challenges: safety and licensing, 

liability and insurance, and data privacy and cybersecurity. In 

addition to presenting the challenges in each area, solutions that 

are already being applied in some jurisdictions have also been 

explored. However, even the most developed solutions still tend 

to be relatively nascent and do not fully address the safety, 

liability, and cybersecurity risks that are likely to intensify as 

the technology develops further and moves from testing to 

large-scale commercial deployment. Solving those challenges 

requires policymakers to adopt approaches that address both the 

overarching challenges and the specific policy issues.  

In terms of the overarching challenges, policymakers need to 

look for ways to harmonize regulations without stifling 

innovation or trying to impose one-size-fits-all solutions in 

places where they do not fit. One way of approaching that 

would be to establish an authoritative body that can coordinate 

the work of various government agencies, such as the UK’s 

Centre for Connected and Autonomous Vehicles and 

Singapore’s Committee on Autonomous Road Transport [456]. 

Further, any regulations that are adopted should have sufficient 

flexibility to enable changes in response to technological 

developments. In terms of specific challenges, policymakers 

should recognize that stringent safety controls are not the 

enemy of the spread of PAVs, in fact, they will contribute to it 

by helping to gain public trust which is essential if the 

technology is to be widely adopted [448]. Regulations on 

safety, liability, and insurance will work best when linked to 

existing legislation and industry standards but with 

amendments that recognize the unique circumstances of PAVs. 

Such approaches can be informed by previous studies in this 

area, such as Australia’s National Transport Committee’s 

Regulation Impact Statement process [456]. 

Finally, the challenges of policymaking in this area are best 

addressed by collaborative efforts, not only within and across 

jurisdictions but also through the involvement of industry, 

consumer groups, and researchers who can identify current 

solutions and predict the potential future challenges that 

contemporary policies must take into account. Such 

collaboration is the best way to ensure that the positive potential 

of PAVs is realized through the effective and safe 

commercialization and deployment of the technology. 

12. Conclusive remarks: The Long Road Ahead 

Due to the continuously changing and still partly undefined 

direction of the automotive industry world-wide, we still cannot 

provide definitive answers to the five research questions (Q1-

Q5) formulated at the beginning of section 1.2. However, our 

review puts us in a better position to address those questions, 

having established the preconditions for formulating high-level 

evidence-based considerations of a systematic and strategic 

nature.  

In addressing Q2, the review has highlighted that the most 

persistent obstacles faced by developers and makers cannot be 

solved with a ‘techno solutionist’ approach because they rarely 

are of an exclusively technological nature: while sensor 

technologies and machine-learning techniques become more 

powerful, robust, and reliable, the need to make appropriate 

decisions perfectly tailored to very specific, diverse, fluid, and 

complex sets of circumstances does not disappear but, on the 

contrary, becomes a growing challenge for PAVs, which need 

to deploy expert protocols not only to recognize and categorize 

different possible scenarios (including the most unlikely ones), 

but also to adaptively deal with them or avoid them altogether, 

anticipating the other vehicles’ behaviour and predicting the 

consequences of their own behaviour so to reduce risks and 

prevent situations that could limit their mobility or present them 

with significant liabilities or impossible ethical decisions.  

In addressing Q3, the review suggests that the greatest 

challenge associated with PAVs is the ambition to support, 

complement or even recreate and replace human intelligence, 

for example reproducing distinctively human capabilities like 

commonsense reasoning, situational awareness, and foresight: 

if PAVs need making decisions informed by a human-like 

understanding of their consequences then even a very simple 

task, if truly “intelligent”, needs to carry the burden of the 

infinite interpretations of human experience and judgement. 

Unlike other problems and issues that appear localized and 

appear solvable with a mechanistic approach, the challenges 

related to intelligence and skill seem structural in nature (deeply 

rooted in the essential demands and expectations bestowed on 

autonomous technologies), extraordinarily persistent (requiring 

a long-term perspective) and requiring a holistic approach (an 

understanding of PAVs as integrated whole). 

In addressing Q4, the review has shown the largely 

interconnected nature of the problems and issues affecting 

PAVs, as it has revealed unobvious links between technological 

limitations, human-centric challenges, and normative (ethical, 

legal) concerns: this suggests that, while the problems and 

issues affecting PAVs undoubtedly require specialistic 

expertise to be understood and addressed correctly, they cannot 

be treated in isolation with the classical “silo” approach. As 

they are not irrelated, self-contained puzzles, problems can be 

recognized and addressed only if they are properly 
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contextualized within a holistic framework that allows to 

appreciate their mutual dependencies with other issues and 

problems. Delineating the foundational or methodological 

premises of such a framework is beyond this review’s scope.  

However, we can confidently argue that such a framework 

has to be informed by human expertise and judgment, and 

comprehensive and flexible enough to treat systemically, as part 

of an interconnected whole, all the issues and problems 

reviewed so far, despite their different nature and origin: 

technological limitations, implementational defects, 

conceptualization & design errors, human-centric specificities 

and preferences, institutional and legal requirements, societal 

expectations, economic viability. It is worth mentioning that 

second order cybernetics and 4-E cognition, combined with 

human factors & ergonomics, have already provided the general 

theoretical background to establish holistic and experientially 

aware frameworks of this kind to orient research & 

development in the fields of autonomy.  

In addressing Q5, the review has highlighted a great variety 

of approaches and best practices tailored to address both the 

specificities and the interconnectedness of the issues and 

problems considered. This justifies different expectations and 

hopes towards different categories of problems in the short or 

rather in the long term by means of focalized interventions or 

more sweeping strategies. On the one hand, many of the local 

issues that still affect PAVs are likely to be significantly 

mitigated or entirely solved in the short or medium period, 

based on the ongoing progress being made in the relevant areas 

and thanks to the availability of multiple solutions that are 

mechanistically identifiable, technologically feasible, and 

economically viable without requiring any major perspective or 

paradigm change (for example the algorithms for managing 

intersection traffic and for optimizing the coordination of 

multiple connected PAVs).  

On the other hand, some of the problems discussed in this 

review could not be solved by a simple fix or some additional 

refinement of existing technologies, because they require either 

a global change in perspective/approach (for example building 

a new sensitivity and attitude towards PAVs by the investors, 

adopters, final users, and the societies at large) or an ideational 

effort to advance a ground-breaking techno-scientific 

framework (like the one required to produce AGI and overcome 

the theoretical challenges of commonsense reasoning). Finally, 

a solution to the most structural, long-term problems may 

require some radical decisions and ambitious top-down 

interventions from the leaderships of our countries, decisions 

involving large-scale coordinated efforts by various sectors of 

the society, massive investments, a courageous vision, and firm 

governance (for example, long-term plans to systematically 

redesign road infrastructure and to deeply reconfigure the 

economy underlying the automative and transportation 

industries). Such energetic interventions would be particularly 

necessary if it was proven that the global markets do not always 

spontaneously promote innovation and that technological 

progress is not a destiny that necessarily tends to fulfill itself 

but an uncertain outcome that requires coordinated efforts and 

risky decisions. 

Taken together, these considerations suggest what needs to 

be done to make PAVs real and accessible to anybody, thus 

providing a still tentative but consistent strategic to answer to 

Q1. However, the concrete significance and practical meaning 

of the suggestions presented here strongly depends on the stakes 

associated with PAVs and the ambitions or needs that we intend 

to fulfill by means of autonomous cars. (i) If one thinks of PAVs 

as instruments to achieve a utilitarian benefit, such as making 

mobility more efficient and safer, then the steps to be done 

concern primarily the resolution of uncertainties concerning 

current sensing and navigation technologies to achieve a 

human-like or better-than-human level of performance. (ii) If 

one thinks of PAVs as a commercial product that looks more or 

less appealing to consumers based on its trustworthiness, 

perceived intelligence, and comfort, then the steps to be done 

will focus on the human-factors and user’s attitudes to match 

the product’s qualities with the customers’ expectations. (iii) If 

one thinks of PAVs as an epochal step towards the redefinition 

of logistics and mobility in our civilization, with complex 

political implications that reach to the emancipation of 

individuals or the engineering of socio-cultural aspects of the 

collective life, then the priority would be the construction of an 

extensive, cohesive infrastructure – physical and normative at 

once – that sustains the coming of PAVs while assigning to it a 

precise socio-economical and cultural role. 
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