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Abstract

We show that there are at most two solutions in positive integers (x, y, z) to the equation ax+by = cz

for positive integers a, b, and c all greater than one, where at least one of a, b, c is not a power of 2,
and ({a, b}, c) 6= ({3, 5}, 2) (two solutions (x1, y1, z1) and (x2, y2, z2) are considered the same solution if
{ax1 , by1} = {ax2 , by2}). The case in which gcd(a, b) = 1 has been handled in a series of successive results
by Scott and Styer, Hu and Le, and Miyazaki and Pink, who showed that there are at most two solutions,
excepting ({a, b}, c) = ({3, 5}, 2), which gives three solutions. So here we treat the case gcd(a, b) > 1,
showing that there are at most two solutions in this case if at least one of a, b, c is not a power of 2. This
generalizes work of Bennett, who proved the equivalent result (for both gcd(a, b) = 1 and gcd(a, b) > 1)
for the case in which one of x or y is a fixed positive integer.

For both gcd(a, b) = 1 and gcd(a, b) > 1, there are an infinite number of cases with exactly two
solutions (x, y, z), which are described in detail in this and a cited previous paper.

In a further result, in which we no longer consider two solutions (x1, y1, z1) and (x2, y2, z2) to be the
same solution if {ax1 , by1} = {ax2 , by2}, we list all cases with more than two solutions.

MSC: 11D61

1 Introduction

For integers a, b, and c all greater than one, we consider N(a, b, c), the number of solutions in positive
integers (x, y, z) to the equation

ax + by = cz. (1.1)

In this paper, we treat the case in which gcd(a, b) > 1, but first we give a brief history of previous results
for the case in which gcd(a, b) = 1.

For (a, b, c) with gcd(a, b) = 1, an effective upper bound for N(a, b, c) was first given by A. O. Gel’fond
[3] (Mahler [8] had earlier shown that the number of solutions was finite, using his p-adic analogue of the
Diophantine approximation method of Thue-Siegel, but his method is ineffective). Hirata-Kohno [4] used
an application of an upper bound on the number of solutions of binary S-unit equations due to F. Beukers
and H. P. Schlickewei [2] to obtain N(a, b, c) ≤ 236, later improved to N(a, b, c) ≤ 200 (unpublished). The
following more realistic upper bounds for N(a, b, c) when gcd(a, b) = 1 have been obtained in recent years:

(1) (R. Scott and R. Styer [12]) If 2 ∤ c then N(a, b, c) ≤ 2.
(2) (Y. Z. Hu and M. H. Le [5]) If max{a, b, c} > 5 · 1027, then N(a, b, c) ≤ 3.
(3) (Y. Z. Hu and M. H. Le [6]) If 2 | c and max{a, b, c} > 1062, then N(a, b, c) ≤ 2.
(4) (T. Miyazaki and I. Pink [10]) If 2 | c and max{a, b, c} ≤ 1062, then N(a, b, c) ≤ 2 except for

N(3, 5, 2) = N(5, 3, 2) = 3.
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Noting that (1), (3), and (4) show that (1.1) has at most two solutions (x, y, z) when gcd(a, b) = 1 except
for the case ({a, b}, c) = ({3, 5}, 2), in what follows we will show that (1.1) has at most two solutions when
gcd(a, b) > 1, provided a, b, and c are not all powers of 2 (in this paper, we exclude from consideration the
case in which a, b, and c are all powers of 2, noting that if (a, b, c) = (2u, 2v, 2w) where gcd(uv, w) = 1,
gcd(u, v) = g, and lcm(u, v) = L, then, for any positive integer t such that tL ≡ −1 mod w, (1.1) has the
solution (x, y, z) = ( tv

g
, tu

g
, tL+1

w
)). In counting the number of solutions to (1.1) to determine N(a, b, c) we

use the following:

Criterion 1. Two solutions (x1, y1, z1) and (x2, y2, z2) are considered the same solution if {ax1, by1} =
{ax2 , by2}.

When neither a nor b is a perfect power, Criterion 1 simplifies to the following:

Two solutions (x1, y1, z1) and (x2, y2, z2) are considered the same solution if a = b and {x1, y1} = {x2, y2}.

We know of no results on N(a, b, c) for the case gcd(a, b) > 1 for general a, b, c, except in the special
case (known as the Pillai case) in which one of x or y is a fixed positive integer, in which case the proof that
there are at most two solutions (y, z) (respectively, (x, z)) is extremely short and straightforward (see [1]).

Before proceeding, we discuss all known cases with N(a, b, c) > 1.
Considering (a, b, c) with gcd(a, b) = 1 for which (1.1) has two solutions (x1, y1, z1) and (x2, y2, z2), we

find one infinite family of such (a, b, c, x1, y1, z1, x2, y2, z2) (given by {a, b} = {2, 2n − 1}, c = 2n + 1, n > 1)
and several other such (a, b, c, x1, y1, z1, x2, y2, z2), all but one of which are apparently anomalous cases not
in an infinite family (the case {a, b} = {2, 7} with c = 3 is a member of the known infinite family). Only
one case ({a, b} = {3, 5}, c = 2) gives more than two solutions (x, y, z). See [12] for a list of the known cases
with two solutions to (1.1) when gcd(a, b) = 1.

Considering (a, b, c) with gcd(a, b) > 1 for which (1.1) has two solutions (x1, y1, z1) and (x2, y2, z2)
which are distinct under Criterion 1, we find four infinite families of such (a, b, c, x1, y1, z1, x2, y2, z2) and ten
anomalous such (a, b, c, x1, y1, z1, x2, y2, z2) which are apparently not in an infinite family. (In counting the
anomalous (a, b, c, x1, y1, z1, x2, y2, z2) we assume that none of a, b, or c is a perfect power.) We will show
that no (a, b, c) gives more than two solutions (x, y, z) under Criterion 1, except for (a, b, c) = (2u, 2v, 2w)
with gcd(uv, w) = 1.

The four infinite families mentioned in the previous paragraph are:
(i). (a, b, c) = (2, 2u(2h−1−1), 2u(2h−1+1)), (x1, y1, z1) = (u+1, 1, 1) and (x2, y2, z2) = (2u+h+1, 2, 2).
(ii). (a, b, c) = (2 · 3t, 3, 3), (x1, y1, z1) = (1, t, t+ 1) and (x2, y2, z2) = (3, 3t, 3t+ 2).
(iii). (a, b, c) = (gj , gjud, gju(d+1)), (x1, y1, z1) = (u, 1, 1) and (x2, y2, z2) = (ku+w

j
, k, k) where 2 ∤ g > 1,

(d + 1)k − dk = gw, w > 0. (Clearly we expect w = 1 when k > 2, but see, for example, a = 13, b = 91,
c = 104, k = 3.)

(iv). (a, b, c) = (2igj , 2iu−1gjud, 2iu−1gju(d + 2)), (x1, y1, z1) = (u, 1, 1) and (x2, y2, z2) = (ku + w
j
, k, k),

where 2 ∤ d, 2 ∤ g > 1, gw is the greatest odd divisor of (d + 2)k − dk, w > 0, 2 | k, and k − v = h− (iw/j),
where 2h ‖ 2d+ 2 and 2v ‖ k.

Note that the infinite family (i) can be viewed as a subset of the infinite family (iv): take g = i = j = 1,
which requires d = 2h−1 − 1 and k = 2, which gives w = h− 1 (since now w is defined without reference to
g), and note that u(iv) = u(i) + 1 where u(iv) = u as in (iv) and u(i) = u as in (i). But for the purposes of
Theorems 3.1, 3.4, and 4.1, it is clearer to treat (i) as a distinct family. (We take g > 1 in (iv) so that (i) is
distinct from (iv).)

We give three definitions concerning the infinite families (i), (ii), (iii), (iv).
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Definition 1: For a given infinite family, let F be the set of all (a, b, c, x1, y1, z1, x2, y2, z2) such that each
of a, b, c, x1, y1, z1, x2, y2, z2 satisfies the restrictions of the given infinite family. (Each member of F is an
ordered set of nine fixed positive integers.)

Definition 2: We say that the solution (x, y, z) to (1.1) for the triple (a, b, c) corresponds to the solution
(X,Y, Z) to (1.1) for the triple (A,B,C) if {ax, by} = {AX , BY } and cz = CZ .

Comment: Note that for any F as in Definition 1, (x1, y1, z1) does not correspond to (x2, y2, z2).
Definition 3: Let A, B, C, X1, Y1, Z1, X2, Y2, Z2 be positive integers such that AX1 +BY1 = CZ1 and

AX2 + BY2 = CZ2 are distinct solutions to (1.1) for the triple (A,B,C). We say that (A,B,C,X1, Y1, Z1,
X2, Y2, Z2) is in a given infinite family if there exists an (a, b, c, x1, y1, z1, x2, y2, z2) ∈ F such that each of the
solutions (X1, Y1, Z1) and (X2, Y2, Z2) to (1.1) for the triple (A,B,C) corresponds to one of the solutions
(x1, y1, z1) or (x2, y2, z2) to (1.1) for the triple (a, b, c), and each of the solutions (x1, y1, z1) and (x2, y2, z2)
to (1.1) for the triple (a, b, c) corresponds to one of the solutions (X1, Y1, Z1) or (X2, Y2, Z2) to (1.1) for the
triple (A,B,C).

We give an example to show how these three definitions are used. Consider (1.1) with a = b = 7 and
c = 98. We find three solutions:

(a, b, c) = (7, 7, 98) : (x1, y1, z1) = (2, 2, 1), (x2, y2, z2) = (6, 7, 3), (x3, y3, z3) = (7, 6, 3). (1.2)

Now consider (1.1) with a = 7, b = 49, and c = 98. We find two solutions:

(a, b, c) = (7, 49, 98) : (x1, y1, z1) = (2, 1, 1), (x2, y2, z2) = (7, 3, 3). (1.3)

Note that a, b, c, x1, y1, z1, x2, y2, z2 in (1.3) exactly match the values given for a, b, c, x1, y1,
z1, x2, y2, z2 in the infinite family (iii) when g = 7, j = 1, u = 2, d = 1, k = 3, and w = 1, so that
(a, b, c, x1, y1, z1, x2, y2, z2) = (7, 49, 98, 2, 1, 1, 7, 3, 3) is in F for the infinite family (iii).

On the other hand, a, b, c, x1, y1, z1, x2, y2, z2 as in (1.2) do not match the values given for a, b, c, x1, y1,
z1, x2, y2, z2 in the infinite family (iii) for any choice of g, j, u, d, k, w (due both to the choice of b and the
order of the (x2, y2)), so that (a, b, c, x1, y1, z1, x2, y2, z2) = (7, 7, 98, 2, 2, 1, 6, 7, 3) is not in F for the infinite
family (iii). However, we still say that (a, b, c, x1, y1, z1, x2, y2, z2) = (7, 7, 98, 2, 2, 1, 6, 7, 3) is in the infinite
family (iii) since the solutions (2, 2, 1) and (6, 7, 3) for the triple (a, b, c) = (7, 7, 98) correspond respectively to
the solutions (2, 1, 1) and (7, 3, 3) for the triple (a, b, c) = (7, 49, 98). The treatment is similar when (x2, y2, z2)
in (1.2) is replaced by (x3, y3, z3) in (1.2): (a, b, c, x1, y1, z1, x3, y3, z3) = (7, 7, 98, 2, 2, 1, 7, 6, 3) is in the infinite
family (iii). On the other hand, using again the notation of (1.2), we see that (a, b, c, x2, y2, z2, x3, y3, z3) =
(7, 7, 98, 6, 7, 3, 7, 6, 3) is not in the infinite family (iii).

Noting that we will show N(a, b, c) ≤ 2 when gcd(a, b) > 1 (except for (a, b, c) = (2u, 2v, 2w)), we now
consider (a, b, c) with gcd(a, b) > 1 and N(a, b, c) = 2 such that there do not exist solutions (x1, y1, z1) and
(x2, y2, z2) with (a, b, c, x1, y1, z1, x2, y2, z2) in any of the infinite families (i), (ii), (iii), or (iv).

The ten anomalous cases with gcd(a, b) > 1 mentioned above are as follows:
(a, b, c) = (2, 6, 38), (x, y, z) = (1, 2, 1) and (5, 1, 1).
(a, b, c) = (3, 6, 15), (x, y, z) = (2, 1, 1) and (2, 3, 2).
(a, b, c) = (6, 15, 231), (x, y, z) = (1, 2, 1) and (3, 1, 1).
(a, b, c) = (3, 1215, 6), (x, y, z) = (4, 1, 4) and (8, 1, 5).
(a, b, c) = (3, 6, 7857), (x, y, z) = (4, 5, 1) and (8, 4, 1).
(a, b, c) = (5, 275, 280), (x, y, z) = (1, 1, 1) and (7, 1, 2).
(a, b, c) = (5, 280, 78405), (x, y, z) = (1, 2, 1) and (7, 1, 1).
(a, b, c) = (30, 70, 4930), (x, y, z) = (1, 2, 1) and (5, 2, 2).
(a, b, c) = (30, 4930, 24304930), (x, y, z) = (1, 2, 1) and (5, 1, 1).
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(a, b, c) = (2, 88, 6), (x, y, z) = (7, 1, 3) and (5, 2, 5).
Nine of these anomalous cases can be derived from the five cases with gcd(a, b) > 1 listed by Bennett

[1] in his list of eleven double solutions for the Pillai case. Four of these five Pillai cases generate two items
on our list (since Pillai equations can be rearranged) but one of them does not since one of its two possible
arrangements is a member of the infinite family (i). The tenth anomalous solution is derived not from one
of the known Pillai cases with gcd(a, b) > 1 but rather from the equations 1 + 2 · 112 = 35, 24 + 11 = 33.

We have not found any further anomalous double solutions for (a, b, c) with 2 ≤ gcd(a, b) < 1050,
a/ gcd(a, b) < 1050, b/ gcd(a, b) < 105, ax < 1050, by < 1050. In Section 5 we show that any further
anomalous solutions must have rad(abc) > 107.

Our main result, Theorem 1.1 which follows, is an immediate consequence of Theorem 4.3 in Section
4. Theorem 4.5 gives additional information on anomalous cases. Theorem 4.7 treats (1.1) without using
Criterion 1, listing all cases with more than two solutions (x, y, z). Theorem 4.8 will give a refined version
of Theorem 1.1, made possible by using results on infinite families.

Theorem 1.1. If a, b, c are positive integers all greater than one with at least one of a, b, c not a power of
2 and with ({a, b}, c) 6= ({3, 5}, 2), then N(a, b, c) ≤ 2.

For the case gcd(a, b) = 1, this result was first stated by Miyazaki and Pink [10], who handled the case
2 | c with max{a, b, c} ≤ 1062, which completed the treatment of the case gcd(a, b) = 1 since the case 2 ∤ c
and the case max{a, b, c} > 1062 with 2 | c had already been handled in [12] and [6], respectively. So to prove
Theorem 1.1 it suffices to consider only the case gcd(a, b) > 1. We will need several lemmas and preliminary
propositions which follow.

2 Lemmas

For given integers a, b, and c all greater than one with gcd(a, b) > 1, let Q be the set of all primes p such
that p | a, p | b, and p | c. For every prime p ∈ Q let pαp ‖ a, pβp ‖ b, pγp ‖ c. Let a1 be the greatest divisor
of a not divisible by any prime in Q, and define b1 and c1 similarly for b and c.

Lemma 1. Let (x, y, z) be a solution to (1.1). Then, for p ∈ Q, two members of the triple {αpx, βpy, γpz}
must be equal and these two members must be less than or equal to the third member.

We say that a solution to (1.1) is Type A for p (where p ∈ Q) if αpx > βpy = γpz; we say a solution to
(1.1) is Type B for p if βpy > αpx = γpz; we say a solution to (1.1) is Type C for p if γpz > αpx = βpy; we
say that a solution to (1.1) is Type O for p if αpx = βpy = γpz.

Lemma 2. Let p and q be two primes in the set Q such that
αp

βp
>

αq

βq
and

αp

γp
>

αq

γq
. Then (1.1) can have

no solutions which are Type B, C, or O for p.

Proof. If (1.1) has a solution which is Type B, C or O for p then αpx ≤ βpy and αpx ≤ γpz, so that αqx < βqy
and αqx < γqz, contradicting Lemma 1.

Corollary to Lemma 2. If (1.1) has a solution which is Type A for some prime p ∈ Q, and if this solution
is not Type A for some prime q ∈ Q, then (1.1) can have no solutions which are Type B, C, or O for p.

Proof. If a solution (x, y, z) to (1.1) is Type A for some p ∈ Q, and is not Type A for some prime q ∈ Q,
then αpx > βpy, αpx > γpz, αqx ≤ βqy, and αqx ≤ γqz. So

αp

βp
>

αq

βq
and

αp

γp
>

αq

γq
, and the corollary follows

from Lemma 2.

4



We will also need several general elementary results, which follow.

Lemma 3. Let R, S, M , and t1 be positive integers such that R > S, gcd(R,S) = 1, and M | Rt1 −(−1)ǫSt1

for a fixed choice of ǫ ∈ {0, 1}. Let t0 be the least positive integer such that M | Rt0 − (−1)ǫSt0 for this
choice of ǫ. Then t0 | t1.

Proof. For ǫ = 0 this is Lemma 3.1 of [11]. A similar method of proof handles ǫ = 1: take M > 2 (since the
lemma clearly holds for M ≤ 2) and let t0 and t1 be as in the formulation of the lemma; if we assume t0 ∤ t1,
we can let t1 = st0 + r where 2 ∤ s, 0 < r < 2t0, and r 6= t0, so that Rr ≡ Sr mod M ; we can let r = t0 ± r1
where 0 < r1 < t0; then Rr1 ≡ −Sr1 mod M , contradicting the definition of t0.

The following lemma sharpens Lemma 3.2 of [11].
For any integer m > 1 we define P (m) to be the set of primes which divide m.

Lemma 4. If R, S, n1, and n2 are positive integers with gcd(R,S) = 1, R > S, n1 < n2, and each prime
dividing Rn2 − Sn2 also divides Rn1 − Sn1 , then n1 = 1, n2 = 2 and R+ S = 2h for some integer h > 1.

Proof. Let n0 be the least number such that rad(Rn2 − Sn2) | Rn0 − Sn0 . By Lemma 3 we have n0 | n2, so
that Rn0 − Sn0 | Rn2 − Sn2 , so that we have P (Rn0 − Sn0) = P (Rn2 − Sn2).

Assume p is an odd prime which divides n2/n0. Then Rn0 − Sn0 | Rpn0 − Spn0 | Rn2 − Sn2 , so
that P (Rpn0 − Spn0) = P (Rn0 − Sn0). Since n0 | n1 < n2, n0 and n2 are distinct. Consider Rpn0 −
Spn0 = ((Rn0 − Sn0) + (Sn0))p − Spn0 . From the binomial expansion of ((Rn0 − Sn0) + (Sn0))p we see
that if p ∤ Rn0 − Sn0 then (Rpn0 − Spn0)/(Rn0 − Sn0) > 1 is prime to Rn0 − Sn0 , and, if p | Rn0 − Sn0

then (Rpn0 − Spn0)/(p(Rn0 − Sn0)) > 1 is prime to Rn0 − Sn0 ; in either case we have a contradiction to
P (Rn0 − Sn0) = P (Rpn0 − Spn0). So n2/n0 is not divisible by any odd prime.

If 4 | n2/n0, then R2n0+S2n0 | Rn2 −Sn2 , again giving a contradiction since R2n0+S2n0 is divisible by an
odd prime which is prime to Rn0 −Sn0 . So we must have n2 = 2n0, so that, since P (Rn0 −Sn0) = P (Rn2 −
Sn2), we have Rn0 + Sn0 = 2h for some h > 1, which requires n0 = 1. Since 1 = n0 ≤ n1 < n2 = 2n0 = 2,
we have n1 = n0, giving Lemma 4.

Lemma 5. If R, S, n1, and n2 are positive integers with gcd(R,S) = 1, R > S, n1 < n2, and each prime
dividing Rn2 + Sn2 also divides Rn1 + Sn1 , then (R,S, n1, n2) = (2, 1, 1, 3).

Proof. The proof of Lemma 5 follows that of Lemma 4 with n0 redefined to be the least number such that
rad(Rn2 +Sn2) | Rn0 +Sn0 : noting that 2 ∤ n2/n0 and considering the binomial expansion of ((Rn0 +Sn0)−
(Sn0))p, we see that the only possibility is Rn0 = 2, Sn0 = 1, n2 = 3n0. So 1 = n0 ≤ n1 < n2 = 3, so that,
since 2 ∤ (n1/n0), we have n1 = n0.

Lemma 6. Let R, S, n1, and n2 be positive integers with gcd(R,S) = 1 and n1 | n2. Let p be a prime such
that pv1 ‖ Rn1 − Sn1 where pv1 > 2. If pv2 ‖ Rn2 − Sn2 , then pv2−v1 | n2

n1

.

Proof. Considering the binomial expansion of ((Rn1 − Sn1) + Sn1)k, we see that k = p is the least value
of k such that pv1+1 | Rn1k − Sn1k. Also pv1+1 ‖ Rn1k − Sn1k. By Lemma 3, p | m for any m such that
pv1+1 | Rn1m − Sn1m. Now consider the binomial expansion of ((Rn1p − Sn1p) + Sn1p)k to see that k = p
is the least value of k such that pv1+2 | Rn1pk − Sn1pk. Also pv1+2 ‖ Rn1pk − Sn1pk. By Lemma 3, p2 | m
for any m such that pv1+2 | Rn1m − Sn1m. Continuing in this way, we find that pd | m for any m such that
pv1+d | Rn1m − Sn1m, giving the lemma.
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Lemma 7. Let n1 and n2 be positive integers with n1 | n2, and let 2v ‖ n2

n1

. Let R and S be be relatively

prime odd positive integers with R > S, and let 2t ‖ Rn1−Sn1 and 2u ‖ Rn1+Sn1 , with h = max(t, u). Then,
if n2

n1

is odd, 2t ‖ Rn2 − Sn2 and 2u ‖ Rn2 + Sn2 . And, if n2

n1

is even, 2h+v ‖ Rn2 − Sn2 and 2 ‖ Rn2 + Sn2 .

Proof. If n2

n1

is odd, then Rn2−Sn2

Rn1−Sn1
and Rn2+Sn2

Rn1+Sn1
are both odd, so 2t ‖ Rn2 −Sn2 and 2u ‖ Rn2 +Sn2 . So the

lemma holds for v = 0.
Suppose v = 1. Then n2 = 2mn1 for some odd m. 2h+1 = 2t+u ‖ (Rmn1 − Smn1)(Rmn1 + Smn1) =

Rn2 − Sn2 and (by consideration modulo 4) 2 ‖ Rn2 + Sn2 . So the lemma holds for v = 1.
The lemma follows by induction on v.

We will also need two lemmas concerning the infinite families (i), (ii), (iii), (iv) in the Introduction.

Lemma 8. We cannot have d = 1 in (iv).

Proof. We consider the restrictions on the variables in (iv). If d = 1, then h = 2, which requires k − v = 1,
giving k = 2. But then (d+ 2)k − dk = 32 − 1 = 8 has no odd divisor, contradicting g > 1 and w > 0.

Lemma 9. If, for some (a, b, c) with gcd(a, b) > 1, we have N(a, b, c) = 2, and (1.1) has two solutions
(x1, y1, z1) and (x2, y2, z2) with (a, b, c, x1, y1, z1, x2, y2, z2) in a given infinite family, then any solution
(x, y, z) to (1.1) for this (a, b, c) must correspond to one of the two solutions given by a member of F
for this infinite family.

Proof. Notice first that in each of the infinite families (i), (ii), (iii), and (iv) the two solutions given do not
correspond to one another. So, using the notation of the statement of the lemma, by Definition 3 we see
that the solution (x1, y1, z1) does not correspond to the solution (x2, y2, z2). Since N(a, b, c) = 2 we can
apply Criterion 1 to see that any solution to (1.1) for this (a, b, c) must correspond to one of the solutions
(x1, y1, z1), (x2, y2, z2). By Definition 3, we obtain the lemma.

3 Preliminary Propositions

In this section and in the following section, we treat a, b, c with gcd(a, b) > 1, and define Q, αp, βp, γp, a1,
b1, c1 as in the first paragraph of Section 2.

Proposition 3.1. If, for some a, b, c, (1.1) has two solutions (x1, y1, z1) and (x2, y2, z2) both of which are
Type A for every prime in some subset Q0 of Q and neither of which is Type A for any prime not in Q0,
then N(a, b, c) = 2, and (a, b, c, x1, y1, z1, x2, y2, z2) is in the infinite family (i) in the Introduction.

This statement holds if we replace “Type A” by “Type B”.

Proof. By the symmetry of a and b it suffices to prove the first paragraph of the Proposition. Let (a, b, c,
x1, y1, z1, x2, y2, z2) and Q0 be as in the first paragraph of the statement of the Proposition, and choose a
prime p ∈ Q0. Let

βp

γp
=

t

s
, gcd(s, t) = 1. (3.1)

Then by Lemma 1 we must have integers n1 and n2, n1 < n2, such that

yi = nis, zi = nit, i ∈ {1, 2}. (3.2)
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Let B be the set of all primes q ∈ Q such that
βq

γq
> t

s
. Then the solutions (x1, y1, z1) and (x2, y2, z2) are

Type B for every prime in B.
Let C be the set of all primes q ∈ Q such that

βq

γq
< t

s
. Then the solutions (x1, y1, z1) and (x2, y2, z2) are

Type C for every prime in C.
Let A be the set of all primes q ∈ Q for which

βq

γq
= t

s
. Then the solutions (x1, y1, z1) and (x2, y2, z2) are

either Type A or Type O for every prime in A.
Now we observe that any solution to (1.1) which is Type A for p can be written as follows, noting that

for some n, y = ns and z = nt (using Lemma 1 as in (3.2)):

ax1
∏

q∈Q

qαqx + bns1
∏

q∈Q

qβqns = cnt1
∏

q∈Q

qγqnt. (3.3)

The greatest number dividing all terms in (3.3) is

D =
∏

q∈Q

(qmin(sβq,tγq))n. (3.4)

Dividing both sides of (3.3) by D and rearranging terms, we see that any solution of Type A for p to (1.1)
is equivalent to:

(ct1
∏

q∈C

qγqt−βqs)n − (bs1
∏

q∈B

qβqs−γqt)n = ax1
∏

q∈A

qαqx−γqnt. (3.5)

Note that all variables in (3.5) other than n itself are completely determined by (a, b, c, p) except for x,
which is determined by n. We define a function f(n):

f(n) = (ct1
∏

q∈C

qγqt−βqs)n − (bs1
∏

q∈B

qβqs−γqt)n.

When f(n) corresponds to a solution to (1.1) as in (3.5), we have

f(n) = ax1
∏

q∈A

qαqx−γqnt.

We consider f(n1) and f(n2): by the definition of Q0 and the definition of Type A, we see that αqx1−γqn1t
and αqx2 − γqn2t are both positive for every prime q ∈ Q0, and αqx1 − γqn1t and αqx2 − γqn2t are both
zero for every prime q not in Q0, so that P (f(n1)) = P (f(n2)), where, for any integer m > 1, P (m) is the
set of primes which divide m.

Now we find that proving Proposition 3.1 is equivalent to proving the following Observation:

Observation 3.1. If (1.1) has two solutions (x1, y1, z1) and (x2, y2, z2) both of Type A for some prime p ∈ Q
with P (f(n1)) = P (f(n2)), then N(a, b, c) = 2, and (a, b, c, x1, y1, z1, x2, y2, z2) is in the infinite family (i)
in the Introduction.

This statement holds if we replace “Type A” by “Type B”.

Proof of Observation 3.1. By the symmetry of a and b it suffices to prove the first paragraph of the Obser-
vation. Assume (1.1) has two solutions (x1, y1, z1) and (x2, y2, z2) both of Type A for some prime p ∈ Q
with P (f(n1)) = P (f(n2)) and write

R = ct1
∏

q∈C

qγqt−βqs, S = bs1
∏

q∈B

qβqs−γqt.
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By (3.5), we can assume R > S. We have

Rn − Sn = f(n).

Now we can apply Lemma 4 to f(n1) and f(n2) to obtain

R+ S = 2h, h ≥ 2;n1 = 1, n2 = 2; f(n1) = 2j, 2 ∤ j; f(n2) = 2h+1j. (3.6)

Combining (3.6) with the right side of (3.5), we see that a1 can have no odd divisors (x1 6= x2 since n1 6= n2

and Df(n) = ctn − bsn = ax increases with n).
Let T = Q∪ {2}. For every q ∈ T , let Wq = w2

w1

where qw1 ‖ Df(n1) = ax1 and qw2 ‖ Df(n2) = ax2 . We

must have Wq = x2

x1

for every q ∈ T . For any odd q ∈ A, let qd ‖ j. Then Wq =
n2tγq+d

n1tγq+d
=

2tγq+d

tγq+d
≤ 2. For

any odd q ∈ B, Wq =
n2tγq

n1tγq
= 2. For any odd q ∈ C, Wq =

n2sβq

n1sβq
= 2. If 2 ∈ A, then W2 = n2tγ2+h+1

n1tγ2+1 > 2.

If 2 | a1, then W2 = h + 1 > 2. Since we must have either 2 ∈ A or 2 | a1, we see, from the results on Wq,
that B and C are empty and A = {2} since, by hypothesis, A is not empty.

So we must have p = 2, a1 = 1, R = ct1, and S = bs1. Since n1 = j = 1, from (3.6) we obtain ct1 − bs1 = 2
and ct1 + bs1 = 2h, so that bs1 = 2h−1 − 1 and ct1 = 2h−1 + 1. If h > 2, it is a familiar elementary result that
we must have t = s = 1 except when h = 4, c1 = 3, t = 2. If h = 2 then b1 = 1 and we have the special case
(a1, b1, c1) = (1, 1, 3), Q = {2}.

So we must have one of the following:

(a1, b1, c1) = (1, 2h−1 − 1, 2h−1 + 1), Q = {2}, h > 2, (3.7)

(a1, b1, c1) = (1, 7, 3), Q = {2}, (3.8)

(a1, b1, c1) = (1, 1, 3), Q = {2}. (3.9)

These three cases are the only possibilities when (1.1) has two solutions (x1, y1, z1) and (x2, y2, z2) both of
Type A for some prime in Q with P (f(n1)) = P (f(n2)). We first show that for each of these three cases
there is no third solution to (1.1).

We first treat (3.7). Writing β for β2 and γ for γ2, we have β = γ since s = t = 1. For this case, (1.1)
has two solutions (x, y, z) for (a, b, c) as follows:

(a, b, c) = (2, 2β(2h−1 − 1), 2β(2h−1 + 1)), (x1, y1, z1) = (β + 1, 1, 1), (x2, y2, z2) = (2β + h+ 1, 2, 2). (3.10)

The two solutions given in (3.10) are the solutions with n1 = 1 and n2 = 2 as in (3.6), and we can apply
Lemma 4 to see that they must be the only solutions which are Type A for 2, since, if there exists a third
such solution for some n3, then P (Rn3 − Sn3) = P (Rn2 − Sn2) = P (Rn1 − Sn1). We need to show that the
two solutions in (3.10) are also the only two solutions to (1.1) even if we consider Types B, C, and O. (Note
that if β + 1 and 2β + h+ 1 have a common factor k, we can replace a = 2 by a = 2k, but any solution to
(1.1) with a = 2k will also occur as a solution for a = 2 as in (3.10), so it suffices to consider (a, b, c) as in
(3.10).)

Since a1, b1, c1 are all odd, there can be no solutions of Type O for 2. We need to show there are no
solutions of Type B or C for 2.

For a solution of Type B for 2 we must have

2zβ + 2yβby1 = 2zβ(b1 + 2)z
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so that
2(y−z)βby1 = (b1 + 2)z − 1, y > z, (y − z)β ≥ h− 1. (3.11)

From (3.11) we have

(h− 1) log(2) + z log(b1) < z log(b1 + 2) = z log(b1(1 +
2

b1
)) < z log(b1) +

2z

b1
. (3.12)

By Lemma 4, z is the only value of u such that rad((b1 + 2)u − 1) = rad(2b1), so that z must be the least
value of u such that b1 | (b1 + 2)u − 1, so that z ≤ φ(b1) ≤ b1 − 1. So now (3.12) gives

(h− 1) log(2) <
2(b1 − 1)

b1
< 2

which requires h = 3 (since we have excluded h = 2 from consideration in (3.7)).
For the case h = 3, (3.11) becomes

2(y−z)β3y = 5z − 1

which, by Lemma 4, has as its only solution z = 2, giving y = 1, contradicting y > z. So (3.7) does not
allow a solution of Type B for 2.

And a solution of Type C for 2 requires

2yβ + 2yβby1 = 2zβ(b1 + 2)z

so that
1 + by1 = 2(z−y)β(b1 + 2)z

which is impossible since z > y.
Thus there is no third solution to (1.1) for the case (3.7).
Now we treat (3.8) for which a solution which is Type A for 2 requires, for some v ∈ Z+,

2v + 7y = 3z. (3.13)

Consideration modulo 7 requires 2 | z in (3.13), so, if we assume there are no solutions of Type B, Type C,
or Type O for 2, we can take (a1, b1, c1) = (1, 7, 9) and use (3.7) and (3.10) to obtain the two solutions with
n1 = 1 and n2 = 2 respectively, which we have shown are the only solutions which are Type A for 2.

We need to show there are not solutions of Type B, Type C, or Type O for 2.
A solution of Type O for 2 for the case (3.8) is impossible since a1 = 1, b1 = 7, and c1 = 3 are all odd.
A solution which is Type B for 2 for the case (3.8) requires, for some v ∈ Z+,

1 + 2v7y = 3z (3.14)

which requires rad(3z − 1) = 14. But 7 | 3z − 1 requires 13 | 3z − 1, a contradiction which shows that there
can be no solution of Type B for 2.

A solution of Type C for 2 for the case (3.8) requires, for some v ∈ Z+,

1 + 7y = 2v3z (3.15)

which is impossible modulo 3.
So there is no third solution to (1.1) for the case (3.8).
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Now we treat the case (3.9), letting α = α2, β = β2, and γ = γ2. In this case we have, for any solution
(x, y, z),

2αx + 2βy = 2γz3z. (3.16)

Solutions of Type C for 2 and Type O for 2 are clearly impossible in (3.16).
For a solution which is Type A for 2, (3.16) becomes

2αx + 2γz = 2γz3z (3.17)

so that for a given value of z there is at most one solution of Type A for 2.
Similarly, a solution of Type B for 2 requires

2γz + 2βy = 2γz3z, (3.18)

so that for a given value of z there is at most one solution of Type B for 2.
Suppose that for a given choice of z we have both a solution which is Type A for 2 and a solution which

is Type B for 2: letting (xa, ya, za) be the solution which is Type A for 2 in (3.17) and letting (xb, yb, zb) be
the solution which is Type B for 2 in (3.18), we have αxa = βyb, and we see that axa = byb and axb = bya .
Using Criterion 1 we see that (xa, ya, za) and (xb, yb, zb) are to be considered the same solution. So it suffices
to show that there are only two values of z which are possible in solutions to (1.1) which are Type A for 2.

From (3.17) we see that any solution which is Type A for 2 must give

3z − 1 = 2αx−γz,

which requires either z = 1 or z = 2 by Lemma 4. Thus (under Criterion 1) we see that (3.9) has no third
solution.

It remains to show that (a, b, c, x1, y1, z1, x2, y2, z2) is in the infinite family (i) in the Introduction. We
have shown that if (1.1) has two solutions (x1, y1, z1) and (x2, y2, z2) both of Type A for some prime in Q
with P (f(n1)) = P (f(n2)), then one of (3.7), (3.8), or (3.9) must hold. And we have shown that when (3.7)
holds we have (3.10) which is the infinite family (i) in the Introduction. Also we have shown that, when
(3.8) holds, (x1, y1, z1) and (x2, y2, z2) must correspond to solutions in which (1, 7, 3) is replaced by (1, 7, 9),
so again we have (3.7) giving (3.10) which is the infinite family (i). Finally, if (3.9) holds, we have shown
that we have two solutions (x1, y1, 1) and (x2, y2, 2) both of which are Type A for 2, so that β2y1 = γ2 and
β2y2 = 2γ2. Letting u = β2y1, we see that (3.9) gives (i) with h = 2. This completes the proof of Observation
3.1.

This completes the proof of Proposition 3.1 (by the symmetry of a and b).

Corollary to Proposition 3.1. If (1.1) has two solutions (x1, y1, z1) and (x2, y2, z2) both of which are
Type A for some prime in Q and if further (1.1) has no solutions of Type O for any prime in Q, then
N(a, b, c) = 2, and (a, b, c, x1, y1, z1, x2, y2, z2) is in the infinite family (i) in the Introduction.

This statement holds if we replace “Type A” by “Type B”.

Proof. By the symmetry of a and b it suffices to prove the first paragraph of the Corollary. Choose a prime
p ∈ Q such that (x1, y1, z1) and (x2, y2, z2) are both Type A for p, and let s and t be as in (3.1) and (3.2).
We have (3.5) with the sets A, B, and C derived from (3.1) and (3.2). Since for the case under consideration
no solutions of Type O are possible for any prime in Q, we see that (x1, y1, z1) and (x2, y2, z2) are both Type
A for every prime in A, so, for every prime q ∈ A, we have

αqx1 − γqn1t > 0, αqx2 − γqn2t > 0
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so that, using (3.5) and recalling the definition of f(n), we have P (f(n1)) = P (f(n2)), so we can apply
Observation 3.1 to obtain the corollary.

Proposition 3.2. Assume (1.1) has a solution which is Type C for some prime p ∈ Q. Then (1.1) can have
no solution which is Type A, B, or O for p.

Proof. Let p be any prime in Q. For brevity, write α for αp, β for βp, γ for γp. Let (xc, yc, zc) be a solution
to (1.1) which is Type C for p and let (xd, yd, zd) be a solution to (1.1) which is Type A, B, or O for p. By
Lemma 1 αxd ≥ γzd and αxc < γzc so that

xc

zc
<

xd

zd
. (3.19)

Similarly
yc
zc

<
yd
zd

. (3.20)

Now let ap = a/pα, bp = b/pβ and let cp = c/pγ . axd < czd so pαxdaxd
p < pγzdczdp , so that pαxd−γzdaxd

p < czdp ,
so that

xd log(ap) < zd log(cp). (3.21)

Similarly,
yd log(bp) < zd log(cp). (3.22)

Now suppose axc ≥ byc . Then 2axc ≥ czc , so that 2axc
p ≥ pγzc−αxcczcp ≥ 2czcp , so that

xc log(ap) ≥ zc log(cp). (3.23)

Since (3.21) requires cp > 1, (3.23) gives ap > 1. So (3.23) in combination with (3.21) gives

xc

zc
>

xd

zd
, (3.24)

contradicting (3.19). So we must have byc > axc , so that 2byc > czc , and, recalling (3.22), the same argument
which handles the case axc > byc yields

yc
zc

>
yd
zd

, (3.25)

contradicting (3.20). So the existence of a solution of Type C for p makes solutions of Type A, B, or O for
p impossible.

Proposition 3.3. For a given p ∈ Q, there is at most one solution of Type O for p.

Proof. Let r, s, and t be positive integers with gcd(r, s, t) = 1 such that

rαp = sβp = tγp, p ∈ Q.

By Lemma 1 any solution (x, y, z) which is Type O for p must have

x = nr, y = ns, z = nt.

By Fermat’s Last Theorem [13], n ≤ 2. So if there are two solutions which are Type O for p, then ar+bs = ct

and a2r + b2s = c2t, which is impossible since c2t = (ar + bs)2 > a2r + b2s = c2t
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Let Sc be the set of all triples (a, b, c) such that gcd(a, b) > 1, N(a, b, c) > 1, a, b, and c are not all powers
of 2, and there exists a solution to (1.1) which is Type C for some prime in Q.

Proposition 3.4. For (a, b, c) ∈ Sc, (1.1) has exactly two solutions (x1, y1, z1) and (x2, y2, z2), and (a, b, c,
x1, y1, z1, x2, y2, z2) is in the infinite family (ii).

Proof. After Proposition 3.2, it suffices to show that if (1.1) has two solutions (x1, y1, z1) and (x2, y2, z2)
both of which are Type C for some prime in Q, then these two solutions are the only solutions to (1.1), and
(a, b, c, x1, y1, z1, x2, y2, z2) is in the infinite family (ii).

Assume (1.1) has two solutions (x1, y1, z1) and (x2, y2, z2) both of which are Type C for a given p ∈ Q.
Let

αp

βp

=
s

r
, gcd(r, s) = 1. (3.26)

Then by Lemma 1 we must have integers n1 and n2, n1 < n2, such that

xi = nir, yi = nis, i ∈ {1, 2}. (3.27)

Let A be the set of all primes q ∈ Q such that
αq

βq
> s

r
. Then the solutions (x1, y1, z1) and (x2, y2, z2) are

Type A for every prime in A.
Let B be the set of all primes q ∈ Q such that

αq

βq
< s

r
. Then the solutions (x1, y1, z1) and (x2, y2, z2) are

Type B for every prime in B.
Now consider q ∈ Q for which

αq

βq
= s

r
. Then, by Propositions 3.2 and 3.3, the solutions (x1, y1, z1) and

(x2, y2, z2) are both Type C for q. Let C be the set of all primes q ∈ Q for which
αq

βq
= s

r
.

Now we observe that any solution to (1.1) which is Type C for p can be written as follows, noting that
for some n, x = nr and y = ns:

anr1
∏

q∈Q

qαqnr + bns1
∏

q∈Q

qβqns = cz1
∏

q∈Q

qγqz. (3.28)

The greatest number dividing all terms in (3.28) is

D =
∏

q∈Q

(qmin(rαq,sβq))n. (3.29)

Dividing both sides of (3.28) by D, we see that any solution of Type C for p to (1.1) is equivalent to:

(ar1
∏

q∈A

qαqr−βqs)n + (bs1
∏

q∈B

qβqs−αqr)n = cz1
∏

q∈C

qγqz−αqnr. (3.30)

Note that all variables in (3.30) other than n itself are completely determined by (a, b, c, p) except for z,
which is determined by n. We define a function f(n):

f(n) = (ar1
∏

q∈A

qαqr−βqs)n + (bs1
∏

q∈B

qβqs−αqr)n.

When f(n) corresponds to a solution to (1.1),

f(n) = cz1
∏

q∈C

qγqz−αqnr.
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Let
R = ar1

∏

q∈A

qαqr−βqs, S = bs1
∏

q∈B

qβqs−αqr (3.31)

and assume first we do not have the special case R = S. Since gcd(R,S) = 1, by the symmetry of a and b
we can take R > S. We have

f(n) = Rn + Sn.

Letting n1 and n2 be as in (3.27), we have P (f(n1)) = P (f(n2)) where, for any integer m > 1, P (m) is the
set of primes which divide m. Now we can apply Lemma 5 to f(n1) and f(n2) to obtain

R = 2, S = 1, n1 = 1, n2 = 3; f(n1) = 3, f(n2) = 9. (3.32)

Recall that by Proposition 3.2 we need only consider solutions of Type C for p, so that using (3.30), (3.31),
and (3.32), we see that we can apply Lemma 5 to show that (1.1) has exactly two solutions (x1, y1, z1) and
(x2, y2, z2) when R > S. It remains to show that (a, b, c, x1, y1, z1, x2, y2, z2) is in the infinite family (ii).

Letting g1 be the greatest common divisor of ax1 , by1 , and cz1 and letting g2 be the greatest common
divisor of ax2 , by2 , and cz2 , we have from (3.30), (3.31), and (3.32)

ax1

g1
+

by1

g1
= R + S = 2 + 1 = 3 =

cz1

g1
,
ax2

g2
+

by2

g2
= R3 + S3 = 23 + 1 = 32 =

cz2

g2
. (3.33)

Since we are assuming there is at least one prime p ∈ Q for which the solutions (x1, y1, z1) and (x2, y2, z2)
are Type C for p, from (3.32) we see that C = {3} and c1 = 1. Also from (3.32) we have b1 = 1 with B
empty.

Assume A = {2}. Then a1 = b1 = c1 = 1, Q = {2, 3}, and, by (3.33), both solutions are Type A for 2
and neither solution is Type O for either prime in Q. By the Corollary to Proposition 3.1, we must have
(a, b, c, x1, y1, z1, x2, y2, z2) in the infinite family (i) in the Introduction. But then Q = {2}, contradicting
Q = {2, 3}. (Note that Q = {2} would require C empty and c1 = 3, giving (3.9)). So A 6= {2}.

So, by (3.31) and (3.32), we must have ar1 = 2 with A empty and Q = {3}. Thus we have a1 = 2, b1 = 1,
c1 = 1. So we have

a = 2 · 3α3 , b = 3β3, c = 3γ3 .

If β3γ3 > 1, then each of the two solutions to (1.1) must correspond to one of two solutions for the case
β3γ3 = 1, so by Definitions 2 and 3 we can take

a = 2 · 3α3 , b = 3, c = 3.

We see that, since ar1 = 2, we must have r = n1 = x1 = 1 and x2 = 3, so that, since (x1, y1, z1) and
(x2, y2, z2) are both Type C for 3, we must have (using the notation of (3.33)) g1 = 3α3 and g2 = 33α3 , so
that (a, b, c, x1, y1, z1, x2, y2, z2) is in the infinite family (ii) with t = α3. Recall also we have shown there is
no third solution. This proves Proposition 3.4 for the case R > S.

If R = S, then, since gcd(R,S) = 1, we have R = S = 1, so that a1 = b1 = 1 and A and B are empty, so
that f(n) = 2 for every n. Since we are assuming C has at least one element, we have c1 = 1 and C = {2}.
So in this case all of a, b, and c must be powers of 2, which has been excluded. This completes the proof of
Proposition 3.4.

Proposition 3.5. Suppose for some (a, b, c) we have a subset Q1 of Q such that, for any primes q1 and q2
in Q1,

αq1

αq2

=
βq1

βq2

=
γq1
γq2

. (3.34)
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Let Q2 be the set of all primes in Q which are not in Q1. Then we can take

a = a1g
αg

∏

q∈Q2

qαq , b = b1g
βg

∏

q∈Q2

qβq , c = c1g
γg

∏

q∈Q2

qγq (3.35)

where αg, βg, and γg are positive integers and g is a positive integer divisible by every prime in Q1 and by
no other prime.

Proof. We use the notation indicating proportions in which (3.34) would be written as follows:

αq1 : αq2 = βq1 : βq2 = γq1 : γq2 .

Assume Q1 contains n primes. Then we can find a set of n positive integers t1, t2, . . . , tn with no common
divisor such that

αq1 : αq2 : · · · : αqn = βq1 : βq2 : · · · : βqn = γq1 : γq2 : · · · : γqn = t1 : t2 : · · · : tn

and let
αqi = hti, βqi = jti, γqi = mti, 1 ≤ i ≤ n, (3.36)

for some positive integers h, j, and m.
So we can take g = qt11 qt22 · · · qtnn , αg = h, βg = j, and γg = m.

Since any solution to (1.1) of a given Type for some q1 ∈ Q1 is of the same Type for any q2 ∈ Q1,
Proposition 3.5 allows us to refer to solutions of Type A for g, Type B for g, etc., even when g is composite.
We say that a solution is of a given Type for g when this solution is of that same Type for every prime
dividing g, where the set of n primes dividing g satisfies (3.36).

4 Proof of Theorem 1.1

Let So be the set of all triples (a, b, c) such that gcd(a, b) > 1, N(a, b, c) > 1, and there exists a solution to
(1.1) which is Type O for some prime in Q.

Proposition 4.1. For (a, b, c) ∈ So we have N(a, b, c) = 2, and (1.1) has two solutions (x1, y1, z1) and
(x2, y2, z2) with (a, b, c, x1, y1, z1, x2, y2, z2) in one of the infinite families (iii) or (iv).

Proof. Choose (a, b, c) ∈ So and let (x1, y1, z1) be a solution which is Type O for p where p ∈ Q. Let
(x2, y2, z2) be a second solution to (1.1). By Propositions 3.2 and 3.3 (x2, y2, z2) must be either Type A or
Type B for p. By the symmetry of a and b we can assume (x2, y2, z2) is Type A for p. By the Corollary to
Lemma 2, (x2, y2, z2) must be Type A for every prime in Q.

Let
βp

γp
=

t

s
, gcd(s, t) = 1.

We can take
y1 = n1s, z1 = n1t, y2 = n2s, z2 = n2t, n1 > 0, n2 > 0.

Since, for every prime q ∈ Q, y2βq = z2γq, we see that
βq

γq
= t

s
, and thus (x1, y1, z1) must be either Type O

or Type A for every prime in Q.
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Let G be the set of all primes in Q for which (x1, y1, z1) is Type O and let H be the set of all primes in
Q for which (x1, y1, z1) is Type A. For every prime q ∈ G, αqx1 = βqy1 = γqz1, so that for any two primes
q1 and q2 in G we have

αq1

αq2

=
βq1

βq2

=
γq1
γq2

so that we can apply Proposition 3.5 to see that we can write

a = a1g
αg

∏

q∈H

qαq , b = b1g
βg

∏

q∈H

qβq , c = c1g
γg

∏

q∈H

qγq (4.1)

for some positive integers g, αg, βg, γg.
From the solution (x1, y1, z1) we derive

cn1t
1 − bn1s

1 = ax1

1

∏

q∈H

qαqx1−n1tγq , x1 =
n1tγg
αg

(4.2)

From the solution (x2, y2, z2) we derive

cn2t
1 − bn2s

1 = ax2

1 gαgx2−n2tγg

∏

q∈H

qαqx2−n2tγq , x2 >
n2tγg
αg

. (4.3)

From the expressions for x1 and x2 in (4.2) and (4.3) we derive

x2

x1
>

n2

n1
. (4.4)

Let R = ct1, S = bs1, so that R > S. Let

f(n) = ctn1 − bsn1 = Rn − Sn.

Let U be the product of all primes in H , let r be any prime dividing a1U (if such r exists), and let
rv1 ‖ f(n1) and rv2 ‖ f(n2). Recalling (4.2) and (4.3) we see that, if r | a1, then

v2
v1

= x2

x1

> n2

n1

by (4.4). If
r ∈ H then by (4.2), (4.3), and (4.4)

v2
v1

=
αrx2 − n2tγr
αrx1 − n1tγr

=
αr

x2

x1

x1 −
n2

n1

n1tγr

αrx1 − n1tγr
>

n2

n1
.

So in either case, we have
v2
v1

>
n2

n1
. (4.5)

Let n0 be the least value of n such that rad(a1U) | f(n). By Lemma 3

n0 | n1, n0 | n2 (4.6)

so that f(n0) | f(n1), so that f(n0) can be divisible by no primes which do not divide a1U , so that

P (f(n0)) = P (f(n1)) = P (a1U)
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where, for any integer m > 1, P (m) is the set of primes dividing m. Assume there do not exist distinct
positive integers m1 and m2 such that P (f(m1)) = P (f(m2)). Then n1 must be the only value of n such
that P (f(n)) = P (a1U), so that n0 = n1, and, by (4.6), n1 | n2.

Now assume we have m1 and m2 such that P (Rm1 − Sm1) = P (Rm2 − Sm2). Let h be an integer such
that 2h ‖ R + S. By Lemma 4, {m1,m2} = {1, 2}, R − S ≡ 2 mod 4, and R + S = 2h with h ≥ 2. If
n1 6∈ {1, 2}, then the above argument still applies to show n1 | n2. If n1 = 1, then again we have n1 | n2.

So we consider n1 = 2 with P (f(1)) = P (f(2)): Let 2v1 ‖ f(n1) = f(2) = (R − S)(R + S) so that by
Lemma 4, v1 = h+ 1. By (4.2), gcd(f(n1), g) = 1, so, since P (f(1)) = P (f(2)) and g | f(n2), we must have
n2 > n1, so that, letting 2v2 ‖ f(n2), by (4.5) we have v2 > v1 = h+ 1 > 2. Since n1 = 2 is the least value
of n such that 22 | f(n), by Lemma 3 we have n1 | n2.

So we can assume
n1 | n2. (4.7)

Now we can apply Lemma 6: letting r be any prime dividing a1U , and letting rv1 ‖ f(n1) and rv2 ‖ f(n2),
we see that, if rv1 > 2,

rv2−v1 |
n2

n1

so that
n2

n1
≥ rv2−v1 ≥ r

v2
v1

−1 > r
n2

n1
−1 (4.8)

which is impossible. So we must have rv1 ≤ 2. Since r can be any prime dividing a1U we see that H
contains no odd primes and a1 ≤ 2, giving only three possible cases:

Case 1: a1 = 1, H = {2}, f(n1) = 2.
Case 2: a1 = 2, H is empty, f(n1) = 2.
Case 3: a1 = 1, H is empty, f(n1) = 1.
For all three cases, n1 = 1.
For Case 1, we have

a = 2α2gαg , b = 2β2gβgb1, c = 2γ2gγgc1. (4.9)

Let
d = by1

1 , b0 = by1 , c0 = cz1 .

Since cz11 − by1

1 = cn1t
1 − bn1s

1 = ct1 − bs1 = f(n1) = 2 we have

cz11 = d+ 2. (4.10)

So we have
b0 = 2β2y1gβgy1d, c0 = 2γ2z1gγgz1(d+ 2). (4.11)

Since the solution (x1, y1, z1) is Type O for g, we have βgy1 = γgz1 = αgx1; also since (x1, y1, z1) is Type
A for 2 and f(n1) = 2, we have β2y1 = γ2z1 = α2x1 − 1 by (4.2). So from (4.11) we have

b0 = 2α2x1−1gαgx1d, c0 = 2α2x1−1gαgx1(d+ 2). (4.12)

Let k = n2, and note that, since n1 = 1,

k =
n2s

s
=

y2
y1

, k =
n2t

t
=

z2
z1

.
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The solutions (x1, y1, z1) and (x2, y2, z2) for the triple (a, b, c) as in (4.9) correspond to the solutions (x1, 1, 1)
and (x2, k, k) for the triple (a, b0, c0).

Since gαgx2 ‖ ax2 = ck0 − bk0 , from (4.12) we find that αgx2 = kαgx1 +wg where gwg ‖ (d+2)k − dk (such
wg > 0 must exist since (x2, y2, z2) is Type A for g; note that gwg is the greatest odd divisor of (d+2)k − dk

and αg must divide wg). So

x2 = kx1 +
wg

αg

. (4.13)

Since 2α2x2 ‖ ax2 = ck0 − bk0 , from (4.12) we find that α2x2 = kα2x1 − k + w2 where 2w2 ‖ (d+ 2)k − dk.
But also by (4.13) α2x2 = kα2x1 +

α2wg

αg
, so that w2 = k +

α2wg

αg
> 1, so that Lemma 7 gives

2 | k.

So now we can use Lemma 7 to see that we must have k+
α2wg

αg
= w2 = h+ v where 2v ‖ k and 2h ‖ 2d+2.

So we have
k − v = h−

α2wg

αg

.

Now from (4.12) and (4.13) we see that (a, b0, c0, x1, 1, 1, kx1 + (wg/αg), k, k) (and therefore also (a, b, c,
x1, y1, z1, x2, y2, z2)) is in the infinite family (iv) in the Introduction when i = α2, j = αg, u = x1, w = wg,
and iu > 1.

Note that d = by1

1 in the member of the infinite family (iv) derived from the solutions (x1, y1, z1) and
(x2, y2, z2). By Lemma 8, b1 6= 1.

Now suppose there is a third solution other than (x1, y1, z1) and (x2, y2, z2) for the triple (a, b, c). By
Propositions 3.2 and 3.3 this third solution (x3, y3, z3) must be either Type A for g or Type B for g. If

this third solution is Type A for g, then, since
βg

γg
= t

s
, we have y3 = n3s and z3 = n3t for some integer

n3, and we see that we must have P (f(n3)) = P (f(n2)), so that we can apply Observation 3.1 to see that
(a, b, c, x2, y2, z2, x3, y3, z3) is in the infinite family (i), so that a is a power of 2, contradicting 2 ∤ g > 1.

So (x3, y3, z3) must be Type B for g. In the part of this proof preceding (4.9) we showed that when
(x2, y2, z2) is Type A for g we must have Case 1, Case 2, or Case 3; using the same argument under the
assumption that (x3, y3, z3) is Type B for g, we can show that, noting that now we can assume 2 ∤ b1, we
must have b1 = 1. But we have shown that (a, b, c, x1, y1, z1, x2, y2, z2) is in the infinite family (iv) with
d = by1

1 6= 1 by Lemma 8, giving a contradiction.
Thus we see that if we have Case 1, then there are exactly two solutions (x, y, z) and these two solutions

are given by the infinite family (iv) with iu > 1.
For Case 2, we have

a = 2gαg , b = gβgb1, c = gγgc1. (4.14)

Again letting d = by1

1 , b0 = by1 , c0 = cz1 , we have (4.10).

b0 = gβgy1d, c0 = gγgz1(d+ 2). (4.15)

Note that Case 2 requires x1 = 1 (by (4.2) and the definition of Case 2). Since the solution (x1, y1, z1) is
Type O for g, we have βgy1 = γgz1 = αg. So we have

b0 = gαgd, c0 = gαg(d+ 2). (4.16)

Letting k = n2 = n2

n1

= y2

y1

= z2
z1
, we see that the solutions (x1, y1, z1) and (x2, y2, z2) for the triple

(a, b, c) as in (4.14) correspond to the solutions (1, 1, 1) and (x2, k, k) for the triple (a, b0, c0). We find that
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αgx2 = kαg + wg where gwg ‖ (d+ 2)k − dk as in Case 1. So

x2 = k +
wg

αg

. (4.17)

Now 2x2 ‖ ax2 = cz2 − by2 = ck0 − bk0 , so that by Lemma 7 we must have x2 = h+ v where 2h ‖ 2d+ 2 and
2v ‖ k. Combining this with (4.17) we obtain

k − v = h−
wg

αg

.

Now we see that (a, b0, c0, 1, 1, 1, k + (wg/αg), k, k) (and therefore also (a, b, c, x1, y1, z1, x2, y2, z2)) is in the
infinite family (iv) in the Introduction when i = 1, j = αg, u = 1, and w = wg.

There can be no third solution by the same argument used to show there is no third solution for Case 1.
Thus we see that if we have Case 2, then there are exactly two solutions (x, y, z) and these two solutions

are given by the infinite family (iv) with iu = 1.
For Case 3 we have

a = gαg , b = gβgb1, c = gγgc1. (4.18)

Again letting d = by1

1 , b0 = by1 , c0 = cz1 , we have

cz11 − by1

1 = cn1t
1 − bn1s

1 = f(n1) = 1. (4.19)

So we have
b0 = gβgy1d, c0 = gγgz1(d+ 1). (4.20)

Since the solution (x1, y1, z1) is Type O for g, we have βgy1 = γgz1 = αgx1. So we have

b0 = gαgx1d, c0 = gαgx1(d+ 1). (4.21)

Again letting k = n2, we find that the solutions (x1, y1, z1) and (x2, y2, z2) for the triple (a, b, c) as in (4.18)
correspond to the solutions (x1, 1, 1) and (x2, k, k) for the triple (a, b0, c0). We find that αgx2 = kαgx1 +wg

where gwg = (d+ 1)k − dk. So

x2 = kx1 +
wg

αg

. (4.22)

Now we see that (a, b0, c0, x1, 1, 1, kx1 + (wg/αg), k, k) (and therefore also (a, b, c, x1, y1, z1, x2, y2, z2)) is in
the infinite family (iii) in the Introduction, with a = gj , j = αg, u = x1, and w = wg. (Note that 2 ∤ g since
gcd(g, d(d+ 1)) = 1.)

There can be no third solution which is Type A, C, or O for g by the same argument used for Cases
1 and 2. And the argument used in the first part of this proof to show that we must have Case 1, 2, or
3 can be used to show that, if there exists a solution (x3, y3, z3) which is Type B for g, then b1 ≤ 2. If
b1 = 2, then, since a1 = 1, we can reverse the roles of a and b in the argument used for Case 2 to see that
(b, a, c, y1, x1, z1, y2, x2, z2) is in the infinite family (iv) with d = 1, contradicting Lemma 8.

So if there is a third solution we must have a1 = b1 = 1.
By Propositions 3.2 and 3.3 we can have no third solution which is Type C or O for g.
From the solution (x1, y1, z1) which is Type O for g we derive c1 = 2.
From the solution (x2, y2, z2), which is Type A for g, we derive

gαgx2−γgz2 + 1 = 2z2 (4.23)
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It is a familiar elementary result that (4.23) requires αgx2 − γgz2 = 1 and that there are no values of z
possible in a solution which is Type A for g other than z2.

If there is a third solution (x3, y3, z3) which is Type B for g, then

1 + gβgy3−γgz3 = 2z3 . (4.24)

We have βgy3 − γgz3 = 1 so that z2 = z3 is the only possible choice for z in any solution to (1.1) other than
(x1, y1, z1).

Multiplying both sides of (4.23) and (4.24) by gγgz2 we find that we can apply Criterion 1 to see that
(x2, y2, z2) is considered the same as (x3, y3, z3). (For the case a1 = b1 = 1 we have (iii) with g = 2k − 1,
w = j = d = 1.)

Thus we see that if we have Case 3, then N(a, b, c) = 2 and (a, b, c, x1, y1, z1, x2, y2, z2) is in the infinite
family (iii).

Thus we find that in all three cases N(a, b, c) = 2 with (a, b, c, x1, y1, z1, x2, y2, z2) in either the infinite
family (iii) or the infinite family (iv).

This completes the proof of Proposition 4.1.

Let Saa be the set of all triples (a, b, c) such that gcd(a, b) > 1 and (1.1) has two solutions both of which
are Type A for some prime in Q.

Proposition 4.2. For (a, b, c) ∈ Saa we have N(a, b, c) = 2, and (1.1) has two solutions (x1, y1, z1)
and(x2, y2, z2) with (a, b, c, x1, y1, z1, x2, y2, z2) in either the infinite family (i) or the infinite family (iv).

Proof. Let J be the set of all (a, b, c) ∈ Saa such that there exists a solution which is Type O for some prime
in Q, and let K be the set of all (a, b, c) ∈ Saa such that there are no solutions which are Type O for any
prime in Q.

If (a, b, c) ∈ J , then, by Proposition 4.1, N(a, b, c) = 2 and the equation (1.1) has two solutions
(x1, y1, z1) and (x2, y2, z2) with (a, b, c, x1, y1, z1, x2, y2, z2) in one of the infinite families (iii) or (iv). As-
sume (a, b, c, x1, y1, z1, x2, y2, z2) is in the infinite family (iii). Any solution to (1.1) for this a, b, c must
correspond to one of the two solutions given by a member of F for the infinite family (iii) (by Lemma 9),
and any solution of Type A for any prime must correspond to the solution in F given by (ku + w

j
, k, k) in

(iii), so that only one (x, y, z) is possible for a solution which is Type A for a given p, so that (a, b, c) 6∈ Saa.
Thus (a, b, c, x1, y1, z1, x2, y2, z2) must be in the infinite family (iv). (Although not needed for our purpose,
it is easily seen that we must have (iv) with iu > 1 in order to have 2 ∈ Q so that the two solutions in (iv)
are both Type A for 2.)

Now suppose (a, b, c) ∈ K. By the Corollary to Proposition 3.1, N(a, b, c) = 2 and (1.1) has two solutions
(x1, y1, z1) and (x2, y2, z2) with (a, b, c, x1, y1, z1, x2, y2, z2) in the infinite family (i).

So, since Saa = J ∪K, Proposition 4.2 follows.

Let Sbb be the set of all triples (a, b, c) such that gcd(a, b) > 1 and (1.1) has two solutions (x1, y1, z1) and
(x2, y2, z2) both of which are Type B for some prime in Q. By the symmetry of a and b, Proposition 4.2
holds with Sbb replacing Saa.

Theorem 4.3. Let Si = Sc∪So∪Saa∪Sbb. If (a, b, c) in Si, then N(a, b, c) = 2, and (1.1) has two solutions
(x1, y1, z1) and (x2, y2, z2) with (a, b, c, x1, y1, z1, x2, y2, z2) in one of the infinite families (i), (ii), (iii), or
(iv).

Proof. This is an immediate consequence of Propositions 3.4, 4.1, and 4.2.
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Theorem 1.1 follows directly from Theorem 4.3:

Proof of Theorem 1.1. For (a, b, c) such that gcd(a, b) > 1 and (a, b, c) 6∈ Si, (1.1) has no solutions of Type
C or O for any prime in Q, and at most one solution of Type A and at most one solution of Type B for any
prime in Q. So N(a, b, c) ≤ 2 for this (a, b, c). Now Theorem 1.1 is an immediate consequence of Theorem
4.3.

Comment 4.4 Notice that proving Theorem 1.1 does not require using the statement concerning
infinite families in Theorem 4.3 or the similar statements in Propositions 3.1, 3.4, 4.1, and 4.2; only the
result N(a, b, c) = 2 is needed. Also, the use of infinite families is not needed for proving N(a, b, c) = 2 in
Propositions 3.1, 3.4, 4.1, and 4.2 except to handle two special cases in the proof of Proposition 4.1, where
the infinite family (iv) is used. Our primary purpose in considering infinite families is to obtain results
concerning anomalous solutions (as in Theorem 4.5 below) and to obtain results on cases allowing more
than two solutions (x, y, z) to (1.1) when Criterion 1 is not used (as in Theorems 4.7 and 4.8). The proof
of Theorem 4.5 will use the statement concerning infinite families in Theorem 4.3. The solutions (x1, y1, z1)
and (x2, y2, z2) in the statement concerning infinite families in Theorem 4.3 (and in the similar statements in
Propositions 3.1, 3.4, 4.1, and 4.2) will be shown (by Theorem 4.7) to be the only solutions (x, y, z) to (1.1)
for the (a, b, c) in question even when Criterion 1 is not used, except for a few specifically designated cases
allowing more than two solutions (x, y, z). For cases allowing more than two solutions, if a, b, c, x1, y1, z1, x2,
y2, z2 are as in the statement of Theorem 4.3, then (a, b, c, x3, y3, z3, x4, y4, z4) is in the same infinite family
as (a, b, c, x1, y1, z1, x2, y2, z2) for any pair of solutions (x3, y3, z3) and (x4, y4, z4) (not necessarily distinct
from (x1, y1, z1) and (x2, y2, z2)) which do not correspond to each other (this follow directly from Lemma 9).

Theorem 4.5. If, for some (a, b, c) with gcd(a, b) > 1, (1.1) has two solutions (x1, y1, z1) and (x2, y2, z2)
which do not correspond to each other and (a, b, c, x1, y1, z1, x2, y2, z2) is not in any of the infinite families
(i), (ii), (iii), or (iv), then

a = gαga1, b = gβgb1, c = gγgc1 (4.25)

for some positive integers g, αg, βg, γg, a1, b1, c1 with gcd(g, a1b1c1) = 1 and gcd(a1, b1) = 1, and one of
the two solutions is Type A for g and the other solution is Type B for g, with no further solutions (x, y, z).

Proof. Assume that, for some (a, b, c) with gcd(a, b) > 1, (1.1) has two solutions (x1, y1, z1) and (x2, y2, z2)
which do not correspond to each other and (a, b, c, x1, y1, z1, x2, y2, z2) is not in any of the infinite families
(i), (ii), (iii), or (iv). By Theorem 1.1 any further solution (x, y, z) must correspond to one of (x1, y1, z1),
(x2, y2, z2), so that no two solutions for this (a, b, c) can correspond to the two solutions in a member of F
for any infinite family (recall the Comment following Definition 2 in the Introduction), so that (a, b, c) 6∈ Si

(by Theorem 4.3). So, recalling the proof of Theorem 1.1 (immediately following Theorem 4.3), we see that
(x1, y1, z1) and (x2, y2, z2) are the only solutions (x, y, z) to (1.1) and, for any prime in Q, one of (x1, y1, z1)
and (x2, y2, z2) is Type A and the other is Type B. (Note that neither (x1, y1, z1) nor (x2, y2, z2) corresponds
to a distinct third solution (x3, y3, z3) since (a, b, c) 6∈ Saa ∪ Sbb).

Suppose one of these solutions, say (x1, y1, z1), is of Type A for some prime p ∈ Q and of Type B for
some prime q ∈ Q. Then, by the Corollary to Lemma 2, (x2, y2, z2) must also be Type A for p, contradicting
the previous paragraph (which showed that (x2, y2, z2) must be Type B for p). So we see that one of the
solutions, say (x1, y1, z1), must be Type A for every prime in Q and the other solution (x2, y2, z2) must be
Type B for every prime in Q. Let q1 and q2 be any two primes in Q. Then βq1y1 = γq1z1, βq2y1 = γq2z1,
αq1x2 = γq1z2, αq2x2 = γq2z2, from which we derive (3.34), so that we can use Proposition 3.5 to obtain
(4.25). The solution (x1, y1, z1) is Type A for g, and the solution (x2, y2, z2) is Type B for g.
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Theorem 4.5 will be used to establish a method for searching for anomalous solutions in Section 5 which
follows.

Let I be the set of all (a, b, c) with gcd(a, b) > 1 such that (1.1) has two solutions (x1, y1, z1) and
(x2, y2, z2) with (a, b, c, x1, y1, z1, x2, y2, z2) in one of the four infinite families in the Introduction.

(Although not needed for what follows, we note that I = Si ∪ T where T is the set of all triples (a, b, c)
satisfying either ({a, b, }c) = ({2, 4}, 22t+1 ·3) or ({4, 8}, 26t+3 ·3), where t ≥ 0. Since we will not be using this
result, we do not give its proof, which uses the method of the proof of Theorem 4.7 below. Any (a, b, c) ∈ T
gives exactly two solutions (x, y, z) to (1.1), one of which is Type A for 2 and the other of which is Type B
for 2.)

Observation 4.6. The use of Criterion 1 to determine N(a, b, c) = 2 is needed only when (a, b, c) gives two
solutions (x1, y1, z1) and (x2, y2, z2) to (1.1) with (a, b, c, x1y1, z1, x2, y2, z2) in either the infinite family (i)
with h = 2 or the infinite family (iii) with g = 2k − 1, d = w = j = 1.

Proof. Criterion 1 is relevant only when a1 = b1 = 1. Assume (a, b, c) satisfies gcd(a, b) > 1, N(a, b, c) = 2,
and a1 = b1 = 1.

If (a, b, c) 6∈ I, then (a, b, c) satisfies the conditions of the statement of Theorem 4.5, so, by Theorem 4.5,
(a, b, c) has exactly two solutions (x, y, z), neither of which corresponds to a further distinct solution (x, y, z).
So Criterion 1 does not apply here.

If (a, b, c) ∈ I, then, since a1 = b1 = 1, it suffices to determine when any of the infinite families (i),
(ii), (iii), (iv) allows a1 = b1 = 1. In the infinite family (ii), we have a1 = 2, so we can eliminate (ii) from
consideration. In the infinite family (iv), we cannot have b1 = d = 1 by Lemma 8, so we can eliminate (iv)
from consideration. In the infinite family (i), b1 = 1 holds only if h = 2. Finally, in the infinite family (iii),
b1 = 1 requires d = 1, so that, since gw = (d + 1)k − dk = 2k − 1, we have g = 2k − 1 and w = 1, so that,
since x2 = ku+ (w/j), we must have j = 1.

Using Observation 4.6 we can consider (1.1) without using Criterion 1 and determine all cases for which
(1.1) has more than two solutions (x, y, z).

Theorem 4.7. Let (a, b, c) be a triple giving more than two solutions (x, y, z) to (1.1).
If gcd(a, b) = 1, then ({a, b}, c) = ({3, 5}, 2), which has three solutions: 3+5 = 23, 33+5 = 25, 3+53 = 27.
If gcd(a, b) > 1, then we must have one of the following:
1.) (a, b, c) = (2, 2, 2γ3), γ ∈ Z+, which has four solutions (x, y, z): (γ+1, γ, 1), (γ, γ+1, 1), (2γ+3, 2γ, 2),

(2γ, 2γ + 3, 2).
2.) (a, b, c) = (2, 8, 23t3), t ∈ Z+, which has three solutions (x, y, z): (3t+ 1, t, 1), (6t+ 3, 2t, 2), (6t, 2t+

1, 2)
or
(a, b, c) = (8, 2, 23t3), t ∈ Z+, which has three solutions (x, y, z): (t, 3t+1, 1), (2t, 6t+3, 2), (2t+1, 6t, 2).
3.) (a, b, c) = (2k − 1, 2k − 1, 2(2k − 1)γ), k, γ ∈ Z+, which has three solutions (x, y, z): (γ, γ, 1),

(kγ + 1, kγ, k), (kγ, kγ + 1, k).
4.) (a, b, c) = (2u, 2v, 2w), u, v, w ∈ Z+, gcd(uv, w) = 1, which has an infinite number of solutions

(x, y, z) = ( tv
g
, tu

g
, tL+1

w
) where gcd(u, v) = g, lcm(u, v) = L, and t is a positive integer such that tL ≡

−1 mod w.

Proof. If gcd(a, b) = 1, then the result that ({a, b}, c) = ({3, 5}, 2) is given by [10], and the result that there
are exactly three solutions in this case is given by [10] as well as earlier papers cited in [10].

Now assume (a, b, c) with gcd(a, b) > 1 gives more than two solutions (x, y, z) to (1.1). If (a, b, c) are all
powers of 2, then we have 4.); assume a, b, and c are not all powers of 2, so that we are eliminating 4.) from
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consideration. Since any solution to (1.1) has at most one solution distinct from it which corresponds to it,
we must have N(a, b, c) > 1. By Theorem 1.1, N(a, b, c) = 2.

By Observation 4.6, we must have one of the following two cases.
Case 1: (a, b, c) gives two solutions (x1, y1, z1), (x2, y2, z2) to (1.1) such that (a, b, c, x1, y1, z1, x2, y2, z2) is

in the infinite family (i) with h = 2, and there is at least one further solution (x3, y3, z3) where the solution
(x3, y3, z3) corresponds to one of (x1, y1, z1) and (x2, y2, z2) (recall the proof of Lemma 9).

For this case, we have (a, b, c) = (2α, 2β , 2γ · 3) since, by Definition 3, the solutions (x1, y1, z1) and
(x2, y2, z2) must correspond to the two solutions given by some member of F for the infinite family (i) (note
that this requires min(z1, z2) = 1). Letting m be this member of F we have m = (2, 2u, 2u ·3, u+1, 1, 1, 2u+
3, 2, 2) for some fixed positive integer u. By Definition 3, γ = γmin(z1, z2) = umin(1, 2) = u, so that

m = (2, 2γ , 2γ · 3, γ + 1, 1, 1, 2γ + 3, 2, 2).

Let (x1, y1, z1) be the solution to (1.1) which corresponds to the solution (γ+1, 1, 1) in m, and let (x2, y2, z2)
be the solution in m which corresponds to the solution (2γ + 3, 2, 2). Then we have

{αx1, βy1} = {γ + 1, γ} (4.26)

and
{αx2, βy2} = {2γ + 3, 2γ}. (4.27)

Let (x3, y3, z3) be a further solution. If (x3, y3, z3) corresponds to (x1, y1, z1), then, if αx1 = γ + 1 (respec-
tively, γ), we must have αx3 = γ (respectively, γ + 1). By (4.26) we see that this requires α | γ + 1, α | γ,
β | γ + 1, β | γ, so that α = β = 1.

If (x3, y3, z3) corresponds to (x2, y2, z2), then by (4.27) we must have α | 2γ+3, α | 2γ, β | 2γ+3, β | 2γ.
This requires α ∈ {1, 3}, β ∈ {1, 3}. so we have (α, β) = (1, 1), (1, 3), or (3, 1), noting that (α, β) = (3, 3) is
impossible by (4.26).

If α = β = 1 we have 1.) in the formulation of Theorem 4.7. If (α, β) = (1, 3) or (3, 1), we have 2.) in
the formulation of Theorem 4.7 (note that in this case we must have 3 | γ).

Case 2: (a, b, c) gives two solutions (x1, y1, z1), (x2, y2, z2) to (1.1) such that (a, b, c, x1, y1, z1, x2, y2, z2)
is in the infinite family (iii) with g = 2k − 1, d = w = j = 1, and there is at least one further solution
(x3, y3, z3) where the solution (x3, y3, z3) corresponds to one of (x1, y1, z1) and (x2, y2, z2).

For this case we have (a, b, c) = ((2k − 1)α, (2k − 1)β, 2(2k − 1)γ) since, by Definition 3, the solutions
(x1, y1, z1) and (x2, y2, z2) must correspond to the two solutions given by some member of F for the infinite
family (iii) (note that this requires min(z1, z2) = 1). Letting m be this member of F and proceeding as in
Case 1, we see that we must have

m = (2k − 1, (2k − 1)γ , 2(2k − 1)γ , γ, 1, 1, kγ + 1, k, k)

for some positive integer k.
Let (x1, y1, z1) be the solution to (1.1) which corresponds to the solution (γ, 1, 1) in m, and let (x2, y2, z2)

be the solution to (1.1) which corresponds to the solution (kγ + 1, k, k).
Let (x3, y3, z3) be a further solution. If (x3, y3, z3) corresponds to (x1, y1, z1), then both (x1, y1, z1) and

(x3, y3, z3) are Type O for g = 2k − 1, so that αx1 = βy1 = αx3 = βy3 so that y1/x1 = y3/x3. Since z3 = z1,
this requires x1 = x3, y1 = y3, so that (x3, y3, z3) is not a distinct solution.

If (x3, y3, z3) corresponds to (x2, y2, z2), then we can proceed as in Case 1 to see that α | kγ + 1, α | kγ,
β | kγ + 1, β | kγ, so that α = β = 1, which gives 3.) in the formulation of Theorem 4.7.
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From Theorem 4.7 we can immediately obtain a revised version of Theorem 1.1 in which Criterion 1 is
replaced by a more specific restriction:

Theorem 4.8. For given integers a, b, c all greater than one, (1.1) has at most two solutions in positive
integers (x, y, z) (where two solutions (x1, y1, z1), (x2, y2, z2) are considered the same solution if a = b and
{x1, y1} = {x2, y2}), except for the following three cases:

1.) {a, b} = {3, 5}, c = 2 which gives the three solutions in Theorem 4.7.
2.) {a, b} = {2, 8}, c = 23t3, which gives the three solutions in 2.) of Theorem 4.7.
3.) {a, b} = {2u, 2v}, c = 2w, where gcd(uv, w) = 1, which gives the infinite number of solutions in 4.)

of Theorem 4.7.

5 Cases with exactly two solutions

By Theorem 1.1 we have N(a, b, c) ≤ 2 for all (a, b, c) except ({a, b}, c) = ({3, 5}, 2) or ({2u, 2v}, 2w) for
positive integers u, v, w with gcd(uv, w) = 1. Let Sj be the set of all triples (a, b, c) such that gcd(a, b) > 1,
N(a, b, c) = 2, and there do not exist solutions (x1, y1, z1) and (x2, y2, z2) with (a, b, c, x1, y1, z1, x2, y2, z2) in
any of the infinite families (i), (ii), (iii), or (iv). By Theorem 4.5, for any (a, b, c) ∈ Sj there are exactly two
solutions (x, y, z) one of which is Type A for g, the other of which is Type B for g, and neither of which has
a solution corresponding to it (here g is as in Theorem 4.5). In this section we consider whether there exist
any (a, b, c) ∈ Sj which are not listed among the ten anomalous cases given in the Introduction.

By Theorem 4.5, we can assume that for any (a, b, c) ∈ Sj , we have a solution (x1, y1, z1) which is Type
A for g and a solution (x2, y2, z2) which is Type B for g, where g is as in Theorem 4.5. Using the notation
of Theorem 4.5 (taking a1 ≤ b1 and, for brevity, writing α for αg, β for βg, and γ for γg), from the solutions
(x1, y1, z1) and (x2, y1, z2) we derive two equations with relatively prime terms:

gαx1−γz1ax1

1 + by1

1 = cz11 (5.1)

and
ax2

1 + gβy2−γz2by2

1 = cz21 . (5.2)

For any (a, b, c) ∈ Sj , the two solutions (x1, y1, z1) and (x2, y2, z2) must be derived from equations with
relatively prime terms as in (5.1) and (5.2). So, in searching for hitherto unknown anomalous solutions we
can begin by examining pairs of equations of the form

gw1ax1

1 + by1

1 = cz11 (5.3)

and
ax2

1 + gw2by2

1 = cz21 (5.4)

where g, a1, b1, and c1 are pairwise relatively prime. For any pair of equations with relatively prime terms
which can be represented as in(5.3) and (5.4), we consider whether there exist α, β, and γ which produce an
(a, b, c) ∈ Sj . To do this we construct systems of linear equations in which the unknowns are α, β, and γ:

y1β = z1γ, (5.5)

y2β − w2 = z2γ, (5.6)
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x1α− w1 = z1γ, (5.7)

x2α = z2γ. (5.8)

If 1 < a1 < b1, we have a system of four equations which must have a solution in three positive integer
variables α, β, γ in order to produce an (a, b, c) ∈ Sj .

If 1 = a1 < b1, then it suffices to obtain a solution in positive integers β and γ for the system of two
equations (5.5) and (5.6) in order to produce an (a, b, c) ∈ Sj , since then we can take α = 1 and let

x1 = z1γ + w1 (5.9)

and
x2 = z2γ. (5.10)

If 1 = a1 = b1, then we have
gw1 + 1 = cz11 (5.11)

and
1 + gw2 = cz21 . (5.12)

(5.12) can also be considered a solution of Type A for g, so that (a, b, c) ∈ Saa ⊂ Si, contradicting the
definition of Sj . (Although not needed for our purposes, we note that, if z1 6= z2, then (5.11) and (5.12)
must be 2 + 1 = 3 and 23 + 1 = 32.)

In conducting a search for possible further anomalous solutions not already known, we can begin by
considering ternary equations with relatively prime terms. A remarkably comprehensive list of such equations
was constructed by Matschke [9] based on work of Känel and Matschke [7]. This list gives all cases of
A + B = C with gcd(A,B) = 1 and rad(ABC) < 107. From this list we find pairs of equations satisfying
(5.3) and (5.4) and determine whether a triple of positive integers (α, β, γ) satisfies (5.5) through (5.8). We
thus show that there are no (a, b, c) with gcd(a, b) > 1, N(a, b, c) = 2, and rad(abc) < 107 other than those
already known and listed among the anomalous cases and infinite families in the Introduction.

One can calculate that (5.3) and (5.4) have no further solutions for a1 ≤ 100. g ≤ 100, b1 ≤ 10000, and
the exponents w1, x1, y1, z1, x2, w2, y2, z2 each less than or equal to 10.

These results complement the bounds given in the Introduction found by an independent computer search.
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