arXiv:2401.04197v3 [mah.NT] 15 Aug 2024

Number of solutions to a” + V¥ = ¢* with ged(a,b) > 1

Reese Scott
Robert Styer

Keywords: ternary purely exponential Diophantine equation, number of solutions
2020 Subject Class: 11D61

15 August 2024

Abstract

We show that there are at most two solutions in positive integers (z,y, z) to the equation a® +b¥ = ¢*
for positive integers a, b, and c all greater than one, where at least one of a, b, ¢ is not a power of 2,
and ({a,b},c) # ({3,5},2) (two solutions (x1,y1,21) and (z2, y2, z2) are considered the same solution if
{a®*,b¥*} = {a"?,bY2}). The case in which ged(a, b) = 1 has been handled in a series of successive results
by Scott and Styer, Hu and Le, and Miyazaki and Pink, who showed that there are at most two solutions,
excepting ({a,b},c) = ({3,5},2), which gives three solutions. So here we treat the case ged(a,b) > 1,
showing that there are at most two solutions in this case if at least one of a, b, ¢ is not a power of 2. This
generalizes work of Bennett, who proved the equivalent result (for both ged(a,b) = 1 and ged(a,b) > 1)
for the case in which one of x or y is a fixed positive integer.

For both gecd(a,b) = 1 and ged(a,b) > 1, there are an infinite number of cases with exactly two
solutions (z,y, z), which are described in detail in this and a cited previous paper.

In a further result, in which we no longer consider two solutions (z1,y1, 21) and (x2,y2, 22) to be the
same solution if {a®,b¥'} = {a”™2,bY2}, we list all cases with more than two solutions.

MSC: 11D61

1 Introduction

For integers a, b, and ¢ all greater than one, we consider N(a,b,c), the number of solutions in positive
integers (z,y, z) to the equation
a®+ b = c”. (1.1)

In this paper, we treat the case in which ged(a,b) > 1, but first we give a brief history of previous results
for the case in which ged(a,b) = 1.
For (a,b,c) with ged(a,b) = 1, an effective upper bound for N(a,b,c) was first given by A. O. Gel’fond
[B] (Mahler [8] had earlier shown that the number of solutions was finite, using his p-adic analogue of the
Diophantine approximation method of Thue-Siegel, but his method is ineffective). Hirata-Kohno [4] used
an application of an upper bound on the number of solutions of binary S-unit equations due to F. Beukers
and H. P. Schlickewei [2] to obtain N(a,b,c) < 236, later improved to N(a,b,c) < 200 (unpublished). The
following more realistic upper bounds for N(a,b,c¢) when ged(a,b) = 1 have been obtained in recent years:
(1) (R. Scott and R. Styer [12]) If 21 ¢ then N(a,b,c) < 2.
(2) (Y. Z. Hu and M. H. Le [5]) If max{a,b,c} > 5-10%7, then N(a,b,c) < 3.
(3) (Y. Z. Hu and M. H. Le [6]) If 2 | ¢ and max{a, b,c} > 10°2, then N(a,b,c) < 2.
(4) (T. Miyazaki and 1. Pink [10]) If 2 | ¢ and max{a,b,c} < 10%2, then N(a,b,c) < 2 except for
N(3,5,2) = N(5,3,2) = 3.
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Noting that (1), (3), and (4) show that (1.1) has at most two solutions (x,y, z) when ged(a, b) = 1 except
for the case ({a,b},c) = ({3,5},2), in what follows we will show that (1.1) has at most two solutions when
ged(a,b) > 1, provided a, b, and ¢ are not all powers of 2 (in this paper, we exclude from consideration the
case in which a, b, and ¢ are all powers of 2, noting that if (a,b,c) = (2%,2%,2") where ged(uv, w) = 1,
ged(u,v) = g, and lem(u,v) = L, then, for any positive integer ¢ such that tL = —1 mod w, (1.1) has the
solution (x,y,2) = (%’, %, LLA1)) In counting the number of solutions to (1.1) to determine N (a,b,c) we
use the following:

Criterion 1. Two solutions (x1,y1,21) and (x2,y2,22) are considered the same solution if {a™ ,b¥'} =
{7, b2}

When neither a nor b is a perfect power, Criterion 1 simplifies to the following:

Two solutions (x1,y1,21) and (T2,y2,22) are considered the same solution if a = b and {x1,y1} = {x2,y2}.

We know of no results on N(a,b,c) for the case ged(a,b) > 1 for general a, b, ¢, except in the special
case (known as the Pillai case) in which one of x or y is a fixed positive integer, in which case the proof that
there are at most two solutions (y, z) (respectively, (x, z)) is extremely short and straightforward (see [1]).

Before proceeding, we discuss all known cases with N(a, b, c) > 1.

Considering (a, b, ¢) with ged(a,b) = 1 for which (1.1) has two solutions (z1,y1,21) and (z2,y2, 22), we
find one infinite family of such (a, b, ¢, z1,y1, 21, T2, Y2, 22) (given by {a,b} = {2,2" — 1}, c=2"+1,n > 1)
and several other such (a, b, ¢, z1, y1, 21, T2, Y2, 22), all but one of which are apparently anomalous cases not
in an infinite family (the case {a,b} = {2,7} with ¢ = 3 is a member of the known infinite family). Only
one case ({a,b} = {3,5}, c = 2) gives more than two solutions (z,y, z). See [12] for a list of the known cases
with two solutions to (1.1) when ged(a, b) = 1.

Considering (a,b,¢) with ged(a,b) > 1 for which (1.1) has two solutions (z1,y1,21) and (x2,ys2, 22)
which are distinct under Criterion 1, we find four infinite families of such (a, b, ¢, x1, y1, 21, 2, Y2, 22) and ten
anomalous such (a, b, ¢, x1,y1, 21, T2, Y2, 22) which are apparently not in an infinite family. (In counting the
anomalous (a,b, ¢, z1,y1, 21, T2, Y2, 22) we assume that none of a, b, or ¢ is a perfect power.) We will show
that no (a,b,c) gives more than two solutions (x,y, z) under Criterion 1, except for (a,b,c) = (24,2%,2%)
with ged(uv, w) = 1.

The four infinite families mentioned in the previous paragraph are:

(i). (a,b,c) = (2,2%(2" 1 —1),2u(2" "1+ 1)), (w1,y1,21) = (u+1,1,1) and (22,92, 22) = u+h+1,2,2).

(ii). (a,b,c) = (2-3%,3,3), (z1,y1,21) = (1,t,t + 1) and (w2, y2, 22) = (3, 3t, 3t + 2).

(iii). (a,b,¢) = (¢7, ¢7%d, g"*(d+1)), (z1,y1,21) = (u,1,1) and (22, y2, 22) = (ku+%,k, k) where2 1 g > 1,
(d+1)* —dF = g%, w > 0. (Clearly we expect w = 1 when k > 2, but see, for example, a = 13, b = 91,
c=104, k =3.)

(iv). (a,b,c) = (2ig7,20u=1giud, 20u=1giv(d + 2)), (x1,y1,21) = (u,1,1) and (72,92, 22) = (ku + 2.k, k),
where 21d, 24 g > 1, g% is the greatest odd divisor of (d +2)¥ —d*, w > 0, 2 | k, and k —v = h — (iw/5),
where 2" || 2d + 2 and 2V || k.

Note that the infinite family (i) can be viewed as a subset of the infinite family (iv): take g =i =j =1,
which requires d = 2"~! — 1 and k = 2, which gives w = h — 1 (since now w is defined without reference to
g), and note that u(;,y = u¢y + 1 where u(;,) = v as in (iv) and wu) = v as in (i). But for the purposes of
Theorems 3.1, 3.4, and 4.1, it is clearer to treat (i) as a distinct family. (We take g > 1 in (iv) so that (i) is
distinct from (iv).)

We give three definitions concerning the infinite families (i), (ii), (iii), (iv).



Definition 1: For a given infinite family, let F' be the set of all (a, b, ¢, x1,y1, 21, T2, Y2, 22) such that each
of a, b, ¢, x1, Y1, 21, T2, Y2, 22 satisfies the restrictions of the given infinite family. (Each member of F' is an
ordered set of nine fixed positive integers.)

Definition 2: We say that the solution (x,y, z) to (1.1) for the triple (a, b, ¢) corresponds to the solution
(X,Y, Z) to (1.1) for the triple (A, B,C) if {a®,b¥} = {AX BY} and ¢* = CZ.

Comment: Note that for any F' as in Definition 1, (21,91, 21) does not correspond to (z2, y2, 22).

Definition 3: Let A, B, C, X1, Y1, Z1, X3, Ya, Z5 be positive integers such that AX* + BY1 = C%' and
AX2  BY2 = 0% are distinct solutions to (1.1) for the triple (A4, B,C). We say that (A, B,C, X1,Y1, Z1,
Xo,Ys, Z5) is in a given infinite family if there exists an (a, b, ¢, x1,y1, 21, T2, Y2, 22) € F such that each of the
solutions (X1,Y1,7Z;1) and (X3, Y2, Z2) to (1.1) for the triple (A, B,C) corresponds to one of the solutions
(21,y1,21) or (x2,y2,22) to (1.1) for the triple (a,b,c), and each of the solutions (z1,y1, 21) and (x2, Yo, 22)
to (1.1) for the triple (a,b, ¢) corresponds to one of the solutions (X1,Y7, Z1) or (X, Y2, Z2) to (1.1) for the
triple (4, B, C).

We give an example to show how these three definitions are used. Consider (1.1) with a = b = 7 and
c = 98. We find three solutions:

(a, b, C) = (77 7, 98) : (Ila Y1, Zl) = (2a 2, 1)a (I27 Y2, 22) = (6a 7, 3)a (I37 Y3, Z3) = (77 6, 3) (12)
Now consider (1.1) with a =7, b = 49, and ¢ = 98. We find two solutions:
(a,b,¢) = (7,49,98) : (z1,11,21) = (2,1,1), (z2,y2,22) = (7,3, 3). (1.3)

Note that a, b, ¢, x1, y1, 21, T2, Y2, 22 in (1.3) exactly match the values given for a, b, ¢, x1, y1,
21, T2, Y2, 22 in the infinite family (ili) when ¢ = 7, j =1, u = 2,d = 1, k = 3, and w = 1, so that
(a,b,c,x1,y1, 21, %2, Y2, 22) = (7,49,98,2,1,1,7,3,3) is in F for the infinite family (iii).

On the other hand, a, b, ¢, 1, Y1, 21, T2, Y2, 22 as in (1.2) do not match the values given for a, b, ¢, x1, y1,
21, T2, Y2, 22 in the infinite family (iii) for any choice of g, j, u, d, k, w (due both to the choice of b and the
order of the (z2,y2)), so that (a,b, ¢, z1,y1, 21, T2, Y2, 22) = (7,7,98,2,2,1,6,7,3) is not in F' for the infinite
family (iii). However, we still say that (a,b,c, z1,y1, 21, T2, Y2, 22) = (7 7,98,2,2,1,6,7,3) is in the infinite
family (iii) since the solutions (2,2,1) and (6, 7, 3) for the triple (a,b,c) = (7,7, 98) correspond respectively to
the solutions (2,1, 1) and (7, 3, 3) for the triple (a, b, ¢) = (7,49, 98). The treatment is similar when (2, yo, 22)
in (1.2) is replaced by (z3, y3, 23) in (1.2): (a,b, ¢, z1,y1, 21,23, Y3, 23) = (7,7,98,2,2,1,7,6,3) is in the infinite
family (iii). On the other hand, using again the notation of (1.2), we see that (a, b, ¢, 22, Y2, 22, X3, Y3, 23) =
(7,7,98,6,7,3,7,6,3) is not in the infinite family (iii).

Noting that we will show N(a,b,¢) < 2 when ged(a,b) > 1 (except for (a,b,c) = (2%,2%,2%)), we now
consider (a, b, ¢) with ged(a,b) > 1 and N(a,b,c) = 2 such that there do not exist solutions (x1,y1, 21) and
(22, Y2, 22) with (a,b, ¢, x1,y1, 21, T2, Y2, 22) in any of the infinite families (i), (ii), (iii), or (iv).

The ten anomalous cases with ged(a,b) > 1 mentioned above are as follows:

(a,b,c) = (2,6,38), (z,y,2) = (1,2,1) and (5,1,1).

(a,b,c) = (3,6,15), (z,y,2) = (2,1,1) and (2, 3,2).

(a,b,c) = (6,15,231), (z,y,2) = (1,2, 1) and (3,1,1).

(a,b,c) = (3,1215,6), (z,y,2) = (4,1,4) and (8,1,5).

(a,b,¢) = (3,6,7857), (z,y,2) = (4,5,1) and (8,4, 1).

(a,b,c) = (5,275,280), (z,y,2) = (1,1,1) and (7,1, 2).
(a,b,c) = (5,280, 78405), (z,y,z) = (1,2,1) and (7,1,1).
(a,b,c) = (30,70,4930), (z,y,2) = (1,2,1) and (5,2, 2).
(a,b, ¢) = (30,4930, 24304930), (2,3, 2) = (1,2,1) and (5,1,1)



(a,b,c) = (2,88,6), (z,y,2) = (7,1,3) and (5,2,5).

Nine of these anomalous cases can be derived from the five cases with ged(a,b) > 1 listed by Bennett
[1] in his list of eleven double solutions for the Pillai case. Four of these five Pillai cases generate two items
on our list (since Pillai equations can be rearranged) but one of them does not since one of its two possible
arrangements is a member of the infinite family (i). The tenth anomalous solution is derived not from one
of the known Pillai cases with ged(a,b) > 1 but rather from the equations 1 +2- 112 = 3% 24 4 11 = 33.

We have not found any further anomalous double solutions for (a,b,c) with 2 < ged(a,b) < 1050,
a/ged(a,b) < 1050, b/ ged(a,b) < 10°, a® < 10%°, v¥ < 10%°. In Section 5 we show that any further
anomalous solutions must have rad(abe) > 107.

Our main result, Theorem 1.1 which follows, is an immediate consequence of Theorem 4.3 in Section
4. Theorem 4.5 gives additional information on anomalous cases. Theorem 4.7 treats (1.1) without using
Criterion 1, listing all cases with more than two solutions (z,y, z). Theorem 4.8 will give a refined version
of Theorem 1.1, made possible by using results on infinite families.

Theorem 1.1. If a, b, ¢ are positive integers all greater than one with at least one of a, b, ¢ not a power of
2 and with ({a,b}, c) # ({3,5},2), then N(a,b,c) < 2.

For the case ged(a,b) = 1, this result was first stated by Miyazaki and Pink [10], who handled the case
2 | ¢ with max{a,b,c} < 10%2, which completed the treatment of the case ged(a,b) = 1 since the case 2 1 ¢
and the case max{a,b, c} > 1052 with 2 | ¢ had already been handled in [12] and [6], respectively. So to prove
Theorem 1.1 it suffices to consider only the case ged(a,b) > 1. We will need several lemmas and preliminary
propositions which follow.

2 Lemmas

For given integers a, b, and c all greater than one with ged(a,b) > 1, let @ be the set of all primes p such
that p | a, p | b, and p | c. For every prime p € Q let p°* || a, p® || b, p™ || ¢. Let a; be the greatest divisor
of a not divisible by any prime in @), and define b; and ¢; similarly for b and c.

Lemma 1. Let (z,y,2) be a solution to (1.1). Then, for p € Q, two members of the triple {cpx, Bpy, Vpz}
must be equal and these two members must be less than or equal to the third member.

We say that a solution to (1.1) is Type A for p (where p € Q) if apx > B,y = 7p2; Wwe say a solution to
(1.1) is Type B for p if B,y > a,z = p2; we say a solution to (1.1) is Type C for p if v,z > apx = Bpy; we
say that a solution to (1.1) is Type O for p if apx = Bpy = Yp2.

Qq

Lemma 2. Let p and q be two primes in the set Q such that % > 5 and % > % Then (1.1) can have
P q P q
no solutions which are Type B, C, or O for p.

Proof. If (1.1) has a solution which is Type B, C or O for p then a,x < Bpy and a,z < 7,2, so that agz < By
and a,r < 742, contradicting Lemma, 1. O

Corollary to Lemma 2. If (1.1) has a solution which is Type A for some prime p € Q, and if this solution
is not Type A for some prime q € Q, then (1.1) can have no solutions which are Type B, C, or O for p.

Proof. If a solution (z,y,z) to (1.1) is Type A for some p € @, and is not Type A for some prime ¢ € Q,
then apx > Bpy, apr > Yz, aqr < Bgy, and agw < 74z So 32 > F and 72 > 74, and the corollary follows
from Lemma 2. O



We will also need several general elementary results, which follow.

Lemma 3. Let R, S, M, and t; be positive integers such that R > S, ged(R,S) =1, and M | R" —(—1)<Sh
for a fized choice of € € {0,1}. Let to be the least positive integer such that M | Rt — (—1)€S% for this
choice of €. Then tg | t1.

Proof. For e = 0 this is Lemma 3.1 of [IT]. A similar method of proof handles € = 1: take M > 2 (since the
lemma clearly holds for M < 2) and let ¢y and ¢; be as in the formulation of the lemma; if we assume g 1 ¢1,
we can let t1 = sto + r where 21 s, 0 < r < 2tg, and r # tg, so that R” = 5" mod M; we can let r =ty =11
where 0 < r; < tg; then R™ = —S™ mod M, contradicting the definition of ¢g. O

The following lemma sharpens Lemma 3.2 of [I1].
For any integer m > 1 we define P(m) to be the set of primes which divide m.

Lemma 4. If R, S, n1, and ny are positive integers with ged(R,S) =1, R > S, n1 < na, and each prime
dividing R™ — S™ also divides R™ — S™, thenny = 1, ng =2 and R+ S = 2" for some integer h > 1.

Proof. Let ng be the least number such that rad(R™ — S™2) | R" — S™. By Lemma 3 we have ng | na, so
that R™ — S™ | R™ — S™2 g0 that we have P(R™ — S™) = P(R"> — S"2).

Assume p is an odd prime which divides na/ng. Then R™ — S™0 | RP™ — SP™0 | RN2 — Gn2  gq
that P(RP™ — SP"0) = P(R™ — S™). Since ng | n1 < n2, no and ng are distinct. Consider RP™ —
SPno = ((R™ — S§™) 4 (§™0))P — §P0. From the binomial expansion of ((R™ — S™0) + (5™0))? we see
that if p 4 R" — S™ then (RP™ — SPm0)/(R™ — S§™) > 1 is prime to R™ — S§™ and, if p | R™ — §™
then (RP™ — SP"0)/(p(R™ — S™)) > 1 is prime to R™ — S™0; in either case we have a contradiction to
P(R™ — S™0) = P(RP™ — SP™0). So na/ng is not divisible by any odd prime.

If 4 | n2/ng, then R*m0 4 §2n0 | R2 — 2 again giving a contradiction since R?"0 48270 is divisible by an
odd prime which is prime to R™ — S™. So we must have ny = 2ng, so that, since P(R"™ — S§™) = P(R" —
S™2), we have R"™ 4 S§™0 = 2" for some h > 1, which requires ng = 1. Since 1 = ng < ny < ng = 2ng = 2,
we have n1 = ng, giving Lemma 4. O

Lemma 5. If R, S, n1, and ny are positive integers with ged(R,S) =1, R > S, n1 < na, and each prime
dividing R™ + S™ also divides R™ + S™, then (R, S,n1,n2) = (2,1,1,3).

Proof. The proof of Lemma 5 follows that of Lemma 4 with ng redefined to be the least number such that
rad(R"™ + S™2) | R™ + S™: noting that 2 { ny/ng and considering the binomial expansion of ((R™ + S™0) —
(8™9))P, we see that the only possibility is R™ =2, §™ =1, ny = 3ng. So 1 =ng < nj; < ny = 3, so that,
since 2 1 (n1/ng), we have ny = ng. O

Lemma 6. Let R, S, n1, and ny be positive integers with gcd(R,S) =1 and ny | na. Let p be a prime such
that p* || R™ — S™ where p** > 2. If p*2 || R" — S™2, then p¥2~ " | 72.

Proof. Considering the binomial expansion of ((R™ — S™) + S™)* we see that k = p is the least value
of k such that p1+1 | Rmk — gk Also purt! || Rk — Sk By Lemma 3, p | m for any m such that
pUrtt | Rmim — §mim - Now consider the binomial expansion of ((R™P — S™1P) 4 S§™P)k to see that k = p
is the least value of k such that pv1+2 | Rmpk — §mpk — Algo pvit2 || Rrpk — gnipk By Lemma 3, p? | m
for any m such that pv»*2 | Rm1™ — §™™  Continuing in this way, we find that p? | m for any m such that
pUitd | Rmm — §mmgiving the lemma. O



Lemma 7. Let ny and ny be positive integers with ny | na, and let 2V || Z—f Let R and S be be relatively
prime odd positive integers with R > S, and let 2! || R™ —S™ and 2 || R™ +S™, with h = max(t,u). Then,
if 32 is odd, 2" || R™ — S™ and 2" || R"* 4+ S™2. And, if 72 is even, 20tV || Rz — Sn2 gnd 2 || R™2 4 S™2.

Proof. 1f Z—f is odd, then g:fing and glﬁﬁg:ﬁ are both odd, so 2 | R™ — 8" and 2 || R" + 8™ So the
lemma holds for v = 0.

Suppose v = 1. Then ny = 2mn; for some odd m. 2"+! = 2t+u | (Rmm1 — gmni)(Rmni 4 gmmy —
R™ — S™ and (by consideration modulo 4) 2 || R™ + S™2. So the lemma holds for v = 1.

The lemma follows by induction on v. o

We will also need two lemmas concerning the infinite families (i), (ii), (iii), (iv) in the Introduction.
Lemma 8. We cannot have d =1 in (iv).

Proof. We consider the restrictions on the variables in (iv). If d = 1, then h = 2, which requires k — v =1,
giving k = 2. But then (d + 2)* — d* = 32 — 1 = 8 has no odd divisor, contradicting g > 1 and w > 0. O

Lemma 9. If, for some (a,b,c) with gcd(a,b) > 1, we have N(a,b,c) = 2, and (1.1) has two solutions
(x1,9y1,21) and (x2,y2,22) with (a,b,c,x1,y1,21,%2,Y2, 22) in a given infinite family, then any solution
(z,y,2) to (1.1) for this (a,b,c) must correspond to one of the two solutions given by a member of F
for this infinite family.

Proof. Notice first that in each of the infinite families (i), (ii), (iii), and (iv) the two solutions given do not
correspond to one another. So, using the notation of the statement of the lemma, by Definition 3 we see
that the solution (z1,y1,21) does not correspond to the solution (x2,ys2,22). Since N(a,b,c) = 2 we can
apply Criterion 1 to see that any solution to (1.1) for this (a, b, ¢) must correspond to one of the solutions
(21,91,21), (z2, Y2, 22). By Definition 3, we obtain the lemma. O

3 Preliminary Propositions

In this section and in the following section, we treat a, b, ¢ with ged(a,b) > 1, and define Q, oy, Bp, Vp, a1,
b1, c1 as in the first paragraph of Section 2.

Proposition 3.1. If, for some a, b, ¢, (1.1) has two solutions (x1,y1,21) and (z2,y2, 22) both of which are
Type A for every prime in some subset Qo of Q and neither of which is Type A for any prime not in Qo,
then N(a,b,c) =2, and (a,b,c,x1,y1, 21, T2, Y2, 22) is in the infinite family (i) in the Introduction.

This statement holds if we replace “Type A” by “Type B”.

Proof. By the symmetry of a and b it suffices to prove the first paragraph of the Proposition. Let (a,b, ¢,
X1,Y1, 21, T2, Y2, 22) and Qg be as in the first paragraph of the statement of the Proposition, and choose a

prime p € Qq. Let
t
% = ;,gcd(s,t) =1 (3.1)
P

Then by Lemma 1 we must have integers n; and ng, n; < ng, such that

yi =n;s,z; = nit, i € {1,2}. (3.2)



Let B be the set of all primes ¢ € @ such that % >
Type B for every prime in B.

Let C be the set of all primes ¢ € @ such that % <
Type C for every prime in C.

Let A be the set of all primes ¢ € @ for which % = <. Then the solutions (21,1, 21) and (2, y2, 22) are

. Then the solutions (z1,y1,21) and (x2, y2, 22) are

PSS

. Then the solutions (z1, y1, 21) and (x2, Y2, 22) are

IS

either Type A or Type O for every prime in A.
Now we observe that any solution to (1.1) which is Type A for p can be written as follows, noting that
for some n, y = ns and z = nt (using Lemma 1 as in (3.2)):

a% H qaqm + b?s H qﬁqns — 071"5 H q’Yq"t_ (33)

q€Q q€Q q€Q

The greatest number dividing all terms in (3.3) is

D = H (qmin(sﬁqvt’ﬁz))". (34)
q€Q

Dividing both sides of (3.3) by D and rearranging terms, we see that any solution of Type A for p to (1.1)

is equivalent to:
(¢ TT a7 = 03 T o* )" = at JT a0, (35)
qeC q€B qeA

Note that all variables in (3.5) other than n itself are completely determined by (a,b, ¢, p) except for z,
which is determined by n. We define a function f(n):

f(’fL) = (Ci H q'thfﬁqS)n — (bi H qﬁqsf’}/qt)n'

qeC qeEB

When f(n) corresponds to a solution to (1.1) as in (3.5), we have

f(n) _ aalc H qaqu'yqnt'

qeEA

We consider f(n1) and f(ng2): by the definition of Qo and the definition of Type A, we see that ayr1 —y4nit
and o2 — Ygnet are both positive for every prime ¢ € Qo, and agz1 — Ygnit and agxe — ygnot are both
zero for every prime ¢ not in Qo, so that P(f(n1)) = P(f(nz2)), where, for any integer m > 1, P(m) is the
set of primes which divide m.

Now we find that proving Proposition 3.1 is equivalent to proving the following Observation:

Observation 3.1. If (1.1) has two solutions (x1,y1, 21) and (z2,y2, z2) both of Type A for some prime p € Q
with P(f(n1)) = P(f(n2)), then N(a,b,c) = 2, and (a,b,c,x1,y1, 21, T2, Y2, 22) 1S in the infinite family (i)
in the Introduction.

This statement holds if we replace “Type A” by “Type B”.

Proof of Observation 3.1. By the symmetry of a and b it suffices to prove the first paragraph of the Obser-
vation. Assume (1.1) has two solutions (z1,y1,21) and (22, ys2, 22) both of Type A for some prime p € Q
with P(f(n1)) = P(f(n2)) and write

B TL s =t Lo
qeC geB



By (3.5), we can assume R > S. We have
R"™ — 8" = f(n).
Now we can apply Lemma 4 to f(n1) and f(ns2) to obtain
R+S=2"h>2n =1ny=2;f(n) =25,217; f(nz) = 2" (3.6)

Combining (3.6) with the right side of (3.5), we see that a; can have no odd divisors (x1 # x5 since nj # ng
and Df(n) = '™ — b*" = a” increases with n).
Let T'= QU {2}. For every g € T', let W, = 2 where ¢"* || Df(n1) = a™ and ¢*2 || D f(n2) = a™2. We

must have W, = 22 for every ¢ € T'. For any odd ¢ € A, let q? || j. Then W, = Zigzij = Qtt,;zfj < 2. For

any odd ¢ € B, Wq:Zf—ZZZQ- For any odd ¢ € C, qu%zz If2€A,thenW2:%>2.
If 2 | a1, then Wy = h 4+ 1 > 2. Since we must have either 2 € A or 2 | a1, we see, from the results on Wy,
that B and C are empty and A = {2} since, by hypothesis, A is not empty.

So we must have p =2, a; =1, R= ¢!, and S = b5. Since n; = j = 1, from (3.6) we obtain ¢! — b5 =
and ¢} + b5 = 2" so that bj =21 —1 and ¢} = 2"~ + 1. If h > 2, it is a familiar elementary result that
we must have t = s = 1 except when h =4, ¢; = 3,t =2. If h = 2 then b; = 1 and we have the special case
(al,bl,cl) = (1, 1,3), Q = {2}

So we must have one of the following:

(a1,b1,c1) = (1,2" 71— 1,271 4 1), Q = {2},h > 2, (3.7)
(alvblycl) = (L 77 3))@ = {2}a (38)
(a1,b1,c1) = (1,1,3),Q = {2}. (3.9)

These three cases are the only possibilities when (1.1) has two solutions (z1,y1,21) and (22, y2, 22) both of
Type A for some prime in @ with P(f(n1)) = P(f(nz2)). We first show that for each of these three cases
there is no third solution to (1.1).

We first treat (3.7). Writing S for 82 and « for v2, we have § = v since s = ¢t = 1. For this case, (1.1)
has two solutions (z,y, z) for (a,b, c) as follows:

(a,b,¢) = (2,2°(2" 1 = 1),2°2" 1 + 1)), (1,91, 21) = (B+1,1,1), (22,92, 22) = 28+ h+1,2,2). (3.10)

The two solutions given in (3.10) are the solutions with ny = 1 and ny = 2 as in (3.6), and we can apply
Lemma 4 to see that they must be the only solutions which are Type A for 2, since, if there exists a third
such solution for some ng, then P(R"™ — S™3) = P(R"2 — §"2) = P(R™ — S™). We need to show that the
two solutions in (3.10) are also the only two solutions to (1.1) even if we consider Types B, C, and O. (Note
that if 8+ 1 and 23 + h + 1 have a common factor k, we can replace a = 2 by a = 2*, but any solution to
(1.1) with a = 2* will also occur as a solution for a = 2 as in (3.10), so it suffices to consider (a,b,c) as in
(3.10).)

Since a1, b1, ¢ are all odd, there can be no solutions of Type O for 2. We need to show there are no
solutions of Type B or C for 2.
For a solution of Type B for 2 we must have

278 1 29PpY = 278 (by 4 2)*



so that
268 = (by +2)7 — Ly >z, (y—2)F = h— 1. (8.11)

From (3.11) we have
2
(h —1)log(2) + zlog(b1) < zlog(by +2) = zlog(by (1 + b—)) < zlog(b1) + —. (3.12)
1

By Lemma 4, z is the only value of v such that rad((b; + 2)* — 1) = rad(2b;), so that z must be the least
value of u such that by | (by + 2)* — 1, so that z < ¢(b1) < by — 1. So now (3.12) gives

2(by — 1)

(h—1)log(2) < b

<2
which requires h = 3 (since we have excluded h = 2 from consideration in (3.7)).

For the case h = 3, (3.11) becomes
oy—2)B3y — 57 _ 1

which, by Lemma 4, has as its only solution z = 2, giving y = 1, contradicting y > 2. So (3.7) does not
allow a solution of Type B for 2.
And a solution of Type C for 2 requires

2v8 1 2vBpY = 278 (by + 2)*

so that
1+ b = 26798, 4-2)*

which is impossible since z > y.
Thus there is no third solution to (1.1) for the case (3.7).
Now we treat (3.8) for which a solution which is Type A for 2 requires, for some v € Z7,

2V 4TV = 37 (3.13)

Consideration modulo 7 requires 2 | z in (3.13), so, if we assume there are no solutions of Type B, Type C,
or Type O for 2, we can take (a1,b1,¢1) = (1,7,9) and use (3.7) and (3.10) to obtain the two solutions with
n1 = 1 and ne = 2 respectively, which we have shown are the only solutions which are Type A for 2.

We need to show there are not solutions of Type B, Type C, or Type O for 2.
A solution of Type O for 2 for the case (3.8) is impossible since a; = 1, by = 7, and ¢; = 3 are all odd.
A solution which is Type B for 2 for the case (3.8) requires, for some v € Z™,

1+ 2°7Y = 37 (3.14)

which requires rad(3* — 1) = 14. But 7 | 3* — 1 requires 13 | 3* — 1, a contradiction which shows that there
can be no solution of Type B for 2.
A solution of Type C for 2 for the case (3.8) requires, for some v € Z*,

1+ 7Y =2v3 (3.15)

which is impossible modulo 3.
So there is no third solution to (1.1) for the case (3.8).



Now we treat the case (3.9), letting & = a3, § = (2, and 7 = ¥2. In this case we have, for any solution
(2,9, 2),
20% 4 9Py — 97237, (3.16)
Solutions of Type C for 2 and Type O for 2 are clearly impossible in (3.16).
For a solution which is Type A for 2, (3.16) becomes

207 4 972 — 27737 (3.17)

so that for a given value of z there is at most one solution of Type A for 2.
Similarly, a solution of Type B for 2 requires

2% 4 28V — 97737 (3.18)

so that for a given value of z there is at most one solution of Type B for 2.

Suppose that for a given choice of z we have both a solution which is Type A for 2 and a solution which
is Type B for 2: letting (24, Y4, 24) be the solution which is Type A for 2 in (3.17) and letting (x4, yp, 2) be
the solution which is Type B for 2 in (3.18), we have ax, = Byp, and we see that a® = b¥* and a®* = Y.
Using Criterion 1 we see that (24, Ya, 24) and (v, s, 25) are to be considered the same solution. So it suffices
to show that there are only two values of z which are possible in solutions to (1.1) which are Type A for 2.

From (3.17) we see that any solution which is Type A for 2 must give

3 _1= 2am—wz7

which requires either z = 1 or z = 2 by Lemma 4. Thus (under Criterion 1) we see that (3.9) has no third
solution.

It remains to show that (a,b, ¢, x1,y1, 21, T2, Y2, 22) is in the infinite family (i) in the Introduction. We
have shown that if (1.1) has two solutions (z1, 1, 21) and (22, y2, 22) both of Type A for some prime in @
with P(f(n1)) = P(f(n2)), then one of (3.7), (3.8), or (3.9) must hold. And we have shown that when (3.7)
holds we have (3.10) which is the infinite family (i) in the Introduction. Also we have shown that, when
(3.8) holds, (z1,y1,21) and (22, y2, 22) must correspond to solutions in which (1,7, 3) is replaced by (1,7,9),
so again we have (3.7) giving (3.10) which is the infinite family (i). Finally, if (3.9) holds, we have shown
that we have two solutions (z1,y1,1) and (z2,y2,2) both of which are Type A for 2, so that Say; = 2 and
Baya = 272. Letting u = Bay1, we see that (3.9) gives (i) with A = 2. This completes the proof of Observation
3.1. O

This completes the proof of Proposition 3.1 (by the symmetry of a and b). O

Corollary to Proposition 3.1. If (1.1) has two solutions (x1,y1,21) and (x2,y2, z2) both of which are
Type A for some prime in Q and if further (1.1) has no solutions of Type O for any prime in Q, then
N(a,b,c) =2, and (a,b,c,x1,y1, 21, T2, Y2, 22) is in the infinite family (i) in the Introduction.

This statement holds if we replace “Type A” by “Type B”.

Proof. By the symmetry of a and b it suffices to prove the first paragraph of the Corollary. Choose a prime
p € @ such that (z1,y1,21) and (x2,ys2, 22) are both Type A for p, and let s and ¢ be as in (3.1) and (3.2).
We have (3.5) with the sets A, B, and C derived from (3.1) and (3.2). Since for the case under consideration
no solutions of Type O are possible for any prime in @, we see that (x1,y1, 21) and (22, Y2, 22) are both Type
A for every prime in A, so, for every prime g € A, we have

g1 — Ygnit > 0, agxg — ygnat > 0
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so that, using (3.5) and recalling the definition of f(n), we have P(f(n1)) = P(f(nz2)), so we can apply
Observation 3.1 to obtain the corollary. O

Proposition 3.2. Assume (1.1) has a solution which is Type C for some prime p € Q. Then (1.1) can have
no solution which is Type A, B, or O for p.

Proof. Let p be any prime in Q. For brevity, write « for a, 5 for 5,, v for «y,. Let (x¢,yc, 2c) be a solution
to (1.1) which is Type C for p and let (x4, yd, 24) be a solution to (1.1) which is Type A, B, or O for p. By
Lemma 1 axq > vyz4 and ax. < vz, so that

Te o 24, (3.19)
Ze Zd

Similarly
Yo o Yd (3.20)
Zec Zd

Now let a, = a/p®, b, = b/p” and let ¢, = ¢/p?. a® < c*@ so p*lagt < pTdcpd, so that p*TaT dapd < cpd,
so that
zqlog(ay) < zqlog(cy). (3.21)

Similarly,
yalog(by) < zqlog(cy). (3.22)

Now suppose a® > bY%c. Then 2a"c > c*<, so that 2(1;0 > p”zc_o‘%czc > 2020, so that
zclog(ap) > zclog(cy). (3.23)

Since (3.21) requires ¢, > 1, (3.23) gives a, > 1. So (3.23) in combination with (3.21) gives

Lo, 1d (3.24)

)

Zc Zd

contradicting (3.19). So we must have b¥¢ > a”¢, so that 2b% > ¢**, and, recalling (3.22), the same argument
which handles the case a® > b¥¢ yields

e o Ud. (3.25)
Zc Zd

contradicting (3.20). So the existence of a solution of Type C for p makes solutions of Type A, B, or O for
p impossible. O

Proposition 3.3. For a given p € Q, there is at most one solution of Type O for p.
Proof. Let r, s, and t be positive integers with ged(r, s,t) = 1 such that

rap = sfp =typ,p € Q.
By Lemma 1 any solution (x,y, z) which is Type O for p must have

T =nr,y=mns,z=nt.

By Fermat’s Last Theorem [13], n < 2. So if there are two solutions which are Type O for p, then a” +b* = ¢t
and a®" + b%* = ¢* which is impossible since ¢* = (a” + b%)? > a?" + b** = ¢ O

11



Let S, be the set of all triples (a, b, ¢) such that ged(a,b) > 1, N(a,b,c) > 1, a, b, and ¢ are not all powers
of 2, and there exists a solution to (1.1) which is Type C for some prime in Q.

Proposition 3.4. For (a,b,c) € S¢, (1.1) has exactly two solutions (x1,y1,21) and (x2,y2, 22), and (a,b,c,
X1,Y1, 21, T2, Yo, 22) 1S in the infinite family (ii).

Proof. After Proposition 3.2, it suffices to show that if (1.1) has two solutions (z1,y1,21) and (22, y2, 22)
both of which are Type C for some prime in @), then these two solutions are the only solutions to (1.1), and
(a,b,c,x1,y1, 21, T2, Y2, 22) is in the infinite family (ii).
Assume (1.1) has two solutions (z1,y1, 21) and (22, y2, 22) both of which are Type C for a given p € Q.
Let
ap S
— = —,ged(r,s) = 1. 3.26
2= % () (3.26)
Then by Lemma 1 we must have integers n; and ns, n; < ng, such that
T = nr,y; =n;s,1 € {1,2}. (3.27)

Let A be the set of all primes ¢ € @ such that g—z > 2. Then the solutions (x1,y1, 21) and (z2,y2, 22) are
Type A for every prime in A.

Let B be the set of all primes g € @) such that
Type B for every prime in B.

Now consider g € @ for which Z—Z = 2. Then, by Propositions 3.2 and 3.3, the solutions (z1,y1,21) and

<

Sle

. Then the solutions (z1,y1, 21) and (x2, Y2, 22) are

P |.nQ

Ll
o

(22,y2, 22) are both Type C for ¢q. Let C be the set of all primes ¢ € Q for which Z—Z =

Now we observe that any solution to (1.1) which is Type C for p can be written as follows, noting that
for some n, x = nr and y = ns:

af" [T ¢ +oi° [T o° =t [T a7 (3.28)
qeQ q€Q q€Q

The greatest number dividing all terms in (3.28) is

D= H (qmin(raq,sﬁq))n. (329)
q€Q

Dividing both sides of (3.28) by D, we see that any solution of Type C for p to (1.1) is equivalent to:

(@ TL a2y 4+ v T a* ) = & [] ao o, (3:30)

geA qEB qeC

Note that all variables in (3.30) other than n itself are completely determined by (a, b, ¢, p) except for z,
which is determined by n. We define a function f(n):

f(n) — (a71" H qaqT*ﬁqS)n + (bi H qﬁqsfaqr)n.

qeA geB

When f(n) corresponds to a solution to (1.1),

fn) =i [ av=.

qeC
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Let

R = a71“ H quT*ﬁqS, S = bi H qﬁqsf‘lqr (331)
geA qeB

and assume first we do not have the special case R = S. Since ged(R, S) = 1, by the symmetry of a and b
we can take R > S. We have

f(n)=R"+ S™
Letting nq and ne be as in (3.27), we have P(f(n1)) = P(f(n2)) where, for any integer m > 1, P(m) is the
set of primes which divide m. Now we can apply Lemma 5 to f(n1) and f(n2) to obtain

R=2,S=1,n1 =1,n2=3;f(n1) =3, f(n2) =09. (3.32)

Recall that by Proposition 3.2 we need only consider solutions of Type C for p, so that using (3.30), (3.31),
and (3.32), we see that we can apply Lemma 5 to show that (1.1) has exactly two solutions (x1,y1,21) and
(22, Y2, 22) when R > S. It remains to show that (a,b, ¢, x1,y1, 21, T2, Y2, 22) is in the infinite family (ii).

Letting g1 be the greatest common divisor of a®*, b¥!, and ¢** and letting g2 be the greatest common
divisor of a*2, b¥2, and ¢*2, we have from (3.30), (3.31), and (3.32)

Y Ris—2+1=3=C Y g2 (33
9 g1 g1 92 92 g2
Since we are assuming there is at least one prime p € @ for which the solutions (z1,y1, 21) and (22, Yo, 22)
are Type C for p, from (3.32) we see that C' = {3} and ¢; = 1. Also from (3.32) we have by = 1 with B
empty.

Assume A = {2}. Then a1 = b1 = ¢; = 1, Q = {2,3}, and, by (3.33), both solutions are Type A for 2
and neither solution is Type O for either prime in . By the Corollary to Proposition 3.1, we must have
(a,b,c,21,y1, 21, T2, Y2, 22) in the infinite family (i) in the Introduction. But then @ = {2}, contradicting
Q = {2,3}. (Note that @ = {2} would require C' empty and ¢; = 3, giving (3.9)). So A # {2}.

So, by (3.31) and (3.32), we must have a] = 2 with A empty and @ = {3}. Thus we have a; = 2, by = 1,
c1 = 1. So we have

a=2-3%b=23% c=3m,

If B3ys > 1, then each of the two solutions to (1.1) must correspond to one of two solutions for the case
Bsv3 = 1, so by Definitions 2 and 3 we can take

a=2-3%b=3,c=3.

We see that, since aj = 2, we must have r = n; = x; = 1 and x2 = 3, so that, since (x1,y1,21) and
(72,2, 22) are both Type C for 3, we must have (using the notation of (3.33)) g1 = 3% and go = 333, so
that (a,b,c,x1,y1, 21, T2, Y2, 22) is in the infinite family (ii) with ¢ = a3. Recall also we have shown there is
no third solution. This proves Proposition 3.4 for the case R > S.

If R =5, then, since gcd(R,S) =1, we have R =S =1, so that a3 = b; =1 and A and B are empty, so
that f(n) = 2 for every n. Since we are assuming C' has at least one element, we have ¢; = 1 and C = {2}.
So in this case all of a, b, and ¢ must be powers of 2, which has been excluded. This completes the proof of
Proposition 3.4. O

Proposition 3.5. Suppose for some (a,b,c) we have a subset Q1 of Q such that, for any primes q1 and g2

in Q1,
% _ Bu _Ja (3.34)
g, Bao Ve
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Let Q4 be the set of all primes in Q which are not in Q1. Then we can take

a = algag H qo‘q,b — blgﬁg H qu,C — Clng H q'Yq (335)
q€Q2 q€Q2 q€Q2

where ag, By, and vy are positive integers and g is a positive integer divisible by every prime in Q1 and by
no other prime.

Proof. We use the notation indicating proportions in which (3.34) would be written as follows:
Qg - Qgy = Bq1 : ﬂqz =VYa1 * Vg2

Assume @)1 contains n primes. Then we can find a set of n positive integers t1, to, ..., t, with no common
divisor such that

Qg 1 Qg i Qg =B i Bg i By =Var 1 Vap i Vg =l1il2i ity
and let
aq, = ht;, By, = jtiy Y, = miti, 1 <i<mn, (3.36)
for some positive integers h, j, and m.
So we can take g = ¢i'qb* - ¢l ay = h, By = j, and v, = m. O

Since any solution to (1.1) of a given Type for some ¢; € @1 is of the same Type for any ¢ € Q1,
Proposition 3.5 allows us to refer to solutions of Type A for g, Type B for g, etc., even when g is composite.
We say that a solution is of a given Type for g when this solution is of that same Type for every prime
dividing g, where the set of n primes dividing g satisfies (3.36).

4 Proof of Theorem 1.1

Let S, be the set of all triples (a, b, ¢) such that ged(a,b) > 1, N(a,b,c) > 1, and there exists a solution to
(1.1) which is Type O for some prime in Q.

Proposition 4.1. For (a,b,c¢) € S, we have N(a,b,c) = 2, and (1.1) has two solutions (x1,y1,21) and
(x2,Y2, 22) with (a,b,c, 21,41, 21, T2, Y2, 22) in one of the infinite families (iii) or (iv).

Proof. Choose (a,b,c) € S, and let (z1,y1,21) be a solution which is Type O for p where p € Q. Let
(22, Y2, 22) be a second solution to (1.1). By Propositions 3.2 and 3.3 (z2, y2, 22) must be either Type A or
Type B for p. By the symmetry of a and b we can assume (x2,ys, 22) is Type A for p. By the Corollary to
Lemma 2, (z2,y2, 22) must be Type A for every prime in Q.

Let
B _ E,gcd(s,t) =1
Tp S
We can take
Y1 = n18,21 = nit, Yo = N2s, 29 = nat,n; > 0,19 > 0.
Since, for every prime q € Q, Y28, = 2274, We see that '% = %, and thus (z1,y1,21) must be either Type O
or Type A for every prime in Q.
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Let G be the set of all primes in @ for which (21,y1,21) is Type O and let H be the set of all primes in
Q for which (x1,y1,21) is Type A. For every prime ¢ € G, agx1 = Bqy1 = Y471, so that for any two primes

q1 and g2 in G we have
% _ By _

Qgy Bas Va2

so that we can apply Proposition 3.5 to see that we can write

a:algag anq7b:blg:@g Hq:@q’czclg'Yg HqVq (41)
qeH qeH qeH

for some positive integers g, ayg, Bq, V-
From the solution (1,1, 21) we derive

nit
nit nis __ T agx1—nit N1ty
al =t =a HQQI e gy = ——= (4.2)

«
qcH g

From the solution (22, y2, 22) we derive

C7112t _ b71125 _ afggagz2fn2t'yg H qaqz27n2t'yq7$2 N 7120:579 ) (43)
qEH g
From the expressions for z1 and x5 in (4.2) and (4.3) we derive
x n
252 (4.4)

I nl'
Let R=c!, S =103, so that R > S. Let
f(n)=c™—b" = R" — 8",

Let U be the product of all primes in H, let r be any prime dividing a;U (if such r exists), and let
't || f(n1) and 72 || f(n2). Recalling (4.2) and (4.3) we see that, if r | a1, then Z—f = ;”—f > Z—f by (4.4). If
r € H then by (4.2), (4.3), and (4.4)

o no
Vo Qo — Moty  Qr Tl n—lnlt% no

v oy — ity Qa1 — ity ny
So in either case, we have
U2 n2
- > —. (4.5)
U1 ny

Let ng be the least value of n such that rad(a,U) | f(n). By Lemma 3
no | n1,mo | n2 (4.6)
so that f(no) | f(n1), so that f(ng) can be divisible by no primes which do not divide a1U, so that

P(f(no)) = P(f(m1)) = P(arU)
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where, for any integer m > 1, P(m) is the set of primes dividing m. Assume there do not exist distinct
positive integers m; and mg such that P(f(m1)) = P(f(mz)). Then ny; must be the only value of n such
that P(f(n)) = P(a1U), so that ng = n1, and, by (4.6), n1 | na.

Now assume we have my and mg such that P(R™ — S™) = P(R™2 — 5™2). Let h be an integer such
that 2" | R+ S. By Lemma 4, {m,ms} = {1,2}, R— S = 2mod 4, and R + S = 2" with h > 2. If
ny € {1,2}, then the above argument still applies to show ny | na. If n; = 1, then again we have np | na.

So we consider n; = 2 with P(f(1)) = P(f(2)): Let 2** || f(n1) = f(2) = (R — S)(R+ S) so that by
Lemma 4, v1 = h+ 1. By (4.2), ged(f(n1),9) = 1, so, since P(f(1)) = P(f(2)) and g | f(n2), we must have
ng > ny, so that, letting 2¥2 || f(nz2), by (4.5) we have va > v; = h+ 1 > 2. Since n; = 2 is the least value
of n such that 22 | f(n), by Lemma 3 we have nj | na.

So we can assume

ny | Nng. (47)

Now we can apply Lemma 6: letting r be any prime dividing a1 U, and letting v || f(n1) and 72 || f(n2),
we see that, if r1 > 2,

Pz | n2
ni
so that n vy -
2 _ vy _
= >qpvrmu > s gt (4.8)
ni

which is impossible. So we must have r¥* < 2. Since r can be any prime dividing a1U we see that H
contains no odd primes and a; < 2, giving only three possible cases:

Case 1: a1 =1, H = {2}, f(n1) =2.

Case 2: a1 = 2, H is empty, f(n1) = 2.

Case 3: a1 = 1, H is empty, f(n1) = 1.

For all three cases, n; = 1.

For Case 1, we have

a=2%g% bh=20gPp c=2"2¢g¢. (4.9)

Let
d= bllll,bo Zbyl,CO ="

Since ¢i' — byt = "t — b1 = ¢} — b5 = f(n1) = 2 we have
it =d+2. (4.10)

So we have
bo = 262ylgﬁgy1 d,co = 2721 V971 (d + 2). (4.11)

Since the solution (z1,y1,21) is Type O for g, we have B4y1 = Y421 = agr1; also since (z1,y1,21) is Type
A for 2 and f(n1) = 2, we have fay1 = v221 = asx; — 1 by (4.2). So from (4.11) we have

by = 202017l ge 1 oy = 20211 gaei (] 4 9), (4.12)

Let k£ = ngy, and note that, since nqy =1,
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The solutions (1, y1, 21) and (22, y2, 22) for the triple (a, b, ¢) as in (4.9) correspond to the solutions (x1,1,1)
and (a2, k, k) for the triple (a, by, co).
Since g%s®2 || a®2 = cf — bk, from (4.12) we find that ayze = kayz1 +w, where g% || (d+2)* — d* (such
w, > 0 must exist since (22, ya, 22) is Type A for g; note that g*s is the greatest odd divisor of (d +2)* — d*
and ay must divide wy). So
2y = ki + 9. (4.13)
Qg
Since 29272 || ®2 = c§ — bf, from (4.12) we find that asrs = kasw; — k + wo where 22 || (d + 2)F — d*.

But also by (4.13) aexo = kagr1 + azwg, so that we = k + % > 1, so that Lemma 7 gives
g9 g9
2| k.
So now we can use Lemma 7 to see that we must have k + %22 = wy = h+v where 2V || k and 2" || 2d + 2.
g
So we have w
k—v=h— 22
Qg

Now from (4.12) and (4.13) we see that (a,bo,co, 1,1, 1, kx1 + (wg/ag), k, k) (and therefore also (a,b,c,
1,41, 21, T2, Y2, 22)) is in the infinite family (iv) in the Introduction when i = ag, j = ay, u = z1, W = wy,
and tu > 1.

Note that d = bY" in the member of the infinite family (iv) derived from the solutions (z1,y1,21) and
(z2,y2,22). By Lemma 8, b; # 1.

Now suppose there is a third solution other than (x1,y1,21) and (z2,ys, 22) for the triple (a,b,c). By
Propositions 3.2 and 3.3 this third solution (x3,ys, z3) must be either Type A for g or Type B for g. If
this third solution is Type A for g, then, since f—;’ = %, we have y3 = n3s and z3 = ngt for some integer
ns, and we see that we must have P(f(n3)) = P(f(n2)), so that we can apply Observation 3.1 to see that
(a,b,c,x9,y2, 22,3, Y3, 23) is in the infinite family (i), so that a is a power of 2, contradicting 2 1 g > 1.

So (3, ys, z3) must be Type B for g. In the part of this proof preceding (4.9) we showed that when
(z2,y2, 22) is Type A for g we must have Case 1, Case 2, or Case 3; using the same argument under the
assumption that (x3,ys, 23) is Type B for g, we can show that, noting that now we can assume 2 t by, we
must have by = 1. But we have shown that (a,b,c, x1,y1, 21, Z2, Y2, 22) is in the infinite family (iv) with
d=b}" # 1 by Lemma 8, giving a contradiction.

Thus we see that if we have Case 1, then there are exactly two solutions (z,y, z) and these two solutions
are given by the infinite family (iv) with du > 1.

For Case 2, we have

a=2¢%,b=g¢%by,c=g¢. (4.14)

Again letting d = by", by = b¥*, ¢y = ¢**, we have (4.10).
bo = ¢P7V1d, co = g"7* (d + 2). (4.15)

Note that Case 2 requires 1 = 1 (by (4.2) and the definition of Case 2). Since the solution (z1,y1, 21) is
Type O for g, we have B,y1 = 7421 = a4. So we have

bo = g*d, co = g“7(d + 2). (4.16)

Letting k = ng = Z—f = % = z—?, we see that the solutions (x1,y1,21) and (z2,ye, 22) for the triple

(a,b,c) as in (4.14) correspond to the solutions (1,1,1) and (x2, k, k) for the triple (a, by, co). We find that
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agTo = kay + w, where gV || (d 4 2)% — d* as in Case 1. So

- =k+%. (4.17)
g

Now 272 || @2 = ¢ — b¥2 = ¢k — bk, so that by Lemma 7 we must have x5 = h + v where 2" || 2d + 2 and
2V || k. Combining this with (4.17) we obtain
Wq

k—v=h——.
Qg

Now we see that (a,bo,co,1,1,1,k + (wg/ay), k, k) (and therefore also (a, b, ¢, x1, y1, 21, T2, Y2, 22)) is in the
infinite family (iv) in the Introduction when i =1, j = ay, u = 1, and w = wy,.
There can be no third solution by the same argument used to show there is no third solution for Case 1.
Thus we see that if we have Case 2, then there are exactly two solutions (z,y, z) and these two solutions
are given by the infinite family (iv) with du = 1.
For Case 3 we have
a=g%.b=g¢"b,c=g"e. (4.18)

Again letting d = by", by = b¥', ¢y = ¢*', we have
b =t b = f(ng) = 1. (4.19)

So we have
bo = gﬁgyld, co =g’ (d+1). (4.20)

Since the solution (z1,y1,21) is Type O for g, we have B4y1 = 7421 = ®gx1. So we have
bo = g*9"rd, co = g*9" (d + 1). (4.21)

Again letting k = na, we find that the solutions (z1, y1, 21) and (22, y2, 22) for the triple (a,b,c) as in (4.18)
correspond to the solutions (z1,1,1) and (x2, k, k) for the triple (a,bo, co). We find that ayze = kagzzi + w,
where g¥s = (d +1)¥ —d*. So

g = kay + -2, (4.22)
Qg

Now we see that (a, bo, co, z1, 1,1, kz1 + (wg/ay), k, k) (and therefore also (a, b, ¢, x1,y1, 21, T2, Y2, 22)) is in
the infinite family (iii) in the Introduction, with a = ¢/, j = o, u = 1, and w = w,. (Note that 21 g since
ged(g,d(d+1)) =1.)

There can be no third solution which is Type A, C, or O for g by the same argument used for Cases

1 and 2. And the argument used in the first part of this proof to show that we must have Case 1, 2, or
3 can be used to show that, if there exists a solution (x3,ys,23) which is Type B for g, then b3 < 2. If
b1 = 2, then, since a; = 1, we can reverse the roles of a and b in the argument used for Case 2 to see that
(b,a,c,y1,%1, 21,Y2, T2, 22) is in the infinite family (iv) with d = 1, contradicting Lemma 8.

So if there is a third solution we must have a; = b; = 1.

By Propositions 3.2 and 3.3 we can have no third solution which is Type C or O for g.
From the solution (1,1, 21) which is Type O for g we derive ¢; = 2.

From the solution (2, y2, 22), which is Type A for g, we derive

graT2 Ve 4] = 9% (4.23)
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It is a familiar elementary result that (4.23) requires ayza — Y422 = 1 and that there are no values of z
possible in a solution which is Type A for g other than zs.
If there is a third solution (3, ys, z3) which is Type B for g, then

1+ gﬁgys—VgZS — 273, (4.24)

We have (,y3 — 7423 = 1 so that 2z = z3 is the only possible choice for z in any solution to (1.1) other than
(9617 Y1, 21)-

Multiplying both sides of (4.23) and (4.24) by ¢7s*2 we find that we can apply Criterion 1 to see that
(72,2, 22) is considered the same as (3,93, 23). (For the case a; = by = 1 we have (iii) with g = 2% — 1,
w=j=d=1.)

Thus we see that if we have Case 3, then N(a,b,c¢) = 2 and (a, b, ¢, z1, y1, 21, T2, Y2, 22) is in the infinite
family (iii).

Thus we find that in all three cases N(a,b,c) = 2 with (a,b,c,x1,y1, 21, T2, Y2, 22) in either the infinite
family (iii) or the infinite family (iv).

This completes the proof of Proposition 4.1. O

Let Sqq be the set of all triples (a, b, ¢) such that ged(a,b) > 1 and (1.1) has two solutions both of which
are Type A for some prime in Q.

Proposition 4.2. For (a,b,c) € Saq we have N(a,b,c) = 2, and (1.1) has two solutions (r1,y1,21)
and(xa, Yo, 22) with (a,b,c,x1,y1, 21, T2, Y2, 22) in either the infinite family (i) or the infinite family (iv).

Proof. Let J be the set of all (a, b, ¢) € Sy, such that there exists a solution which is Type O for some prime
in @, and let K be the set of all (a,b,c) € Sy, such that there are no solutions which are Type O for any
prime in Q.

If (a,b,¢) € J, then, by Proposition 4.1, N(a,b,¢) = 2 and the equation (1.1) has two solutions
(z1,41,21) and (x2,y2, 22) with (a,b, ¢, z1,y1, 21, T2, Y2, 22) in one of the infinite families (iii) or (iv). As-
sume (a, b, ¢, x1,y1, 21, T2, Y2, 22) is in the infinite family (iii). Any solution to (1.1) for this a, b, ¢ must
correspond to one of the two solutions given by a member of F' for the infinite family (iii) (by Lemma 9),
and any solution of Type A for any prime must correspond to the solution in F' given by (ku + %, k,k) in
(iil), so that only one (z,y, z) is possible for a solution which is Type A for a given p, so that (a,b,¢) € Saa-
Thus (a, b, ¢, 21,y1, 21, T2, Y2, 22) must be in the infinite family (iv). (Although not needed for our purpose,
it is easily seen that we must have (iv) with 4w > 1 in order to have 2 € @ so that the two solutions in (iv)
are both Type A for 2.)

Now suppose (a, b, c) € K. By the Corollary to Proposition 3.1, N(a,b,c¢) = 2 and (1.1) has two solutions
(z1,y1,21) and (z2, Yo, 22) with (a,b, c,x1,y1, 21, T2, Y2, 22) in the infinite family (i).

So, since S, = J U K, Proposition 4.2 follows. O

Let Sy, be the set of all triples (a, b, ¢) such that ged(a,b) > 1 and (1.1) has two solutions (z1,y1,21) and
(22,Y2, 2z2) both of which are Type B for some prime in (). By the symmetry of a and b, Proposition 4.2
holds with Sy replacing Sgq,.

Theorem 4.3. Let S; = ScUS,USqq USk. If (a,b,¢) in S;, then N(a,b,c) =2, and (1.1) has two solutions
(z1,y1,21) and (x2,y2, 22) with (a,b,c,x1,y1, 21, T2, Y2, 22) n one of the infinite families (i), (ii), (iii), or

(iv).

Proof. This is an immediate consequence of Propositions 3.4, 4.1, and 4.2. o
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Theorem 1.1 follows directly from Theorem 4.3:

Proof of Theorem 1.1. For (a,b, c¢) such that ged(a,b) > 1 and (a,b,c) € S;, (1.1) has no solutions of Type
C or O for any prime in ), and at most one solution of Type A and at most one solution of Type B for any
prime in Q. So N(a,b,c) < 2 for this (a,b,c). Now Theorem 1.1 is an immediate consequence of Theorem
4.3. O

Comment 4.4 Notice that proving Theorem 1.1 does not require using the statement concerning
infinite families in Theorem 4.3 or the similar statements in Propositions 3.1, 3.4, 4.1, and 4.2; only the
result N(a,b,c) = 2 is needed. Also, the use of infinite families is not needed for proving N(a,b,c) = 2 in
Propositions 3.1, 3.4, 4.1, and 4.2 except to handle two special cases in the proof of Proposition 4.1, where
the infinite family (iv) is used. Our primary purpose in considering infinite families is to obtain results
concerning anomalous solutions (as in Theorem 4.5 below) and to obtain results on cases allowing more
than two solutions (z,y,z) to (1.1) when Criterion 1 is not used (as in Theorems 4.7 and 4.8). The proof
of Theorem 4.5 will use the statement concerning infinite families in Theorem 4.3. The solutions (1, y1, 21)
and (z2, Y2, 22) in the statement concerning infinite families in Theorem 4.3 (and in the similar statements in
Propositions 3.1, 3.4, 4.1, and 4.2) will be shown (by Theorem 4.7) to be the only solutions (z,y, z) to (1.1)
for the (a,b,¢) in question even when Criterion 1 is not used, except for a few specifically designated cases
allowing more than two solutions (z,y, z). For cases allowing more than two solutions, if a, b, ¢, z1, y1, 21, 2,
Y2, 22 are as in the statement of Theorem 4.3, then (a, b, ¢, x3, ys, 23, T4, Y4, z4) 18 in the same infinite family
as (a,b,¢,x1,y1, 21, T2, Y2, 22) for any pair of solutions (x3,ys, z3) and (x4, y4, 24) (not necessarily distinct
from (x1,y1, 21) and (22, Y2, 22)) which do not correspond to each other (this follow directly from Lemma 9).

Theorem 4.5. If, for some (a,b,c) with ged(a,b) > 1, (1.1) has two solutions (x1,y1,21) and (22, Y2, 22)
which do not correspond to each other and (a,b,c,x1,y1, 21,22, Y2, 22) is not in any of the infinite families
(i), (ii), (iii), or (iv), then

a=g“ay,b=g%b,c=g"c (4.25)

for some positive integers g, ag, Bg, Vg, 01, b1, 1 with ged(g, arbic1) =1 and ged(ar,b1) = 1, and one of
the two solutions is Type A for g and the other solution is Type B for g, with no further solutions (z,y, z).

Proof. Assume that, for some (a,b,c) with ged(a,b) > 1, (1.1) has two solutions (x1,y1,21) and (z2, Y2, 22)
which do not correspond to each other and (a, b, ¢, 1, y1, 21, T2, Y2, 22) is not in any of the infinite families
(i), (ii), (iii), or (iv). By Theorem 1.1 any further solution (z,y, z) must correspond to one of (z1,y1,21),
(22, Y2, 22), so that no two solutions for this (a,b,c) can correspond to the two solutions in a member of F’
for any infinite family (recall the Comment following Definition 2 in the Introduction), so that (a,b,c) € S;
(by Theorem 4.3). So, recalling the proof of Theorem 1.1 (immediately following Theorem 4.3), we see that
(21,y1,21) and (22, Y2, 22) are the only solutions (x,y, z) to (1.1) and, for any prime in Q, one of (x1,y1, 21)
and (x2,ys2, 22) is Type A and the other is Type B. (Note that neither (x1,y1, 21) nor (z2, y2, 22) corresponds
to a distinct third solution (x3,ys, z3) since (a,b,c) € Saq U Spp)-

Suppose one of these solutions, say (z1,y1,21), is of Type A for some prime p € @ and of Type B for
some prime ¢ € Q). Then, by the Corollary to Lemma 2, (22, y2, 22) must also be Type A for p, contradicting
the previous paragraph (which showed that (z2,ys2, 22) must be Type B for p). So we see that one of the
solutions, say (z1,y1, 21), must be Type A for every prime in () and the other solution (x2,ys, 22) must be
Type B for every prime in Q. Let ¢; and g2 be any two primes in Q. Then B, y1 = Vg1 21, Bep¥1 = Ve 21,
Qg T = Vg, 22, Qg T2 = Ygo 22, from which we derive (3.34), so that we can use Proposition 3.5 to obtain
(4.25). The solution (x1,y1, 21) is Type A for g, and the solution (z2,y2, 22) is Type B for g. O
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Theorem 4.5 will be used to establish a method for searching for anomalous solutions in Section 5 which
follows.

Let I be the set of all (a,b,c) with ged(a,b) > 1 such that (1.1) has two solutions (z1,¥y1,21) and
(22, Y2, 22) with (a,b, ¢, x1,y1, 21, T2, Y2, 22) in one of the four infinite families in the Introduction.

(Although not needed for what follows, we note that I = S; UT where T is the set of all triples (a, b, ¢)
satisfying either ({a, b, }¢) = ({2,4},2%+1.3) or ({4, 8},25:+3.3), where t > 0. Since we will not be using this
result, we do not give its proof, which uses the method of the proof of Theorem 4.7 below. Any (a,b,c) € T
gives exactly two solutions (z,y, z) to (1.1), one of which is Type A for 2 and the other of which is Type B
for 2.)

Observation 4.6. The use of Criterion 1 to determine N(a,b,c) = 2 is needed only when (a,b,c) gives two
solutions (x1,y1,21) and (x2,ys2,22) to (1.1) with (a,b,c, x1y1, 21, T2, Yo, 22) in either the infinite family (i)
with h = 2 or the infinite family (iii) with g =2F —1,d =w = j = 1.

Proof. Criterion 1 is relevant only when a3 = b; = 1. Assume (a, b, ¢) satisfies ged(a,b) > 1, N(a,b,c) = 2,
and a1 = b; = 1.

If (a,b,c) & I, then (a, b, c) satisfies the conditions of the statement of Theorem 4.5, so, by Theorem 4.5,
(a, b, ) has exactly two solutions (z,y, ), neither of which corresponds to a further distinct solution (z, y, 2).
So Criterion 1 does not apply here.

If (a,b,¢) € I, then, since a; = by = 1, it suffices to determine when any of the infinite families (i),
(i), (iii), (iv) allows a; = by = 1. In the infinite family (ii), we have a1 = 2, so we can eliminate (ii) from
consideration. In the infinite family (iv), we cannot have by = d = 1 by Lemma 8, so we can eliminate (iv)
from consideration. In the infinite family (i), by = 1 holds only if h = 2. Finally, in the infinite family (iii),
by = 1 requires d = 1, so that, since g = (d + 1)* —d* = 2¥ — 1, we have g = 2¥ — 1 and w = 1, so that,
since z3 = ku + (w/j), we must have j = 1. O

Using Observation 4.6 we can consider (1.1) without using Criterion 1 and determine all cases for which
(1.1) has more than two solutions (z,y, z).

Theorem 4.7. Let (a,b,c) be a triple giving more than two solutions (z,y, z) to (1.1).

Ifged(a,b) = 1, then ({a,b},c) = ({3,5},2), which has three solutions: 3+5 = 23, 3345 =25, 3+53 = 27.

If ged(a, b) > 1, then we must have one of the following:

1.) (a,b,c) = (2,2,273), v € ZF, which has four solutions (z,y, z): (v+1,7,1), (v,7+1,1), (2y+3,2v,2),
(27,27 +3,2).

2.) (a,b,c) = (2,8,233), t € Z", which has three solutions (z,y,z): (3t +1,t,1), (6t + 3,2t,2), (6t,2t +
1,2)

or

(a,b,c) = (8,2,2%3), t € ZT, which has three solutions (v,y,z): (t,3t+1,1), (2t,6t+3,2), (2t+1,6t,2).

3.) (a,b,e) = (28 — 1,28 —1,2(2F — 1)), k,y € Z*, which has three solutions (v,y,z): (v,7,1),
(kv + 1,k k), (B, ky + 1, k).

4.) (a,b,c) = (24,2°,2%), w,v,w € Z*, ged(uv,w) = 1, which has an infinite number of solutions
(x,y,2) = (%’, %‘, ALY where ged(u,v) = g, lem(u,v) = L, and t is a positive integer such that tL =
—1 mod w.

Proof. If ged(a,b) = 1, then the result that ({a,b},c) = ({3,5},2) is given by [I0], and the result that there
are exactly three solutions in this case is given by [10] as well as earlier papers cited in [I0].

Now assume (a, b, ¢) with ged(a,b) > 1 gives more than two solutions (z,y, z) to (1.1). If (a,b,c) are all
powers of 2, then we have 4.); assume a, b, and ¢ are not all powers of 2, so that we are eliminating /.) from
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consideration. Since any solution to (1.1) has at most one solution distinct from it which corresponds to it,
we must have N(a,b,c) > 1. By Theorem 1.1, N(a, b, c) = 2.

By Observation 4.6, we must have one of the following two cases.

Case I: (a,b,c) gives two solutions (x1,y1, 21), (X2, Y2, 22) to (1.1) such that (a,b, ¢, z1,y1, 21, T2, Y2, 22) is
in the infinite family (i) with A = 2, and there is at least one further solution (x3,ys, 23) where the solution
(23,y3, z3) corresponds to one of (21,y1,21) and (22,y2, 22) (recall the proof of Lemma 9).

For this case, we have (a,b,c) = (2%,27,27 . 3) since, by Definition 3, the solutions (z1,yi,21) and
(x2,Y2, z2) must correspond to the two solutions given by some member of F' for the infinite family (i) (note
that this requires min(z1, 2z9) = 1). Letting m be this member of F' we have m = (2,2%,2*-3,u+1,1,1,2u+
3,2,2) for some fixed positive integer u. By Definition 3, v = v min(z1, 22) = umin(1,2) = u, so that

m=(2,27,27-3,v+1,1,1,2y+3,2,2).

Let (21,91, 21) be the solution to (1.1) which corresponds to the solution (y+1,1,1) in m, and let (z2, ya, 22)
be the solution in m which corresponds to the solution (2 + 3,2,2). Then we have

{azy, By} ={v+ 1,7} (4.26)

and

Let (z3,ys, 23) be a further solution. If (x3,ys, z3) corresponds to (z1,y1, 21), then, if ax; = v+ 1 (respec-
tively, ), we must have axs = v (respectively, v + 1). By (4.26) we see that this requires o | v+ 1, o | 7,
Bly+1,8]7,sothat a« =8 = 1.

If (z3,ys, z3) corresponds to (x2,ya2, 22), then by (4.27) we must have « | 2v+3, a | 27, 8| 2v+3, 5] 27.
This requires a € {1,3}, 8 € {1,3}. so we have (o, 8) = (1,1), (1, 3), or (3,1), noting that (o, 8) = (3,3) is
impossible by (4.26).

If « = 8 =1 we have 1.) in the formulation of Theorem 4.7. If («, 8) = (1,3) or (3,1), we have 2.) in
the formulation of Theorem 4.7 (note that in this case we must have 3 | 7).

Case 2: (a,b,c) gives two solutions (x1,y1,21), (%2,y2,22) to (1.1) such that (a,b,c,x1,y1, 21, T2, Y2, 22)
is in the infinite family (iii) with ¢ = 2¥ —1, d = w = j = 1, and there is at least one further solution
(23,y3, z3) where the solution (z3,ys, 23) corresponds to one of (z1,y1,21) and (22, y2, 22).

For this case we have (a,b,c) = ((2%¥ — 1)*,(2¥ — 1)%,2(2k — 1)7) since, by Definition 3, the solutions
(z1,y1,21) and (z2, Y2, 22) must correspond to the two solutions given by some member of F' for the infinite
family (iii) (note that this requires min(z1, z2) = 1). Letting m be this member of F' and proceeding as in
Case 1, we see that we must have

m = (2k - 17 (2k - 1)75 2(2k - 1)7775 17 15 k7+ 15 kvk)

for some positive integer k.

Let (21,91, z1) be the solution to (1.1) which corresponds to the solution (v, 1,1) in m, and let (z2, y2, 22)
be the solution to (1.1) which corresponds to the solution (kv + 1,k, k).

Let (x3,ys, 23) be a further solution. If (x3,ys, z3) corresponds to (x1,y1, 21), then both (x1,¥1,21) and
(3,93, 23) are Type O for g = 2F — 1, so that ax; = By; = axs = PBys so that y; /21 = y3/x3. Since 23 = 21,
this requires &1 = x3, y1 = ys3, so that (z3,ys, 23) is not a distinct solution.

If (z3,ys, 23) corresponds to (x2,y2, 22), then we can proceed as in Case 1 to see that o | kv + 1, a | kv,
B|ky+1, 8|k, so that = 8 = 1, which gives 3.) in the formulation of Theorem 4.7. O
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From Theorem 4.7 we can immediately obtain a revised version of Theorem 1.1 in which Criterion 1 is
replaced by a more specific restriction:

Theorem 4.8. For given integers a, b, ¢ all greater than one, (1.1) has at most two solutions in positive
integers (z,y,z) (where two solutions (x1,y1,21), (T2,Yy2,22) are considered the same solution if a = b and
{z1,11} = {®2,y2}), except for the following three cases:

1.) {a,b} = {3,5}, ¢ = 2 which gives the three solutions in Theorem 4.7.

2.) {a,b} = {2,8}, c = 23t3, which gives the three solutions in 2.) of Theorem 4.7.

3.) {a,b} = {2",2"}, ¢ = 2%, where ged(uv,w) = 1, which gives the infinite number of solutions in 4.)
of Theorem 4.7.

5 Cases with exactly two solutions

By Theorem 1.1 we have N(a,b,¢) < 2 for all (a,b,c) except ({a,b},c) = ({3,5},2) or ({2%,27},2%) for
positive integers u, v, w with ged(uv, w) = 1. Let S; be the set of all triples (a, b, ¢) such that ged(a,b) > 1,
N(a,b,c) =2, and there do not exist solutions (x1,y1, 21) and (x2,ys, 22) with (a,b, ¢, x1,y1, 21, T2, Y2, 22) in
any of the infinite families (i), (ii), (iii), or (iv). By Theorem 4.5, for any (a,b,c) € S; there are exactly two
solutions (z,y, z) one of which is Type A for g, the other of which is Type B for g, and neither of which has
a solution corresponding to it (here g is as in Theorem 4.5). In this section we consider whether there exist
any (a,b,c) € S; which are not listed among the ten anomalous cases given in the Introduction.

By Theorem 4.5, we can assume that for any (a,b,c) € S;, we have a solution (x1,y1, 21) which is Type
A for g and a solution (x2,ys, 22) which is Type B for g, where ¢ is as in Theorem 4.5. Using the notation
of Theorem 4.5 (taking a1 < by and, for brevity, writing o for «, 8 for 8y, and v for v,), from the solutions
(21,91,21) and (22,y1, 22) we derive two equations with relatively prime terms:

gETTIR QT 4 bY = (5.1)

and
a¥? 4 gPvrrBpY = %2 (5.2)

For any (a,b,c) € S;, the two solutions (x1,y1,21) and (x2,y2, 22) must be derived from equations with
relatively prime terms as in (5.1) and (5.2). So, in searching for hitherto unknown anomalous solutions we
can begin by examining pairs of equations of the form

g ad b =t (53)

and
a7 + g B = o (5.4)

where g, a1, b1, and ¢; are pairwise relatively prime. For any pair of equations with relatively prime terms
which can be represented as in(5.3) and (5.4), we consider whether there exist a, 3, and v which produce an
(a,b,c) € S;. To do this we construct systems of linear equations in which the unknowns are «, 8, and ~:

viB =217, (5.5)

Y28 — wa = 227, (5.6)
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T — w1 = 217, (5.7)

Toow = 227. (5.8)

If 1 < a; < by, we have a system of four equations which must have a solution in three positive integer
variables «, 8, 7y in order to produce an (a,b,c) € S,.

If 1 = a; < b1, then it suffices to obtain a solution in positive integers 3 and ~ for the system of two
equations (5.5) and (5.6) in order to produce an (a,b,c) € S;, since then we can take o = 1 and let

T1 = 217 +wy (5.9)
and
To = 227. (5.10)
If 1 = a; = by, then we have
gt +1=ct (5.11)
and
14 g™ = ¢} (5.12)

(5.12) can also be considered a solution of Type A for g, so that (a,b,¢) € Sua C S;, contradicting the
definition of S;. (Although not needed for our purposes, we note that, if z; # 22, then (5.11) and (5.12)
must be 2+ 1 =3 and 2% +1 = 32)

In conducting a search for possible further anomalous solutions not already known, we can begin by
considering ternary equations with relatively prime terms. A remarkably comprehensive list of such equations
was constructed by Matschke [9] based on work of Kénel and Matschke [7]. This list gives all cases of
A+ B = C with ged(A, B) = 1 and rad(ABC) < 107. From this list we find pairs of equations satisfying
(5.3) and (5.4) and determine whether a triple of positive integers («, 5,7) satisfies (5.5) through (5.8). We
thus show that there are no (a, b, c) with ged(a,b) > 1, N(a,b,c) = 2, and rad(abc) < 107 other than those
already known and listed among the anomalous cases and infinite families in the Introduction.

One can calculate that (5.3) and (5.4) have no further solutions for a; < 100. g < 100, b; < 10000, and
the exponents w1, x1, Y1, 21, T2, Wa, Y2, 22 each less than or equal to 10.

These results complement the bounds given in the Introduction found by an independent computer search.
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