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Abstract

Backdoor attacks on deep learning represent a recent threat that has gained signifi-
cant attention in the research community. Backdoor defenses are mainly based on
backdoor inversion, which has been shown to be generic, model-agnostic, and ap-
plicable to practical threat scenarios. State-of-the-art backdoor inversion recovers a
mask in the feature space to locate prominent backdoor features, where benign and
backdoor features can be disentangled. However, it suffers from high computational
overhead, and we also find that it overly relies on prominent backdoor features that
are highly distinguishable from benign features. To tackle these shortcomings, this
paper improves backdoor feature inversion for backdoor detection by incorporating
extra neuron activation information. In particular, we adversarially increase the loss
of backdoored models with respect to weights to activate the backdoor effect, based
on which we can easily differentiate backdoored and clean models. Experimental
results demonstrate our defense, BAN, is 1.37× (on CIFAR-10) and 5.11× (on
ImageNet200) more efficient with an average 9.99% higher detect success rate than
the state-of-the-art defense BTI-DBF. Our code and trained models are publicly
available at https://github.com/xiaoyunxxy/ban.

1 Introduction

Deep neural networks (DNNs) are known to be vulnerable to backdoor attacks, a setting where the
attacker trains a malicious DNN to perform well on normal inputs but behave inconsistently when
receiving malicious inputs that are stamped with triggers [9]. The malicious model is obtained by
training with poisoned data [9, 6], by tampering with the training process [22, 2], or by directly
altering the model’s weights [14]. Backdoors are proposed for various domains, from computer
vision [9, 22, 6, 26, 40, 25] to graph data [42] and neuromorphic data [1]. Still, backdoors in
computer vision received most of the attention of the research community, which also means there is
a significant variety of triggers. For instance, a trigger can be a pixel patch [9], an existing image [22],
dynamic perturbation [25], or image warping [26]. Various backdoor attacks target different stages
of the machine learning model pipeline, inducing several threat scenarios in which defenses are
developed by exploiting different knowledge.

Trigger inversion is a principled method that makes minimal assumptions about the backdoor attacks
in the threat model [38, 39, 44], and it has clear advantages to training-time [18] or run-time
defenses [24, 19, 11]. Input space trigger inversion is first introduced by Neural Cleanse (NC) [36],
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where potential triggers for all target classes are reversed by minimizing the model loss of clean
inputs. Median absolute deviations of reversed triggers from all classes are then calculated to detect
triggers. More recently, input space trigger inversion methods have been shown to be ineffective
against feature space backdoor attacks [26, 38]. To address this problem, FeatureRE [38] proposes a
detection method using feature space triggers. The authors observe that features of backdoored and
benign inputs are separable in the feature space by hyperplanes. Unicorn [39] formally defines and
analyzes different spaces for trigger inversion problems. An invertible input space transformation
function is proposed to map the input space to others, such as feature space, and to reconstruct the
backdoor triggers. These trigger inversion methods can be considered as an optimization problem for
the targeted class. They optimize the input images to mislead the model under various constraints
and recover strong triggers in different spaces. The state-of-the-art trigger inversion method, BTI-
DBF [44], increases the inversion efficiency by relaxing the dependency of trigger inversion on the
target labels. BTI-DBF trains a trigger generator by minimizing the differences between benign
samples and their generated poisoned version in decoupled benign features while maximizing the
differences in remaining backdoor features. Feature space trigger inversion defenses are generic and
effective against most backdoor attacks. However, we show that BTI-DBF may fail against BadNets,
as its backdoor is not prominent in the feature space (see Section 3.4). In addition, existing works
still suffer from huge computational overhead and overly rely on prominent backdoor features.

To resolve this shortcoming, we propose a backdoor defense called detecting Backdoors activated by
Adversarial neuron Noise (BAN). Our defense is inspired by the finding that backdoored models are
more sensitive to adversarial noise than benign models [43, 10], and neuron noise can be adversarially
manipulated to indicate backdoor activations [41]. Specifically, BAN generates adversarial neuron
noise, where the weights of the victim model are adversarially perturbed to maximize the classification
loss on a clean data set. Simultaneously, trigger inversion is conducted in the victim model’s feature
space to calculate the mask for benign and backdoor features. Clean inputs with masked feature maps
are then fed to the adversarially perturbed model, based on the outputs of which backdoored models
can be differentiated. Figure 1 presents a t-SNE visualization of the feature space for backdoored
and clean models when they are perturbed with different levels of adversarial neuron noise. It can
be observed that the backdoored model misclassifies parts of the data from all classes as the target
class when the adversarial neuron noise increases, while the clean model has fewer misclassifications
under the same level of noise. By leveraging the induced difference, BAN can successfully detect
and mitigate backdoor attacks in both input and feature space.

We make the following contributions:

• We find a generalization shortcoming in current trigger inversion-based detection methods
(FeatureRE [38], Unicorn [39], BTI-DBF [44]). In particular, feature space detections overly
rely on highly distinguishable prominent backdoor features. We provide an in-depth analysis
of trigger inversion-based backdoor defenses, showing that prominent backdoor features
that are exploited by state-of-the-art defenses to distinguish feature space backdoors may
not be suitable for the identification of input space backdoors.

• We propose detecting Backdoors activated by Adversarial neuron Noise (BAN) to mitigate
this generalization shortcoming by introducing neuron noise into feature space trigger
inversion. BAN includes an adversarial learning process to incorporate neuron activation
information into the inversion-based backdoor detection. Experimental results demonstrate
that BAN is 1.37× (on CIFAR-10) and 5.11× (on ImageNet200) more efficient with a 9.99%
higher detect success rate than the state-of-the-art defense BTI-DBF [44].

• We also exploit the neuron noise to further design a simple yet effective defense for removing
the backdoor, such that we build a workable framework.

2 Backdoors

Attacks. Backdoor attacks [9, 22, 2, 26, 25, 40, 35, 8, 20, 3] refer to injecting a secret functionality
into the victim model that is activated through malicious inputs that contain the trigger. To this end,
substantial research has been proposed by poisoning a small percentage of training data using small
and static triggers [9, 6, 22]. Early attacks generate backdoors in input space, where BadNets [9] is
the first backdoor attack in DNNs. Blend [6] proposed three injection strategies to blend translucent
images into inputs of DNNs as triggers. The authors controlled the transparency of the trigger to
allow the trade-off between strength of attack and invisibility. Although these attacks work well,

2



Backdoor:
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Figure 1: The feature plots of backdoor and benign models with neuron noise using ResNet18 on
CIFAR-10. The darker blue represents the target label. As noise increases, the backdoor model
identifies more inputs from each class as the target label. The clean model has fewer errors, and there
is no significant increase in the number of misclassifications to the target class.

their triggers are still perceptible to humans and can be easily detected by backdoor defenses, such as
Activation Clustering (AC) [4] and NC [36].

Dynamic and imperceptible triggers [26, 25, 40, 8], including feature space backdoor triggers [20, 25],
are explored to bypass both human observers and input space defenses. IAD [25] designs input-
specific triggers. To evaluate the uniqueness of dynamic triggers, the authors designed a cross-trigger
test to determine whether the trigger of one input is reusable to others. WaNet [26] proposes warping-
based triggers, which are unnoticeable and smooth in the input space. Bpp [40] exploits vulnerabilities
in the human visual system and, by using image quantization and dithering, introduces invisible
triggers that are stealthier than previous attacks.

Adaptive backdoor attacks [31, 28, 24] are built to systematically evaluate defenses, where attacks
discourage the indistinguishability of latent representations of poisoned and benign inputs in the
feature space. Adap-Blend [28] divides the trigger image into 16 pieces and randomly applies only
50% of the trigger during data poisoning. They use the full trigger image at inference time to mislead
the poisoned model. SSDT [24] considers the combination of source-specific and dynamic-trigger
backdoors. Only the inputs from victim classes (source) with the dynamic triggers are classified to
the target labels, which encourages the generalization of more diverse trigger patterns from different
inputs. In this paper, we evaluate BAN against various types of attacks, including input space, feature
space, and adaptive attacks, to provide a systematic evaluation resembling practical threats.

Defenses. Trigger inversion-based backdoor defense is considered one of the most practical and
general defenses against backdoors [38, 39, 44]. The recovered trigger is used to determine whether
the model is backdoored. For example, NC [36] reverses input space triggers to detect backdoors by
selecting significantly smaller triggers in size. Other methods, such as ABS [21] and FeatureRE [38],
usually determine whether there is a backdoor based on the attack success rate of the trigger. More
specifically, given a DNN model f and a small set of clean data Dc = {xn, yn}Nn=1, NC recovers the
potential trigger by solving the following objective:

min
m,t

L(f((1−m)⊙ x+m⊙ t), yt) + λ|m|, (1)

where (x, y) ∈ Dc and m is the trigger mask, t is the trigger pattern, and yt is the target label.
The mask m determines whether the pattern will replace the pixel. L is the cross-entropy loss
function. Most prior works [12, 30, 21, 38, 39] follow this design to conduct trigger inversion for
all possible target labels. For example, Tabor [12] adds more constraints to the NC optimization
problem according to the overly large (large size triggers but no overlaps with the true trigger) and
overlaying (overlap the true trigger but with redundant noise) problem of NC. Moving from input
space to feature, FeatureRE [38] utilizes feature space constraint according to an observation that
neuron activation values representing the backdoor behavior are orthogonal to others. Unicorn [39]
proposes a transformation function that projects from the input space to other spaces, such as feature
space [26] and numerical space [40]. Then, the authors conduct trigger inversion in different spaces.
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Unlike previous NC-style methods, recent works [44, 37] explore different optimization objectives
to avoid the time-consuming optimization for all possible target classes or to avoid the fixed mask-
pattern design as advanced attacks utilize more complex and dynamic triggers. BTI-DBF [44] takes
advantage of the prior knowledge that benign and backdoored features are decoupled in the feature
space. It distinguishes them by the optimization objective, where benign features contribute to the
correct predictions and backdoored features lead to wrong predictions. Based on the decoupled
features, BTI-DBF trains a trigger generator by minimizing the difference between benign samples
and their generated version according to the benign features and maximizing the difference according
to the backdoored features. Feature space backdoor defenses are developed based on the fact that
backdoor features are highly distinguishable from benign features. However, this finding is not
consistently valid for input space attacks where the feature difference is small (See Sections 3.4).

3 BAN Method

3.1 The Pipeline of Training Backdoor Models

For brevity, consider an L-layer fully connected network f (similar principles apply to convolutional
networks) that has l = l1 + l2 + · · · + lL neurons. xn ∈ Rdx and yn ∈ {0, 1}dy are the nth
image and its label in dx and dy dimensional spaces, respectively. The attacker creates a poisoned
dataset Dp by poisoning generators GX and GY for a subset of the whole training dataset, i.e.,
Dp = Dc ∪Db. Dc is the original clean data. Db is the poisoned backdoor data, Db = {(x′, y′)|x′ =
GX(x), y′ = GY (y), (x, y) ∈ D − Dc}. In all-to-one attacks, GY (y) = yt, yt is the attacker-
specified target class. In our experiments, we consider the dirty-label attack. In all-to-all attacks,
ususally GY (y) = (y + 1) [44, 26, 40], which is also what we chose in our experiments. In the
training stage, the backdoor is injected into the model by training with Dp, i.e., minimizing the
training loss on Dp to find the optimal weights and bias (w∗,b∗):

min
w,b

LDp
(w,b) = E

(x,y)∈Dp

ℓ(f(x;w,b), y), (2)

where ℓ(·, ·) is the cross-entropy. In the inference stage, the backdoored model predicts an unseen
input x̂ as its true label ŷ but predicts GX(x̂) as GY (ŷ): f(GX(x̂);w,b) = GY (ŷ).

3.2 Threat Model

Attacker’s goal. We consider the attacker to be the pre-trained model’s provider. The attacker aims
to inject stealthy backdoors into the pre-trained models. The pre-trained models perform well on
clean inputs but predict the attacker-chosen target label when receiving backdoor inputs.

Attacker knowledge. The attacker has white-box access to the model, including training data,
architectures, hyperparameters, and model weights.

Defender’s goal and knowledge. The main goal is to detect whether a given model is backdoored
and then remove the potential backdoor according to the detection results. Following [38, 39, 44], we
assume the defender has white-box access to the model and holds a few local clean samples. However,
the defender does not have access to the training data and has no knowledge of the backdoor trigger.

3.3 Detection with Neuron Noise

Based on previous findings that adversarial noise can activate backdoors [43, 41, 10], we design a
two-step method for backdoor detection. First, we search for noise on neurons that can activate the
potential backdoor. Then, we decouple the benign and backdoored features using a learnable mask of
the latent feature (the output before the final classification layer).

Neuron Noise. In backdoor models, there are two types of neurons: benign and backdoor [21].
The backdoor neurons build a shortcut from GX(x) to GY (y). Neuron noise is generated noises
added on neurons to maximize model loss on clean samples in an adversarial manner [23]. The noise
on benign neurons evenly misleads prediction to all classes, while the noise on backdoor neurons
tends to mislead prediction to the target label due to the backdoor shortcut, as shown in Figure 1.
Therefore, backdoor models with noise behave differently from benign models with noise, as there
are no backdoor neurons in the benign models.
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Given the jth neuron connecting the ith layer and (i− 1)th layer, we denote its weight and bias with
wij and bij , respectively. Neuron noise can be added to the neuron by multiplying its weight and
bias with a small number: (1 + δij)wij and (1 + ξij)bij . Then, the output of the neuron is:

hij = σ
(
(1 + δij)w

⊤
ijh(i−1) + (1 + ξij)bij

)
, (3)

where h(i−1) is the output of the previous layer and σ(·) is the nonlinear function (activation).
The noise on all neurons are represented by δ = [δ1,1, · · · , δl1,1, · · · , δ1,L, · · · , δlL,L] and ξ =
[ξ1,1, · · · , ξl1,1, · · · , ξ1,L, · · · , ξlL,L]. The δ and ξ are optimized via a maximization to increase the
cross-entropy loss on the clean data:

max
δ,ξ∈S

LDc
((1 + δ)⊙w, (1 + ξ)⊙ b),

S = B(w; ϵ) = {δ ∈ Rl|δ ≤ ϵ},
(4)

where S is the ball function of the radius ϵ in the l dimensional space. δ and ξ share the ball function
S as the maximum noise size. The maximization in Eq. (4) can be solved by PGD [23] algorithm with
a random start, as PGD can better explore the entire searching space to mitigate local minima [23].

Benign IAD Blend WaNet Bpp BadNets
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Accuracy w/ and w/o feature mask

w/o mask
w/ mask

Figure 2: Model’s clean accuracy
with (red dots) and without (blue
dots) the mask defined in Eq. (6).
Only the backdoored models are af-
fected by the noise.

Feature Decoupling with Mask. The neuron noise activates
the backdoor (see Figure 1) and misleads the predictions to
the target label. However, the performance has high variance
when searching for noise multiple times, which we conjecture
is caused by random initialization. Therefore, inspired by [44],
we further introduce a feature decoupling process to enhance
the effect of noise on backdoored features but maintain a de-
creased effect on benign features. Specifically, the network f
is decomposed into g = f1 ◦ · · · ◦ fL−1 and fL, where fL−1

extracts the latent features from x, while fL is the classification
layer. Then, we use a mask m on top of the latent feature g(x)
to decouple benign and backdoored features. The optimization
objective can be written as:

min
m

L(fL◦(g(x)⊙m), y)−L(fL◦(g(x)⊙(1−m)), y)+λ1|m|,
(5)

where ⊙ is the element-wise product. This optimization divides
the latent features into two parts through the mask while maintaining a relatively small size of m.
Note that the regularizer for m in Eq. (5) is necessary. Otherwise, m will become a dense matrix full
of ones to focus on the positive part of Eq. (5) because maintaining only the positive part (without
penalty of |m|) already satisfies the optimization objective. Finally, we apply the negative mask
(1−m) on top of latent feature of f to enhance the backdoor effect. The final output is:

fL ◦
(
g
(
x; (1 + δ)⊙w, (1 + ξ)⊙ b

)
⊙ (1−m)

)
. (6)

In Figure 2, the blue dots show the accuracy after adding noise to the model. The red dots show the
accuracy (with noise) while applying the feature mask to the model using Eq. (6). Our feature masks
do not affect the performance of benign models. However, we see that the performance is significantly
decreased for backdoored models. This decrease is caused by the model only using backdoor features
(through the negative mask), which means the backdoor is activated more frequently. Finally, a
suspect model is determined backdoored if the prediction using Eq. (6) has a high attack success rate.
For all-to-one attacks, the misclassification will be concentrated into one label, which is the target
label. For all-to-all attacks, we can do the same as for all-to-one attacks but evaluate the prediction
for each class independently.

3.4 Improving BTI-DBF

This section shows that the most recent work, BTI-DBF [44], may fail to capture the backdoor features
by its decoupling method in Table 2. We show how to patch BTI-DBF using a simple solution. The
BTI-DBF is the original version, and BTI-DBF* is our improved version. The main pipeline of
BTI-DBF consists of two steps: (1) decoupling benign and backdoor features and (2) trigger inversion
by minimizing the distance between benign features and maximizing the distance between backdoor
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features. We found that the defense’s first step may introduce errors in the decoupled features. Similar
to our Eq. (5), the decoupling of BTI-DBF can be written as:

min
m

L(fL ◦ (g(x)⊙m), y)− L(fL ◦ (g(x)⊙ (1−m)), y). (7)

However, this equation has no constraints on the feature mask m. Overall, the optimization objective
is to decrease the loss. Obviously, BTI-DBF’s decoupling encourages the norm of the mask to
increase so that the loss will focus on the positive part and ignore the negative part because the
negative part goes against the overall objective. Finally, the mask will be a dense matrix that is full
of ones. The fL ◦ (g(x) ⊙ (1 −m)) is ignored due to multiplying by zero. We propose a simple
solution to fix the problem by adding a regularizer of the size of the mask to the loss, i.e., we use
our Eq. (5) as the first step of BTI-DBF*. According to Table 2, BTI-DBF* successfully overcomes
BTI-DBF’s shortcomings.

3.5 Backdoor Defense

After determining whether a suspect model is backdoored, we can fine-tune the backdoored model to
remove the backdoor. However, standard fine-tuning using clean data does not effectively remove
the backdoor because it does not activate it. Therefore, we propose using optimized neuron noise
to fine-tune the model. In the optimization of the neuron noise, the objective is to increase the loss
of L(f(x), y). We consider both the benign and backdoor neurons to contribute to the increase in
loss when optimizing the noise. Indeed, on benign neurons, the neuron noise misleads f to any result
other than the true label y, while the noise misleads f to the target label GY (y) on backdoor neurons.
Therefore, a straightforward method is to decrease the loss between noise output and the true label.
The loss for our noise fine-tuning can be written as:

min
w,b

L(f(x;w,b), y) + λ2L(f(x; (1 + δ)⊙w, (1 + ξ)⊙ b), y). (8)

4 Experimental Results

Datasets and Architectures. The datasets for our experiments include CIFAR-10 [16], GTSRB [33],
Tiny-ImageNet [17], and a subset of ImageNet-1K [7]. The ImageNet subset contains 200 classes,
which is referred to as ImageNet200. BAN is evaluated using three architectures: ResNet18 [13],
VGG16 [32], and DenseNet121 [15]. Please refer to Appendix B.1 for more details.

Attack Baselines. Our experiments are conducted using seven attacks: BadNets [9], Blend [6],
WaNet [26], IAD [25], BppAttack [40], Adap-Blend [28], and SSDT [24], which are commonly used
in other works [44, 38, 39, 46, 29]. The BadNets [9] and Blend [6] are designed for input space.
WaNet [26], IAD [25], and BppAttack [40] are designed for feature space. Adap-Blend [28] and
SSDT [24] (for adaptive evaluation) are state-of-the-art attacks that have been recently introduced to
bypass backdoor defenses. The main idea of Adap-Blend [28] and SSDT [24] is to obscure the latent
separation in features of benign and backdoor samples. More details can be found in Appendix B.2.

BadNets WaNet IAD Bpp
0.0

0.5

1.0

1.5

2.0

2.5

3.0

m
as

k 
lo

ss

Loss with positive or negative feature mask
benign
backdoored

Figure 3: BadNets features are
weaker when using the mask to dis-
entangle the benign and backdoor
features. Defenses that are biased
towards large differences may not
work in cases like BadNets.

Defense Baselines. BAN is compared to five representa-
tive methods: Neural Cleanse (NC) [36], Tabor [12], Fea-
tureRE [38], Unicorn [39], and BTI-DBF [44]. NC and Tabor
are designed for input space attacks, while the other three are
designed for feature space and dealing with the latest advanced
attacks. BAN uses only 1% and 5% of training data for de-
tection and defense, respectively. Note the data used for our
defense is not used for training models, i.e., the defender has
no knowledge of the model to be defended. More details can be
found in Appendices B.3 and B.4. We use bold font to denote
the best results.

4.1 The Performance of Backdoor Detection

Main Results. In Table 1, BAN shows better results on CIFAR-
10 than all baselines, especially on advanced attacks. Results on
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Table 1: The detection results under different model architectures on CIFAR-10. The “Bd.” refers to
the number of models the defense identifies as backdoored. The “Acc.” refers to detection success
accuracy. The best results are marked in bold. BTI-DBF* refers to an improved version (details in
Section 3.4).

Model Attack NC Tabor FeatureRE Unicorn BTI-DBF* Ours

Bd. Acc. Bd. Acc. Bd. Acc. Bd. Acc. Bd. Acc. Bd. Acc.

ResNet18

No Attack 0 100% 0 100% 2 90% 6 70% 0 100% 0 100%
BadNets 20 100% 20 100% 14 70% 18 90% 18 90% 20 100%

Blend 20 100% 20 100% 20 100% 19 95% 20 100% 18 90%
WaNet 11 55% 8 40% 15 75% 20 100% 18 90% 20 100%
IAD 0 0% 0 0% 15 75% 11 55% 20 100% 20 100%
Bpp 0 0% 1 5% 12 60% 17 85 % 20 100% 20 100%

VGG16

No Attack 0 100% 0 100% 3 85% 6 70% 6 70% 0 100%
BadNets 18 90% 16 80% 13 65% 16 80% 18 90% 19 95%

Blend 19 95% 19 95% 16 80% 18 90% 16 80% 17 85%
WaNet 10 50% 9 45% 12 60% 18 90% 16 80% 20 100%
IAD 0 0% 0 0% 8 40% 17 85% 20 100% 20 100%
Bpp 9 45% 10 50% 5 25% 15 75% 14 70% 18 90%

DenseNet121

No Attack 0 100% 0 100% 5 75% 8 60% 3 85% 0 100%
BadNets 18 90% 20 100% 19 95% 15 75% 17 85% 20 100%

Blend 20 100% 20 100% 12 60% 18 90% 19 95% 20 100%
WaNet 13 65% 10 50% 20 100% 17 85% 14 70% 19 95%
IAD 0 0% 0 0% 14 70% 16 80% 14 70% 19 95%
Bpp 0 0% 0 0% 16 80% 8 40% 16 80% 20 100%

Average 60.56% 59.17% 72.5% 78.61% 86.39% 97.22%

other datasets are presented in Appendix C. We note that the advanced detection methods (FeatureRE,
Unicorn, and BTI-DBF) perform worse than NC on simple attacks (BadNets and Blend). We
hypothesize this is because the backdoor features generated by BadNets are less obvious on feature
channels than advanced attacks in the feature space, such as WaNet and IAD. Figure 3 shows that
BadNets features are weaker than features from advanced attacks using the feature mask in Eq. (5).
Specifically, we optimize the feature mask to disentangle the benign and backdoor features for four
attacks. Then, we compute two cross-entropy loss values using the positive mask (m) and the negative
mask (1−m) for benign and backdoor features, respectively. The average loss values and standard
deviation for four models for each attack are plotted in Figure 3. The negative loss value of BadNets
is much smaller than others, which means BadNets features are weaker than others with regard
to misleading the model to the backdoor target. Recent defenses usually add more regularizers to
their losses and optimization objectives to counteract powerful backdoor attacks. These regularizers
encourage the capturing of strong features but omit weak ones. Thus, recent advanced detections can
perform worse on BadNets than NC.

Time consumption. BAN is efficient and scalable as we do not iterate over all target classes. Figure 4
demonstrates that BAN uses substantially less time than all baselines. BAN is also more scalable for
larger architectures or datasets. BIT-DBF (76.90s) is 1.37× slower than BAN (55.95s) on CIFAR-10
with ResNet18, and BIT-DBF (5,792.51s) without pre-training is 5.11× slower than ours (1,132.85s)
on ImageNet200 with ResNet18. FeatureRE (297.74s) is 5.32× slower than ours on CIFAR-10 with
ResNet18, and it (6,053.62s) is 45.14× slower on CIFAR-10 with DenseNet121 than ours (134.10s).

4.2 The Performance of Backdoor Defense

A complete backdoor defense framework should include both detection and defense. The goal
of defense is to decrease the attack success rate (ASR) of backdoor triggers. Detection before
the defense is also necessary because the defense usually decreases the performance on benign
inputs [47, 44, 38, 46, 48]. In Section 3.5, we propose a simple and effective fine-tuning method
using the noise that activates the backdoor. Table 3 compares BAN with three baselines: plain fine-
tuning, FeatureRE [38], and BTI-DBF(U) [44]. Plain fine-tuning refers to training the backdoor model
using the same hyperparameters as BAN but without the noise loss in Eq. (8). The FeatureRE [38]
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CIFAR-10 Tiny-ImageNet ImageNet200

Ours BTI-DBF BTI-DBF (w/ pre) NC FeatureRE Tabor Unicorn

Figure 4: Time consumption of detection baselines on ResNet18 (in seconds) for all three datasets.
BAN uses significantly less time than the baselines.

Table 2: The detection results of BTI-DBF and BTI-DBF* using ResNet18 and CIFAR-10.

Attack BTI-DBF BTI-DBF* Ours

Bd. Acc. Bd. Acc. Bd. Acc.

No Attack 0 100% 0 100% 0 100%
BadNets 5 25% 18 90% 20 100%

Blend 0 0% 20 100% 18 90%
WaNet 7 35% 18 90% 20 100%
IAD 19 95% 20 100% 20 100%
Bpp 20 100% 20 100% 20 100%

and BTI-DBF(U) [44] refer to the defense methods from the respective paper. We use default
hyperparameters for FeatureRE [38] and BTI-DBF(U) [44]. For plain fine-tuning and BAN, we use a
small learning rate (0.005) to avoid jumping out of the current optimal parameters of the well-trained
model. Then, we use λ2 (0.5) for Eq. (8) for the trade-off between robustness against backdoor and
clean accuracy. We fine-tune for a short schedule of 25 epochs, as the model is well-trained. Table 8
in Appendix B.4 shows defense performance with standard deviation on different hyperparameters,
which supports our choice. Tables 3 and 4 demonstrate that our fine-tuning method effectively
removes the backdoor while preserving high accuracy in benign inputs. We provide a comparison
between our find-tuning with ANP [41] in Table 12, Appendix C.4, as ANP uses the neuron noise for
pruning backdoor neurons.

4.3 Defense against All-To-All Attacks

Previous works [38, 39] usually only consider all-to-one attacks, which limits the application in
practical situations. In this section, we evaluate our fine-tuning method under three all-to-all attacks:
WaNet-All [26], IAD-All [25], and Bpp-All [40]. FeatureRE is designed for all-to-one attacks, so
we use target label 0 here for FeatureRE. FeatureRE is included to show that the all-to-one defense
does not work in the all-to-all setting. BAN is capable of handling all-to-all attacks because we
directly explore the neurons themselves instead of optimizing for the potential targeted label. Table 5
demonstrates the effectiveness of our method.

Table 3: Defense against 5 attacks using ResNet18. BA refers to benign accuracy on clean data.

Attack No defense Fine-tuning FeatureRE BTI-DBF(U) Ours

BA ASR BA ASR BA ASR BA ASR BA ASR

BadNets 93.37 99.41 92.93 87.81 93.15 99.79 91.26 13.12 92.06 1.97
Blend 94.60 100.00 93.07 99.99 93.20 39.28 91.86 100.00 92.72 4.10
WaNet 93.57 99.37 93.05 1.10 93.67 0.03 90.30 4.89 92.05 0.91
IAD 93.17 97.88 94.11 0.46 92.73 0.0 89.54 1.59 92.78 1.48
Bpp 94.29 99.93 93.85 4.46 94.21 98.13 90.61 2.73 92.54 2.58

Average 93.80 99.32 93.40 38.76 93.39 47.45 90.71 24.47 92.43 2.21
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Table 4: Defense of backdoor attacks on Tiny-ImageNet and ImageNet200 using ResNet18.

Dataset Attack No defense Fine-tuning BTI-DBF(U) Ours

BA ASR BA ASR BA ASR BA ASR

Tiny-ImageNet
WaNet 58.32 99.85 51.53 1.3 39.49 0.96 50.69 0.86
IAD 58.54 99.32 51.86 1.72 38.79 0.60 50.04 0.76
Bpp 60.63 99.89 57.72 0.15 46.84 0.40 57.66 0.10

ImageNet200
WaNet 77.01 99.74 66.71 0.78 63.47 1.0 69.95 0.58
IAD 76.72 99.75 69.91 0.42 64.33 1.24 72.18 1.30
Bpp 78.56 99.88 70.89 0.82 67.02 3.10 72.59 2.68

Table 5: Defense against all-to-all backdoor attacks. BA refers to benign accuracy on clean data.

Attack No defense Fine-tuning FeatureRE BTI-DBF(U) Ours

BA ASR BA ASR BA ASR BA ASR BA ASR

WaNet-All 93.60 91.86 92.65 18.03 93.33 91.96 91.30 1.72 92.29 1.11
IAD-All 92.96 90.62 93.19 3.72 93.06 91.20 91.36 3.72 92.31 1.13
Bpp-All 94.45 84.68 93.90 1.58 94.32 83.87 90.16 2.05 93.23 1.38

Average 93.67 89.05 93.25 7.78 93.57 89.01 90.94 2.49 92.61 1.21

4.4 Evaluation under Adaptive Attack

Attackers may design a specific attack for defense when they know its details [34]. In this section, we
evaluate BAN against two attacks that attempt to bypass the difference between backdoor and benign
features: Adap-Blend [28] and SSDT attack [24]. Both Adap-Blend [28] and SSDT attack [24] try to
obscure the difference between benign and backdoor latent features. Adap-Blend [28] achieves it by
randomly applying 50% of the trigger to poison the training data, while SSDT attack [24] utilizes
source-specific and dynamic-triggers to reduce the impact of triggers on samples from non-victim
classes. The source-specific attack refers to backdoor triggers that mislead the model to the target
class only when applied to victim class samples. Table 6 demonstrates our approach is resistant
to these two attacks, while other methods fail. The reason is that the backdoor features of SSDT
are close to benign features in the feature space. It is difficult for other methods to distinguish
between backdoor and benign features created by SSDT. Our detection method directly analyzes
the model itself using neuron noise, which captures the difference between backdoor and benign
models concerning parameters. See Appendix C.3 for the mitigation results of our method against
these adaptive attacks.

Table 6: The detection results under adaptive attacks on using CIFAR-10 and ResNet18.

Attack NC Tabor FeatureRE Unicorn BTI-DBF* Ours

Bd. Acc. Bd. Acc. Bd. Acc. Bd. Acc. Bd. Acc. Bd. Acc.

Adap-Patch 18 90% 15 75% 17 85% 20 100% 20 100% 20 100%
SSDT 0 0% 0 0% 0 0% 0 0% 20 100% 20 100%

4.5 Analysis on Prominent Features

We provide additional analysis of the phenomenon that backdoor features are more prominent for
advanced attacks (WaNet, IAD, and Bpp) than weaker attacks (BadNets, Blend). Table 7 demonstrates
that previous decoupling methods cannot easily pick up backdoor features from weak attacks, such
as BadNets. In particular, when detecting without the L1 regularizer (i.e., w/o norm), the negative
feature loss of BadNets is high with a very large L1 mask norm, while the Bpp has an even higher
negative loss with a much smaller mask norm. The high negative loss of BadNets is actually from
the sparse feature mask rather than backdoor features, i.e., there are too many zeros in (1 - m).
This indicates that BadNet backdoor features are less prominent than Bpp features, making it more
challenging to decouple BadNets features.
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Table 7: Loss values when feeding the benign or backdoor features into the final classification layer.
The mask is optimized using Eq. (5) (w/ norm) or Eq. (7) (w/o norm). The shape of the feature mask
is 512× 4× 4, so the maximal L1 norm is 8192.

Attack BA ASR L1 mask norm Positive feature loss Negative feature loss

BadNets (w/ norm) 93.47 99.71 2258.90 0.21 0.26
BadNets (w/o norm) 93.47 99.71 8054.45 0.14 2.17

Blend (w/ norm) 94.60 100.00 2084.62 0.15 0.20
Blend (w/o norm) 94.60 100.00 8117.90 0.04 2.22

WaNet (w/ norm) 93.88 99.63 7400.97 0.06 2.34
WaNet (w/o norm) 93.88 99.63 7702.56 0.05 2.39

IAD (w/ norm) 93.82 99.64 7898.91 0.03 2.25
IAD (w/o norm) 93.82 99.64 7895.16 0.03 2.25

Bpp (w/ norm) 94.56 99.97 7147.68 0.09 2.80
Bpp (w/o norm) 94.56 99.97 7260.31 0.09 2.78

5 Conclusions and Future Work

This paper proposes an effective yet efficient backdoor defense, BAN, that utilizes the adversarial
neuron noise and the mask in the feature space. BAN is motivated by the observation that traditional
defenses outperformed the latest feature space defenses on input space backdoor attacks. To this
end, we provide an in-depth analysis showing that feature space defenses are overly dependent on
prominent backdoor features. Experimental studies demonstrate BAN’s effectiveness and efficiency
against various types of backdoor attacks. We also show BAN’s resistance to potential adaptive
attacks. Future studies could explore a more practical detection method without assuming access to
local benign samples and better strategies for decoupling features because a fixed mask in the feature
is not always aligned with the benign and backdoor features.
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A Discussion

Limitations. Similar to existing works [36, 21, 12, 38, 39, 44], BAN assumes a local small and
benign dataset. This scenario is common, considering that benign samples are available online, and
the model provider may provide some samples to verify the model’s performance. In addition, our
fine-tuning with neuron noise may slightly decrease the performance in benign inputs, similar to
other defense methods [38, 44, 47, 41, 18, 36, 48]. However, BAN provides better performance and
requires less time consumption.

Broader Impacts. This paper proposes a complete defense that includes detecting and removing
DNN backdoors. We believe our approach has a positive impact on the security of DNNs. A possible
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negative impact is overconfidence in robustness against backdoor attacks, as there is no theoretical
guarantee always to remove the backdoor.

B Additional Details for Experimental Settings

B.1 Datasets

CIFAR-10. The CIFAR-10 [16] contains 50,000 training images and 10,000 testing images with the
size of 3× 32× 32 in 10 classes.

GTSRB. The GTSRB [33] contains 39,209 training images and 12,630 testing images in 43 classes.
In our experiments, the images are resized to 3× 32× 32.

Tiny-ImageNet. Tiny-ImageNet [17] contains 100,000 training images and 10,000 testing images
with the size 3× 64× 64 in 200 classes.

ImageNet. ImageNet [7] contains over 1.2 million high-resolution images in 1,000 classes. Our
experiments use a subset of the full ImageNet dataset, i.e., 200 randomly selected classes. Each class
has 1300 training images and 50 testing images. The ImageNet images are scaled to 3× 224× 224.

B.2 Backdoor Models

BAN and defense baselines are evaluated using seven well-known attacks: BadNets [9], Blend [6],
WaNet [26], IAD [25], BppAttack [40], Adap-Blend [28], and SSDT [24].

For all backdoored models, we use SGD with a momentum of 0.9, weight decay of 5× 10−4, and a
learning rate of 0.01. We train for 200 epochs, and the learning rate is divided by 10 at the 100-th and
150-th epochs. Same to [41], we use 90% of training data for training backdoor models and 10% for
the validation set.

BadNets. We use a 3× 3 pattern to build the backdoor trigger. The poisoning rate is 5%.

Blend. We use the random Gaussian noise and blend ratio 0.2 for backdoor training. The poisoning
rate is 5%.

Adap-Blend. We use the “hellokitty_32.png” and blend ratio of 0.2 to build triggers. The poisoning
rate is 5%.

SSDT. SSDT is a Source-Specific attack, which only misleads the victim classes to the targeted class.
We use class 1 as the victim and class 0 as the target class.

For other attacks and hyperparameters not mentioned, we use the default settings from the papers or
their official open-source implementations.

B.3 Defense Baselines

BAN is compared with five representative methods, including Neural Cleanse (NC) [36], Tabor [12],
FeatureRE [38], Unicorn [39], and BTI-DBF [44]. In this section, we describe the hyperparameters
of these defenses.

NC and Tabor. We use the implementation and default hyperparameters from TrojanZoo [27] for
NC and Tabor. 1% of the training set is used to conduct 100 epochs of the trigger inversion. The
learning rate is 0.01.

FeatureRE. We first tried the default hyperparameters from the FeatureRE paper, but they could not
work even for BadNets. We assume this is because the constraints, including feature mask size and
similarity between original images and trigger images, are limited to a very small size. Therefore, we
relaxed the constraints on masks and norms to find stronger triggers, including loss std bound=1.2,
p loss bound=0.2, loss std bound=1.2, mask size=0.06, and learning rate=0.001. We use 1% of the
training set and run FeatureRE for 400 epochs for each class.

Unicorn. The default hyperparameters for Unicorn are too powerful in our case, and the recovered
triggers can mislead any model to the target label when applied to inputs. Every model, including
benign models, is thought of as backdoored. Therefore, we slightly increase thread values of the
constraints on Unicorn optimization to find proper triggers, including loss std bound=0.5, SSIM loss
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Figure 5: Illustrative diagram of BAN

Table 8: Ablation of hyperparameters for our defense. Each entry is the average of 5 runs.

Attack LR Epoch λ2
Ours

BA ASR

Bpp

0.005 25 0.2 93.26 ± 0.14 2.53 ± 0.93
0.005 25 0.5 92.64 ± 0.19 2.28 ± 0.72
0.005 25 0.8 92.19 ± 0.13 2.89 ± 0.94
0.005 25 1.0 92.04 ± 0.29 2.74 ± 0.49

0.005 10 0.5 92.97 ± 0.29 2.62 ± 0.44
0.005 50 0.5 92.57 ± 0.09 2.80 ± 0.73
0.005 75 0.5 92.51 ± 0.16 2.34 ± 0.17

0.001 25 0.5 93.57 ± 0.17 2.89 ± 1.01
0.010 25 0.5 91.99 ± 0.22 2.52 ± 0.64
0.020 25 0.5 90.05 ± 0.37 1.91 ± 0.55

bound=0.1, and mask size=0.01. We use 1% of the training set and run Unicorn 40 epochs for each
class.

BTI-DBF. We follow the default settings in the BTI-DBF [44] paper. Note that BTI-DBF uses 5% of
training samples for defenses.

B.4 BAN Settings

Detection. We use epsilon (ϵ) to limit the noise added to neurons. Otherwise, the model weights are
destroyed by the noise. The ϵ values are 0.3, 0.3, 0.2, and 0.1 for CIFAR-10, GTSRB, Tiny-ImageNet,
and ImageNet200, respectively. ϵ values are decided according to the size of the images. We use
smaller ϵ for larger datasets. We use the 30-step PGD algorithm to solve the optimization in Eq. (4)
to find the noise, i.e., δ and ξ. We use SGD and the learning rate of ϵ/30 for the PGD optimization.
Then, we use Adam and the learning rate of 0.01 to search for 20 epochs for the feature mask using
Eq. (5). The λ1 for Eq. (5) equals 0.75. The two optimizations above use 1% of the training set. Note
that this 1% of data is not used to train the backdoor models. The elements in the mask are clamped
into continuous values between 0 and 1. In Figure 5, we present an illustrative diagram of BAN.

Defense. Our defense uses Eq. (8) to remove the backdoor. Due to limited access to benign samples
and time consumption, we only use 5% of training data and 25 epochs for our fine-tuning. The
trade-off hyperparameter (λ2) is 0.5. Then, we use the most commonly used hyperparameters for the
optimizer. We use SGD with momentum=0.9, weight decay=5e-4, and learning rate=0.005 as the
optimizer. The plain fine-tuning uses the same hyperparameters as BAN.

Table 8 shows the ablation results on fine-tuning epochs, λ2, and learning rate. Considering both
performances on benign accuracy and removing the backdoor, our hyperparameters (LR=0.005,
λ2=0.5 and epoch=25) show the best results.

Hardware. All experiments are run on a single machine with 4 RTX A6000 (48GB) and 4 RTX
A5000 (24GB) GPUs, CUDA 12.0.
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C Additional Experimental Results

C.1 The Performance under Different Datasets

Table 9 shows the detection results using two larger datasets, Tiny-ImageNet and Imagenet200 (please
refer to Appendix C.2 for results on GTSRB). The ImageNet200 is a subset of ImageNet-1K. We train
10 models for each case, 60 models in total. BAN still performs well under the two larger datasets.
In addition, BAN is also scalable in terms of time consumption. To conduct backdoor detection on
ResNet18 models trained using CIFAR-10, Tiny-ImageNet, and ImageNet200, BAN takes around 55,
129, and 1,120 seconds, respectively. We do not apply other baselines (except for BTI-DBF) to larger
datasets due to high computational requirements. For example, FeatureRE costs more than 2 hours
for detection in one class of ImageNet200 (default settings), meaning FeatureRE needs more than
400 hours for a full detection on ImageNet200.

Table 9: The detection results using ResNet18 under different datasets.

Dataset Attack BTI-DBF BTI-DBF* Ours

Bd. Acc. Bd. Acc. Bd. Acc.

Tiny-ImageNet
No Attack 0 100% 0 100% 0 100%

WaNet 4 40% 6 60% 10 100%
IAD 9 90% 8 80% 10 100%

ImageNet200
No Attack 3 70% 0 100% 0 100%

WaNet 6 60% 9 90% 10 100%
IAD 10 100% 10 100% 10 100%

C.2 Dection on GTSRB

Table 10 shows the detection success rate for BAN on GTSRB. Notice that NC and BTI-DBF*
perform worse against advanced attacks, while BAN precisely detects all backdoor models.

C.3 Defense of Adaptive Attacks

Table 11 shows the fine-tuning results using our defense method against the two adap-blend and
SSDT. The results show that fine-tuning with neuron noise can remove the backdoor with a slight
decrease in clean accuracy.

Table 10: The detection results on GTSRB with
ResNet18.

Attack NC BTI-DBF* Ours

Bd. Acc. Bd. Acc. Bd. Acc.

BadNets 20 100% 20 100% 20 100%
WaNet 8 40% 18 90% 20 100%
IAD 0 0% 20 100% 20 100%
Bpp 13 65% 14 70% 20 100%

Table 11: Fine-tuning for adaptive attacks.

Attack No defense Ours

BA ASR BA ASR

Adap-Patch 94.20 99.75 90.45 10.24
SSDT 93.86 90.30 93.29 0.90

C.4 Comparsion with ANP

ANP [41] uses a similar neuron noise for pruning backdoor neurons. Their optimization objective
includes neuron noise and neuron mask. The neuron noise is optimized to fool the network, while
the mask controls a trade-off for clean cross-entropy loss. We compare our fine-tuning with ANP in
Table 12. The hyperparameters of ANP are the default from the original paper.
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Table 12: Comparison with ANP [41] on CIFAR-10 using ResNet18.

Defense BadNets Blend WaNet IAD Bpp

BA ASR BA ASR BA ASR BA ASR BA ASR

No defense 93.37 99.41 94.60 100 93.57 99.37 92.83 97.10 94.29 99.93
ANP 93.16 2.13 94.17 97.24 93.06 13.84 92.50 0.44 93.80 4.77
Ours 92.26 2.04 92.61 1.04 92.18 0.87 92.36 1.47 92.82 2.16

C.5 Different Poisoning Rates

BAN is effective against BadNets with different poisoning rates, as shown in Table 13. We use
BadNets because it is relatively weak at a low poisoning rate (i.e., hard to be mitigated), while more
advanced attacks may still be strong at a low poisoning rate.

Table 13: The performance of BAN fine-tuning under different poisoning rates of BadNets using
CIFAR-10.

Poisoning Rate BA ASR pos. feature loss neg. feature loss Mitigated BA Mitigated ASR

0.01 93.48 98.69 0.38 0.17 92.07 2.73
0.05 93.37 99.41 0.37 0.35 92.06 1.97
0.10 90.98 100.00 0.35 2.06 90.29 2.17
0.15 90.32 100.00 0.39 2.23 90.16 1.71
0.20 89.34 100.00 0.44 2.43 90.39 1.01
0.25 88.09 100.00 0.56 2.81 89.55 1.54
0.30 86.09 100.00 0.62 3.13 88.83 1.08
0.40 82.39 100.00 0.67 3.51 88.75 1.67
0.50 77.83 99.97 0.84 4.27 86.87 3.56

C.6 Against Backdoors on the MLP

We evaluate the defense performance on simple model architecture. In particular, a 4-layer MLP is
trained with benign samples and with BadNets. Table 14 demonstrates that BAN is effective on MLP,
where the “num. to target” refers to the number of samples (in 5000 validation samples) that are
classified as the backdoor target after our detection. We also find that the positive feature loss (i.e.,
benign feature loss) is very close to the negative loss (i.e., potential backdoor feature loss), which
indicates that the backdoor features are more challenging to decouple from benign ones.

Table 14: The performance of BAN on the 4-layer MLP.

MLP BA ASR Pos. feature loss Neg. feature loss Num. to target Mitigated BA Mtigated ASR

Benign 53.24 - 1.95 2.29 419 - -
BadNets 47.04 100.00 2.03 2.34 3607 45.13 7.11

C.7 Discussion about Relationship between the Neuron Noise and Lipschitz Continuity

A small trigger that changes the output of a benign input into a malicious target label can be related
to the high Lipschitz constant [45] and a neural network with high robustness tends to have a lower
local Lipschitz constant. Moreover, a larger local Lipschitz constant implies steeper output around
trigger-inserted points, leading to a smaller trigger effective radius making trigger inversion less
effective [49]. Thus, the concepts of adversarial activation noise and Lipschitz continuity are related,
and the local Lipschitz constant can serve as an upper bound for the trigger’s effective influence.

In addition, introducing theoretical tools like the Lipschitz constant for a backdoor defense may
also be very tricky in practice because it needs approximation for implementation. For example,
[45] evaluates the channel-wise Lipschitz constant by its upper bound but does not thoroughly
discuss the relationship between the channel-wise Lipschitz constant and the network-wise Lipschitz
constant, where the theorem of Lipschitz continuity really relies on. Recent work also mentions
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that empirically estimating the Lipschitz constant is hard from observed data, which usually leads to
overestimation [5]. Methods relying on Lipschitz continuity may not require heavy computational
load and are also related to our approach. Our method emphasizes more on fine-tuning with the
guidance of neuron noise, rather than tuning the trained model.

C.8 Choosing the λ1

As discussed in the method section, the mask norm (L1 norm) with lambda in Eq. (5) is to ensure
that the optimization objective is decoupling between benign and backdoor features. Without the
constraint of the mask norm in Eq. (5), the optimization objective will be simply increasing the mask
norm unless there are extremely strong backdoor features. The λ1 value selection is implemented by
checking the value of the mask norm. Table 15 provides an example of λ1 selection on CIFAR-10,
where the maximal mask norm is 8192. It can be observed that the mask is almost full of ones when
λ1 is smaller than 0.7, and the negative feature loss (backdoor feature) is high, based on which we
can pick a value of λ1 greater than 0.7. Note that the selection is unaware of potential backdoors.

Table 15: Feature loss values with different λ1

λ1 Mask norm Pos. feature loss Neg. feature loss

0.0 8188.62 0.27 2.30
0.1 8188.75 0.28 2.30
0.2 8184.30 0.27 2.30
0.3 8175.50 0.29 2.30
0.4 8152.40 0.25 2.30
0.5 8131.26 0.27 2.29
0.6 8055.07 0.21 2.27
0.7 7898.25 0.26 2.24
0.8 596.85 0.99 0.23
0.9 22.08 2.33 0.28

C.9 Swin Transformer

Table 16 provides experimental results of a 12-layer Swin transformer on CIFAR-10. For BadNets
and Blend, we train the backdoored network using Adam as the optimizer. For WaNet, IAD, and Bpp,
we use the default setting. All backdoored models can be detected by BAN.

Table 16: Results on Swin Transformer.

Attack No defense FT BTI-DBF(U) BAN Fine-tune
BA ASR BA ASR BA ASR BA ASR

BadNets 86.7 97.43 82.23 44.07 85.21 99.99 83.92 2.91
Blend 85.46 100.00 80.13 100.00 83.9 100.00 79.18 26.20
WaNet 78.25 31.03 75.63 2.3 73.83 2.61 75.28 3.1
IAD 76.35 88.71 74.58 54.63 74.29 61.16 76.26 9.8
Bpp 79.19 63.74 75.35 12.99 74.66 11.04 74.25 6.91

C.10 Clean Label Attack

We provide a clean-label backdoor experiment following [35], where we take default hyperparameters.
Table 17 demonstrates the detection performance of 20 models, where we randomly select one model
from the 20 for the mitigation experiment. Experimental results demonstrate that BAN is also
effective against the clean-label attack.

Table 17: Clean label attack on CIFAR-10.

Attack BA ASR Detection Success Accuracy Mitigated BA Mitigated ASR

LC [35] 92.72 100.00 90.00 89.27 6.16
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Table 18: Results on different target classes on CIFAR-10.

Target No defense BAN Fine-tune
BA ASR BA ASR

0 93.41 100.00 92.57 1.56
1 93.51 100.00 92.53 0.84
2 93.54 99.99 91.49 1.08
3 93.59 99.99 92.14 1.93
4 93.84 99.98 92.13 1.49
5 93.52 100.00 91.84 3.29
6 93.46 100.00 92.48 0.93
7 93.56 100.00 92.36 0.73
8 93.57 99.89 92.31 0.58
9 93.36 100.00 91.65 2.40

C.11 Semantically Similar Classes

We provide an additional analysis on image form semantically similar classes. From ImageNet200,
we select class n02096294 (Australian terrier) as the target class, since there are 19 kinds of terriers in
our ImageNet200 datasets, such as n02094433 (Yorkshire terrier) and n02095889 (Sealyham terrier).
We train 10 backdoor networks using BadNets with different target classes. Table 18 demonstrates
that BAN is effective against the backdoor regardless of semantically similar classes.
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