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A dog swimming

Two raccoons are playing drum kit in NYC Times Square

A white and orange tabby cat is seen happily darting through a dense garden, as if chasing something

Figure 1: One-Minute Videos Generated by Loong Conditioned on Texts. Loong
is an autoregressive LLM-based model that can generate minute-level long videos with
consistent appearance, large motion dynamics, and natural scene transitions.

Abstract

It is desirable but challenging to generate content-rich long videos in the scale
of minutes. Autoregressive large language models (LLMs) have achieved great
success in generating coherent and long sequences of tokens in the domain of natu-
ral language processing, while the exploration of autoregressive LLMs for video
generation is limited to generating short videos of several seconds. In this work, we
conduct a deep analysis of the challenges that prevent autoregressive LLM-based
video generators from generating long videos. Based on the observations and
analysis, we propose Loong, a new autoregressive LLM-based video generator that
can generate minute-long videos. Specifically, we model the text tokens and video
tokens as a unified sequence for autoregressive LLMs and train the model from
scratch. We propose progressive short-to-long training with a loss re-weighting
scheme to mitigate the loss imbalance problem for long video training. We further
investigate inference strategies, including video token re-encoding and sampling
strategies, to diminish error accumulation during inference. Our proposed Loong
can be trained on 10-second videos and be extended to generate minute-level long
videos conditioned on text prompts, as demonstrated by the results. More samples
are available at: https://yuqingwang1029.github.io/Loong-video.
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1 Introduction

Over the past few years, video generation models, including diffusion-based ones [1–8] and language
model based approaches [9, 10], have shown impressive results in generating short videos of a
few seconds. To capture more comprehensive content, it is desirable to generate long videos
with consistent appearance, larger motion dynamics, and natural scene transitions. Despite recent
works [11–13] to generate long videos with diffusion-based video generators, generating content-rich
long videos on the scale of minutes remains largely underexplored and challenging.

Autoregressive large language models (LLMs) have shown remarkable success in generating long
and coherent text sequences [14–19], demonstrating their ability to capture long-range dependencies
and complex temporal patterns. Inspired by the success of autoregressive LLMs in other modalities
and their flexibility in unifying various modalities and tasks, recent works [9, 10] have explored
autoregressive language models for video generation. Those approaches map videos into discrete
tokens and use text tokens as conditioning to generate the video tokens by next-token prediction
with decoder-only transformers. State-of-the-art autoregressive LLM-based video generator [10] can
generate high-quality 2-second short video clips and iteratively extend to 10-second coherent videos.

Despite demonstrating the ability of long sequence generation in NLP and being explored for short
video generation, the potential of LLMs to generate minute-level, content-rich, and dynamic videos
remains unexplored. In natural language processing, LLMs can be trained on long sequences
and extended beyond the training length. However, we empirically observe that either training
autoregressive LLMs on long video sequences or extending short video generators to generate long
videos leads to unsatisfactory performance for minute-level video generation. A question arises:
What restricts the capability of autoregressive language models for generating long videos?

We hypothesize that the main obstacles are the large redundancy and strong inter-frame dependency
among video tokens. The video tokens of the current frame depend heavily on the tokens of the
previous frames, leading to two challenges for long video generation: (1) Imbalanced loss during
training. When trained with the next-token prediction objective, predicting early-frame tokens from
text prompts is much more difficult than predicting late-frame tokens based on the ground-truth
tokens of previous frames. The imbalanced difficulty levels of tokens lead to imbalanced loss during
training. The issue becomes more severe as the video length increases, where the accumulated
loss of many easy tokens largely surpasses the loss of a few difficult tokens and dominates the
gradient direction. (2) Error accumulation during inference. While the model predicts the next
token conditioned on previous ground-truth tokens during training, it has to predict the next token
conditioned on previous predicted tokens during inference. This training-inference discrepancy leads
to error accumulation during inference. Because of the strong inter-frame dependency among video
tokens and the large number of video tokens, such error accumulation is non-negligible and causes
visual quality degradation for long video inference.

In this work, we propose Loong, aiming to unleash the power of autoregressive language models to
generate long videos in the scale of minutes. Our autoregressive LLM-based video generator consists
of two components: a video tokenizer that compresses videos into sequences of discrete video tokens,
and an autoregressive LLM that models the unified sequence of text tokens followed by video tokens
through next-token prediction. To mitigate the problem of imbalanced loss for long video training,
we introduce a progressive short-to-long training strategy that gradually increases the training video
length. We further propose loss re-weighting for early frames to prevent the model from being
dominated by many easy tokens in the late frames. Moreover, we investigate inference strategies,
including the video token re-encoding and sampling strategy, to further extend the video length by
iteratively generating the next frames conditioned on previously generated frames. In order to enable
training and inference with longer videos, we adopt low-resolution videos for the LLM-based video
generator, and leverage a super-resolution and refinement module to further enhance the resolution
and fine-grained details of the generated long videos.

In summary, we propose Loong, a novel autoregressive LLM-based video generator that can generate
content-rich, coherent, and dynamic long videos in the scale of minutes. Based on our observations
and analysis of the issues that limit the power of LLMs for long video generation, we propose
progressive short-to-long training with a loss weighting scheme to enable model training on 10-
second videos. We further investigate inference strategies to extend the 10-second videos to minute-
level videos by autoregressive generation strategies designed for long video inference. Our model
demonstrates its ability in generating minute-level long videos through extensive experiments.
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2 Related Work

Video generation. The mainstream video generation methods can be categorized into GAN-based [20–
22], Diffusion-based [23, 7, 24–26, 3, 6, 27, 28, 13] and language-model-based [29, 10, 30, 31].
Among them, Diffusion-based methods have recently gained the most popularity. Most Diffusion-
based methods encode videos into latent space [32] for efficient training and utilize progressive
inference strategies [25, 33, 34] to generate videos with high spatial-temporal resolution. With a new
scalable Diffusion Transformer [35] architecture, Sora [13] has further pushed video generation to a
new stage. Different from diffusion-based video generation methods, our work aims to explore and
unleash the potentiality of language models for long video generation, as their ability for modeling
long sequence and scaling up have been proved in NLP.

Image and video generation with language models. Language models have recently been explored
for visual generation, with most works focusing on tokenizing visual data into a form that can be
processed by these models. Quantization techniques like VQ-VAE [36, 37] are commonly used, and
transformers are employed to model the resulting tokens. For image generation, autoregressive or
masked transformers are prevalent [38–44]. In short video generation, image-level or video-level
tokenizers are utilized, incorporating spatial-temporal compression and causal structures. Trans-
formers model the spatial-temporal relationships, with various techniques proposed, such as sparse
attention, spatial-temporal attention, large-scale pre-training, and improved tokenization [9, 45–48].
VideoPoet [10] stands out as a multimodal model using bidirectional attention for conditioning, while
our method aligns better with the language model paradigm by using unidirectional attention for both
text and video. However, these short video generation models focus on producing 1-5 second clips,
limiting their ability to capture complex events and maintain consistency over longer durations.

Long video generation. Previous works have explored long video generation using various ap-
proaches. LongVideoGAN [49], NUWA-XL [50], and GAIA-1 [51] utilized GAN-based methods,
diffusion-over-diffusion techniques, or world models but were limited to specific domains. More
recently, video diffusion models have been extended for longer video generation. FreeNoise [52]
and Gen-L [11] focus on sampling noise vectors and aggregating overlapping short video segments,
respectively, while StreamingT2V [12] proposes an autoregressive approach with memory blocks
for consistency and appearance preservation. In the language model domain, Phenaki [30] generates
variable-length videos using a masked video transformer. Despite these advancements, generating
long videos with rich motion dynamics, consistent appearance, and high visual quality in the open
domain remains a challenge.

3 Method

We present Loong, an autoregressive LLM-based model for generating long videos in the scale of
minutes. We introduce the overall framework, composed of the video tokenizer and the LLM-based
video generator, in Sec. 3.1. We analyze the problem with long video training and propose the
progressive short-to-long training with loss re-weighting scheme, enabling training on 10-second
videos, in Sec. 3.2. We further investigate inference strategies to extend the generated video length to
the minute level and post-processing techniques to enhance the spatial resolution of generated videos
in Sec. 3.3.

3.1 Overall Framework

Inspired by previous work in LLM-based image generation and video generation models [38, 41, 48,
31, 10], Loong is designed with two components: a video tokenizer that efficiently compresses the
videos into discrete tokens, and a decoder-only transformer that autoregressively predicts next video
tokens based on text tokens.

Video Tokenizer. In order to enable spatial-temporal joint compression and joint modeling of images
and videos, we leverage causal 3D CNN architecture for the tokenizer, inspired by MAGViT2 [31].
The encoded spatial-temporal features are quantized into discrete tokens with Clustering Vector
Quantization (CVQ) [53], an improved version of VQGAN [37] designed to enhance codebook
utilization. To extend the temporal coverage of videos within a limited number of tokens, we work
with low-resolution videos and leave super-resolution for the post-processing in Sec. 3.3. The
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Autoregressive Large Language Model

Video Tokenizer 

video frames

text

Text Tokenizer 

stage-1

stage-2

stage-3

Text token

Progressive training

Video token
(first frame)
Video token
(2-17 frame)

Video token
(18-65 frame)

Figure 2: Overall Framework and the Training process of Loong . Given the input text tokens,
the model predict video tokens autoregressively. All the text and video information is formulated
into a unidirectional discrete token sequence, where the model predicts the next token based on the
previous tokens. Video Tokenizer is utlized to convert video frames into discrete tokens. We use
different color to represent first frame, short clip and long clip separately. We follow a progressive
training pipeline to train on long videos. We omit the special tokens for simplicity.

tokenizer can compress a 10-second video (65 frames, 128× 128 resolution for each frame) into a
sequence of 17× 16× 16 discrete tokens with a vocabulary size of 8192.

Autoregressive LLM-based Video Generation. With the video frames converted into discrete
tokens, we can now model the text and video tokens as a unified sequence and formulate text-to-video
generation as autoregressively predicting video tokens conditioned on the text tokens with decoder-
only Transformers. The process is illustrated in Fig. 2. For simplicity, we omit the special separate
tokens in the following formulation. Let t = {t1, t2, . . . , tN} represent the sequence of text tokens,
where N is the number of text tokens. Similarly, let v = {v1, v2, . . . , vL} represent the sequence of
video tokens, where L is the number of video tokens. The autoregressive LLM models the unified
token sequence s = [t;v] and is trained with the next-token prediction loss for the video tokens.

L = −
L∑

i=1

log p(vi | v<i, t) (1)

where vi denotes the i-th token in the video sequence v, and v<i denotes all the video tokens
preceding vi.

Discussion. Different from VideoPoet [10], which encodes text with a pretrained T5 text encoder [54]
and applies bidirectional attention for the input condition tokens and causal attention for the video
tokens, our approach does not rely on a pretrained text encoder. Instead, we formulate the text
tokens and video tokens as a unified token sequence and apply causal attention to all tokens. Our
unified autoregressive modeling of text tokens and video tokens provides a simpler formulation that is
consistent with modern GPT-style LLMs [16]. This design may lead to potential benefits in extending
our model to multimodal LLMs that unify different modalities and different tasks for understanding
and generation.

3.2 Progressive Short-to-Long Training with Loss Re-weighting

Most video generation models are trained on short video clips, typically no more than 4 seconds,
which limits their ability to capture long-term dependencies and complex dynamics in longer videos.
To address this limitation, it is essential to train these models on videos with longer durations, enabling
them to learn and generate more coherent and contextually rich video content.

However, training directly on long videos leads to suboptimal performance, even when the model is
trained for a large number of iterations. We illustrate the loss curve of different frame ranges when
training on 65-frame videos (with 4,356 tokens, covering 10 seconds) in Fig. 3. We empirically
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observe that tokens from early frames (frames 1-17) have larger losses than those from later frames
(tokens from frames 50-65 have the smallest average loss). During training, the model learns
through next-token prediction, where it is much easier to predict tokens of later frames given the
previous ground-truth video and text tokens. In comparison, predicting early-frame tokens with little
visual cues from previous frames is more challenging. The imbalanced loss is a severe problem for
long-sequence training because the accumulated loss of the many easy-to-predict tokens from later
frames (18-65) surpasses the loss of the few difficult-to-predict tokens from early frames (1-17) and
dominates the gradient direction, leading to suboptimal visual quality in the generated videos.

Figure 3: Imbalanced Training Losses
When Training Directly on Long Videos.
The training loss for late frames (18-65) is
smaller than that of early frames (1-17), and
the loss for the first frame remains relatively
high, leading to suboptimal visual quality in
the early frames( despite the model being pre-
trained on text-to-image).

To mitigate the aforementioned challenge of imbal-
anced video token difficulties, we propose a pro-
gressive short-to-long training strategy with loss re-
weighting, demonstrated in the following.

Progressive short-to-long training. In order to allow
the model to first learn the text-conditioned appear-
ance and motion of short videos, and then smoothly
adjust to longer-range dependencies and more com-
plex motion patterns in longer videos, we factorize
training into three stages which gradually increases
the training video length, as illustrated in the Fig. 2:
(1) In stage-1, we pretrain the model with text-to-
image generation on a large dataset of static images,
which helps the model to establish a strong founda-
tion for modeling per-frame appearance and structure.
(2) In stage-2, we continue to train the model jointly
on images and short video clips of 17 frames, where
the model learns to capture short-term temporal de-
pendencies and motion patterns while preserving the
per-frame visual quality. (3) In stage-3, we increase
the number of video frames to 65, covering a tempo-
ral range of 10 seconds, and continue joint training.

Loss re-weighting for early frames. To further
strengthen the supervision of early frames and to
prevent the model from forgetting the stage-1 and stage-2 priors, we propose a loss re-weighting
scheme for stage-3. To be specific, we apply larger loss weights for the tokens of early frames, and
the overall weighted loss is formulated as

Lweighted = −(1 + λ)

K∑
i=1

log p(vi | v<i, t)−
L∑

i=K+1

log p(vi | v<i, t), (2)

where the first term denotes the loss for the K tokens corresponding to the early frames (the first 17
frames), and the second term denotes the loss for the L−K tokens corresponding to the later frames
(frames 18-65). λ is a positive value to strengthen the loss weight of early frames.

With the loss weighting and progressive training strategy, our model effectively mitigates the issues
of long video training. As the model is trained on a temporal range of 10 seconds, it can generate
videos of up to 10 seconds with improved temporal coherence and consistency while maintaining the
strong appearance and motion priors learned from the image and short video clips.

3.3 Inference Strategies for Extending Video Length and Resolution

Large language models are proven to be length-generalizable, so we expect the LLM-based video
generator trained on 10-second videos to be extended to generate longer videos autoregressively.
However, generalizing beyond the training video duration is non-trivial and may lead to error
accumulation and quality degradation. For instance, a one-minute video corresponds to approximately
26, 112 video tokens under our current settings, which is significantly longer than most text sequences
typically encountered in language modeling tasks. The considerable length and the large inter-
frame dependency among video tokens pose challenges for extending the LLM-based generator for
long video generation. In this subsection, we investigate inference strategies to generate minute-
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Autoregressive Large Language Model

<sot> t1 t2 t3 <eot><soi>

Video Tokenizer
Decoder

v1 v2 v3 v7 v8 v9

Video Tokenizer
Encoder

v7 v8 v9

Predicted Video Tokens

Re-encoded Video
Tokens as conditions

Decoded Video 
Frames

last n frames

v10 v11 v12 v13Predicted Video Tokens 

Input Text Tokens

Figure 4: Inference process of Loong . Given the input text, the model first predicts video tokens
(illustrated by v1-v9) for the first 10s. The tokens from the last n frames of this clip are then decoded
into video frames and re-encoded by the video tokenizer. These re-encoded tokens (v7-v9), along
with the text tokens, serve as conditions to predict the video tokens (v10-v13) for the next clip. This
iterative process of token prediction, partial decoding, and re-encoding enables extending videos
beyond the training duration while mitigating quality degradation. This process is repeated until the
generated video reaches the desired length.

level videos and post-processing methods like video super-resolution and refinement to generate
higher-quality videos.

Video token re-encoding. A natural way of extending videos beyond the training duration is
to iteratively generate the tokens of the next video clip, conditioned on the text prompts and the
previously generated tokens of the current video clip, exploiting the benefit of autoregressive language
models. However, this strategy leads to severe video quality degradation for video frames beyond
the training range. With further analysis, we find that this issue stems from the token misalignment
caused by the causal video tokenizer. To be specific, the tokens from the last n frames in a video clip
are derived based on the context of all previous frames, while the tokens from the first n frames in
a new video clip are derived without the context of the previous video clip. Therefore, generating
tokens for the new clip directly conditioned on previous tokens leads to distribution shift in the
input features for LLMs. To address this issue, we decode the LLM-generated video tokens to the
pixel-space videos and then re-encode the last n frames with the video tokenizer. The re-encoded
video tokens and the text tokens serve as the conditions to generate the tokens of the next video clip.
The inference process is illustrated in Fig. 4.

Sampling strategy. Decoding video tokens with autoregressive language models is prone to error
accumulation because of the autoregressive nature of the model and the strong inter-frame dependen-
cies of video tokens. Errors in predicting one token can propagate and influence the generation of
subsequent tokens, leading to a degradation in video quality as the length increases. To mitigate this
issue, we draw inspiration from the Top-k sampling strategy commonly used in NLP tasks. During
the token sampling process, we only sample from the Top-k most probable tokens, ensuring that the
generated tokens are of high quality. By focusing on the most likely tokens, we reduce the influence
of potential errors on subsequent token generation, effectively alleviating the error accumulation
problem. On the other hand, we also observe that too small values of k (k = 1 degrades to greedy
decoding) lead to almost static videos with little motion. To balance dynamic motion and error
accumulation, we choose k = 50 for our model.

Super-resolution and refinement. As introduced in Sec. 3.1, our video tokenizer and LLM-based
video generator operates on the low-resolution 128 × 128 videos. This design trades off spatial
resolution for longer video sequences during training and inference. We apply off-the-shelf super-
resolution and refinement models [55–58] on the LLM-genereated low-resolution videos. This
module serves as a post-processing to enhance the spatial resolution and fine-grained visual details of
videos, without affecting the main content and motion of the generated videos.

6



4 Experiments

4.1 Implementation Details

Model Architecture. Our video generation model follows the same architecture as LLaMA [18],
with the model size ranging from 700M to 7B parameters. We train the models from scratch, without
using any text-pretrained weights. The vocabulary consists of 32,000 tokens for text, 8,192 tokens for
video, and 10 special tokens, resulting in a total vocabulary size of 40,202. For the video tokenizer,
we attempt to reproduce the architecture of MAGVIT2 [31], which is a causal 3D CNN structure that
separately models the first frame of the video. The model compresses the spatial dimensions (width
and height) by a factor of 8 and the temporal dimension by a factor of 4. We utilize the Clustering
Vector Quantization (CVQ) [53] method for quantization, as it achieves a higher codebook usage
ratio compared to the original Vector Quantization (VQ)[37, 59] approach. The video tokenizer has a
total of 246M parameters.

Training. Our models are trained on 100M text-image pairs filtered from the combination of the
CC12M [60] and LAION-2B [61] datasets, as well as the WebVid-10M [62] video training set and
5.5M video clips filterd from HDVG [63]. The training process follows the progressive strategy
described in Sec. 3.2. We first pre-train the model on the combined image dataset for 200k iterations,
followed by joint training on images and 17-frame video clips from the combined video dataset for
another 200k iterations with a batch size of 512. We then jointly train on 65 frames (covering 10
seconds) for 100k iterations with a batch size of 256. The λ is set to 1.0 for the weighted loss of
Eq. (2). In each stage, we use AdamW optimizer with a base learning rate of 1.0e-4. The learning
rate is scheduled using a linear warmup for the first 10,000 iterations, followed by a cosine annealing
decay until reaching the maximum iteration count. For the training of the tokenizer, we also use a
progressive approach on the same dataset, increasing the video length from 1 to 17 to 65 frames while
maintaining a resolution of 128× 128, with a batch size of 64 and training for 400k iterations.

Inference. During inference, our model first generates the initial 65 frames based on the text prompt.
We then use the last 5 predicted frames as conditions for video extension. The classifier-free guidance
ratio is set to 7.5.

4.2 Ablation Study

In this section, we conduct ablation studies to evaluate the effectiveness of our main design choices.
Unless otherwise specified, we use the 3B model with an output spatial resolution of 128 × 128,
without any super-resolution and refinement module. To reduce computational cost, we train the
models for half the number of iterations compared to the full setting described in Sec. 4.1. Due to the
lack of a general long video generation benchmark, we build a custom one by selecting the top-1000
longest clips from the WebVid [62] validation set and slicing each to 27 seconds, the duration of the
shortest among them. We employ two commonly used video generation metrics on this benchmark:
Fréchet Video Distance (FVD)[64] and Video-Text Matching (VTM) score calculated by CLIP
(ViT-L/14)[65]. We use the text prompt sets from prior works [4, 6, 66, 3, 13] to generate videos for
visualization.

Model Scaling. Scalability is an important characteristic of LLMs. To study scaling behavior
of our model, we evaluate performance of the models with different sizes. Tab. 1 presents the
quantitative results of our models with 700M, 3B and 7B parameters using the same number of
iterations on the custom benchmark. We observe that larger models achieve better FVD and VTM
scores, demonstrating the scalability of model size for our approach.

Table 1: Model Size Scalability of
Loong . The performance improves
as the model size increases.

FVDI3D↓ VTMc↑

700M 633 21.5
3B 572 22.8
7B 432 24.1

Progressive Training with Loss Re-weighting. To validate the
effectiveness of our proposed training strategy, we compare the
models trained with and without our proposed strategies. Both
models are pre-trained on images and then trained on videos.
Fig. 5 (top row) shows the generated frames of model trained
by a single training stage without our proposed strategy. It is
clear that the videos generated by the directly-trained models
suffer from significant object appearance degradation, losing
much of the structure information. In contrast, videos generated
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A bear wearing sunglasses and hosting a talk show Two pandas discussing an academic paper

Figure 5: Effectiveness of the Progressive Training with Loss Re-weighting. We sample 4 frames
from the 17 earlier frames of the video generation results, to show the performance of models trained
with or without our training strategy. The top row shows results of the model trained directly on long
video, the appearance of objects degrades largely. The bottom row shows the results model trained
with our proposed training approach, the appearance preserves effectively.
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Teddy bear walking down 5th Avenue front view beautiful sunset

Figure 6: Effectiveness of Token Re-encoding during Video Extension. For each sample, the left
two images show the results before the extension process, and the right two images show the results
after extension. Without token re-encoding, the extension fails to generate visually consistent content.

by the model trained with the proposed approach effectively
preserve the appearance details.
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Figure 7: Study on Sampling Strategies.
Results of three different inference sampling
strategies. Greedy decoding produces stable
results but lacks diversity between frames.
Multinomial sampling generates more dy-
namic and diverse content but with lower qual-
ity. Top-k sampling achieves a balance be-
tween stability and diversity. k is set to 50 in
this experiment.

Video Token Re-encoding. Fig. 6 illustrates the
importance of token re-encoding during the video
extension process. Without proper token re-encoding,
the model fails to maintain visual consistency when
extending the video, resulting in abrupt changes in
appearance and content. In contrast, by employing
our token re-encoding technique, the extended frames
seamlessly continue the video with coherent visual
style and content.

Sampling Strategy for Inference. We compare
three sampling strategies when predicting each to-
ken: greedy decoding (k = 1), top-k sampling, and
multinomial sampling from the whole vocabulary (k
equals video token vocabulary size). As shown in
Fig. 7, greedy decoding generates stable results but
lacks diversity, while multinomial sampling produces
more dynamic content at the cost of quality. Top-k
sampling (k = 50) balances stability and diversity.
A smaller k value prioritizes stability, resulting in
less diverse motion, while a larger k allows for more
dynamic and varied content at the risk of introducing
instability. In the process of video extension, select-
ing an appropriate k value is crucial for maintaining
consistency and mitigating error accumulation over
longer sequences.
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4.3 Quantitative Results

Table 2: Comparison of zero-shot text-to-short-video generation on the MSRVTT benchmark

Model CogVideo[47] MagicVideo[7] ModelScopeT2V[67] Show-1[28] VideoPoet[10] Loong

CLIPSIM 0.2631 - 0.2930 0.3072 0.3049 0.2903
FVD 1294 998 550 538 213 274

Zero-shot Text to Short Video Generation. Although our approach is not specifically designed
for short video generation, we compare our performance on the MSR-VTT dataset [68] using CLIP
similarity (CLIPSIM) [46] and FVD [64] metrics, evaluated on 16 frames. As shown in Tab. 2,
our FVD score is the second-best, only slightly behind VideoPoet [10] (pretrained). However, our
CLIPSIM score is lower compared to some other methods, which can be attributed to the fact that our
approach is trained from scratch without utilizing any pre-trained text weights. In contrast, methods
with higher CLIPSIM scores, such as VideoPoet, leverage pre-trained language models like T5 [54]
for text encoding, while diffusion-based methods often employ CLIP [65] text embeddings, which
are already trained on the CLIP dataset. Despite not using pre-trained text models, our method
still achieves competitive performance, demonstrating its effectiveness in capturing the semantic
relationship between text and video.

83%12.5%

19% 65%

Video Consistency

Video Text Matching

Streaming T2V (on SVD) preferred No Preference Loong Preferred

0% 100%

4.5%

16%

20% 40% 60% 80%

Figure 8: User Study on 1-min
videos. Comparison with the
StreamingT2V on SVD model. Our
model is more preferred by human
raters in terms of both visual text
match and content consistency.

User Study on Long Video Generation. We conduct a user
study to compare our method with StreamingT2V [12], a state-
of-the-art open-sourced long video generation method built on
Stable Video Diffusion [26]. We use 50 text prompts from
prior works [4, 6, 66, 3] to generate 1-min videos. In the
study, users are presented with 2 videos generated by the two
models, conditioned on the same text. They are asked to choose
the preferred video based on visual text matching and content
consistency. The videos are presented randomly, and users are
not informed about the models. We collect 440 responses. As
shown in Fig. 8, our model outperforms StreamingT2V in both
content consistency (win rate 0.83 vs. 0.125) and visual text
matching (win rate 0.65 vs. 0.19).

4.4 Visualization Results

Fig. 9 illustrates the video frames generated by our model under various text-to-video generation
scenarios.

Text to Short Video. In the top row of the figure, we show sample of short video generation. As
shown in the figure, our approach has the capability to generate short videos with rich details and
high fidelity while maintaining strong alignment with the given text descriptions.

Text to Long Video. The second row shows frames sampled from a long video generated by our
model, conditioned on a concise text description. This sample demonstrate that our approach can
generate long videos containing diverse content and larger dynamic changes compared to short video
generation, while maintaining semantic alignment with the given text.

Dense Text to Long Video. Although not explicitly trained on dense captions, our model can
effectively adapt to dense text video generation in a zero-shot manner. As illustrated in the last row
of Fig. 9, the generated long video depicts rich content that corresponds to the detailed descriptions,
including multiple characters, weather, scenery, and building information. However, we observe that
the generated images appear slightly blurry. We attribute this to the low resolution of our transformer’s
output, which may result in blurriness when generating highly detailed content.

In Fig. 10, we also present a visualization of the videos reconstructed by our tokenizer. We use videos
selected from the WebVid valiation dataset [62] (not used for training). The original video frames are
in the top row of each group, and the reconstructed videos of our tokenizer are shown in the bottom
row. Despite achieving a high compression ratio of approximately 256 (8 × 8 × 4), our tokenizer
effectively preserves the fine-grained details of the original frames, and also maintains natural and
coherent motion along the temporal dimension.
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Text to Short Video: A dog listening to music with earphones

Text to Long Video: The story of a robot’s life in a cyberpunk setting

Dense Text to Long Video: Beautiful, snowy Tokyo city is bustling. The camera moves through the bustling city street, 
following several people enjoying the beautiful snowy weather and shopping at nearby stalls. Gorgeous sakura petals are 
flying through the wind along with snowflakes.


Figure 9: Generated Videos from Loong across Various Text-to-video Scenarios. Our model
demonstrates diversity and quality across various text-to-video tasks, including short video, long
video, and dense text-to-long video generation. The results exhibit rich details, smooth transitions,
and strong semantic alignment with input descriptions.

Figure 10: Reconstructed Videos by Our Tokenizer. Each group represents a distinct video
sequence, with the top row displaying the original frames and the bottom row presenting the corre-
sponding reconstructions. Despite a high compression ratio of 256, our tokenizer effectively preserves
fine details and natural, coherent motion in the reconstructed videos.
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5 Conclusion and Discussions

In conclusion, we propose Loong, an autoregressive LLM-based video generation model that can
generate minute-level long videos with consistent appearance, large motion dynamics, and natural
scene transitions. We choose to model the text tokens and video tokens in a unified sequence, and
overcome the challenges of long video training with the progressive short-to-long training scheme
and loss re-weighting. Our experiments demonstrate the effectiveness of our approach in generating
minute-level long videos. We hope our work can motivate research on long video generation and
multimodal modeling in the future.

Border impact. The model can be deployed to assist visual artists and film producers on video
creation, enhancing their efficiency. It can also be deployed for entertainment purposes. On the
other hand, it may be used for generating fake content and delivering misleading information. The
community should be aware of the potential social impacts. It is necessary to develop techniques to
detect and watermark the videos generated by machine learning models.
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