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ABSTRACT

Optical fibers constitute an attractive platform for the realization of nonlinear and quantum optics
processes. Here we show, through theoretical considerations, how polarization effects of both third-
order parametric down-conversion and four-wave-mixing in optical fibers may be exploited to enhance
detection schemes. We apply our general framework specifically to the case of tapered fibers for
photon triplet generation, a long-standing goal within quantum optics, and obtain explicit expectation
values for its efficiency. A quantitative investigation of four-wave-mixing in a microstructured
solid-core fiber provides significant consequences for the role of polarization in experimental design.

Keywords Photon triplet generation · Microstructured optical fibers · Fiber-based quantum sources

1 Introduction

Over recent decades, we have been witness to not only consequential advancements in both the production and char-
acterization of microstructured optical fibers [1, 2] but also in the area of quantum communication, which frequently
builds on accessible sources of entangled photons [3]. Specialty fibers may be employed for the generation of photon
pairs or even photon triplets through nonlinear interactions [4, 5]. Several qualities make them a compelling tool for
these applications, including the tight confinement of the interacting fields and long interaction lengths [6]. Over the
last decades, they have been developed into an incredibly versatile range of various shapes and forms, for example
photonic-crystal fibers (PCF), gas- or liquid- filled hollow-core fibers (HCF), twisted fibers, as well as microstructured
nano- or tapered fibers [7, 8, 9, 10]. They can serve as implementations of photon-pair generation or twin-beam
generation [11] through the process of four-wave-mixing (FWM) and have been proposed as a possible technique to
enable photon triplet generation through third-order parametric down-conversion (TOPDC) [12].
Both FWM and TOPDC rely on the third-order nonlinearity of the interaction medium and require fulfillment of the
respective phase matching condition. While building wavelength tunable fiber-based photon-pair sources has been
achieved, triplet generation through TOPDC in the visible domain remains a long-standing goal within quantum optics.
The generation of nonclassical states of light, especially higher-order entanglement, is expected to have far-reaching im-
plications for tests of fundamental quantum mechanics [13], quantum communication [14, 15] and quantum computing
[16]. Three-photon state generation has been successfully implemented in the microwave domain [17]. In the visible
region, there have been advances in the direction of triplet generation using varying experimental setups, for example
depending on cascaded down-conversion processes in nonlinear crystals [18, 19], showing cubic optical parametric
down-conversion in a crystal [20], building a triplet source on the basis of quantum dot molecules [21], designing
integrated waveguides [22] or hybrid PCFs [23] optimized for TOSPDC.
A promising platform for an implementation of direct TOSPDC is given by tapered optical fibers [24, 12]. The
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Exploring the role of polarization in fiber-based quantum sources

experimental proposal assumes a standard silica fiber that is tapered down to an outer diameter of just 790.36 nm and
pumped by a narrowband laser at 532 nm. Intermodal phase matching is then expected between the higher-order HE12

pump mode and the fundamental HE11 signal mode at 1596 nm. An adiabatic taper transition is required in order
to keep the higher-order pump mode throughout the fiber waist. An experimental realization has to this date been
prohibited by the extremely low conversion efficiency.
The strength of nonlinear interactions in optical fibers is commonly described by an effective area Aeff, related to the
modal overlap of interacting fields [25] and can be derived from overlap integrals[26]. Typically, descriptions involve
only a single linear polarization. However, to successfully implement systems that use optical fibers to give rise to
nonlinear and quantum processes such as FWM and TOPDC, it is unquestionably valuable to be able to theoretically
describe all important aspects, particularly including different polarization states. This can in turn lead to the ability to
optimize experiments and detection settings. Here we present an approach that we have developed in the context of
triplet generation in tapered optical fibers. We will show that it can similarly be used to explain effects that pertain to
seeded TOPDC in tapered and FWM in other types of specialty fibers.
We first establish a quantization procedure specifically for the situation of optical fiber modes and apply these expres-
sions to derive polarization-dependent rates of triplet generation. Subsequently, we discuss consequences for optimized
detection systems and seeded triplet generation. We conclude by carrying out a quantitative analysis of polarization
effects in the FWM case, coinciding with prior studies of classical models of pulse propagation and supercontinuum
generation in optical fibers based on the nonlinear Schrödinger equation [27].

2 Quantization of the electromagnetic field in optical fibers

The derivation of a theoretical triplet rate in optical fibers necessitates expressions for quantized optical fiber modes
involved in the nonlinear interaction. To that end, we start off with Maxwell’s equations and follow a similar
quantization procedure for fields in inhomegeneous dielectrics as presented by Milonni [28]. Using the gauge fixing
Φ = 0, ∇ · [ϵ(r, ω)A] = 0 for the electric scalar potential Φ and the magnetic vector potential A, where ϵ is the
generally position- and frequency-dependent relative permittivity, a generalization of the Coulomb gauge, the classical
vector potential is a solution to the equation of motion

ϵ(r, ω)
c2

∂2A
∂t2

+∇× (∇× A) = 0, (1)

with t, c denoting time and vacuum speed of light, and can be expanded in a set of spatial vectorial eigenmodes fξ(r),

A(r, t) =
∑

ξ

αξ(t)fξ(r) + α∗
ξ(t)f

∗
ξ(r), (2)

determined by the solutions of the classical Maxwell equations, where the expansion coefficients αξ(t) =

αξ(t0)e
−iωξ(t−t0), α∗

ξ(t) = α∗
ξ(t0)e

iωξ(t−t0), for some initial time t0, oscillate sinusoidally in time and the subscript ξ
runs over the possible solutions of

−
ϵ(r)ω2

ξ

c2
fξ +∇× (∇× fξ) = 0. (3)

Since Φ = 0, the expansion gives rise to the physical electric and magnetic fields as

E(r, t) = −∇Φ− ∂A
∂t

=
∑

ξ

iωξαξ(t)fξ(r)− iωξα
∗
ξ(t)f

∗
ξ(r),

B(r, t) = ∇× A =
∑

ξ

αξ(t)(∇× fξ(r)) + α∗
ξ(t)(∇× f∗ξ(r)).

(4)

Let us now consider a single mode, A = αf+α∗f∗ . The classical field energy E is dependent on the material dispersion
properties (for a derivation of this expression see suppl. material (SM), eq. S8) reads

E = 2ω2|α2|
∫

V

d3r

[
d
dω (ϵω) + ϵ

2
ϵ0|f|2

]
(5)

and we choose the normalization ∫

V

d3r

[
d
dω (ϵω) + ϵ

2
ϵ0|f|2

]
= 1. (6)

The electromagnetic field energy is equated to the Hamiltonian of a quantum Harmonic Oscillator,HHO = 1
2 (p

2+ω2q2),
by writing the canonically conjugate position and momentum variables as q(t) = i(α(t) − α∗(t)), p(t) = ω(α(t) +
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α∗(t)), obeying the Hamiltonian equations of motion. We now replace the classical variables by their quantum
counterparts, α(t) → Câ(t), α∗(t) → C∗â†(t), with the canonical commutation relations [âξ, â

†
ξ′ ] = δξξ′ . From

[q, p] = iℏ it follows that the constant Cξ =
√

ℏ
2ωξ

. Hence,

Â(r, t) =
∑

ξ

√
ℏ

2ωξ

[
âξ(t)fξ(r) + â†ξ(t)f

∗
ξ(r)

]
,

Ê(r, t) = i
∑

ξ

√
ℏωξ

2

[
âξ(t)fξ(r)− â†ξ(t)f

∗
ξ(r)

]
,

(7)

where the first terms correspond to the positive and the second terms to the negative frequency components respectively.
In the present case of optical fibers, the eigenmodes f are related to the mode field components as will be detailed below.

3 The rate of triplet generation

Adopting the expressions or electric field operators in optical fibers, in this section, we derive the triplet generation rate
in fibers. To this end, we assume low conversion efficiency so that the rate of triplet rate per signal modes configuration
is given by Fermi’s Golden Rule [29],

Γtriplet =
2π

ℏ2
δ(∆ω) |⟨α(Np − 1), 1, 1, 1|ĤI |α(Np), 0, 0, 0⟩|2, (8)

where Np is the mean pump photon number and ĤI is the interaction Hamiltonian,

ĤI = −ϵ0 · 4 · 3! · χ(3)
ijkl

∫

VI

d3r Ê(+)
p,i Ê

(−)
s1,j

Ê
(−)
s2,k

Ê
(−)
s3,l

+ h.c.. (9)

χ(3) is the third-order nonlinear susceptibility tensor. Here we assume only a weak dependency on the signal frequencies,
i.e. χ(3) ≡ χ(3)(ωp;ωs, ωs, ωs), and we use Einstein’s summation convention to sum over the indices i, j, k, l = x, y, z
or i, j, k, l = r, ϕ, z in cylindrical coordinates. VI denotes the interaction volume of a fiber of length L, e.g. the fused
silica core in case of a tapered fiber. The initial and final states are ψi = |α(Np), 0, 0, 0⟩ and ψf = |α(Np − 1), 1, 1, 1⟩,
where |α(N)⟩ is the coherent pump state with a mean photon number N . The total rate of triplet generation is obtained
by summation over all signal mode configurations of the degrees of freedom, including polarization,

Rtriplet =
∑

ξs1

∑

ξs2

∑

ξs3

2π

ℏ2
δ(∆ω) |⟨ĤI⟩|2. (10)

Considering the quantized electric field of just a single fiber mode and polarization, a one-to-one relationship between the
labels ξ and propagation constants β can be established. The summation is hence written as

∑
ξ →∑

σ
L
2π

∫
dβ, since

each propagation constant β covers a phase-space volume of 2π
L . Here, σ denotes one of two orthogonal polarization

states. Therefore,

Rtriplet =
∑

σs1
,σs2

,σs3

(
L

2π

)3 ∫∫∫
dβs1dβs2dβs3

2π

ℏ2
δ(∆ω) |⟨ĤI⟩|2

=
∑

σs1 ,σs2 ,σs3

(
L

2π

)3 ∫∫∫
dωs1dωs2dωs3

dβ

dω

∣∣∣∣
ωs1

dβ

dω

∣∣∣∣
ωs2

dβ

dω

∣∣∣∣
ωs3

2π

ℏ2
δ(∆ω) |⟨ĤI⟩|2

=
∑

σs1
,σs2

,σs3

(
L

2π

)3 ∫∫
dωs1dωs2

[
dβ

dω

∣∣∣∣
ωs1

dβ

dω

∣∣∣∣
ωs2

dβ

dω

∣∣∣∣
ωs3

2π

ℏ2
|⟨ĤI⟩|2

]∣∣∣∣∣
∆ω=0

(11)

and a finite detection bandwidth can be taken into account by adjusting the integration limits accordingly. Separating the
integrals in the expression for ĤI (eq. 9) into longitudinal integration over the fiber length L and transversal integration
over the fiber cross-section AI (see SM, eq. S9), ĤI evaluates to

ĤI = 24χ
(3)
ijklϵ0

√
ℏωp

2

√
ℏωs1

2

√
ℏωs2

2

√
ℏωs3

2
apa

†
s1a

†
s2a

†
s3

1

L2

1√
MpMs1Ms2Ms3

×
∫

L

dzei(βp−βs1
−βs2

−βs3
)z

∫

AI

dxdy Iijkl(x, y) + h.c..

(12)

3
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Here we have used the solutions e(x, y) for electromagnetic fields of modes propagating in cylindrical step-index fibers
as given in [30], for which e(x, y)eiβz are solutions to the wave equation (eq. 3) and introduced

f =
1√
LM

eiβz e,

M =

∫

A∞

dxdy
d
dω (ϵω) + ϵ

2
ϵ0 e(x, y) · e∗(x, y),

1 =

∫

V

d3r

[
d
dω (ϵω) + ϵ

2
ϵ0|f|2

]

Iijkl(x, y) := ep,i(x, y)e
∗
s1,j(x, y)e

∗
s2,k(x, y)e

∗
s3,l(x, y).

(13)

Continuing with the evaluation of the triplet rate, we have

⟨α(Np − 1)|ap|α(Np)⟩ ≈
√
Np (14)

in the limit of large pump photon numbers Np (see SM, eq. S10) and ⟨1, 1, 1|â†s1 â†s2 â†s3 |0, 0, 0⟩ = 1, so that

|⟨ĤI⟩|2 = 242Npϵ
2
0

ℏ4ωpωs1ωs2ωs3

24
1

L4

1

MpMs1Ms2Ms3

×
∣∣∣∣
∫

L

dzei(βp−βs1−βs2−βs3 )z

∣∣∣∣
2 ∣∣∣∣χ

(3)
ijkl

∫

AI

dxdy Iijkl(x, y)
∣∣∣∣
2

.

(15)

Furthermore, we define the mode overlap as

O =

∣∣∣∣χ̂
(3)
ijkl

∫

AI

dxdy Iijkl(x, y)
∣∣∣∣
2

, (16)

where χ̂(3)
ijkl is the normalized third-order nonlinear susceptibility, χ̂(3)

ijkl := 3χ
(3)
ijkl/χ

(3)
xxxx. The phase mismatch factor

with wavevector mismatch ∆β := βp − βs1 − βs2 − βs3 evaluates to
∣∣∣∣
∫

L

dz e−i(βp−βs1
−βs2

−βs3
)z

∣∣∣∣
2

= L2sinc2
(
∆βL

2

)
. (17)

Thus,

|⟨ĤI⟩|2 =
36Np(χ

(3)
xxxx/3)2ϵ20ℏ4ωpωs1ωs2ωs3

L2MpMs1Ms2Ms3

sinc2
(
∆βL

2

)
O. (18)

Finally, the triplet generation rate becomes

Rtriplet =
∑

σs1
,σs2

,σs3

PpL
2np(χ

(3)
xxxx)2ϵ20ℏ

π2c

×
∫∫

dωs1dωs2

[
ωs1ωs2ωs3

MpMs1Ms2Ms3

dβ

dω

∣∣∣∣
ωs1

dβ

dω

∣∣∣∣
ωs2

dβ

dω

∣∣∣∣
ωs3

sinc2
(
∆βL

2

)
O
]∣∣∣∣∣

∆ω=0

.

(19)

Using this result, we are now able to calculate the expected triplet rate for an ideal fiber with the degenerate
phase-matching radius of 395.18 nm, a taper waist length of 4 cm and a pump power of 100 mW, assuming
χ
(3)
xxxx = 2.8 × 10−22m2/V2. Independent of the pump polarization state, we obtain a total triplet rate of 5.1 Hz.

Excitation of the pump mode can be achieved through a number of methods, e.g. by conversion of the fundamental
mode via long-period-gratings [31]. We can also draw a conclusion on the polarization state of the generated triplets, as
will be discussed in the following section.

3.1 Mode overlap and the role of polarization

While the fiber modes are not plane waves and can therefore not be ascribed a pure polarization state, the even and odd
fiber modes are primarily polarized in the two linear orthogonal x,y direction. In the following we will refer to these
fiber modes as linearly polarized (’x’,’y’) and their complex superpositions as circularly polarized (’L’,’R’). We first

4
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consider a linear pump polarization (e.g. x-polarization) and restrict the sum in eq. 19 to different signal polarization
configurations in the linear basis. We find that 75% of triplets are generated in the x-x-x polarization configuration
(configuration A), 25% in the indistinguishable x-y-y/y-x-y/y-y-x configurations (configuration B), and none in the
other configurations. In the case of a circularly polarized pump (e.g. L) and in the circular polarization basis, 100% of
triplets are generated in a configuration where one of the signal photons is right circularly polarized (R) and two of
the signal photons are left circularly polarized (L) (configuration C). Note that this is a form of angular momentum
conservation in the cylindrically symmetric tapered fiber as can be conjectured by Noether’s theorem.
To further understand the emergence of angular momentum conservation in our expression, we look into the de-
rived triplet rate in more detail, specifically into the mode overlap O and the mode overlap integrand Iijkl =
ep,ie

∗
s1,j

e∗s2,ke
∗
s3,l

. Firstly, we consider pump and signal photons in the circular polarization basis and assume an
L pump. In principle, one possible triplet polarization configuration would be L,L,L. In figure 1, we show several
components of the mode overlap integrand with indices in cylindrical coordinates. Evidently, each of these components

Figure 1: Real and imaginary parts of selected components of the mode overlap integrand Iijkl for the L→L,L,L con-
figuration. The colorbars indicate the magnitudes of Re[I(x, y)] and Im[I(x, y)] respectively. Integrating the Iijkl over
the interaction area and summation gives a zero mode overlap and thus a zero triplet rate. (a) Irrrr = ep,re

∗
s1,re

∗
s2,re

∗
s3,r,

(b) Iϕϕϕϕ = ep,ϕe
∗
s1,ϕ

e∗s2,ϕe
∗
s3,ϕ

, (c) Irrϕϕ = ep,re
∗
s1,re

∗
s2,ϕ

e∗s3,ϕ, (d) Iϕzϕz = ep,ϕe
∗
s1,ze

∗
s2,ϕ

e∗s3,z .

obeys a symmetry between positive and negative values for both the real and imaginary part so that integration over the
mode overlap integrand components results in 0. This is similarly true for the other components (see SM, Fig. S1, Fig.
S2). Therefore, in the L→L,L,L) configuration, the mode overlap and the triplet rate are 0. The same holds for the
L→L,R,R (and permutations of the right-hand-side, Fig. S3) and L→R,R,R configuration (Fig. S4), examples for which
are given in the SM - but remarkedly not for the L→L,L,R configuration, obeying angular momentum conservation (cf.
Fig. 2).

3.2 Optimization of the detection scheme

To detect triplets, three superconducting nanowire single-photon detectors can be used to measure photon coincidence
rates. The optical detection bandwidth is determined by choosing appropriate chromatic filters in the detection path
which also suppress the pump.
Generated photon triplets will lead to identical arrival times at the detectors and thus to a coincidence-rate signal.
However, the three triplet photons are not necessarily directed to different detectors. Furthermore, the detectors have a
finite timing uncertainty (on the order of 50 ps). We use a coincidence bin of approximately τ = 200 ps. Additionally,
they have a quantum efficiency ηq which is close to but smaller than 1.
The main contribution to accidental coincidences is fluorescence; the number of fluorescence photons is proportional to
the pump power and fluorescence is emitted into random directions and hence into fiber modes of random polarization.

5
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Figure 2: Real and imaginary parts of selected components of the mode overlap integrand Iijkl for the
L → L,L,R configuration. The colorbars indicate the magnitudes of Re[I(x, y)] and Im[I(x, y)] respec-
tively. This configuration obeys angular momentum conservation. The resulting mode overlap and thus triplet
rate are nonzero. (a) Irrrr = ep,re

∗
s1,re

∗
s2,re

∗
s3,r, (b) Iϕϕϕϕ = ep,ϕe

∗
s1,ϕ

e∗s2,ϕe
∗
s3,ϕ

, (c) Irrϕϕ = ep,re
∗
s1,re

∗
s2,ϕ

e∗s3,ϕ,
(d) Izzzz = ep,ze

∗
s1,ze

∗
s2,ze

∗
s3,z .

We aim for the highest coincidence-to-accidental ratio (CAR) [32], given by

CAR =
triplet coincidence detection rate

accidental coincidence detection rate
. (20)

The triplet coincidence detection rate is proportional to the triplet rate Rtriplet but depends on the probabilistic splitting
of the signal photons for a specific detection scheme, taking the quantum optical properties of dielectric beamsplitter
into account. The accidental coincidence rate due to fluorescence is

Racc =
1

τ
(RD1

fl τηq)(R
D2

fl τηq)(R
D3

fl τηq) = τ2η3qR
D1

fl RD2

fl RD3

fl , (21)

where RDi

fl denotes the effective fluorescence photon rates at detector i.

3.2.1 Linear pump polarization

The first detection scheme we want to consider is one where the pump is linearly (x-) polarized and only the x- polarized
triplet photons are detected (Fig. 3 (a): configuration L). For this purpose, we direct the IR signal onto a polarizing
beamsplitter (PBS) to filter out y- polarized photons. Subsequently, we then add a dielectric beamsplitter (BS) and a
50− 50 BS in one of the detection arms. To determine the optimal BS splitting ration, we need to consider that the
general quantum optical description of the state transformation via a lossless BS is given by a unitary operator UBS(θ),

6
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Figure 3: Possible detection schemes for concidence detection of photon triplets.
(a) Linear polarization configuration L (x→x,x,x) detection. The pump at 532 nm is linearly polarized. The signal IR
photons emerging from the fiber, comprising triplet photons and fluorescence (noise) are directed onto a PBS so that
only x-polarized photons remain in the detection path. Two additional BS split the triplet photons so that they can be
collected by three single-photon detectors D1, D2, D3. (b) Circular polarization configuration C (L→L,L,R) detection.
A circularly polarized beam serves as pump. The circularly polarized signal IR photons are first transformed to linear
polarization states via a QWP. A subsequent PBS separates the previously L-polarized from the R-polarized photons. A
BS separates the L-polarized photons so that they impinge on different detectors D2, D3.

|out⟩ = UBS(θ) |in⟩ [33]. The operator acts on an incoming three-photon state as

UBS(θ) |3, 0⟩in = UBS(θ)
1√
6

(
â†1

)3
|0, 0⟩in

=
1√
6

(
b̂†1 cos θ + ib̂†2 sin θ

)3
|0, 0⟩out

=
1√
6

[
cos3 θ

(
b̂†1

)3
+ 3i cos2 θ sin θ

(
b̂†1

)2
b̂†2

−3 cos θ sin2 θb̂†1

(
b̂†2

)2
− i sin3 θ

(
b̂†2

)3]
|0, 0⟩out

= cos3 θ |3, 0⟩out +
√
3i cos2 θ sin θ |2, 1⟩out

−
√
3 cos θ sin2 θ |1, 2⟩out − i sin3 θ |0, 3⟩out,

(22)

where â†1,2, b̂
†
1,2 are the photon creation operators of indistuingishable photons of the same polarization at the two

inputs and two outputs respectively. A necessary and sufficient condition for triplet coincidence detection is now a
two-photon state in the reflection arm, since this two-photon state will deterministically be split into one photon in each
arm after the 50− 50 BS as a result of the Hong-Ou-Mandel effect [34]. The maximum of the associated probability∣∣√3i cos2 θ sin θ

∣∣2 is obtained for sin2 θ = 1
3 and thus for a BS with splitting ratio 2 : 1.

In this configuration, a factor of 4
9 therefore accounts for probabilistic splitting of the triplet photons so that the triplet

coincidence detection rate becomes
Rcoinc.

triplet =
4

9
η3qR

L
triplet, (23)

where RL
triplet is the number of triplets per second in the linear configuration L (x→ x,x,x, cf. subsection 3.1).

At the same time, the effective fluorescence photon rates at each detector are equal for D1, D2, D3, RDi

fl = 1/6 Rfl
(i = 1, 2, 3). It follows that the CAR in this case is

CAR = 96 · 1

τ2R3
fl
RL

triplet. (24)

7
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3.2.2 Circular pump polarization

In case of circular pump polarization, 2 of the triplet photons will have the same handedness as the pump whereas one
has opposite handedness. Hence, with a combination of a quarter-wave-plate (QWP) and a PBS we can separate the
two circular polarizations and add a single 50 − 50 BS in the 2-photon arm (Fig. 3 (b): configuration C). The two
indistinguishable photons in the first arm are directed onto two different detectors,

Rcoinc.
triplet = η3qR

C
triplet, (25)

but RD1

fl = 1
2Rfl, RD2

fl = RD3

fl = 1
4Rfl. Using RL

triplet/R
C
triplet ≈ 1.33, the CAR in this case is

CAR = 42.7 · 1

τ2R3
fl
RL

triplet. (26)

Considering these scenarios, we can therefore conclude that the optimal configuration for the highest possible CAR
is to employ a linearly polarized pump beam combined with detection as in the first detection scheme (Fig. 3(a):
configuration L).

3.3 Waist radius fluctuations and detection bandwidth requirements

The fabrication of sub-micron tapered fibers with a nearly constant waist radius along the full tapered fiber length
is challenging. While the perfect phase-matching diameter can be tuned without changing the pump wavelength by
placement of the fiber in a pressure tunable gas cell [12, 35, 36], this cannot account for fluctuations of the waist radius
along 0 ≤ z ≤ L. In this section, we consider how these fluctuations affect the expected triplet generation rate. We

model these fluctuations as a waist radius r(z) varying along z and following a Gaussian distribution p(r) ∝ e
− (r−µr)2

2σ2
r

with a mean value µr and standard deviation σr, but do not take fluctuation-induced losses e.g. due to scattering into
other modes into account. We will determine which detection bandwidth is optimal in terms of detected coincidence
counts and CAR, assuming the first detection scheme (Fig. 3 (a)), effectively only collecting photons of the same
linear polarization as the pump. This leads to a rate of coincidence counts of Rcoinc =

4
9η

3
qR

L
triplet where RL

triplet is the
integrated triplet rate of configuration L, weighted according to the distribution p(r).
As expected, closer to the perfect phase matching waist radius (Fig. 4 (c) compared to 4 (a)) or with an increased

detection bandwidth B (white arrow in Fig. 4 (a)), more coincidences may be detected. For larger waist radius
fluctuations (σ = 2.0 nm), the bandwidth necessary to obtain the same coincidence detection rate also increases (Fig.
4 (d) compared to 4 (c)). However, large detection bandwidths are detrimental to the CAR, since the fluorescence
count rate scales linearly with the detection bandwidth B. Nevertheless, the count rates as calculated here suggest that
currently available detection techniques allow for demonstration of the photon triplet state with this setup.

4 Seeded TOPDC

We now turn to the case of seeded TOPDC as opposed to spontaneous TOPDC in a tapered fiber. Here, we can take
advantage of the fact that the triplet generation rate can be increased by several orders of magnitude with a weak seed
beam coupled to the tapered fiber in addition to the pump beam. More specifically, we again assume a pump beam at a
wavelength of 532 nm in the higher-order mode HE12 and add a seed beam at 1596 nm in the fundamental HE11 mode.
The interaction Hamiltonian is the same as for the unseeded case,

ĤI = −ϵ0 · 4 · 3 · 2! · χ(3)
ijkl

∫

VI

d3r Ê(+)
p,i Ê

(−)
s,j Ê

(−)
s1,k

Ê
(−)
s2,l

+ h.c.. (27)

The seed field is labeled by Ês, whereas the generated signal photons correspond to the fields Ês1 , Ês2 . The seeded
triplet generation rate reads

Rtriplet,seeded =
∑

ξs1

∑

ξs2

2π

ℏ2
δ(∆ω) |⟨ĤI⟩|2, (28)

where
⟨ĤI⟩ = ⟨α(Np − 1), α(Ns + 1), 1, 1|ĤI |α(Np), α(Ns), 0, 0⟩. (29)

Initially, both the pump and seed states are coherent states with mean photon numbers Np, Ns respectively. Since the
possible signal modes are closely spaced in β-space, the sum is transformed into an integral,

Rtriplet,seeded =
∑

σs1
,σs2

(
L

2π

)2 ∫
dωs1

[
dβ

dω

∣∣∣∣
ωs1

dβ

dω

∣∣∣∣
ωs2

2π

ℏ2
|⟨ĤI⟩|2

]∣∣∣∣∣
∆ω=0

. (30)
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Figure 4: Coincidence rates as obtained for an optical detection bandwidth determined by the detection wavelength limits
λmin, λmax for different Gaussian fiber radius fluctuation distributions centered around µr with standard deviation
σr. The dotted area marks the detection settings where the CAR<100. (a) µr = 395.1 nm, σr = 0.5 nm. The white
arrow illustrates the increasing coincidence rates as the detection bandwidth grows. (b) µr = 395.1 nm, σr = 2.0 nm.
(c) µr = 395.2 nm, σr = 0.5 nm (d) µr = 395.2 nm, σr = 2.0 nm

As discussed in section 3, the integration over the interaction volume in the interaction Hamiltonian can be
split up into a longitudinal and transversal component. Furthermore using ⟨α(Np − 1)|âp|α(Np)⟩ ≈

√
Np,

⟨α(Ns + 1)|â†s|α(Ns)⟩ ≈
√
Ns, ⟨1, 1|â†s1 â†s2 |0, 0⟩ = 1,

|⟨ĤI⟩|2 =
36NpNs(χ

(3)
xxxx/3)2ϵ20ℏ4ωpωsωs1ωs2

L2MpMsMs1Ms2

sinc2
(
∆βL

2

)
O. (31)

Note that the mode overlap O depends on the signal photon polarizations σs1 , σs2 . Therefore, the generation rate
becomes

Rtriplet,seeded =
2L2PpPsnpns(χ

(3)
xxxx)2ϵ20

πc2MpMs

×
∑

σs1
,σs2

∫
dωs1

[
ωs1ωs2

Ms1Ms2

dβ

dω

∣∣∣∣
ωs1

dβ

dω

∣∣∣∣
ωs2

sinc2
(
∆βL

2

)
O
]∣∣∣∣∣

∆ω=0

.

(32)

We obtain a total seeded triplet generation rate of over 450 000 Hz in the case of perfect phase matching, a taper waist
length of 4 cm, χ(3)

xxxx = 2.8× 10−22 mV, a pump power (x-polarization) of 100 mW and a seed beam (x-polarization)
of 40 mW in the higher-order HE12 mode. The polarization dependence of the mode overlap is exactly the same as for
the unseeded, spontaneous TOPDC case considered above so that polarization settings can be adapted according to the
experimental requirements. In terms of detection schemes, we note that not only a coincidence detection scheme can be
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used for state characterization. However, the details pertaining to these prospective methods are out of the scope of this
paper.

5 Four-Wave-Mixing

Besides an application to TOPDC, a general form of quantized fiber modes of different polarizations lends itself
to an analysis of FWM. Polarization effects of FWM or ultrashort pulse propagation in optical fibers have already
been theoretically explored for multiple decades [37, 38, 39, 40, 27]. A crucial result was the adherence to angular
momentum conservation [37, 39, 41, 27], which restricts the possible pump and signal/idler configurations in FWM.
Accurately addressing signal degradation due to Raman scattering in optical fibers, photon pair polarization correlations
have been theoretically investigated in [41]. Here, we employ the approach above to gain further quantitative insight
into the pure FWM efficiency.
Just as TOPDC, FWM is mediated by the third-order nonlinear susceptibility of the interaction medium. The interaction
Hamiltonian can be written as

ĤI = −ϵ0 · 4! · χ(3)
ijkl

∫

VI

d3r Ê(+)
p1,i

Ê
(+)
p2,j

Ê
(−)
s1,k

Ê
(−)
s2,l

+ h.c., (33)

with p1 = p2 = p in the degenerate FWM case. Because of the frequency dependence, χ(3) ≡ χ(3)(ωp1 , ωp2 ;ωs1 , ωs2)
is generally different from the tensor we previously considered in the context of triplet generation but obeys the same
relations between its components in isotropic media. To examine polarization effects in the quasi-CW case, here we
need to take the FWM mode overlap into account,

OFWM =

∣∣∣∣χ̂
(3)
ijkl

∫

AI

dxdy IFWM
ijkl (x, y)

∣∣∣∣
2

,

IFWM
ijkl (x, y) = ep1,i(x, y)ep2,j(x, y)e

∗
s1,k(x, y)e

∗
s2,l(x, y).

(34)

In the low-gain regime, the FWM efficiency is proportional to the mode overlap. Just as for TOPDC, there is negligible
signal generation as long as the phase-matching condition is not fulfilled. However, due to the usually large peak
intensities used in experiments, this phase-matching condition also contains an additional contribution due to the
intensity-dependent refractive index change (AC Kerr-effect), 2βpump = βsignal + βidler + 2γP . It can be realized in the
form of intramodal phase matching, for example in solid-core PCF [25, 42]. Solid-core PCF have been shown to provide
a bright source for generation of photon pairs [43]. Here, we consider a zero-dispersion-wavelength (ZDW) shifted fiber
that is modeled using COMSOL Multiphysics ® software with an inner silica diameter of 1.5 µm, surrounded by air
holes in a honeycomb pattern providing an air filling fraction of 70% as described in [42]. This fiber was experimentally
studied in both the normal and anomalous dispersion regime but in the context of tunable optical parametric generation.
The obtained ZDW for the simulated fiber is 725 nm. In the normal dispersion regime close to the ZDW, e.g. for a
pump wavelength of 722 nm and a power of 1.0 W, the gain is maximal for widely separated sidebands at 634.85 nm
and 836.88 nm, following from the phase matching condition.
Figure 5 (a) shows a relative comparison of the obtained mode overlaps for different pump, signal and idler polarizations,
directly related to the sideband gain. The electrical field distributions obtained from the simulations have been
normalized to equal total intensities, permitting a relative quantitative comparison. Indeed, for configurations that are
not angular momentum conserving, there is none or only neglectable gain. We want to emphasize this result since it
holds despite the considered PCF structure not perfectly obeying cylindrical symmetry.
In accordance with [39] and contrary to the case of TOPDC, the total gain is not independent of pump polarization
but significantly lower for a circularly polarized pump (III). The x,x→y,y configuration mode overlap (II) is almost
90% smaller than the one we obtain in the x,x→x,x configuration (I). In practice, as mentioned, a main degradation
source of the obtained correlation of generated pairs is spontaneous Raman scattering (spRS) [41]. The degenerate
pump setting requires co-polarization of the pump fields, so that spRS can only be sufficiently suppressed if the signal
and idler are cross-polarized to the pump (case II; not for cases I or III). While configuration I is therefore favorable in
the case of widely separated sidebands at hand, configuration II is beneficial for small detuning, a result matching the
detailed calculations involving spRS in [41].
On the other hand, the same PCF structure could potentially provide a source of frequency-degenerate photons at 722
nm when pumping at 634 nm and 836 nm, assuming a power of 500 mW at each of the pump frequencies. Then, the
pump beams need not be co-polarized. Again, the pair generation rate is linearly related to the mode overlap pertaining
to a specific set of polarizations. Fig. 5 (b) summarizes the results we obtain in this case. In case of large frequency
detuning and low spRS-induced correlation degradation, the linear polarization configuration IV proves advantageous
over the circular polarization configuration V. However, as pointed out in [41], if the pump and signal detuning is within
the Raman gain bandwidth, the circular polarization configuration VII is superior over VI because of a higher mode
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Figure 5: Mode overlap for FWM in the solid-core PCF described above, comparing different pump- and signal-
polarization configurations. (a) Linear and circular polarization for a degenerate pump at 722 nm in the normal
dispersion regime. Signal and idler can be generated via FWM at 634 nm and 836 nm. While FWM in the x,x→x,x
configuration is most efficient, pair generation is also expected to be non-negligible in both the x,x→y,y and L,L→L,L
configuration. Note that for circular polarizations, only angular momentum conserving FWM processes are allowed.
(b) Linear or circular pump polarization for two non-degenerate pump beams at 634 nm and 836 nm. Signal and idler
photon pairs of degenerate wavelength may be generated at 722 nm. While the x,x→x,x configuration exhibits the
highest mode overlap and therefore nonlinear gain, photon pairs can also be expected in the x,x→y,y, the x,y→x,y,
the L,L→L,L and the L,R→L,R configurations.

overlap and superior over IV due to suppression of spRS-induced noise.
Highlighting that configurations II and VII only benefit the correlation signal if spRS plays a significant role, linear
co-polarized signal, idler and pump beams (I, IV) always provide an enhanced mode overlap OFWM. Owing to advances
in the manufacturing of noble gas-filled hollow-core fibers [44] with high nonlinearity [45] and findings of large
sideband separation in ZDW-shifted PCF, these polarization configurations are expected to be more suitable for a
realization of enhanced fiber-based pair generation sources, spectroscopy or imaging with undetected photons [46] or
single-photon frequency shifting [47].
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6 Conclusion

Starting with a general expression for quantized electromagnetic fields in optical fibers, we have investigated the role of
polarization in TOPDC and FWM using a full tensor description of these third-order nonlinear processes. We found that
the relative efficiencies are primarily governed by the mode overlap, which is strongly dependent on polarization states.
We could predict polarization correlations of triplet photons in TOPDC as well as signal and idler photons in FWM. The
analysis has enabled us to optimize the detection scheme for photon triplet states regarding to the signal-to-noise ratio
and calculate concrete expected triplet rates. Consequences for ideal experimental design of fiber-based FWM processes
are obtained by a quantitative analysis of the mode overlap in FWM involving different polarization configurations.
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Exploring the role of polarization in fiber-based quantum sources:
supplemental document

1 Classical field energy
The classical electromagnetic field energy in an optical fiber (or general nonmagnetic dielectrics) reads

E =
1

2

∫

V

d3r
[
d

dω
(ϵϵ0ω)E2 +

1

µ0
B2

]
, (1)

where the integration runs over the full quantization volume which extends over the fiber length L in z-direction and
over the complete infinite plane in x- and y- direction,

V = (−∞,∞)× (−∞,∞)× [0, L]. (2)

Integration by parts yields
∫

V

d3rB2 =

∫

V

d3r(∇× A) · (∇× A)

= −
∮

∂V

((∇× A)× A) · dS +

∫

V

d3r(∇× (∇× A)) · A.
(3)

The surface terms becomes zero with appropriately chosen boundary conditions. The second term can be evaluated
using

∇× (∇× A) = α(∇× (∇× f)) + α∗(∇× (∇× f∗))

= α
ϵω2

c2
f + α∗ ϵω

2

c2
f∗

= ω2µ0ϵ0ϵ(αf + α∗f∗),

(4)

therefore,

[∇× (∇× A)] · A = ω2µ0ϵ0ϵ(αf + α∗f∗) · (αf + α∗f∗)

= ω2µ0ϵ0ϵ(α
2f2 + α∗2f∗2 + 2αα∗f · f∗).

(5)

In an optical fiber, the mode profiles f(∗)(r) vary as e±iβz, hence, upon integration over the full fiber length L,
∫

V

d3rB2 =

∫

V

d3r(∇× (∇× A)) · A

=

∫

V

d3r2ω2µ0ϵ0ϵ(r)αα∗f · f∗.
(6)

Furthermore,
∫

V

d3rE2 = −
∫

V

d3rω2(αf − α∗f∗)2

= −
∫

V

d3rω2(α2f2 + α∗2f∗2 − 2αα∗f · f∗)

=

∫

V

d3r2ω2αα∗f · f∗,

(7)
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again using the e±iβz dependence of f. Thus, the complete expression for the classical field energy is

E =
1

2

∫

V

d3r
[
d

dω
(ϵϵ0ω)E2 +

1

µ0
B2

]

=
1

2

∫

V

d3r
[
d

dω
(ϵϵ0ω)(2ω

2αα∗f · f∗) + 1

µ0
(2ω2µ0ϵ0ϵ(r)αα∗f · f∗)

]

= ω2|α2|
∫

V

d3r
[(

d

dω
(ϵϵ0ω) + ϵϵ0

)
|f|2
]

= 2ω2|α2|
∫

V

d3r

[
d
dω (ϵω) + ϵ

2
ϵ0|f|2

]
.

(8)

2 Triplet generation Interaction Hamiltonian

ĤI = −24ϵ0χ
(3)
ijkl

∫

VI

d3r

(
i

√
h̄ωp

2
apfp,i(r)

)

(
−i
√
h̄ωs1

2
a†s1f

∗
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3 ⟨α(Np − 1)|ap|α(Np)⟩ in the limit of large photon numbers
In order to evaluate the triplet generation rate, the approximation
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holds in the limit of large photon numbers since

lim
Np→∞

Np − 1

2
+
Np

2
−
√
(Np − 1)Np = 0. (11)
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4 Mode overlap for triplet generation in a tapered optical fiber: LCP-
LCP-LCP triplet configuration

Here we show the mode overlap components in cylindrical coordinates for an LCP pump and triplet generation in
the LCP-LCP-LCP configuration.

Figure 1: Real and imaginary parts of all components of the mode overlap integrand Iijkl for the LCP → 3×LCP
configuration (part 1).
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Figure 2: Real and imaginary parts of all components of the mode overlap integrand Iijkl for the LCP → 3×LCP
configuration (part 2).
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5 Mode overlap for triplet generation in a tapered optical fiber: LCP-
RCP-RCP, RCP-RCP-RCP triplet configuration

Figure 3: Real and imaginary parts of components of the mode overlap integrand Iijkl for the LCP → 1×LCP,2×RCP
configuration.
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Figure 4: Real and imaginary parts of components of the mode overlap integrand Iijkl for the LCP → 3×RCP
configuration.
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