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diagrammatic (∞, n)-categories

Clémence Chanavat and Amar Hadzihasanovic
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Abstract. Diagrammatic sets admit a notion of internal equi-
valence in the sense of coinductive weak invertibility, with
similar properties to its analogue in strict ω-categories. We
construct a model structure whose fibrant objects are dia-
grammatic sets in which every round pasting diagram is
equivalent to a single cell—its weak composite—and propose
them as a model of (∞,∞)-categories. For each n <∞, we
then construct a model structure whose fibrant objects are
those (∞,∞)-categories whose cells in dimension > n are all
weakly invertible. We show that weak equivalences between
fibrant objects are precisely morphisms that are essentially
surjective on cells of all dimensions. On the way to this res-
ult, we also construct model structures for (∞, n)-categories
on marked diagrammatic sets, which split into a coinductive
and an inductive case when n = ∞, and prove that they are
Quillen equivalent to the unmarked model structures when
n < ∞ and in the coinductive case of n = ∞. Finally, we
prove that the (∞, 0)-model structure is Quillen equivalent
to the classical model structure on simplicial sets. This es-
tablishes the first proof of the homotopy hypothesis for a
model of ∞-groupoids defined as (∞,∞)-categories whose
cells in dimension > 0 are all weakly invertible.
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Introduction

Let n ∈ N∪{∞}. We know that many modern mathematical concepts natur-
ally inhabit (∞, n)-categories, the same way that most mathematical concepts
inhabit 1-categories. While the latter have an unambiguous accepted defini-
tion, the notion of (∞, n)-category, as currently understood, is best construed
as a web of models that, more or less conjecturally, present the same homotopy
theory, or better—in a sense yet to be made rigorous—the same directed homo-
topy theory. This multiplicity of models has been brought about by the failure
of strict ω-categories [ABG+23]—seemingly the most obvious candidate, ob-
tained by iterated self-enrichment of the category of small categories—to ac-
count for the geometric aspect of higher categories; that is, the failure to satisfy
the homotopy hypothesis [Sim98], that (roughly) higher groupoids model all
classical homotopy types (“spaces”), in such a way that the tower of n-trun-
cations of a higher groupoid, where all n-cells connected by an (n+1)-cell are
identified, models the Postnikov tower of the corresponding space.

At present, the web of models has quite a few disconnected components,
with two main clusters. The first may be called the geometric or non-algebraic
cluster, and includes Segal-type models [Rez10, Sim09, Pao19] as well as
“shaped” models, based on marked or stratified presheaves over certain cat-
egories of shapes such as simplices and cubes [Ver08, CKM20]. These are
characterised by the fact that composition is not an operation, but instead
there is a space of candidate “weak composites” of a diagram whose existence
is promised by a fibrancy condition. Moreover, all these models presuppose
some notion of space, so that each (∞, n)-category has some distinguished
cells which track homotopies in an underlying space. Thus, in the geomet-
ric models, the notion of space has logical priority over the notion of higher
category, and the homotopy hypothesis has a somewhat axiomatic character.

It is in the sub-cluster of Segal-type models that a benchmark has first
been put forward for comparing models of (∞, n)-category, with the work
of Barwick and Schommer-Pries [BSP21]. Recently, equivalences have been
proven between different shaped models [DKM23], as well as between Segal-
type and shaped models [OR23, Lou23], so it can be said that most models in
the cluster currently meet the accepted standard.

The second main cluster may be called the algebraic cluster, and includes the
Grothendieck–Maltsiniotis [Mal10] as well as Batanin–Leinster [Bat98, Lei04]
models, and more recently “type-theoretic” models [BFM21]. These models at-
tempt to “fix” strict ω-categories by postulating that their axioms—unitality,
associativity, interchange—do not hold strictly up to equality, but instead
up to some specified higher-dimensional cells, sometimes called coherences or
coherators; the coherences themselves have (specified) higher coherences, en-
suring that the space of possible composites of a diagram is contractible. Due
to their algebraic nature, these models typically adopt an algebraic notion
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of internal equivalence in the form of weak invertibility or pseudo-invertibility
[Che07, OR24], and define a higher groupoid as a higher category whose cells
are all weakly invertible. Thus, in the algebraic models, higher categories
have logical priority, and the homotopy hypothesis is a conjecture with genu-
ine mathematical content, yet, at present, remains unproven, except in low-
dimensional cases [JK07, HL23a].

The algebraic models also form a connected cluster, with equivalences hav-
ing been proven between most of them [Ara10, Bou20, BM24], although not-
ably only at the 1-categorical level: the homotopy theory of these models
is significantly less developed, although progress has been made recently on
Batanin–Leinster models [FHM24].

Finally, a number of computer scientists and mathematicians of computa-
tional background have taken an interest in higher categories through the lens
of diagrammatic methods and higher-dimensional rewriting [Gui19]. In this
context, an expressive language for cellular presentations of higher algebraic
theories, as well as a strong pasting theorem guaranteeing that explicit dia-
grammatic arguments are sound, are fundamental features of a good model of
higher categories. In the absence of these, higher-dimensional rewriting theor-
ists have resorted to the strict model in spite of its limitations [ABG+23], or
developed natively diagrammatic models [Dor18, CHH+24] whose connection
to any of the established models is presently unclear.

In this article, which follows the lead given by the second-named author in
the unpublished [Had20] and builds on [CH24a, CH24b], we propose a model
of (∞, n)-categories which addresses this concern and, we believe, may act as
a “bridge” between the different clusters, by sharing some of the good features
of each flavour of models:

• it is, strictly speaking, a shaped model—although, notably, with no mark-
ing, or rather, marking can play at most an ancillary role—so it belongs
to the geometric family, and satisfies the homotopy hypothesis;

• nevertheless, like algebraic models, it supports a notion of internal equi-
valence in the sense of weak invertibility, so does not presuppose a notion
of space: higher groupoids are higher categories whose cells in dimension
> 0 are all weakly invertible; furthermore, weak equivalences between
(∞, n)-categories are defined, in algebraic style, as functors that are es-
sentially surjective on cells of each dimension;

• since it is built upon the combinatorial theory of pasting diagrams from
[Had24], it natively supports a very rich diagrammatic language, which
we would claim is actually an improvement for the purposes of higher-
dimensional rewriting theory over the language of polygraphs, due to the
existence of an explicit combinatorial model of diagrams with associated
data structures and computational methods [HK23a, HK23b];

• in fact, it feels very much like the strict model, due to the ability to
form pasting diagrams in a way that satisfies associativity and interchange



 chanavat and hadzihasanovic

strictly, with “weakness” introduced only at the moment of passing to
weak composites (which can usually be delayed), and at the level of units
needed to “regularise” diagrams—more on that in a moment.

In spirit, the closest predecessor to our model is the opetopic model of Baez and
Dolan [BD98]; the presence of many-to-many cell shapes and algebraic units
in our model enables us to algebraicise the opetopic notion of universality and
turn it into weak invertibility, which overcomes most of its problems.
We give a brief description of the model. A diagrammatic set is a presheaf

on a shape category ⊙ whose objects are called atoms. In a specific sense,
for each m ∈ N, atoms of dimension m are the widest class of shapes of
higher-categorical cells with the property that, for each k ≤ m, both the input
(source) and output (target) k-boundary are regular CW models of closed
topological k-balls. The category ⊙ is a very convenient shape category: it
is an Eilenberg–Zilber category, a strict test category, and is closed under all
sorts of constructions, including suspensions, Gray products, joins, and duals,
which can thus be swiftly extended along colimits to all presheaves.
The idea being that atoms are models of directed cells, a diagrammatic set is

a model of a directed cell complex. Now, atoms and their maps are described
combinatorially (in terms of oriented face posets), and this description extends
to the diagrammatic sets that are regular cell complexes, just as it happens for
CW complexes. In particular, these include the “globular pastings of atoms”,
which we call molecules, amongst which the round molecules are the subclass
that can appear in the boundary of a higher-dimensional atom, being a mo-
lecule as well as a closed topological ball. This figure depicts, respectively, a
non-round molecule, a round molecule, and an atom in dimension 2:

•

• • • • • • •

• • • •

•

Given a diagrammatic set X, a pasting diagram in X is a morphism whose
domain is a molecule. A pasting diagram is a round diagram if the molecule
is round, and a cell if it is an atom. Pasting diagrams can be pasted together
at their boundaries just like in strict ω-categories, and this operation satisfies
all the equations of strict ω-categories (and more; see Section 6.2), but there
is no way, in general, to turn a pasting diagram into a single cell.
On the other hand, there are “collapsing” maps of molecules which strictly

decrease dimension, such that pulling back a pasting diagram along a collapse
produces a degenerate pasting diagram. In particular, there are “weak unit”
diagrams living above each pasting diagram. These weak units and degenerate
cells play a fundamental role in restoring the expressiveness lost with the
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roundness constraint on boundaries of cells: indeed, every pasting diagram
can be “padded with units” until it becomes round.

x •

• x • •  • x • •

not round • round •

g

f g

f

f
x

g

f
g

The key observation made in [CH24b] is that this structure suffices to in-
stantiate the definition of weak invertibility at the level of round diagrams in
a diagrammatic set, and this determines a subclass of round diagrams, the
equivalences, which satisfies analogous properties to its counterpart in strict
ω-categories. In particular, it determines an equivalence relation ≃ on parallel
round diagrams of the same dimension. We finally get to our definition.

Definition — An (∞, n)-category is a diagrammatic set X such that

1. every round diagram in X is equivalent to a cell, and
2. every cell of dimension > n in X is an equivalence.

The first conditions says that every round diagram in dimensionm, which may
be pasted together from multiple m-cells, can be reduced to a single m-cell
via a weakly invertible (m+1)-cell; these play, respectively, the role of a weak
composite and a compositor. The second condition is self-explanatory, and
void when n = ∞. Now, all morphisms of diagrammatic sets preserve equival-
ences, so in particular they preserve the property of being a weak composite;
a functor can thus be defined, simply, as a morphism of presheaves between
(∞, n)-categories. We may then import the notion of ω-equivalence from the
theory of strict ω-categories. (“Essentially” means “up to ≃”.)

Definition — A functor of (∞, n)-categories is an ω-equivalence if

1. it is essentially surjective on 0-cells, and
2. for all parallel pairs of round m-dimensional diagrams in its domain, it is

essentially surjective on (m+1)-cells between their images in its codomain.

We state our main theorem.

Theorem — There exists a model structure on diagrammatic sets whose

• cofibrations are the monomorphisms,
• fibrant objects are precisely the (∞, n)-categories,
• weak equivalences between fibrants are precisely the ω-equivalences.

By definition, an (∞, 0)-category in our model is precisely an (∞,∞)-category
whose cells in dimension > 0 are all equivalences. (No 0-cell can ever be an
equivalence.) We also prove the following result.



 chanavat and hadzihasanovic

Theorem — There exist both a left Quillen equivalence and a right Quillen
equivalence between the model structure for (∞, 0)-categories on diagrammatic
sets and the classical model structure on simplicial sets.

To the best of our knowledge, this is the first proof of the homotopy hypothesis
for a model in which higher groupoids are defined as higher categories whose
cells in dimension > 0 are all weakly invertible, in direct generalisation of the
definition of groupoids as categories whose morphisms are all invertible.

Inductive and coinductive (∞,∞)-categories

In addition to the (∞, n)-model structure on the category of diagrammatic
sets, we construct two model structures on the category of marked diagram-
matic sets, which are to diagrammatic sets what marked simplicial sets are to
simplicial sets. We call these model structures the inductive and the coinduct-
ive (∞, n)-model structure. We then prove that the forgetful functor which
forgets the marking is always a Quillen equivalence between the coinductive
(∞, n)-model structure on marked diagrammatic sets, and the (∞, n)-model
structure on diagrammatic sets. Thus, at least in the coinductive case, the
marking does not play a fundamental role; this is in contrast to the simplicial
and cubical models, where, as far as we know, there is no expectation that
unmarked presheaves could support a model of (∞, n)-categories.
When n < ∞, we then prove that the inductive and coinductive model

structures coincide; but in the case n = ∞, the coinductive model structure
is only a left Bousfield localisation of the inductive model structure. This is
in line with the expectations set in [BSP21], that there should be a unique
homotopy theory of (∞, n)-categories for n < ∞, but at least two plaus-
ible homotopy theories of (∞,∞)-categories. The two are separated by what
we called the existentialist and essentialist view of equivalences in [CH24b]:
whether an equivalence is a cell that behaves like an equivalence, or whether
it has to be “distinguished” as being a homotopy in some underlying space.
The rift between the two is typically exemplified by the (∞,∞)-category of
cobordisms, where everym-cobordism is invertible up to an (m+1)-cobordism,
making this an (∞, 0)-category in the coinductive sense, but not in the induct-
ive sense, where only framed diffeomorphisms and their smooth homotopies
are distinguished as “true” equivalences. We note, first, that the inductive
notion only makes sense from the geometric perspective where spaces have
logical priority, so it is no surprise that unmarked diagrammatic sets would
naturally model the coinductive notion; and second, that, as already observed
in [HL23b], the natural coinductive notion is not the one predicted in [BSP21],
which still appears to be in search of an interesting model.
The purpose of introducing marked diagrammatic sets is two-fold. The first

reason is internal: in our model of (∞, n)-category, a cell of shape U is an
equivalence if and only if it extends to an explicit localisation Ũ of the atom
U at its top-dimensional cell. This localisation is constructed inductively by
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attaching a left and a right inverse to U , then attaching two invertors one
dimension higher, witnessing the invertibility; in turn, these two invertors
need to be inverted. Then, Ũ is defined as the colimit of this sequence of
cellular extensions. This provides a concrete cellular model for a “walking
equivalence” of shape U , in the same “bi-invertible” style as the coherent model
exhibited for strict ω-categories in [HLOR24], and with the same advantages.
However, when it comes to actual computations, this model forces us to carry
around an infinite tower of data, which can be quite cumbersome. On the
other hand, in a fibrant object for the coinductive (∞, n) model structure on
marked diagrammatic sets, a cell is an equivalence if and only if it is marked;
the marking can be seen as a propositional truncation of this infinite tower
of data, making computations much more manageable. As an application, to
characterise the fibrant objects of the (∞, n)-model structure on diagrammatic
sets, we leverage these easier computations in the marked world and import
them without much effort to diagrammatic sets via a Quillen equivalence.

The second reason is external: the atom category contains a full and faith-
ful representation of the simplex category, which determines an adjunction
between simplicial and diagrammatic sets whose left adjoint is also full and
faithful. This lifts to an adjunction between marked simplicial sets and marked
diagrammatic sets. Having constructed model structures on marked diagram-
matic sets thus paves the way towards a comparison with the complicial model
[OR20], rooting the diagrammatic model firmly into the geometric cluster.

Structure of the article

In Section 1, we review some notions of model category theory and present
special cases of the results of [Ols11], which will be used throughout the paper
to produce model structures on diagrammatic sets and marked diagrammatic
sets. We do not state the results in their greatest level of generality, but merely
the one that applies to all the model structures we wish to construct.

In Section 2, we start by setting up some terminology about regular dir-
ected complexes and diagrams in diagrammatic set, as well as giving some
recollection of the theory of equivalences in diagrammatic sets. We do not
give any more background on the theory of atoms, molecules, and regular dir-
ected complexes than we have given thus far; instead, we refer the reader to
the introductory parts of [CH24b, CH24a], and ultimately, the book [Had24],
in increasing level of detail. We then move on to marked diagrammatic sets,
for which we give two equivalent definitions: one as pairs of a diagrammatic
set and a subset of cells containing all degenerate cells, and one as separated
presheaves on a site of “marked atoms”. Using this equivalent description,
we immediately deduce good formal properties for the category of marked
diagrammatic sets, such as the fact that it is a locally presentable quasitopos.
We also define a monoidal structure on marked diagrammatic sets, the pseudo-
Gray product, which marks all pairs of cells both of which have dimension > 0.
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Finally, we define an explicit localisation functor from marked to unmarked
diagrammatic sets, freely adding a left and a right weak inverse to each non-
degenerate marked cell. For reasons explained in [HLOR24], a separate left
and right inverse are needed to avoid issues of non-coherence.

In Section 3, we give our definition of (∞, n)-category, and characterise
(∞, n)-categories in terms of some evident right lifting properties. Then, we
move on to constructing our model structures, starting from marked diagram-
matic sets. We define sets of anodyne extensions, a cellular model, and a
cylinder object defined using the pseudo-Gray product with the “marked ar-
row”. We then do the same for unmarked diagrammatic sets, whose cylinder
object is the localisation of the marked cylinder object. For the marked mod-
els, we select sets of anodyne extensions that are particularly convenient in
that they are almost saturated under the conditions that guarantee that they
are a generating set of anodyne extensions, with only one easily handled corner
case. For the unmarked models, by contrast, we pick the smallest obvious set.

Section 4 contains our main results, comparing and characterising the model
structures we have defined. Section 4.1 concerns the two families of model
structures on marked diagrammatic sets. We characterise the fibrant objects
of the coinductive (∞, n)-model structure as being precisely the (∞, n)-cat-
egories with the “natural” marking whose marked cells are all and only the
equivalences (Theorem 4.9). We then show that the coinductive model struc-
ture is always a left Bousfield localisation of the inductive (Proposition 4.11),
and that they actually coincide when n < ∞ (Proposition 4.14). Next, in
Subsection 4.2, we compare the (∞, n)-coinductive model structure on marked
diagrammatic sets and the (∞, n)-model structure on diagrammatic sets. We

first prove that the adjunction (−)♭ ⊣ U between unmarked and marked dia-

grammatic sets is Quillen, where (−)♭ only marks degenerate cells and U for-
gets the marking (Proposition 4.20). We use this to characterise the fibrant
objects of the (∞, n)-model structure as being precisely the (∞, n)-categories
(Theorem 4.21), then prove that the adjunction is, in fact, a Quillen equi-
valence (Theorem 4.23). Finally, in Section 4.3, we characterise the weak
equivalences between (∞, n)-categories as being precisely the ω-equivalences
(Theorem 4.37); this part is essentially an exercise in translation from the folk
model structure on strict ω-categories [LMW10], using the formal similarities
as well as the foundation laid in [CH24b].

Section 5 proves the homotopy hypothesis for our model of (∞, 0)-categories.
We derive this from our earlier work [CH24a], which established that ⊙ is a
strict test category, by proving that the (∞, 0)-model structure coincides with
the “Cisinski model structure” obtained abstractly from the general theory of
presheaves on test categories (Theorem 5.7).

Section 6 serves both as a conclusion and, more importantly, as an overture
for future developments. In it, we propose three conjectures. The first pre-
dicts that the evident adjunction between marked simplicial sets and marked
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diagrammatic sets will actually be a Quillen equivalence between the n-com-
plicial model structure and the inductive (∞, n)-model structure (Conjecture
6.1). The second predicts a slightly more complicated relation to the folk
model structure on strict ω-categories. Indeed, while it possible to define an
adjunction between the categories of diagrammatic sets and of strict ω-cat-
egories, the existence of “extra equations” satisfied semantically by the pasting
of molecules, and not provable from the axioms of strict ω-categories in di-
mension > 3, prevents this from being a Quillen adjunction. Instead, we
predict that there is a span of right Quillen functors connecting the two, me-
diated by a category of stricter ω-categories which satisfy these additional
equations (Conjecture 6.3). We also suggest that the existence of these ex-
tra coherences—which, by our results, are homotopically sound—could have
profound implications for the algebraic models, and deserves more scrutiny.
Finally, we predict that the Gray product of diagrammatic sets should be com-
patible with our model structures, making them monoidal model structures;
and that the predicted left adjoint functor from diagrammatic sets to stricter
ω-categories should be strong monoidal (Conjecture 6.4).
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1. Background on model structures

1.1 (Left and right lifting classes). Let C be a category and S be a class
of morphisms in C . We denote by l(S) and r(S) the classes of morphisms
that have, respectively, the left and right lifting property with respect to all
morphisms in S. If C has a terminal object 1, we say that an object X of C
has the right lifting property against S if the unique morphism X → 1 does.

1.2 (Cellular model). Let C be a category. A cellular model for C is a set M
of monomorphisms such that l(r(M)) is the class of all monomorphisms of C .

1.3 (Pushout-product). Let C be a cocomplete category, F,G : C → C be two
endofunctors, and β : F ⇒ G be a natural transformation. For all morphisms
f : X → Y in C , the pushout-product of β and f is the morphism

β � f : FY
∐

FX

GX → GY

obtained universally from the naturality square of β at f .

Remark 1.4 — We may always assume that β � idX = βX .
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1.5 (Exact cylinder). Let C be a locally presentable quasitopos. An exact
cylinder on C is an endofunctor I on C together with natural transformations

(ι−, ι+) : IdC ∐ IdC → I, σ : I → IdC

such that

(DH0) each component of (ι−, ι+) is a monomorphism, and each compon-
ent of the composite σ(ι−, ι+) is a codiagonal morphism;

(DH1) the functor I preserves small colimits and monomorphisms.

Comment 1.6 — Since we assumed C to be a locally presentable quasitopos,
the notion of exact cylinder and of cartesian cylinder for a weak factorisation
system whose left class are monomorphisms [Ols11, Definition 3.8] coincide.
Indeed, the proof of [Ols11, Corollary 3.11] can be generalized to a locally
presentable quasitopos since it has pullback-stable colimits, and by [Wyl91,
Proposition 23.8], whenever we have a diagram

P B

A Q

X

b

a

y

x

y

where x and y are monomorphisms, P is the pullback of x and y, and Q is the
pushout of a and b, the dashed map is also a monomorphism.

1.7 (Pseudo-generating set of acyclic cofibrations). Let C be a model category
and let Λ be a set of acyclic cofibrations in C . We say that Λ is pseudo-
generating if, for all morphism f of C with a fibrant domain, f is a fibration
if and only if it has the right lifting property against Λ.

Until the end of the section, we let C be a locally presentable quasitopos
equipped with

1. an exact cylinder (I, (ι−, ι+), σ), and
2. a cellular model M .

1.8 (Class of anodyne extensions). Let S be a class of morphisms in C . We
say that S is a class of anodyne extensions if

• there exists a set J such that S = l(r(J)),
• for all monomorphisms m and all α ∈ {+,−}, ια �m is in S,
• S is closed under the operation j 7→ (ι−, ι+)� j.

In this case, we call J a generating set of anodyne extensions.
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1.9 (Generating anodyne extensions). Let J be a set of monomorphisms in C .
The set of generating J-anodyne extensions is the smallest set an(J) which

1. contains J ∪ {ια �m | α ∈ {−,+} ,m ∈M}, and
2. is closed under the operation j 7→ (ι−, ι+)� j.

Proposition 1.10 — Let J be a set of monomorphisms in C . Then

1. there exists a smallest class of anodyne extensions containing l(r(J)),
2. an(J) is a generating set for this class.

Proof. This is [Cis06, Proposition 1.3.13]. �

1.11 (Homotopy). Let f, g : X → Y be two parallel morphisms in C . A
homotopy between f and g is a morphism β : IX → Y such that β ◦ ι− = f
and β ◦ ι+ = g. We say that f and g are homotopic if there exists a homotopy
between them, and let ≈ denote the equivalence relation that this generates.

Remark 1.12 — The relation ≈ is a congruence with respect to composition of
morphisms.

1.13 (Homotopy equivalence). Let f : X → Y be a morphism in C . We say
that f is a homotopy equivalence if there exists a morphism g : Y → X such
that g ◦ f is homotopic to idX , and f ◦ g is homotopic to idY .

1.14 (Naive fibration). Let J be a set of monomorphisms and f : X → Y a
morphism in C . We say that f is a J-naive fibration if it has the right lifting
property against an(J). We say that an object X is J-fibrant if the unique
morphism X → 1 is a J-naive fibration.

Theorem 1.15 — Let J be a set of monomorphisms in C . Then there exists
a cofibrantly generated model structure on C where

• the cofibrations are the monomorphisms,
• an(J) is a pseudo-generating set of acyclic cofibrations,
• a morphism f : X → Y is a weak equivalence if and only if, for all fibrant

objects W , the induced function f∗ : C (Y,W )/≈ → C (X,W )/≈ is a bijec-
tion of sets,

• an object is fibrant if and only it is J-fibrant,
• a morphism between fibrant object is a weak equivalence if and only if it

is a homotopy equivalence,
• (I, (ι−, ι+), σ) is a cylinder object for the model structure.

Proof. This is [Ols11, Theorem 3.16, Corollary 3.24] �

Remark 1.16 — The result [Cis19, Theorem 2.4.19] is a particular case of the
previous theorem where C is a category of presheaves.

Let J be a set of monomorphisms in C , and suppose C is equipped with the
model structure of Theorem 1.15 applied to J .



 chanavat and hadzihasanovic

1.17 (Local objects and equivalences). Let S be a class of morphisms in C . We
say that a fibrant object W in C is S-local if, for all morphisms f : X → Y in
S, the function f∗ : C (Y,W )/≈ → C (X,W )/≈ is a bijection of sets. We say
that a morphism f : X → Y is an S-local equivalence if, for all S-local objects
W , the function f∗ : C (Y,W )/≈ → C (X,W )/≈ is a bijection of sets.

Remark 1.18 — By [Hir03, Theorem 17.6.7] and Theorem 1.15, the previous
definitions coincide with the usual notions of S-local object and S-local equi-
valence, see [Hir03, Definition 3.1.4].

1.19 (Left Bousfield localisation). Let S be a class of morphisms in C . The
left Bousfield localisation of C at S is, if it exists, the unique model structure
on C whose cofibrations are the monomorphisms, and weak equivalences are
the S-local equivalences.

Every model structure whose cofibrations are the monomorphisms, and weak
equivalences contain the weak equivalences of C , arises as a left Bousfield
localisation of C at some class of morphisms.

2. Marked and unmarked diagrammatic sets

2.1. Complements on regular directed complexes

We refer to the introduction of [CH24b] for a brief review of the notation
relative to atoms, molecules, and regular directed complexes; all the details
are in [Had24].

2.1 (Atom inclusions). Let P be a regular directed complex. For each x in P ,
we denote by ιx : Px →֒ P the unique inclusion with image cl {x} in P .

2.2 (Arrow). Let 1 be the point, that is, the terminal regular directed complex.
The arrow is the atom ~I := 1 ⇒ 1. We denote by 0− < 1 > 0+ the three
elements of its underlying poset I, with ∆α1 = {0α}.

2.3 (Merger of a round molecule). Let U be a round molecule. The merger of
U is the atom 〈U〉 := ∂−U ⇒ ∂+U .

The following definitions are from [CH24b, Section 1].

2.4 (Partial cylinder). Given a graded poset P and a closed subset K ⊆ P ,
the partial cylinder on P relative to K is the graded poset I ×K P obtained
as the pushout

I ×K K

I × P I ×K P

(−)

q

y

in Pos. This is equipped with a canonical projection map τK : I ×K P → P .
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2.5 (Partial Gray cylinder). Let U be a regular directed complex and K ⊆ U
a closed subset. The partial Gray cylinder on U relative to K is the oriented
graded poset ~I ⊗K U whose

• underlying graded poset is I ×K U , and
• orientation is specified, for all α ∈ {+,−}, by

∆α(x) := {(y) | y ∈ ∆αx} ,

∆α(i, x) :=

{
{(0α, x)}+ {(1, y) | y ∈ ∆−αx \K} if i = 1,

{(i, y) | y ∈ ∆αx \K}+ {(y) | y ∈ ∆αx ∩K} otherwise.

2.6 (Inverted partial Gray cylinder). Let U be a molecule, n := dimU , and
K ⊆ ∂+U a closed subset. The left-inverted partial Gray cylinder on U relative
to K is the oriented graded poset LKU whose

• underlying graded poset is I ×K U , and
• orientation is as in ~I ⊗K U , except for all x ∈ Un and α ∈ {+,−}

∆−(1, x) :=
{
(0−, x), (0+, x)

}
+
{
(1, y) | y ∈ ∆+x \K

}
,

∆+(1, x) :=
{
(1, y) | y ∈ ∆−x

}
,

∆α(0+, x) :=
{
(0+, y) | y ∈ ∆−αx \K

}
+
{
(y) | y ∈ ∆−αx ∩K

}
.

Dually, if K ⊆ ∂−U , the right-inverted partial Gray cylinder on U relative to
K is the oriented graded poset RKU whose

• underlying graded poset is I ×K U , and
• orientation is as in ~I ⊗K U , except for all x ∈ Un and α ∈ {+,−}

∆−(1, x) :=
{
(1, y) | y ∈ ∆+x

}
,

∆+(1, x) :=
{
(0−, x), (0+, x)

}
+
{
(1, y) | y ∈ ∆−x \K

}
,

∆α(0−, x) :=
{
(0−, y) | y ∈ ∆−αx \K

}
+
{
(y) | y ∈ ∆−αx ∩K

}
.

Remark 2.7 — By [CH24b, Lemma 1.20, Lemma 1.26], partial Gray cylinders
and inverted partial Gray cylinders respect the classes of molecules, round
molecules and atoms. Moreover, for all molecules U and closed K ⊆ U ,

• τK : ~I ⊗K U → U is a cartesian map of molecules,
• if p : U → V is a cartesian map of molecules with dimV < dimU , then
p◦τK : LKU → V and p◦τK : RKU → V are cartesian maps of molecules.

2.8 (Higher invertor shapes). Let U be a round molecule. The family of
higher invertor shapes on U is the family of molecules ΞsU indexed by strings
s ∈ {L,R}∗, defined inductively on the length of s by

Ξ〈〉U := U,

ΞLsU := L∂+ΞsU (ΞsU),

ΞRsU := R∂−ΞsU (ΞsU).



 chanavat and hadzihasanovic

These are equipped with cartesian maps τs : ΞsU → U of their underlying
posets, with the property that for all cartesian maps of molecules p : U → V
such that dim V < dimU , the composite p◦τs is a cartesian map of molecules.

2.2. Diagrams in diagrammatic sets

2.9 (Diagram in a diagrammatic set). Let U be a regular directed complex and
X a diagrammatic set. A diagram of shape U in X is a morphism u : U → X.
A diagram is a pasting diagram if U is a molecule, a round diagram if U is a
round molecule, and a cell if U is an atom. We write dim u := dimU .

Since isomorphisms of molecules are unique when they exist, we can safely
identify pasting diagrams that are isomorphic in the slice of ⊙Set over X.
Notice that a cell of shape U in X is the same as an element of X(U).

2.10 (Sets of cells and round diagrams). We let RdX denote the set of round
diagrams inX, and cellX its subset on cells. The set RdX is graded by dimen-
sion; given a subset A ⊆ RdX and k ∈ N, we let Ak := {u ∈ A | dim u = k}.
We also let A>k :=

⋃
n>k An.

2.11 (Boundaries of pasting diagrams). Let u : U → X be a pasting diagram in
a diagrammatic set, k ∈ N, and α ∈ {+,−}. We let ∂αk u := u|∂α

k
U : ∂αkU → X.

We may omit the index k when k = dim u− 1.

Recall that the class of submolecule inclusions is composition-generated by the
inclusions U, V →֒ U #k V of molecules into pastings. A submolecule inclusion
ι : V →֒ U is rewritable when V is round and dimU = dimV .

2.12 (Subdiagram). Let u : U → X be a pasting diagram. A subdiagram
of u is a pair of a pasting diagram v : V → X and a submolecule inclusion
ι : V →֒ U such that v = u◦ι. A subdiagram is rewritable when ι is a rewritable
submolecule inclusion. We write ι : v ⊑ u for the data of a subdiagram of u.

2.13 (Pasting of pasting diagrams). Let u : U → X and v : V → X be pasting
diagrams such that ∂+k u = ∂−k v. We let u#k v : U #k V → X be the pasting
diagram determined by the universal property of the pasting U #k V . More
generally, given a subdiagram ι : ∂+k u ⊑ ∂−k v, we let u ⊲k,ι v : U ⊲k,ι V → X
be the pasting diagram determined by the universal property of U ⊲k,ι V as a
pasting of U at a submolecule of ∂−k V . Dually, if ι : ∂−k v ⊑ ∂+k u, we let u k,ι⊳ v
be the universally determined pasting diagram of shape U k,ι⊳ V .

We often omit the index k when it is equal to min {dimu,dim v}−1, and omit
ι when it is irrelevant or evident from the context.

Remark 2.14 — When ι is an isomorphism, we have u⊲k,ι v = u k,ι⊳ v = u#k v.
Moreover, there are evident subdiagrams u, v ⊑ u ⊲k,ι v and u, v ⊑ u k,ι⊳ v
whenever the pastings are defined.
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2.15 (Degenerate diagram). Let u : U → X be a diagram in a diagrammatic
set. We say that u is degenerate if there exists a diagram v : V → X and a
surjective cartesian map of regular directed complexes p : U → V such that
u = v ◦ p and dim v < dimu. We let

DgnX := {u ∈ RdX | u is degenerate} , dgnX := DgnX ∩ cellX,

NdX := {u ∈ RdX | u is not degenerate} , ndX := NdX ∩ cellX.

For each n ∈ N, there is a functor Dn on regular directed complexes which
reverses the orientation of faces of n-dimensional elements.

2.16 (Reverse of a degenerate diagram). Let u : U → X be a degenerate dia-
gram in a diagrammatic set, equal to v ◦ p for some diagram v : V → X and
surjective map p : U → V with n := dimu > dim v. The reverse of u is the
degenerate diagram u† := v ◦ Dnp of shape DnU .

2.17 (Unit). Let u : U → X be a pasting diagram. The unit on u is the
degenerate pasting diagram εu : u⇒ u defined by u ◦ τ∂U : ~I ⊗∂U U → X.

2.18 (Equivalence in a diagrammatic set). Let e : u ⇒ v be a round diagram
in a diagrammatic set X. We say that e is an equivalence if there exists
a parallel pair of round diagrams eL, eR : v ⇒ u together with equivalences
z : e# eL ⇒ εu and h : εv ⇒ eR # e. In this situation, eL is called a left inverse
and eR is called a right inverse of e, z is called a left invertor, and h is called
a right invertor. We let

EqvX := {e ∈ RdX | e is an equivalence} , eqvX := EqvX ∩ cellX.

We write e : u
∼
⇒ v to indicate that e : u⇒ v is an equivalence.

Comment 2.19 — The definition of equivalence is in coinductive style. More
formally, EqvX is the greatest fixed point of the operator B on the power set
P(RdX) which sends a set A ⊆ RdX to the set B(A) of round diagrams
e : u⇒ v such that there exist round diagrams eL, eR : v ⇒ u, z : e# eL ⇒ εu,
and h : εv ⇒ eR # e with z, h ∈ A. The corresponding coinductive proof
method is: if A ⊆ B(A), then A ⊆ EqvX.

Comment 2.20 — This is the bi-invertibility definition of equivalence, which
will be the most useful for the purposes of this article. In [CH24b, Section 2],
we consider two more definitions—one in terms of “lax solutions to equations”,
and one asking for a single two-sided inverse—both of which are shown to be
equivalent in [CH24b, Theorem 2.28].

2.21 (Equivalent round diagrams). Let u, v be a parallel pair of round diagrams
in a diagrammatic set X. We write u ≃ v, and say that u is equivalent to v,
if there exists an equivalence h : u

∼
⇒ v in X.
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Theorem 2.22 — Let X be a diagrammatic set. Then

1. all degenerate round diagrams in X are equivalences,
2. for each n ≥ 0, the relation ≃ is an equivalence relation on RdXn, and

for n > 0 it is a congruence with respect to −#n−1−,
3. the set of equivalences in X is closed under ≃,
4. the left and right inverse of an equivalence are both equivalences, and

equivalent to each other.

Moreover, every morphism f : X → Y sends equivalences to equivalences.

Proof. See [CH24b, Theorem 2.13, Proposition 2.17, Proposition 2.19, Pro-
position 2.31]. �

2.3. Marked diagrammatic sets

2.23 (Marked diagrammatic set). A marked diagrammatic set is a pair of

1. a diagrammatic set X, and
2. a set A ⊆ cellX>0 of marked cells such that dgnX ⊆ A.

A morphism f : (X,A) → (Y,B) of marked diagrammatic sets is a morphism
f : X → Y of diagrammatic sets such that f(A) ⊆ B. This determines a
category ⊙Setm of marked diagrammatic sets and morphisms.

2.24 (Flat, sharp, and natural marking). There is an evident forgetful functor
U : ⊙Setm → ⊙Set that returns the underlying diagrammatic set. This
functor has both a right and a left adjoint

(−)♭ ⊣ U ⊣ (−)♯

defined by X♭ := (X,dgnX) and X♯ := (X, cellX>0). By Theorem 2.22, there
is also a functor (−)♮ : ⊙Set →⊙Setm defined by X♮ := (X, eqvX).

Remark 2.25 — The forgetful functor U is left inverse to (−)♭, (−)♮, and (−)♯.

We take a small detour and give an equivalent description of the category of
marked diagrammatic sets, which will imply it is a locally presentable quas-
itopos, so that the results of Section 1 apply. Recall that maps in ⊙ factor
uniquely as dimension-non-increasing collapses followed by dimension-non-
decreasing inclusions. The following generalises [OR20, Notation 1.1] from
marked simplicial sets to marked diagrammatic sets.

2.26 (Category of marked atoms). Let ⊙m be the category defined as follows.
The set of objects is given by

Ob(⊙m) := Ob⊙ ∪ {Um | U ∈ Ob⊙} .

The morphisms are generated by the families of morphisms

1. f : U → V , indexed by cartesian maps f : U → V in ⊙,
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2. tU : U → Um, indexed by atoms U of dimension > 0, and
3. pm : Um → V , indexed by non-identity collapses p : U → V in ⊙,

subject to the following relations:

• for each composable pair f, g in ⊙, g ◦ f is the same as in ⊙;
• for each non-identity collapse p : U → V , p = pm ◦ tU ;
• for each composable pair p, q of non-identity collapses, q ◦ pm = (q ◦ p)m.

We denote by ⊙mSet the category of presheaves over ⊙m.

Proposition 2.27 — There exists a full and faithful functor

i : ⊙Setm →֒⊙mSet

whose essential image consists of the separated presheaves for the coverage on
⊙m whose only non-identity covers are of the form {tU : U → Um}.

Proof. We define i as follows: given a marked diagrammatic set (X,A), we let
i(X,A) be the presheaf sending U to X(U) and Um to A∩X(U). The action of
maps f : U → V in ⊙ is the same as on X, the morphisms tU : U → Um act as
the inclusions A∩X(U) →֒ X(U), and the morphisms pm : Um → U act as the
corestrictions of X(p) : X(V ) → X(U) to A∩X(U), which is well-defined be-
cause A contains all degenerate cells. Given a morphism f : (X,A) → (Y,B),
we let i(f) : i(X,A) → i(Y,B) be the evident morphism of presheaves. The
functor is evidently faithful, and its essential image consists of the presheaves
such that X(tU ) is injective for each atom U , which are precisely the separated
presheaves for the given coverage. Finally, for any morphism f : X → Y of
presheaves in⊙mSet such that Y is separated, the naturality square at tU im-
plies that f : X(Um) → Y (Um) is uniquely determined by f : X(U) → Y (U).
It follows that i is also full. �

Corollary 2.28 — The category ⊙Setm is a locally presentable quasitopos; in
particular, it is cartesian closed, complete, and cocomplete. Given a diagram
F : J →⊙Setm,

1. given a limit cone (πj : X → UFj)j∈ObJ over UF in ⊙Set and

Aπ := {u ∈ cellX | for all j ∈ ObJ , πj(u) is marked in Fj} ,

the cone (πj : (X,A
π) → Fj)j∈ObJ is a limit cone over F in ⊙Setm;

2. given a colimit cone (ιj : UFj → X)j∈ObJ under UF in ⊙Set and

Aι :=
⋃

j∈ObJ

{ιj(u) | u is marked in Fj} ,

the cone (ιj : Fj → (X,Aι))j∈ObJ is a colimit cone under F in ⊙Setm.

2.29 (Entire and regular monomorphisms). Let i : (X,A) →֒ (Y,B) be a mono-
morphism of marked diagrammatic sets. We say that i is
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• entire if it is the identity on the underlying diagrammatic set,
• regular if B = i(A) ∪ dgnY .

Remark 2.30 — Any monomorphism i : (X,A) →֒ (Y,B) of marked diagram-
matic sets factors uniquely as a regular monomorphism followed by an entire
monomorphism:

(X,A) (Y, i(A) ∪ dgnY ) (Y,B).

2.31 (Induced marking). Let X be a diagrammatic set, (Y,B) be a marked
diagrammatic set, and i : X →֒ Y be a monomorphism of diagrammatic sets.
The marking induced by i is the marking (X, i−1B) on X. This determines a
monomorphism (X, i−1B) →֒ (Y,B) of marked diagrammatic sets.

We refer to [CH24a, Section 1.2] for the definition of the Gray product of
diagrammatic sets. The following definition is adapted from [HL23b, Con-
struction 2.17] to the context of marked diagrammatic sets.

2.32 (Pseudo-Gray product). Let (X,A) and (Y,B) be marked diagrammatic
sets. The pseudo-Gray product of (X,A) and (Y,B) is the marked diagram-
matic set (X,A) ⊗ps (Y,B) := (X ⊗ Y,A⊗ps B), where

A⊗ps B := dgn(X ⊗ Y ) ∪ (cellX0 ⊗B)∪ (cellX>0 ⊗ cell Y>0) ∪ (A⊗ cell Y0) .

This construction extends to a monoidal structure on⊙Setm, whose monoidal
unit is the terminal object 1, such that U : (⊙Setm,⊗ps,1) → (⊙Set,⊗,1) is
a strict monoidal functor.

Lemma 2.33 — Let m and m′ be monomorphisms in ⊙Setm. Then m⊗psm
′

is a monomorphism.

Proof. The functor U creates monomorphisms, and since it is monoidal, we
conclude by [CH24a, Lemma 3.5]. �

Lemma 2.34 — The pseudo-Gray product preserves colimits in both variables.

Proof. The Gray product of diagrammatic sets is a biclosed monoidal struc-
ture, so it preserves colimits in both variables. We conclude by Corollary 2.28
and by inspection of the definition. �

2.35 (Marked regular directed complex). A marked regular directed complex
(P,A) is a regular directed complex P together with a set A ⊆ P>0 of marked
elements. We will identify a marked regular directed complex (P,A) with the
marked diagrammatic set whose set of marked cells is

dgnP ∪ {ιx : Px → P | x ∈ A} .

If P is a molecule or an atom, we speak of a marked molecule or marked atom.
Given a molecule U , we let Um denote the marked molecule (U,Max U).

Remark 2.36 — The representable presheaf Um on⊙m coincides with the image
of the marked atom Um through i : ⊙Setm →⊙mSet.
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2.4. Localisation of diagrammatic sets

2.37 (Cellular extension). Let X be a diagrammatic set. A cellular extension
of X is a diagrammatic set XS together with a pushout diagram

∐
e∈S ∂Ue

∐
u∈S Ue

X XS

(∂e)e∈S (e)e∈S

∐
e∈S

∂Ue

y

in ⊙Set such that Ue is an atom and ∂Ue
is the inclusion of its boundary for

each e ∈ S. Each e ∈ S determines a cell e : e− ⇒ e+ in XS . In turn, the
pushout is determined by the set of pairs of round diagrams

{
(e−, e+)

}
e∈S in

X. We say that XS is the result of attaching the cells
{
e : e− ⇒ e+

}
e∈S to X.

2.38 (Localisation of a diagrammatic set). Let (X,A) be a marked diagram-
matic set. We define X

{
A−1

}
to be the diagrammatic set obtained from X

in the following two steps: for each cell a : u⇒ v in A ∩ ndX,

1. attach cells aL : v ⇒ u and aR : v ⇒ u, then
2. attach cells ξL(a) : a# aL ⇒ ε(u) and ξR(a) : ε(v) ⇒ aR # a.

Let X(0) := X and A(0) := A. Inductively, for each n > 0, we let

X(n) := X(n−1)
{
A(n−1)−1}

, A(n) :=
{
ξL(a), ξR(a) | a ∈ A(n−1)

}
.

We have a sequence (X(n) →֒ X(n+1))n≥0 of inclusions of diagrammatic sets.
The localisation of X at A is the colimit X[A−1] of this sequence.
For each cell a of shape U in A, we define a family of cells ξsa of shape ΞsU

in X[A−1], indexed by strings s ∈ {L,R}∗, by

ξ〈〉a := a

ξLsa :=

{
ξL(ξsa) if a ∈ ndX,

a ◦ τs if a ∈ dgnX,
ξRsa :=

{
ξR(ξsa) if a ∈ ndX,

a ◦ τs if a ∈ dgnX,

where τs is the projection ΞsU → U . We also let, for each s ∈ {L,R}∗,

ξLs a :=

{
(ξsa)

L if a ∈ ndX,

(a ◦ τs)
† if a ∈ dgnX,

ξRs a :=

{
(ξsa)

R if a ∈ ndX,

(a ◦ τs)
† if a ∈ dgnX.

We will identify diagrams in X with their image through X →֒ X[A−1]. By
construction, every cell in A becomes an equivalence in X[A−1].

Proposition 2.39 — Let f : (X,A) → (Y,B) be a morphism of marked dia-
grammatic sets. Then there is a unique morphism Locf : X[A−1] → Y [B−1]
such that
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1. Locf is equal to f on X →֒ X[A−1],
2. for each a ∈ A and s ∈ {L,R}∗, Locf : ξsa 7→ ξsf(a), ξ

L
s a 7→ ξLs f(a), and

ξRs a 7→ ξRs f(a).

This assignment determines a functor Loc : ⊙Setm →⊙Set, which preserves
monomorphisms and colimits.

Proof. Each cell in ndX[A−1] is either in the image of X →֒ X[A−1], or it
is of the form ξsa, ξ

L
s a, or ξ

R
s a for some a ∈ A ∩ ndX and s ∈ {L,R}∗ of

positive length. Thus the assignment specifies Locf uniquely, and an easy
induction shows that it is well-defined as a morphism of diagrammatic sets.
Functoriality and preservation of monomorphisms are straightforward checks.
Finally, let F : J →⊙Setm be a diagram and let (ιj : Fj → (X,Aι))j∈ObJ

be a colimit cone under F as described in Corollary 2.28; this is preserved by
U. Let (ι′j : LocFj → Y )j∈ObJ be a colimit cone under LocF in ⊙Set. Then

each non-degenerate cell in X[A−1
ι ] is either equal to ιj(u) for a cell u of Fj, or

to ξsιj(u), ξ
L
s ιj(u), or ξ

R
s ιj(u) for a marked cell u of Fj, for some j ∈ ObJ .

Thus we can define a morphism X[A−1
ι ] → Y by u 7→ ι′j(u) in the first case,

and ξsιj(u) 7→ ι′j(ξsu), ξ
L
s ιj(u) 7→ ι′j(ξ

L
s u), and ξ

R
s ιj(u) 7→ ι′j(ξ

R
s u) in the other

cases. It is straightforward to check that this is an isomorphism. �

Remark 2.40 — For all diagrammatic sets X, we have U(X♭) = X = Loc(X♭).

2.41 (Walking equivalence). Let U be an atom of dimension > 0. The walking
equivalence of shape U is the diagrammatic set Ũ := Loc(Um). If U is equal
to V ⇒ W , we also write V

∼
⇒W for Ũ .

As a particular case, we have the following object, which is the analogue of
the “coherent walking ω-equivalence” of [HLOR24].

2.42 (Reversible arrow). The reversible arrow is Ĩ := 1
∼
⇒ 1.

3. Model structures

3.1. Diagrammatic (∞, n)-categories

3.1 (Diagrammatic (∞,∞)-category). A diagrammatic (∞,∞)-category is a
diagrammatic set X with the following property: for all round diagrams u of
shape U in X, there exists a cell 〈u〉 of shape 〈U〉 such that u ≃ 〈u〉. In this
case, we call 〈u〉 a weak composite of u, and we call an equivalence c : u

∼
⇒ 〈u〉

a compositor for u.

Remark 3.2 — It is immediate from the definition that weak composites are
unique up to equivalence.

3.3 (Functor of diagrammatic (∞,∞)-categories). A morphism f : X → Y
of diagrammatic sets is called a functor when X and Y are diagrammatic
(∞,∞)-categories.
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3.4 (Diagrammatic (∞, n)-category). Let n ∈ N. A diagrammatic (∞, n)-cat-
egory is a diagrammatic (∞,∞)-category with the property that every cell of
dimension > n is an equivalence.

In what follows, we will speak simply of (∞,∞)-categories and of (∞, n)-cat-
egories; we will also often let n range over N ∪ {∞}. We will also say that an
(∞,∞)-category has weak composites.

Remark 3.5 — By [CH24b, Proposition 2.15], in an (∞, n)-category, not only
every cell but also every round diagram of dimension > n is an equivalence.

Next, we give a characterisation of (∞,∞)-categories and of (∞, n)-categories
in terms of lifting properties.

Lemma 3.6 — Let X be an (∞,∞)-category, let u, v be parallel round dia-
grams in X, and suppose u ≃ v. Then there exists a cell e : u

∼
⇒ v exhibiting

the equivalence.

Proof. By definition, there exists an equivalence e′ : u
∼
⇒ v, which is a priori

only a round diagram. Because X has weak composites, we can take a weak
composite e := 〈e′〉 ≃ e′. By Theorem 2.22.3, e is still an equivalence. �

Proposition 3.7 — Let (X,A) be a marked diagrammatic set, let Y be an
(∞,∞)-category, and let f : X → Y be a morphism. The following are equi-
valent:

(a) for all a ∈ A, the cell f(x) is an equivalence in Y ;
(b) there exists a map f̃ : X[A−1] → Y such that the triangle

X Y

X[A−1]

f

f̃

commutes.

Proof. By definition, X[A−1] is the colimit of a sequence X(n) →֒ X(n+1),
starting with X(0) ≡ X. We define f̃ by successive extensions from X(n) to
X(n+1), starting with f (0) := f , with the property that f (n)(a) is an equi-
valence for all a ∈ A(n). By assumption, f (0)(a) is an equivalence for all
a ∈ A(0) ≡ A ∩ ndX. Let n > 0; by the inductive hypothesis, g := f (n−1)

sends all a ∈ A(n−1) to equivalences. Let a ∈ A(n−1). Then b := g(a) : u ⇒ v
has a left and a right inverse bL : v ⇒ u, bR : v ⇒ u, such that b# bL ≃ εu
and εv ≃ bR # b. By assumption, there are weak composites bL ≃ 〈bL〉 and
bR ≃ 〈bR〉, so by Theorem 2.22.2 we have b# 〈bL〉 ≃ εu and εv ≃ 〈bR〉# b.
By Lemma 3.6, these equivalences are exhibited by cells z and h, respectively.
Letting

aL 7→ 〈bL〉, aR 7→ 〈bR〉, ξL(a) 7→ z, ξR(a) 7→ h
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determines an extension f (n) of g to X(n), which by construction sends cells
in A(n) to equivalences in Y . Passing to the colimit, we obtain a morphism f̃
which extends f , so that the triangle commutes. For the other direction, by
construction each a ∈ A is an equivalence in X[A−1], so by Theorem 2.22 f(a)
is an equivalence in Y . �

Proposition 3.8 — Let X be a diagrammatic set. The following are equivalent:

(a) X is an (∞,∞)-category;
(b) for all round diagrams u of shape U in X, there exists an equivalence c(u)

of shape U ⇒ 〈U〉 such that the triangle

U X

U ⇒ 〈U〉

u

c(u)

commutes;
(c) for all round diagrams u of shape U in X, there exists a morphism of

diagrammatic sets c̃(u) : (U
∼
⇒ 〈U〉) → X such that the triangle

U X

U
∼
⇒ 〈U〉

u

c̃(u)

commutes.

Proof. Suppose that X has weak composites and let u be a round diagram
in X. Then u has a weak composite 〈u〉, and by Lemma 3.6 the equivalence
u ≃ 〈u〉 is exhibited by a cell c(u) of shape U ⇒ 〈U〉. This proves the
implication from (a) to (b). Clearly, (b) also implies (a). Now, suppose
condition (b) holds, let u be a round diagram of shape U , and let c(u) be
the given equivalence in X. Letting ⊤ be the greatest element of U ⇒ 〈U〉,
we have, by definition, U

∼
⇒ 〈U〉 = (U ⇒ 〈U〉)[{⊤}−1], so by Proposition 3.7,

which applies by the first part of the proof, c(u) extends along the inclusion
(U ⇒ 〈U〉) →֒ (U

∼
⇒ 〈U〉), which proves (c). Finally, assume (c), let u be a

round diagram in X, and let c̃(u) be the given morphism. By construction, its
value on the cell (U ⇒ 〈U〉) →֒ (U

∼
⇒ 〈U〉) is an equivalence in X, exhibiting

its output boundary as a weak composite of u. �

Proposition 3.9 — Let X be an (∞,∞)-category, n ∈ N. The following are
equivalent:

(a) X is an (∞, n)-category;
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(b) for all cells u of shape U in X, if dimu > n, then there exists a morphism
ũ : Ũ → X such that the triangle

U X

Ũ

u

ũ

commutes.

Proof. Immediate from the definition and Proposition 3.7. �

3.2. Marked model structures

3.10 (Atomic and molecular horns). Let U be an atom, dimU > 0. A molecular
horn of U is the data of

1. a rewritable submolecule V ⊑ ∂αU , for some α ∈ {+,−},
2. the inclusion λVU : ΛVU →֒ U , where ΛVU := ∂U \ intV .

If V = cl {x} is an atom, we write λxU : ΛxU →֒ U and call it an atomic horn.

Remark 3.11 — In [CH24a], the molecular horns were simply called horns.

3.12 (Marked horns). Let λxU : ΛxU →֒ U be an atomic horn, let ⊤ be the
greatest element of U , let α ∈ {+,−} such that x ∈ ∆αU , and k := dimU −1.
We say that an inclusion

λxU : (ΛxU , A) →֒ (U,A′)

of marked regular directed complexes is a marked horn of U if there exist
molecules (L(i), R(i))ki=1 such that

1. ∂αU = L(k) #k−1 (. . . #1 (L
(1) #0 cl {x} #0R

(1))#1 . . .)#k−1R
(k),

2. dimL(i),dimR(i) ≤ i for each i ∈ {1, . . . , k},

3. L
(i)
i ∪R

(i)
i ⊆ A for each i ∈ {1, . . . , k},

and, moreover,

A′ =

{
A ∪ {x,⊤} if ∆−αU ⊆ A,

A ∪ {⊤} otherwise.

Comment 3.13 — Let λxU : ΛxU →֒ U be an atomic horn, let α ∈ {+,−} be
such that x ∈ ∆αU , let k := dimU − 1, and let q : ΛxU → X be a morphism of
diagrammatic sets. If k > 0, with reference to the terminology of [CH24b],

• v := q|∂−x and w := q|∂+x are parallel round diagrams of dimension k − 1
in X, as are v′ := q|∂−

k−1
U and w′ := q|∂+

k−1
U ;

• b := q|∂−αU is a round diagram of type v′ ⇒ w′ in X, and
• q|∂αU∩Λx

U
determines a round context E : RdX(v,w) → RdX(v′, w′).
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Altogether, these data determine an equation Ex ?= b in the indeterminate
x ∈ RdX(v,w)k . An extension of q along λxU is then precisely a pair of a cell
a : v ⇒ w together with a cell h : Ea⇒ b or b⇒ Ea, which is a special case of
what we called a lax or colax solution, respectively.
Now, suppose that λxU : (ΛxU , A) →֒ (U,A′) is a marked horn, and suppose

q lifts to a morphism q : (ΛxU , A) → X♮ of marked diagrammatic sets. Then
the conditions on the marking A, together with the assumption that q sends
marked cells to equivalences in X, imply that E is a weakly invertible context.
In this sense, marked horns are classifying objects for equations Ex ?= b with
E weakly invertible. Moreover, because ⊤ ∈ A′, an extension of q along λxU
exhibits an equivalence Ea ≃ b, and if all top-dimensional cells in b are marked,
so that b is an equivalence, then a is also an equivalence.
In this light, the fact that a marked diagrammatic set (X,A) has the right

lifting property against marked horns should be interpreted as the statement
that all marked cells are equivalences in X.

3.14 (Marked walking equivalence). Let U be an atom of dimension > 0. The
marked walking equivalence of shape U is the marked diagrammatic set

Ũm :=
(
Ũ ,dgn Ũ ∪

{
U →֒ Ũ

})
.

Comment 3.15 — There is an evident entire monomorphism Ũ ♭ →֒ Ũm. The
fact that a marked diagrammatic set (X,A) has the right lifting property
against these morphisms should be interpreted as the statement that all equi-
valences in X are marked.

3.16 (Walking pair of invertors). Let U be an atom, dimU > 0. The walking
pair of invertors on U is the diagrammatic set ΥU obtained as the colimit in
⊙Set of the diagram

∂+L∂+UU U ∂−R∂−UU

∂−U L∂+UU R∂−UU ∂+U

of maps of molecules. This is equipped with an evident inclusion U →֒ ΥU .

Comment 3.17 — Let u : U → X be a cell of type v ⇒ w in a diagrammatic
set. Then, extensions of u along U →֒ ΥU classify pairs of cells uL, uR : w ⇒ v
together with pairs of cells z : u# uL ⇒ εv and h : εw ⇒ uR # u.

3.18 (Marked walking pair of invertors). Let U be an atom, n := dimU > 0.
Then ΥU has exactly

1. two non-degenerate cells of dimension n + 1, classified by the morphisms
L∂+UU → ΥU and R∂−UU → ΥU in the colimit cone presenting ΥU ,
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2. three non-degenerate cells of dimension n, corresponding to the inclusion
U →֒ ΥU as well as the two morphisms DnU →֒ L∂+UU → ΥU and
DnU →֒ R∂−UU → ΥU .

We let

• ΥmU be ΥU with all cells of dimension ≥ n+ 1 marked,
• ΥmU be ΥmU with all cells of dimension ≥ n marked.

Comment 3.19 — There is en evident entire monomorphism ΥmU →֒ ΥmU .
The fact that a marked diagrammatic set (X,A) has the right lifting property
against these morphisms should be interpreted as the statement that if a cell
is weakly invertible up to marked cells, then it is marked. This corresponds to
the notion of saturation in [HL23b].

Lemma 3.20 — The set of monomorphisms M defined as
{
∂♭U : (∂U)♭ →֒ U ♭ | U ∈ Ob⊙

}
∪
{
tU : U ♭ →֒ Um | U ∈ Ob⊙, dimU > 0

}

is a cellular model for the monomorphisms of ⊙Setm.

Proof. Let i : (X,A) →֒ (X,B) be an entire monomorphism and let κ be an or-
dinal whose size bounds cellX. Each cell a ∈ B \A of shape U can be marked
by means of a pushout along tU , so by κ-indexed transfinite composition, we
construct i as an element of l(r(M)). Next, let i : (X,A) →֒ (Y, i(A) ∪ dgnY )
be a regular monomorphism. By [CH24a, Proposition 1.17], the set of mono-
morphisms {∂U | U ∈ Ob⊙} is a cellular model for the monomorphisms of

⊙Set, so (Ui)♭ belongs to l(r(M)). Then i fits in a pushout square

X♭ (X,A)

Y ♭ (Y, i(A) ∪ dgn Y )

(Ui)♭ i

y

where the top morphism is entire, hence belongs to l(r(M)) by the first part
of the proof. We conclude by Remark 2.30. �

3.21 (Marked cylinder). The marked cylinder is the endofunctor ~Im ⊗ps − on
⊙Setm, together with the natural transformations (ι−, ι+) and σ induced by
the morphisms

(0−, 0+) : 1 ∐ 1 →֒ ~Im, ε : ~Im → 1,

of marked regular directed complexes, respectively.

Remark 3.22 — Given a marked diagrammatic set (X,A), the set of marked
cells of ~Im ⊗ps (X,A) is

dgn(~Im ⊗X) ∪
{
0−
}
⊗A ∪ {1} ⊗ cellX ∪

{
0+
}
⊗A.
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Proposition 3.23 — The marked cylinder is an exact cylinder on ⊙Setm.

Proof. The axiom (DH0) is satisfied by construction, and (DH1) follows from
Lemma 2.33 and Lemma 2.34. �

3.24 (Inductive and coinductive model structures). Let ⊙Setm be equipped
with

1. the marked cylinder (~Im ⊗ps −, (ι
−, ι+), σ),

2. the cellular model M of Lemma 3.20,

and let n ∈ N ∪ {∞}. We define sets of monomorphisms

Jhorn :=
{
λxU : (ΛxU , A) →֒ (U,A′) | λxU is a marked horn

}
,

Jn :=
{
U ♭ →֒ Um | U ∈ Ob⊙, dimU > n

}
,

Jinv :=
{
ΥmU →֒ ΥmU | U ∈ Ob⊙, dimU > 0

}
,

Jloc :=
{
Ũ ♭ →֒ Ũm | U ∈ Ob⊙, dimU > 0

}
,

and then let

Jind := Jhorn ∪ Jn ∪ Jinv, Jcoind := Jhorn ∪ Jn ∪ Jloc.

By an application of Theorem 1.15, the set of monomorphisms

• Jind determines the inductive (∞, n)-model structure on ⊙Setm,
• Jcoind determines the coinductive (∞, n)-model structure on ⊙Setm.

3.3. Unmarked model structures

3.25 (Reversible cylinder). The reversible cylinder is the endofunctor

Ĩ := Loc(~Im ⊗ps (−)♭) : ⊙Set →⊙Set

together with the natural transformations (ι̃−, ι̃+) and σ̃ obtained by whisker-

ing (ι−, ι+) and σ with (−)♭ on the right and with Loc on the left.

Proposition 3.26 — The reversible cylinder is an exact cylinder on ⊙Set.

Proof. The axiom (DH0) is satisfied by construction. Now, (−)♭ preserves
colimits and monomorphisms because it is a full and faithful left adjoint, the
marked cylinder is exact by Proposition 3.23, and Loc preserves colimits and
monomorphisms by Proposition 2.39. This proves (DH1). �

3.27 ((∞, n)-model structure). Let ⊙Set be equipped with

1. the reversible cylinder (̃I, (ι̃−, ι̃+), σ̃),
2. the cellular model {∂U →֒ U | U ∈ Ob⊙} [CH24a, Remark 2.9],
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and let n ∈ N ∪ {∞}. We define sets of monomorphisms

Jcomp :=
{
U →֒ U

∼
⇒ 〈U〉 | U is a round molecule

}
,

Jn :=
{
U →֒ Ũ | U ∈ Ob⊙, dimU > n

}
.

The (∞, n)-model structure on ⊙Set is the model structure determined by
the set Jcomp ∪ Jn according to Theorem 1.15.

We note already that an analogue of the main theorem of [HLOR24] holds
in the (∞, n)-model structure by purely formal reasons. Let U be an atom,
and consider the evident surjection (U ⇒ U) → U . This lifts to a morphism
of marked atoms (U ⇒ U)m → U ♭, so it extends by Proposition 2.39 to a
surjection of diagrammatic sets (U

∼
⇒ U) → U .

Proposition 3.28 — Let U be an atom. Then (U
∼
⇒ U) → U is a weak

equivalence in the (∞, n)-model structure.

Proof. Since U is an atom, 〈U〉 = U , so the inclusion ι : U →֒ (U
∼
⇒ U) is

in Jcomp, and is in particular an acyclic cofibration. Now ι is a section of
(U

∼
⇒ U) → U , so we conclude by the 2-out-of-3 property. �

We readily show that all fibrant objects are (∞, n)-categories.

Lemma 3.29 — Let n ∈ N ∪ {∞} and let X be fibrant in the (∞, n)-model
structure. Then X is an (∞, n)-category.

Proof. By Proposition 3.8 combined with Proposition 3.9, a diagrammatic set
X has the right lifting property against Jcomp ∪ Jn if and only if it is an
(∞, n)-category. �

In Theorem 4.21, we will also establish the converse.

4. Characterisation and comparison

4.1. Inductive and coinductive model structures

Throughout this section, we fix n ∈ N ∪ {∞}.

Lemma 4.1 — Let (X,A) be a marked diagrammatic set and suppose that
(X,A) has the right lifting property against Jhorn. Then A ⊆ eqvX.

Proof. By coinduction, it suffices to show that A ⊆ B(A). Let e : V → X be
a marked cell and let ⊤ be the greatest element of V . We let

U := L∂+V V, B :=
{
(0−,⊤)

}
∪∆+U, B′ := B ∪

{
(0+,⊤), (1,⊤)

}
.

Then, letting x := (0+,⊤), the inclusion λxU : (ΛxU , B) →֒ (U,B′) is a marked
horn, and we have a morphism q : (ΛxU , B) → (X,A) restricting to ε(∂−e)
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on ∂+U and to e on V = cl {(0−,⊤)}; this is well-defined because all top-
dimensional cells in ε(∂−e) are degenerate, so they are marked. Extending
this morphism along λxU produces marked cells eL and z : e# eL ⇒ ε(∂−e).
Dually, we construct a marked horn of R∂−V , and the lifting property produces

marked cells eR and h : ε(∂+e) ⇒ eR # e. This proves A ⊆ B(A). �

Lemma 4.2 — Let (X,A) be a marked diagrammatic set and suppose (X,A)
has the right lifting property against Jhorn∪Jn. Then X is an (∞, n)-category.

Proof. Let u : U → X be a round diagram in X. Then U ♭ →֒ (U ⇒ 〈U〉)m is
a marked horn, so by assumption u : U ♭ → (X,A) extends along the horn to
c(u) : (U ⇒ 〈U〉)m → (X,A). By Lemma 4.1, c(u) is an equivalence inX, so by
Proposition 3.8, X is an (∞,∞)-category. If n = ∞, we are done. Otherwise,
let u : U → X be a cell of dimension > n in X. Then, because (X,A) has the
right lifting property against U ♭ →֒ Um, u is marked. By Lemma 4.1, u is an
equivalence, so X is an (∞, n)-category. �

Lemma 4.3 — Let (X,A) be a marked diagrammatic set and suppose that
(X,A) has the right lifting property against Jhorn. The following are equivalent:

(a) (X,A) has the right lifting property against Jloc;
(b) A = eqvX.

Proof. By Lemma 4.1, A ⊆ eqvX, and by Lemma 4.2, X is an (∞,∞)-cat-
egory. Let e be an equivalence of shape U in X. By Proposition 3.7, e extends
along the inclusion U →֒ Ũ to a morphism Ũ → X, which has a transpose of
type Ũ ♭ → (X,A). This extends to a morphism Ũm → (X,A) if and only if e
is marked, and in either case, eqvX ⊆ A, so A = eqvX. �

Lemma 4.4 — Let X be an (∞, n)-category. Then X♮ has the right lifting
property against Jcoind.

Proof. First, consider a marked horn λxU : (ΛxU , A) → (U,A′) and a morphism
q : (ΛxU , A) → (U,A′). As detailed in Comment 3.13, q determines an equation
Ex ?= b, where E is a weakly invertible context; moreover, if A′ = A ∪ {⊤, x},
then b is an equivalence. By [CH24b, Lemma 5.10], this equation has a weakly
unique solution a, given by E∗b where E∗ is a weakly invertible weak inverse to
E. Since X has weak composites, we can assume that a is a cell, and by Lemma
3.6 there exist cells h : Ea

∼
⇒ b and h∗ : b

∼
⇒ Ea exhibiting the equivalence.

Moreover, if b is an equivalence, then a ≃ E∗b is also an equivalence. Thus,
depending on whether x ∈ ∆−U or x ∈ ∆+U , h or h∗ is an extension of q
along λxU . This proves the right lifting property of X♮ against Jhorn. Moreover,
by Lemma 4.3, X♮ has the right lifting property against Jloc. If n = ∞, we
are done. Otherwise, let u be a cell of dimension > n and shape U . Then u
is an equivalence in X, hence it is marked. It follows that u extends along
U ♭ →֒ Um. This proves the right lifting property against Jn. �
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Lemma 4.5 — Let m : (X,A) →֒ (X,B) be entire. Then (ι−, ι+) �m is the
identity on ~Im ⊗ps (X,B).

Proof. First of all, (ι−, ι+)�m is entire on ~I⊗X, as its underlying morphism
of diagrammatic sets is a pushout-product with an identity morphism. Let
(~I ⊗ X,B′) denote the domain of (ι−, ι+) � m. The pushout coprojection
(X,B)

∐
(X,B) → (~I⊗X,B′) ensures that the cells {0α}⊗B belong to B′, for

all α ∈ {−,+}. The other pushout coprojection ~Im ⊗ps (X,A) → (~I ⊗X,B′)
ensures that the cells {1} ⊗ cellX>0 belong to B′. By Remark 3.22, these
are all the non-degenerate marked cells in ~Im ⊗ps (X,B). We conclude that
(ι−, ι+)�m is the identity. �

Lemma 4.6 — Let λxU : (ΛxU , A) →֒ (U,A′) be a marked horn. Then the
pushout-product (ι−, ι+)� λxU is a marked horn.

Proof. It follows from [CH24a, Lemma 3.16] that the underlying morphism of

(ι−, ι+)�λxU is the atomic horn λ
(1,x)
~I⊗U

: Λ
(1,x)
~I⊗U

→֒ ~I⊗U . Assume, without loss of

generality, that x ∈ ∆+U , the other situation being dual, and let (L(i), R(i))ki=1

be the molecules in a decomposition of ∂+U as by the definition of marked
horn. Let V W := V ⊗W for V ⊑ ~I and W ⊑ U . By [Had24, Proposition
7.2.16], ∂−~IU decomposes into a “generalised pasting”

{
0−
}
U #̂k (~IR

(k)
#̂k (. . . #̂2 (~IR

(1)
#̂1 cl {(1, x)} #̂1

~IL(1)) #̂2 . . .) #̂k ~IL
(k)),

which can be turned into a decomposition of the form

L
(k+1)

#k (. . . #1 (L
(1)

#0 cl {(1, x)} #0R
(1)

)#1 . . .)#k R
(k+1)

by expanding the generalised pastings as in [Had24, Lemma 7.1.4]. We have

• L
(1)
1 = {0−} ⊗ L

(1)
1 and R

(1)
1 =

{
0+
}
⊗R

(1)
1 ,

• L
(i)
i = {0−}⊗L

(i)
i ∪{1}⊗R

(i−1)
i−1 and R

(i)
i =

{
0+
}
⊗R

(i)
i ∪{1}⊗L

(i−1)
i−1 for

each i ∈ {2, . . . , k},

• L
(k+1)
k+1 = {0−} ⊗ {⊤U} ∪ {1} ⊗R

(k)
k and R

(k+1)
k+1 = {1} ⊗ L

(k)
k ,

all of whose elements are marked in ~Im⊗ps (U,A
′) by Remark 3.22. Moreover,

while (1, x) is also marked regardless of whether x was, we have

∆+(~I ⊗ U) =
{
0+
}
⊗ {⊤} ∪ {1} ⊗∆−U,

all of whose elements are marked in ~Im ⊗ps (U,A
′). We conclude that the

pushout-product (ι−, ι+)� λxU is of the form

λ
(1,x)
~I⊗U

:
(
Λ
(1,x)
~I⊗U

, B
)
→֒
(
~I ⊗ U,B ∪ {(1,⊤), (1, x)}

)

with (1, x) ∈ ∆−(~I ⊗ U) and ∆+(~I ⊗ U) ⊆ B, so it is a marked horn. �
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Lemma 4.7 — Let U be an atom, α ∈ {+,−}, and consider the marked
boundary inclusions ∂♭U : ∂U ♭ →֒ U ♭ and ∂Um : ∂U

♭ →֒ Um. Then the pushout-
products ια � ∂♭U and ια � ∂Um are marked horns.

Proof. Suppose without loss of generality that α = +, the other case being
dual. Let ⊤ be the greatest element of U and k := dimU . It follows from
[CH24a, Lemma 3.16] that the underlying morphism of ι+ � ∂♭U is the atomic

horn λ
(0−,⊤)
U : Λ

(0−,⊤)
~I⊗U

→ ~I ⊗ U . Then (0−,⊤) ∈ ∂−(~I ⊗ U), and expanding

the equations of [Had24, Proposition 7.2.16] and letting R(i) := ~I ⊗ ∂+i−1U for
each i ∈ {1, . . . , k}, we find that

∂−(~I ⊗ U) = (. . . (cl
{
(0−,⊤)

}
#0R

(1))#1 . . .)#k−1R
(k).

For each i ∈ {1, . . . , k}, we have R
(i)
i = {1}⊗∆+

i−1U , all of whose elements are

marked both in ~Im ⊗ps U
♭ and in ~Im ⊗ps Um. Since (1,⊤) is the only marked

element of ~Im ⊗ps U
♭ which is not in Λ

(0−,⊤)
~I⊗U

, we conclude that ι+ � ∂♭U is

a marked horn. On the other hand, (0−,⊤) and (0+,⊤) are also marked in
~Im ⊗ps Um, which implies that all elements of ∆+(~I ⊗ U) are marked. We
conclude that ι+ � ∂Um is also a marked horn. �

Lemma 4.8 — Let (X,A) be a marked diagrammatic set and J ∈ {Jind, Jcoind}.
The following are equivalent:

(a) (X,A) is J-fibrant;
(b) (X,A) has the right lifting property against J .

Proof. One implication is obvious. Conversely, suppose that (X,A) has the
right lifting property against J ; we need to show that it has the right lifting
property against an(J). Let JM := {ια �m | α ∈ {+,−} ,m ∈M}, where M
is the cellular model of Lemma 3.20, and let m ∈ M . Suppose that m = ∂♭U
for some atom U ; by Lemma 4.7, the pushout-product ια� ∂♭U is in Jhorn ⊆ J .
Next, suppose that m = tU for some atom U with greatest element ⊤. Then
ια � tU is an entire monomorphism with codomain ~Im ⊗ps Um. The induced

monomorphism along the restriction to Λ
(0−α,⊤)
~I⊗U

is equal to ια � ∂Um , which

is a marked horn by Lemma 4.7. Since the underlying morphism of ια � tU
is the identity, the right lifting property against this marked horn implies the
right lifting property against ια� tU . Finally, let j ∈ J ∪JM , and consider the
morphism j′ := (ι−, ι+)� j. Then either j ∈ Jhorn, in which case j′ ∈ Jhorn by
Lemma 4.6, or j is an entire monomorphism, in which case j′ is an identity by
Lemma 4.5. Thus, closure under j 7→ (ι−, ι+)� j only saturates J ∪ JM with
identities, and we conclude. �

Theorem 4.9 — Let (X,A) be a marked diagrammatic set. The following are
equivalent:
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(a) (X,A) is fibrant in the coinductive (∞, n)-model structure;
(b) X is an (∞, n)-category and A = eqvX.

Proof. One implication is the content of Lemma 4.2 and Lemma 4.3. Con-
versely, suppose X is an (∞, n)-category. By Lemma 4.4, X♮ has the right
lifting property against Jcoind. We conclude by Lemma 4.8. �

Lemma 4.10 — Let X be an (∞, n)-category. Then X♮ is fibrant in the
inductive (∞, n)-model structure.

Proof. By Lemma 4.8, we only need to show that X♮ has the right lifting prop-
erty against Jinv. Let U be an atom and consider a morphism f : ΥmU → X♮.
This corresponds exactly to the data of a pair of marked cells z : u# uL ⇒ εv
and h : εw ⇒ uR # u for some cell u : v ⇒ w and parallel cells uL, uR : w ⇒ v.
Then z and h are equivalences, which by definition means that u is an equi-
valence, and by Theorem 2.22.4 implies that uL and uR are also equivalences.
We conclude that f extends along ΥmU →֒ ΥmU . �

Proposition 4.11 — The coinductive (∞, n)-model structure is a left Bousfield
localisation of the inductive (∞, n)-model structure.

Proof. The coinductive (∞, n)-model structure has the same cofibrations as
the inductive (∞, n)-model structure. Moreover, by Theorem 4.9 and Lemma
4.10, a fibrant object for the coinductive (∞, n)-model structure is also fibrant
for the inductive (∞, n)-model structure. Since the two share the same exact
cylinder, by the characterisation in Theorem 1.15, weak equivalences in the
inductive model structure are also weak equivalences in the coinductive. �

Comment 4.12 — With a little effort, it can in fact be shown that the coin-
ductive (∞, n)-model structure is precisely the left Bousfield localisation of the
inductive (∞, n)-model structure at the set Jloc; we omit the proof to avoid
overwhelming this section, as it relies on a number of technical results that
will not be used elsewhere in the article.

In the case n < ∞, we strengthen this result by showing that the two model
structures actually coincide.

Lemma 4.13 — Suppose that n <∞ and let (X,A) be a marked diagrammatic
set. The following are equivalent:

(a) (X,A) is fibrant in the inductive (∞, n)-model structure;
(b) X is an (∞, n)-category and A = eqvX.

Proof. The implication from (b) to (a) is a particular case of Lemma 4.10.
Conversely, A ⊆ eqvX by Lemma 4.1 and X is an (∞, n)-category by Lemma
4.2, so it suffices to show that eqvX ⊆ A. Let e : U → X be an equivalence
of type v ⇒ w in X. If k := dimU > n, then we know that e is marked.
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Otherwise, we proceed by downward induction on k − (n + 1) ≥ 0, the base
case having already been proven. By definition, there exist weak inverses
eL, eR : w ⇒ v and equivalences z : e# eL ⇒ εv, h : εw ⇒ eR # e. By the
inductive hypothesis, z and h are marked, so these data uniquely determine a
morphism ΥmU → X. Because (X,A) has the right lifting property against
Jinv, this extends along ΥmU →֒ ΥmU , that is, e, eL, eR are all marked. �

Proposition 4.14 — Suppose that n <∞. Then the inductive and coinductive
(∞, n)-model structures coincide.

Proof. By Lemma 4.13, the two model structures have the same fibrant ob-
jects, so the proof of Proposition 4.11 can be dualised. �

4.2. Marked and unmarked model structures

Throughout this section, we fix n ∈ N ∪ {∞}.

Lemma 4.15 — Let U be an atom, dimU > 0. Then Um →֒ ΥmU is an
acyclic cofibration in the inductive and coinductive (∞, n)-model structures.

Proof. Let ⊤ be the greatest element of U , consider the inverted partial Gray
cylinders L∂+UU and R∂−UU , and let

A :=
{
(0−,⊤)

}
∪∆+L∂+UU, A′ := A ∪

{
(0+,⊤), (1,⊤)

}
,

B :=
{
(0+,⊤)

}
∪∆−R∂−UU, B′ := B ∪

{
(0−,⊤), (1,⊤)

}
.

Letting ΛL := Λ
(0+,⊤)
L
∂+U

U and ΛR := Λ
(0−,⊤)
R

∂−U
U , we have that

(ΛL, A) →֒ (L∂+UU,A
′), (ΛR, B) →֒ (R∂−UU,B

′)

are both marked horns, hence acyclic cofibrations. Then their pushouts

(ΛL, A) Um

(L∂+UU,A
′) LmU

y

(ΛR, B) Um

(R∂−UU,B
′) RmU

y

along the surjections that collapse ∂+L∂+UU and ∂−R∂−UU onto ∂−U and

∂+U , respectively, are both acyclic cofibrations. Since ΥmU can be construc-
ted as the pushout of Um →֒ LmU and Um →֒ RmU , we conclude. �

Lemma 4.16 — Let U be an atom, dimU > 0. Then Um →֒ Ũm is an acyclic
cofibration in the coinductive (∞, n)-model structure.
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Proof. Let u denote the cell U →֒ Ũ and let k := dimU . For each ℓ ≥ 0,
s ∈ {L,R}ℓ, and ǫ ∈ {L,R}, let Us := ΞsU and U ǫs := Dk+ℓΞsU . There are
monomorphisms of diagrammatic sets

φs : Ũs →֒ Ũ , φǫs : Ũ
ǫ
s →֒ Ũ ,

which, respectively, send Us →֒ Ũs to ξsu and U ǫs →֒ Ũ ǫs to ξǫsu. Let

Ũ ℓ :=

(
Ũ ,dgn Ũ ∪

k+ℓ−1⋃

i=k

(cell Ũ)i

)
,

so Ũ0 ≡ Ũ ♭. For each s ∈ {L,R}ℓ and ǫ ∈ {L,R}, there is an entire acyclic
cofibration with domain Ũ ℓ obtained by pushing out the acyclic cofibrations

(Ũs)
♭
→֒ (Ũs)m, (Ũ ǫs)

♭
→֒ (Ũ ǫs)m

respectively along jℓ−1 ◦ . . . j0 ◦ (φs)
♭ and along jℓ−1 ◦ . . . j0 ◦ (φ

ǫ
s)
♭. The colimit

of this family, which can be obtained by iterative composition of pushouts,
is the evident entire monomorphism jℓ : Ũ

ℓ →֒ Ũ ℓ+1, which is therefore an
acyclic cofibration. It follows that the transfinite composite j∞ : Ũ →֒ Ũ∞ of
the (jℓ)ℓ≥0 is also an acyclic cofibration. We have a commutative diagram of
cofibrations

Um Ũm Ũ ♭

Ũ∞

i
j

j′

j∞

where j′ ∈ Jloc and j∞ are acyclic, so by 2-out-of-3 j is also acyclic. Finally,
by construction of the localisation U 7→ Ũ , the cofibration i : Um →֒ Ũ∞

can be obtained via a transfinite composition of pushouts of the morphisms
(Us)m →֒ ΥmUs and (U ǫs)m →֒ ΥmU

ǫ
s , which are all acyclic cofibrations by

Lemma 4.15. By 2-out-of-3 again, Um →֒ Ũm is an acyclic cofibration. �

Lemma 4.17 — Let (X,A) be a marked diagrammatic set. Then the mono-
morphism (X,A) →֒ (X[A−1], A∪dgnX[A−1]) is an acyclic cofibration in the
coinductive (∞, n)-model structure.

Proof. The monomorphism (X,A) →֒ (X[A−1], A ∪ dgnX[A−1]) can be con-
structed as a transfinite composition of pushouts along Um →֒ Ũm indexed by
cells a : U → X in ndX ∩A. By Lemma 4.16, it is an acyclic cofibration. �

4.18 (Marked reversible cylinder). The marked reversible cylinder is the func-
tor Ĩm : ⊙Set → ⊙Setm which sends a diagrammatic set X to the marked
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diagrammatic set ĨmX which fits in the pushout square

(~I ⊗X)
♭

(̃IX)
♭

~Im ⊗ps X
♭ ĨmX

ψX

ϕX

y

in ⊙Setm, whose vertical morphisms are entire and horizontal morphisms
are regular. The monomorphisms ϕX and ψX are components of natural
transformations, which fit into a commutative diagram

(−)♭ ∐ (−)♭

~Im ⊗ps (−)♭ Ĩm (̃I−)
♭

(ι−,ι+)
(ι̃−m ,ι̃

+
m)

(ι̃−,ι̃+)

ϕ ψ

such that the components of (ι̃−m, ι̃
+
m) are induced by (ι̃−, ι̃+).

Lemma 4.19 — All components of ϕ : ~Im ⊗ps (−)♭ →֒ Ĩm and ψ : (̃I−)
♭
→֒ Ĩm

are acyclic cofibrations in the coinductive (∞, n)-model structure.

Proof. Let X be a diagrammatic set. Then ϕX is a regular monomorphism
of the form considered in Lemma 4.17, while the entire monomorphism ψX
can be constructed as a transfinite composition of pushouts along Ũ ♭ →֒ Ũm

indexed by cells a : U → ~I ⊗X that are marked in ~Im ⊗ps X
♭. �

Proposition 4.20 — The adjunction (−)♭ ⊣ U is a Quillen adjunction between
the (∞, n)-model structure and the coinductive (∞, n)-model structure.

Proof. We will show that (−)♭ is a left Quillen functor. It is clear that (−)♭ pre-
serves monomorphisms, hence cofibrations, so it remains to show that it pre-
serves acyclic cofibrations. By [Cis19, Proposition 2.4.40], which applies by Re-

mark 1.16, it suffices to show that (−)♭ sends all morphisms j ∈ an(Jcomp∪Jn)
to acyclic cofibrations. First, we consider the case that j ∈ Jcomp, so it is of
the form U →֒ U

∼
⇒ 〈U〉 for some round molecule U . We have a commutative

diagram of cofibrations

U ♭ (U
∼
⇒ 〈U〉)

♭

(U ⇒ 〈U〉)m (U
∼
⇒ 〈U〉)m

where the left vertical morphism is in Jhorn, the right vertical morphism is in
Jloc, and the bottom morphism is an acyclic cofibration by Lemma 4.16. By
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2-out-of-3, the top morphism is also an acyclic cofibration. If n = ∞, then Jn
is empty; otherwise, let j ∈ Jn be of the form U →֒ Ũ . We have a commutative
diagram of cofibrations

U ♭ Ũ ♭

Um Ũm

where the left vertical morphism is in Jn, the right vertical morphism is in
Jloc, and the bottom morphism is an acyclic cofibration by Lemma 4.16, so
the top morphism is also an acyclic cofibration. Next, let j = ι̃α�∂U for some
atom U and α ∈ {+,−}. We have a commutative diagram

• • •

• • •

ϕ∂U∪idU

ια�∂♭
U

ι̃αm�∂
♭

U

ψ∂U∪idU

(ι̃α�∂U )♭

ϕU ψU

where the leftmost vertical morphism is in an(Jcoind), and all the horizontal
morphisms are acyclic cofibrations by Lemma 4.19. By 2-out-of-3, we conclude
that all the morphisms in the diagram are acyclic cofibrations. Finally, let
j : X →֒ Y be in an(Jcomp ∪ Jn), and suppose inductively that j♭ is an acyclic
cofibration. Then we have a commutative diagram

• • •

• • •

ϕX∪idY ∐Y

(ι−,ι+)�j♭ (ι̃−m ,ι̃
+
m )�j♭

ψX∪idY ∐Y

((ι̃−,ι̃+)�j)
♭

ϕY ψY

where the leftmost vertical morphism is an acyclic cofibration, and all the
horizontal morphisms are acyclic cofibrations by Lemma 4.19. By 2-out-of-3,
we conclude that all the morphisms in the diagram are acyclic cofibrations.
This completes the proof. �

Theorem 4.21 — Let X be a diagrammatic set. The following are equivalent:

(a) X is fibrant in the (∞, n)-model structure;
(b) X is an (∞, n)-category.

Proof. One implication is Lemma 3.29. For the other implication, suppose that
X is an (∞, n)-category. By Theorem 4.9, X♮ is fibrant in the coinductive
(∞, n)-model structure, so by Proposition 4.20 X = UX♭ is fibrant in the
(∞, n)-model structure. �

Lemma 4.22 — Let f , g be parallel morphisms of marked diagrammatic sets
whose codomain is fibrant in the coinductive (∞, n)-model structure. Then f is
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homotopic to g with the exact cylinder ~Im⊗ps− if and only if Uf is homotopic
to Ug with the exact cylinder Ĩ.

Proof. By Theorem 4.9, the codomain of f and g is of the form Y ♮ where Y
is an (∞, n)-category. Let β : ~Im ⊗ps (X,A) → Y ♮ be a homotopy between
f and g. By Proposition 3.7, its underlying morphism extends to a morph-
ism β̃ : ĨX → Y , which is a homotopy between Uf and Ug. Conversely, let

β : ĨX → Y be a homotopy between Uf and Ug, and let β′ : (̃IX)
♭
→ Y ♮ be

its transpose. Because its codomain is fibrant, β′ extends along the acyclic

cofibration ψX : (̃IX)
♭
→֒ ĨmX, then restricts along ϕX to ~Im ⊗psX

♭. The res-
ulting morphism sends cells in ι−(A) and ι+(A) to equivalences, hence extends
to a homotopy β′′ : ~Im ⊗ps (X,A) → Y ♮ between f and g. �

Theorem 4.23 — The adjunction (−)♭ ⊣ U is a Quillen equivalence between
the (∞, n)-model structure and the coinductive (∞, n)-model structure.

Proof. The counit of the adjunction is an isomorphism, so by [Hov07, Corollary
1.3.16] it is enough to show that f preserves and reflects weak equivalences
between fibrant objects. By Theorem 1.15, the weak equivalences between
fibrant objects are the homotopy equivalences, and the right Quillen functor
U preserves fibrant objects, so we conclude by Lemma 4.22. �

4.3. Weak equivalences between (∞, n)-categories

Throughout this section, we fix n ∈ N ∪ {∞}. Unless otherwise specified, the
terminology we use is relative to the (∞, n)-model structure on ⊙Set.

4.24 (ω-equivalence). Let X, Y be (∞, n)-categories. A functor f : X → Y is
an ω-equivalence if

1. for all v ∈ cell Y0, there exists u ∈ cellX0 such that v ≃ f(u), and
2. for all n > 0, parallel pairs u−, u+ in RdXn−1, and cells v : f(u−) ⇒ f(u+)

in Y , there exists a cell u : u− ⇒ u+ in X such that v ≃ f(u).

We will prove that the weak equivalences between (∞, n)-categories are exactly
the ω-equivalences. To do so, we adopt the same strategy used for strict
ω-categories in [ABG+23, Section 20.3], which can be formally translated into
the setting of diagrammatic sets, provided we give an appropriate version of
the “transport lemma” [ABG+23, Lemma 20.3.5], which we do in Lemma 4.29.
When the proof of a statement is a formal analogue of its strict counterpart,
we do not reproduce it but simply indicate a precise reference, trusting the
reader to make the appropriate small changes of notations.

Lemma 4.25 — Let f : X → Y be an acyclic fibration of (∞, n)-categories.
Then f is an ω-equivalence.

Proof. The right lifting property of f against boundary inclusions of atoms
implies that the conditions of an ω-equivalence are satisfied up to equality. �
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Lemma 4.26 — Let f : X → Y be an ω-equivalence between (∞, n)-categories
and let u, v be parallel cells in X. Then f(u) ≃ f(v) implies u ≃ v.

Proof. Formal analogue of [ABG+23, Proposition 20.1.14]. �

4.27 (Reversible path space). By standard facts about locally presentable cat-
egories [AR94, 1.66], the colimit-preserving endofunctor Ĩ on⊙Set has a right
adjoint Γ̃, defined on a diagrammatic set X by

Γ̃X : U 7→⊙Set(̃IU,X).

This is equipped with natural transformations (π̃−, π̃+) and ν̃ obtained as
transposes of (ι̃−, ι̃+) and σ̃, respectively. We call Γ̃X the reversible path
space of X. Given a diagram γ : U → Γ̃X, we call γ a reversible cylinder of
shape U , and write γ : uy v for u := π̃−X ◦ γ and v := π̃+X ◦ γ.

Lemma 4.28 — Let X be an (∞, n)-category. Then Γ̃X is an (∞, n)-category.

Proof. It suffices to show that Γ̃X has the right lifting property against the set
Jcomp∪Jn. Transposing along the adjunction Ĩ ⊣ Γ̃, this is equivalent to show-
ing that X has the right lifting property against Ĩj for all j ∈ Jcomp∪Jn. Since
Ĩ is a cylinder object for the (∞, n)-model structure and preserves cofibrations,
it preserves acyclic cofibrations, so we conclude by fibrancy of X. �

Lemma 4.29 (Transport lemma) — Let X be an (∞, n)-category, U be an
atom, and [γ− : u− y v−, γ+ : u+ y v+] : ∂U → Γ̃X a diagram. Then

1. for all cells u : u− ⇒ u+, there exists a cell v : v− ⇒ v+ together with a
reversible cylinder γ : uy v restricting to [γ−, γ+], and

2. for all cells v : v− ⇒ v+, there exists a cell u : u− ⇒ u+ together with a
reversible cylinder γ : uy v restricting to [γ−, γ+].

Moreover, the two cells u, v determine each other uniquely up to equivalence.

Proof. The existence part of the statement translates to a right lifting problem
for X♮ against maps in Jhorn, hence follows from Theorem 4.9, and the weak
uniqueness part follows from [CH24b, Lemma 5.10]. �

Lemma 4.30 — Let X be an (∞, n)-category. Then

1. for all α ∈ {−,+}, the functor π̃αX : Γ̃X → X is an acyclic fibration,
2. the functor ν̃ : X → Γ̃X is an ω-equivalence.

Proof. Formal analogue of [ABG+23, Proposition 20.3.8]. �

4.31 (Reversible mapping path space). Let f : X → Y be a functor between
(∞, n)-categories. The reversible mapping path space of f is the diagrammatic
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set Γ̃f defined by the pullback

Γ̃f Γ̃Y

X Y

q

p π̃−

Y

f

y

in ⊙Set. Explicitly, cells of shape U in Γ̃f are pairs (x, γ : f(x) y y), where
x and y are cells of shape U in X and Y , respectively. We let pf : Γ̃f → Y be
the functor defined by (x, γ : f(x) y y) 7→ y.

Lemma 4.32 — Let f : X → Y be a functor of (∞, n)-categories. Then f is
an ω-equivalence if and only if pf is an acyclic fibration.

Proof. Formal analogue of [ABG+23, Proposition 20.3.10]. �

Proposition 4.33 — The class of ω-equivalences of (∞, n)-categories satisfies
the 2-out-of-3 property.

Proof. Formal analogue of [ABG+23, Theorem 20.3.11]. �

Remark 4.34 — We note that, by [Cis19, Lemma 2.4.24], the relation of being
homotopic is already an equivalence relation between fibrant objects, hence,
by Theorem 4.21, an equivalence relation between (∞, n)-categories.

Lemma 4.35 — Let f : X → Y be a functor of (∞, n)-categories, and suppose
fL, fR : Y → X are functors such that fL ◦ f is homotopic to idX and f ◦ fR

is homotopic to idY . Then f is a homotopy equivalence and both fL and fR

are homotopy inverses of f .

Proof. The statement implies that f is an isomorphism in the category of
fibrant objects up to homotopy, hence it is a homotopy equivalence with the
specified homotopy inverses by Theorem 1.15 and the Yoneda lemma. �

Lemma 4.36 — Let f, g : X → Y be homotopic functors of (∞, n)-categories.
Then f is an ω-equivalence if and only if g is an ω-equivalence.

Proof. Let β : X → Γ̃Y be the transpose of a homotopy from f to g. Then
f = π̃− ◦ β and g = π̃+ ◦ β, so we conclude by 2-out-of-3 for ω-equivalences,
which applies by Lemma 4.28 and Lemma 4.30. �

Theorem 4.37 — Let f : X → Y be a functor between (∞, n)-categories. The
following are equivalent:

(a) f is a weak equivalence;
(b) f is a homotopy equivalence;
(c) f is an ω-equivalence.
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Proof. The equivalence of the first two follows from Theorem 1.15 and The-
orem 4.21. Suppose that f is an ω-equivalence. By Lemma 4.32, pf : Γ̃f → Y
is an acyclic fibration. Since Y is cofibrant, pf has a section s : Y → Γ̃f ; let
g : Y → X denote the composite of s with the pullback projection p : Γ̃f → X,
and β : Y → Γ̃Y denote the composite of s with the other pullback projection
q : Γ̃f → Γ̃Y . By construction, for all cells v in Y ,

s(v) = (g(v), β(v) : f(g(v)) y v),

so the transpose of β is a homotopy from f ◦ g to idY . By Lemma 4.36, f ◦ g
is an ω-equivalence, so by 2-out-of-3 g is also an ω-equivalence. Reproducing
the first part of the proof with g in place of f , we obtain a functor f ′ : X → Y
such that g ◦ f ′ is homotopic to idX . By Lemma 4.35, we deduce that g is a
homotopy equivalence with inverse f , so f is a homotopy equivalence.
Conversely, suppose that f is a homotopy equivalence, and let g : Y → X

be a homotopy inverse. Since g ◦ f is homotopic to idX and f ◦ g is homotopic
to idY , by Lemma 4.36 both g ◦ f and f ◦ g are ω-equivalences. We will show
that f is an ω-equivalence. Let v : 1 → Y , and let β : ĨY → Y be a homotopy
between f ◦ g and idY . Then β ◦ Ĩv : Ĩ → Y exhibits f(g(v)) ≃ v. Next, let
n > 0, let u−, u+ ∈ RdXn−1 be parallel, and let v : f(u−) ⇒ f(u+) be a cell
in Y . Then g(v) : g(f(u−)) ⇒ g(f(u+)), and since g ◦ f is an ω-equivalence,
there exists a cell u : u− ⇒ u+ such that g(v) ≃ g(f(u)). By Theorem 2.22,
f(g(v)) ≃ f(g(f(u))), and since f ◦ g is an ω-equivalence, Lemma 4.26 implies
that v ≃ f(u). This completes the proof. �

5. Homotopy hypothesis

Recall from [CH24a] that the Cisinski model structure on ⊙Set is the model
structure obtained by applying Theorem 1.15 to the set of molecular horns with
the Gray cylinder ~I⊗− and the cellular model {∂U →֒ U | U ∈ Ob⊙}. In this
section, we will prove that the Cisinski model structure and the (∞, 0)-model
structure coincide. Our proof will go through an intermediate presentation of
the same model structure, based on atomic instead of molecular horns.

5.1 (Atomic Cisinski model structure). The atomic Cisinski model structure
on ⊙Set is the model structure obtained by applying Theorem 1.15 to the
set Jat of atomic horns with the exact cylinder ~I ⊗ − and the cellular model
{∂U →֒ U | U ∈⊙}.

Lemma 5.2 — The set Jat is a pseudo-generating set of acyclic cofibrations
for the atomic Cisinski model structure.

Proof. The proof of [CH24a, Proposition 3.18], showing that the set of mo-
lecular horns is saturated under an(−), restricts to its subset Jat. We conclude
by Theorem 1.15. �
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The following proof is based on the proof of [Hen18, Lemma 6.3.2].

Lemma 5.3 — Let U be a molecule and ι : V →֒ U be a submolecule inclusion.
Then, in the atomic Cisinski model structure,

1. ι is an acyclic cofibration,
2. if U is round and ι is rewritable, then ∂U →֒ U \ intV is an acyclic

cofibration.

Proof. We proceed by induction on k := dimU ≥ 0; the base case is trivial,
so let k > 0. Because all isomorphisms are acyclic cofibrations, and acyclic
cofibrations are closed under composition, for the first statement it suffices
to show that the inclusions of the form V →֒ V #ℓW and W →֒ V #ℓW are
acyclic cofibrations for all ℓ ≥ 0 and submolecules V,W ⊑ U . The pasting
V #ℓW is defined by a pushout of the form

∂+ℓ V = ∂−ℓ W W

V V #ℓW

y

and since acyclic cofibrations are closed under pushouts, it suffices to prove
that ∂αℓ V →֒ V is an acyclic cofibration for all ℓ ≥ 0, α ∈ {+,−}, and V ⊑ U .
We proceed by induction on submolecules of U , the base case having already
been settled. Suppose U is an atom. If ℓ ≥ k, then the inclusion is an identity.
Suppose ℓ = k − 1. Pick an arbitrary element x ∈ Max ∂−αU , and construct
the atomic horn ΛxU as the pushout of cofibrations

∂k−2U ∂−αU \ {x}

∂αU ΛxU
j

y

in ⊙Set. By the inductive hypothesis, since cl {x} ⊑ ∂−αU is always re-
writable, the top cofibration is acyclic, so j is acyclic. Since the atomic horn
λxU : ΛxU →֒ U is an anodyne extension, the boundary inclusion ∂αU →֒ U ,
which factors as λxU ◦ j, is an acyclic cofibration. Finally, if ℓ < k − 1, then
by globularity the boundary inclusion factors through ∂αℓ U →֒ ∂αU , and we
conclude by the inductive hypothesis.
Next, suppose that U splits into proper submolecules V #iW . If ℓ ≤ i, the

the inclusion ∂αℓ U factors through a boundary inclusion into V or W , and we
can apply the inductive hypothesis. Suppose ℓ > i. Then the squares

∂αℓ V ∂αℓ V #i ∂
α
ℓW ∂αℓ W V #i ∂

α
ℓ W

V V #i ∂
α
ℓ W W V #iW

j1 j2y y
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are pushouts in⊙Set, and by the inductive hypothesis the left vertical morph-
isms are acyclic cofibrations. Then j1, j2 and their composite, which is equal
to the inclusion ∂αℓ U →֒ U , are also acyclic cofibrations.
Finally, suppose U is round and ι is rewritable. As a consequence of [Had24,

Lemma 4.5.11], there exists a decomposition U = L# V ′ #R such that

∂−V ⊑ ∂+L, ∂+V ⊑ ∂−R, V ′ = ∂+L k−1⊳ V = V ⊲k−1 ∂
−R,

where the first two inclusions are rewritable. Moreover, ∂αV ′ is round and
L ∩R = ∂αV ′ \ int ∂αV , so in the commutative diagram

∂−U = ∂−L ∂k−2U ∂+U = ∂+R

L L ∩R R

all the vertical cofibrations are acyclic by the inductive hypothesis. By [Cis19,
Corollary 2.3.17], the induced cofibration ∂U →֒ L ∪ R = U \ intV between
pushouts of the horizontal cofibrations is also acyclic. �

Lemma 5.4 — Each molecular horn is an acyclic cofibration in the atomic
Cisinski model structure.

Proof. Let U be an atom and let V ⊑ ∂αU be a rewritable submolecule. The
horn ΛVU can be constructed as the pushout

∂U ∂αU \ intV

∂−αU ΛVU
j

y

in⊙Set, where the top cofibration is acyclic by Lemma 5.3. Thus the cofibra-
tion j is acyclic. Since the boundary inclusion ∂−U →֒ U , which by the same
result is an acyclic cofibration, factors as λVU ◦ j, we conclude by 2-out-of-3
that λVU is an acyclic cofibration. �

Proposition 5.5 — The atomic Cisinski model structure and the Cisinski
model structure coincide.

Proof. The two model structures have the same cofibrations and the same
exact cylinder. By Theorem 1.15, it suffices to show that they have the same
fibrant objects. Since the set of atomic horns is a subset of the set of molecular
horns, it is immediate that fibrant objects in the Cisinski model structure
are fibrant in the atomic Cisinski model structure. Conversely, by [CH24a,
Theorem 3.22] molecular horns are a generating set of acyclic cofibrations in
the Cisinski model structure, so we conclude by Lemma 5.4. �
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Lemma 5.6 — Let X be a diagrammatic set. The following are equivalent:

(a) X is fibrant in the atomic Cisinski model structure;
(b) X is an (∞, 0)-category.

Proof. Suppose that X is fibrant in the atomic Cisinski model structure. Since
the underlying morphism of each marked horn is an atomic horn, it follows
that X♯ has the right lifting property against Jhorn. Moreover, X♯ always has
the right lifting property against J0. It follows from Lemma 4.2 that X is
an (∞, 0)-category. Conversely, suppose that X is an (∞, 0)-category. By
Theorem 4.9, X♮ is fibrant in the coinductive (∞, 0)-model structure, and
since eqvX = cellX>0, we have X♮ = X♯. Then, transposing the first part of
the proof, we see that X has the right lifting property against Jat. It follows
from Lemma 5.2 that X is fibrant in the atomic Cisinski model structure. �

Theorem 5.7 — The (∞, 0)-model structure and the Cisinski model structure
coincide.

Proof. By Proposition 5.5, we may instead compare the atomic Cisinski model
structure and the (∞, 0)-model structure. By definition they have the same
cofibrations, and by Lemma 5.6, the same fibrant objects. By Theorem 1.15,
it suffices to show that, for any two parallel morphisms f, g of diagrammatic
sets whose codomain Y is an (∞, 0)-category, f is homotopic to g with the
exact cylinder Ĩ if and only if f is homotopic to g with the exact cylinder
~I ⊗ −. One direction is evident; the other follows from Lemma 4.22 and the
observation that Y ♯ is fibrant in the coinductive (∞, 0)-model structure. �

Corollary 5.8 (Homotopy hypothesis) — There is a pair of Quillen equivalences

sSet ⊙Set sSet

i∆

(−)∆

Sd⊙

Ex⊙

⊣ ⊣

between the classical model structure on sSet and the (∞, 0)-model structure
on ⊙Set.

Proof. Follows from Theorem 5.7 combined with [CH24a, Proposition 3.12,
Proposition 3.25]. �

To conclude, we note that our results confirm that the “bi-invertible” localisa-
tion is a homotopy coherent operation, strengthening the results of [HLOR24]
before an explicit comparison with other models of (∞, n)-categories for n > 0.

Proposition 5.9 — Let U be an atom. Then the unique morphism Ũ → 1 is
a weak equivalence in the (∞, 0)-model structure.
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Proof. The cofibration U →֒ Ũ is an anodyne extension in the (∞, 0)-model
structure, while the unique morphism U → 1 is a weak equivalence in the
Cisinski model structure by [CH24a, Lemma 3.8, Theorem 3.10], hence also in
the (∞, 0)-model structure by Theorem 5.7. We conclude by 2-out-of-3. �

6. Outlook and conjectures

6.1. Equivalence with complicial model structures

We recall a few basic facts about complicial sets as a model of (∞, n)-categor-
ies. A marked simplicial set—also known as stratified simplicial set—is a pair
(K,A) of a simplicial set K and a subset A of marked simplices of dimension
> 0, including all degenerate simplices. Marked simplicial sets and morphisms
that respect the marking form a category sSetm.
Let ∆[1]m be the 1-simplex with a marking whose only non-degenerate

marked simplex is classified by id∆[1]. In [OR20, Definition 1.21], for each
n ∈ N ∪ {∞}, an n-complicial set is defined as a marked simplicial set which
has the right lifting property against a certain set J∆

n of elementary anodyne
extensions. In the same article, a model structure is constructed on sSetm

whose fibrant objects are precisely the n-complicial sets. While this is ob-
tained with an appeal to [Ver08, Theorem 100], we believe that it coincides
with the one determined by Theorem 1.15 applied to J∆

n together with

• the exact cylinder ∆[1]m × − with the natural transformations induced
by the coface maps (d0, d1) : ∆[0] ∐ ∆[0] → ∆[1] and codegeneracy map
s0 : ∆[1] → ∆[0], and

• the cellular model {∂∆[n] →֒ ∆[n] | n ∈ N}.

Let ∆ be the simplex category, and recall from [Had24, Proposition 9.2.14] that
we may represent ∆ as the full subcategory of ⊙ on the oriented simplices.
The adjunction i∆ ⊣ (−)∆ of Corollary 5.8 is obtained by left Kan extension of
this representation along the Yoneda embedding. Now, if (K,A) is a marked
simplicial set, then one checks that the pair (i∆K, i∆A∪dgn i∆K) is a marked
diagrammatic set, and conversely, if (X,A) is a marked diagrammatic set,
then (X∆, A ∩ cellX∆) is a marked simplicial set. This assignment lifts the
adjunction i∆ ⊣ (−)∆ to an adjunction between sSetm and ⊙Setm.
We make the following conjecture, which, in the light of [Lou23], would

imply that our model is equivalent to the models of (∞, n)-categories in the
geometric cluster.

Conjecture 6.1 — For all n ∈ N ∪ {∞}, the adjunction i∆ ⊣ (−)∆ is a
Quillen equivalence between the n-complicial model structure on sSetm and
the inductive (∞, n)-model structure on ⊙Setm.

The first step towards proving the conjecture would be to establish that the ad-
junction is Quillen. Since i∆ preserves monomorphisms, which are the cofibra-
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tions in both model structures, it would suffice to show that it preserves acyclic
cofibrations. By [Cis19, Proposition 2.4.40] combined with [OR20, Proposi-
tion 1.26] showing that J∆

n is a generating set of anodyne extensions, this
would follow from sending morphisms in J∆

n to acyclic cofibrations, for which
an argument similar to the one used in [HL23b, Lemma 4.49] for marked strict
ω-categories could be applicable.
Once a Quillen adjunction is established, we would hope to prove that it is a

Quillen equivalence along the same lines used to prove Theorem 4.23. Indeed,
the unit of the adjunction is an isomorphism, so it would suffice to show that
(−)∆ preserves and reflects weak equivalences between fibrant objects. By
Theorem 1.15, it is enough to show that for any two morphisms f, g between
fibrant marked diagrammatic sets, f is homotopic to g with the exact cylinder
~Im⊗ps− if and only if f∆ is homotopic to g∆ with the exact cylinder ∆[1]m×−.
We can expect some difficulty in comparing the Gray tensor product ⊗ with
the cartesian product ×. For the reader who might wonder if the two products
are even plausibly homotopic, we refer to [CH24a, Corollary 3.27], where we
showed that this is the case at least when n = 0.
We note that Corollary 5.8, together with Proposition 4.14, Theorem 4.23,

and the Quillen equivalence between the 0-complicial model structure and the
classical model structure on simplicial sets imply the conjecture for n = 0.

6.2. Comparison with the folk model structure on ω-categories

We recall from [LMW10] that there is a model structure on the category ωCat

of strict ω-categories and strict functors, called the folk model structure, where

• cofibrations are cellular extensions, and cofibrant objects are polygraphs,
• all objects are fibrant,
• weak equivalences are precisely ω-equivalences, that is, functors that are

essentially surjective on cells of each dimension,

where “essentially” means “up to coinductively weakly invertible cells”. It
should be apparent to the reader that this model structure has much in com-
mon with our (∞,∞)-model structure.
Let RDCpx be the category of regular directed complexes and cartesian

maps. It follows from [Had24, Theorem 6.2.3] that there is a functor

Mol/− : RDCpx → ωCat

with the property that, given a regular directed complex P , the strict ω-cat-
egory Mol/P has a minimal set of composition-generators in bijection with
the elements of P . Restricting this functor to ⊙, then extending it along the
Yoneda embedding produces an adjunction between⊙Set and ωCat, and one
could then expect that the adjunction is Quillen between the (∞,∞)-model
structure and the folk model structure. This is not the case. Since all diagram-
matic sets are cofibrant, it would be necessary for Mol/U to be a polygraph
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for all atoms U . However, we know from [Had24, Example 8.2.20] that there
exists a 4-dimensional molecule V such that Mol/V is not a polygraph, and
this can be embedded into the boundary of a 5-dimensional atom. We note
that 5 is minimal: Mol/U is a polygraph for all atoms U of dimension ≤ 4.
While there are well-known problems with strict ω-categories as models of

homotopy types, due mainly to “strict Eckmann–Hilton” [Sim98, Hen19], our
results show that the “extra coherences” satisfied by pasting of molecules, but
not implied by the axioms of strict ω-categories in dimension ≥ 4, are actually
homotopically sound. Thus one is led to the conclusion that strict 4-categories
are, at once, too strict and not strict enough, so they should perhaps be placed
at a further “precategorical” level, similar to sesquicategories which satisfy
associativity but not interchange. Incidentally, the same issue is going to affect
all algebraic models based on a weakening of the algebra of strict ω-categories,
such as Batanin–Leinster models, and it seems likely to us that none of these
models are going to be Quillen equivalent to diagrammatic (∞, n)-categories—
or, if Conjecture 6.1 holds, to any of the accepted non-algebraic models of
(∞, n)-categories—as long as the analogue of the folk model structure is used;
some further localisation will be necessary.
We take some steps into the description of such a localisation in the strict

case. Recall that, given a regular directed complex P , for all x ∈ P we have a
unique inclusion ιx : Px →֒ P with image cl {x}, and that the canonical map

colim
x∈P

Px → P

is an isomorphism of regular directed complexes.

6.2 (Stricter ω-category). Let X be a strict ω-category. We say that X is a
stricter ω-category if, for all molecules U , the canonical map

ωCat(Mol/U,X) → lim
x∈U

ωCat(Mol/Ux,X)

is an isomorphism. We denote by ωCat> the full subcategory of ωCat on the
stricter ω-categories.

Alternatively, the category of stricter ω-categories could be defined as the
localisation of ωCat at the set of morphisms

colim
x∈U

Mol/Ux → Mol/U

indexed by molecules U ; we expect that this should exhibit ωCat> as a reflect-
ive localisation of ωCat, and that ωCat> should be locally finitely presentable.
Because stricter ω-categories satisfy “extra equations”, their internal notion of
polygraph, that we may call stricter polygraph, is actually looser: some objects
which are not free with respect to the algebra of strict ω-categories will be free
with respect to the algebra of stricter ω-categories.
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By construction, the functor Mol/− has image in ωCat>, so we have a
“diagrammatic nerve” functor N⊙ : ωCat> →⊙Set defined by

X 7→ ωCat>(Mol/−,X).

We make the following conjecture.

Conjecture 6.3 — There is a “folk model structure” on ωCat> where

• cofibrant objects are stricter polygraphs,
• all objects are fibrant,
• weak equivalences are ω-equivalences,

and such that

1. the subcategory inclusion ωCat> →֒ ωCat is right Quillen with respect to
the folk model structure on ωCat,

2. the diagrammatic nerve N⊙ : ωCat> →⊙Set is right Quillen with respect
to the (∞,∞)-model structure on ⊙Set.

Of course, neither adjunction can be a Quillen equivalence.

6.3. Compatibility with the Gray product

We know from [AL20] that the folk model structure is monoidal with the
Gray product of strict ω-categories. We also already know that the Gray
product of diagrammatic sets is biclosed and preserves monomorphisms, hence
cofibrations. Thus, we make the following conjecture.

Conjecture 6.4 — Let n ∈ N∪{∞}. The (∞, n)-model structure on diagram-
matic sets is monoidal with the Gray product.

By Theorem 5.7 combined with [CH24a, Theorem 3.23], this is already
settled in the case n = 0. We expect a proof in the case n > 0 to closely follow
the one for strict ω-categories; in particular, after private communication with
Dimitri Ara, we believe that a formal analogue of [AL20, Lemma 4.2] may be
applicable to diagrammatic sets.
Further, we expect that stricter ω-categories also have a Gray product,

defined by the same methods used in [AM20]. We note that the results of
[Had24, Chapter 11] show that there is a class of regular directed complexes,
the acyclic ones, which is closed under Gray products, and on which Mol/−
factors up to natural isomorphism as

1. a monoidal functor landing in the category of strong Steiner complexes,
2. followed by Steiner’s right adjoint ν functor.

We can then strengthen Conjecture 6.3 with the expectation that the hypo-
thetical left adjoint from ⊙Set to ωCat> is a strong monoidal left Quillen
functor between monoidal model categories.
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