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ABSTRACT

This paper describes Asterisk*, a compact GPT-based model for generating text embeddings. The
model implements a minimalist architecture with two layers, two attention heads, and 256 embedding
dimensions. Through knowledge distillation from larger pretrained models, we examine the trade-
offs between model size and performance while reducing computational and memory requirements.
The model is evaluated and optimized primarily for classification tasks, where experimental results
demonstrate its capability in zero-shot classification across various downstream applications. With
additional configuration, the model’s performance approaches, and, sometimes outperforms that of
larger architectures on specific classification tasks.

1 Introduction

Text embeddings are a universal tool for various tasks related to language processing, as they provide meaningful
representations of text in a standardized format that is easy to work with. However, to capture the full range of meanings
in language, models must be trained on large amounts of data and the models themselves must be sufficiently large and
complex to effectively learn language patterns. One technique for training new models with reduced computational and
data requirements, as well as optimizing existing ones, is Knowledge Distillation (also known as Knowledge Transfer).
This approach enables the effective transfer of knowledge from a larger (teacher) model to a smaller (student) model
with minimal performance loss. This paper demonstrates that not only model complexity, dataset size but overall
approach can be scaled down and simplified, while still achieving almost state-of-the-art performance.

2 Setup

Asterisk* architecture specifically uses a 256-dimensional embedding space, 2 transformer layers, and bidirectional
attention with 2 attention heads per layer, having total of 14,019,584 parameters. The embedding layer combines
token embeddings with positional embeddings, both initialized with a normal distribution. Each token is mapped to a
256-dimensional vector through the embedding layer.

The transformer blocks use pre-norm architecture, meaning layer normalization is applied before both the self-attention
and feed-forward components. The multi-head attention splits the 256-dimensional embeddings into 2 heads, each
handling 128-dimensional chunks. The feed-forward network expands the 256 dimensions to 512 in its hidden layer,
using GELU activation.

The model uses the GPT2 tokenizer with added special tokens [MASK] and [PAD], totaling at 50259 tokens.

Weight initialization uses Xavier uniform for attention and feed-forward layers, while embeddings use the smaller
normal initialization for stability. The attention mask handles variable-length sequences by setting padded positions to
negative infinity before the softmax operation.
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Figure 1: Asterisk* architecture

2.1 Data

The model was trained exclusively on English language data. The final iteration of dataset primarily consisted of
Wikipedia articles, without any topic-specific selection, and was supplemented with texts from various sources, including
academic publications, blogs, fictional books, magazines, TV transcripts, and spoken language. In total, the dataset
comprised just 7 million tokens, with more than half of these tokens sourced from Wikipedia. All data is publicly
available and was collected manually. This relatively small dataset size is compensated by high quality of the contents
that cover broad domains of language.

3 Training

3.1 Teacher Model

The OpenAI text-embedding-3-small model was selected as the teacher model due to its implementation of Matryoshka
Representation Learning (MRL). This architectural feature enables dimensional reduction of embeddings from 1536
to 256 dimensions to match Asterisk’s* dimensionality requirements while preserving the semantic integrity of the
representations. The MRL approach eliminates the need for traditional dimensionality reduction techniques such as
Principal Component Analysis (PCA). Our empirical investigations demonstrated that conventional reduction methods
introduce significant noise into the compressed embeddings, resulting in substantial degradation of model performance.
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3.2 Loss Function

For this model the combination of Mean Squared Error (MSE) and Cosine Similarity have been used. The MSE
measures the direct distance between student and teacher embeddings, while Cosine Similarity measures the angular
difference between embeddings.

Cosine Loss = 1− Cosine Similarity

Total Loss = α · MSE + (1− α) · Cosine Loss

The α parameter controls the balance between MSE and Cosine loss, higher alpha prioritize absolute distances (MSE),
lower alpha prioritize directional similarity (Cosine)

3.3 Hyperparameters

α 0.3
Batch Size 24

Learning Rate 0.0001
Max. Input Sequence Length (in tokens) 128

Optimizer Adam
Dropout rate 0.1

Table 1: Training Hyperparameters

3.4 Process

The knowledge distillation process was implemented through an iterative training procedure. For each training step,
sequences of 128 tokens were sampled from the dataset and processed in parallel through both the teacher model
(OpenAI’s text-embedding-3-small) and the student model (Asterisk*) to generate their respective embeddings. The
dimensional alignment between the teacher’s reduced embeddings (256d) and the student’s embeddings enabled direct
computation of the distillation loss

Sample text

Teacher model

Asterisk*

Loss 
Calculation

Backpropagation

Teacher 
Embeddings
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Figure 2: Asterisk* training process

The model was trained on a single Nvidia A100 GPU instance, the training took 12 minutes and 41 second for 1 epoch,
and OpenAI API calls being main time consumer.
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Asterisk* Training: Loss & Similarity

Figure 3: During training, the model achieved cosine similarity with teacher embeddings of 0.65/1 and loss has dropped
from 0.7080 to 0.2427

4 Evaluations

During the training process, model checkpoints were preserved at 100-step intervals, resulting in 25 distinct checkpoints.
Each checkpoint underwent comprehensive evaluation using both MTEB (Massive Text Embedding Benchmark)
benchmarks and custom evaluation methods.

Systematic evaluation across all checkpoints revealed that the final checkpoint consistently demonstrated superior
performance across all benchmark categories. However, initial analyses highlighted a notable performance disparity in
tasks involving informal language processing.

Further investigation indicated that this performance bias was primarily attributable to an imbalanced training dataset
dominated by formal language samples. Consequently, the model exhibited stronger performance on formal language
tasks (e.g., legal document classification) while underperforming on tasks involving natural, informal language (e.g.,
emotion classification).

To address this limitation, was conducted additional fine-tuning using dataset of 5M tokens, comprising Reddit posts
and comments, along with conversation transcripts specifically selected for their informal language characteristics.
Subsequent evaluation demonstrated improved performance on informal language benchmarks without degrading the
model’s capabilities on other benchmark categories. As a baseline for comparison we have used E5-PT Small model
from Text Embeddings by Weakly-Supervised Contrastive Pre-training paper.

4.1 Raw comparison with baseline model

Layers Hidden Size Parameters
Asterisk* 2 512 14M

E5-PT Small 12 384 33M
Table 2: Comparison of Asterisk* and baseline model
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Table 3: Classification task scores winner in Bold
Benchmark Asterisk* Score E5-PT Small

MassiveIntentClassification 46% 70.2%
EmotionClassification 24.7% 42.2%

CorporateLobbyingLegalBenchClassification 74.8% -
Banking77Classification 20.1% 82.1%

MassiveScenarioClassification 51.9% 74.6%
AmazonReviewsClassification 23.5% 35.0%

ImdbClassificaion 55% 67.9%
AmazonCounterfactualClassification 60% 71.7%

Benchmark Asterisk* Score E5-PT Small
AskUbuntuDupQuestions 44.5% 57.8%

QuoraRetrieval 43.1% -
StackOverflowQuestions 39.3% 44.4%

Table 4: Re-ranking and retrivieval tasks scores

4.2 Issues

During internal evaluation of re-ranking and classification tasks, we observed evidence of probability distribution col-
lapse in the similarity scores between query and candidate embeddings. Specifically, the model demonstrated a tendency
to assign elevated similarity scores across text samples, even in cases of limited semantic relevance. However, subse-
quent detailed analysis revealed that this phenomenon had minimal impact on the model’s practical performance metrics.

While the model consistently produced higher absolute similarity scores for all candidates during re-ranking and
classification tasks, the relative ordering of scores remained preserved, with more semantically relevant texts maintaining
higher comparative scores.

5 Applied Use

While utilizing raw embeddings for similarity-based classification tasks is a valid approach, it places significant
demands on the model’s inherent capability to minimize errors. Our internal evaluations revealed that the Asterisk*
model, while capable of zero-shot classification using raw embeddings, struggled with complex topics on which it was
not sufficiently trained, lacking reliability across a broader range of topics.

To address this limitation, we use a Fully-Connected (FC) network architecture on top of the Asterisk* model. This
approach was empirically validated to achieve highly reliable classification performance, albeit at the cost of requiring
additional task-specific training, unlike the zero-shot setup. Typically the peak performance was achieved after only
1000 samples.

The FC network architecture consists of 256 input neurons, with each embedding component assigned to a separate
neuron. This is followed by two hidden layers of 128 and 64 neurons, respectively, and an output layer with a neuron
count matching the number of target classes. During training we used learning rate of 0.001, batch size of 32 and Cross
Entropy Loss (Asterisk* model was not additionally fine-tuned, only FC network was trained during this approach)

Text tokens Asterisk* FC Network Class Probabilites Output 
Embeddings

Figure 4: Asterisk* + FC classification setup
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5.0.1 MTEB Re-evaluation with FC network

Table 5: Asterisk* + FC, winner in Bold

Benchmark Asterisk* + FC E5-PT Small
MassiveIntentClassification 94% 70.2%

EmotionClassification 76.7% 42.2%
CorporateLobbyingLegalBenchClassification 98.1% -

Banking77Classification 75.7% 82.1%
MassiveScenarioClassification 88% 74.6%
AmazonReviewsClassification 62.9% 35.0%

ImdbClassificaion 85.6% 67.9%
AmazonCounterfactualClassification 81% 71.7%

Such setup not only outperforms baseline model across majority of benchmarks but, according to the MTEB Leaderboard,
the Asterisk* model with addition of FC network achieved the following benchmark rankings:

• 1st place on the MassiveIntentClassification task, outperforming 2nd placed model with 7.8 billion parameters
• 2nd place on the AmazonReviewsClassification task, outperforming 3rd placed model with 7.6 billion parame-

ters

It is important to note that the MTEB Leaderboard measures the performance of raw, unmodified models, without any
additional task-specific components or fine-tuning.

In addition to MTEB re-evaluations we internally simulated possible real world use cases for this model.

Task Score Number of classes
SMS Spam Classification 95% 2
News Texts Classification 89% 5
Sentiment Classification 87% 3

Programming Language Classification 52% 6
Cancer Doc Classification 68% 3

Products Classification 98% 4
Offencive Content Detection 96% 2

Table 6: Performance on internal evaluations using FC network

The performance of the model using the Fully-Connected (FC) network architecture significantly surpassed what was
achievable with raw embeddings alone. This observed improvement in performance can be attributed to the inherent limi-
tations of the Asterisk* model’s ability to independently organize conceptual representations within its embedding space.

The available training data was likely sufficient for the model to effectively learn the structures and semantic meanings
of individual sentences, but insufficient for it to autonomously develop a cohesive, task-agnostic organization of the
underlying concepts (at least in most cases). The FC network, appears to provide the necessary capability to interpret
the model’s embeddings for the target classification tasks.

This suggests that while the Asterisk* model’s raw embeddings may not be optimally structured for direct similarity-
based classification, the information contained within these embeddings can still be effectively exploited through the
introduction of a task-specific, learned interpretation mechanism, as implemented by the FC network.

6 Conclusion

The methodology presented in this research, while deliberately straightforward in its design, demonstrates that
architectural simplicity need not constrain model performance. Our empirical results establish that the addition of a
computationally lightweight abstraction layer (FC network) significantly enhances the model’s capabilities, surpassing
its baseline performance across both standardized benchmarks and practical applications, and comparing to other state-
of-the-art models. This research challenges the common assumption that model sophistication necessarily correlates
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with performance improvement, instead thoughtfully implemented simple architectures and training pipelines can
achieve remarkable results while maintaining computational efficiency and design simplicity.

[1, 2, 3, 4, 5, 6]
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