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ABSTRACT
Current imaging-based prostate cancer diagnosis requires
both MR T2-weighted (T2w) and diffusion-weighted imag-
ing (DWI) sequences, with additional sequences for po-
tentially greater accuracy improvement. However, mea-
suring diffusion patterns in DWI sequences can be time-
consuming, prone to artifacts and sensitive to imaging pa-
rameters. While machine learning (ML) models have demon-
strated radiologist-level accuracy in detecting prostate cancer
from these two sequences, this study investigates the poten-
tial of ML-enabled methods using only the T2w sequence as
input during inference time. We first discuss the technical fea-
sibility of such a T2-only approach, and then propose a novel
ML formulation, where DWI sequences - readily available
for training purposes - are only used to train a meta-learning
model, which subsequently only uses T2w sequences at infer-
ence. Using multiple datasets from more than 3,000 prostate
cancer patients, we report superior or comparable perfor-
mance in localising radiologist-identified prostate cancer
using our proposed T2-only models, compared with alterna-
tive models using T2-only or both sequences as input. Real
patient cases are presented and discussed to demonstrate, for
the first time, the exclusively true-positive cases from models
with different input sequences. Open-source code is available
at https://github.com/wxyi057/MetaT2.

Index Terms— Prostate cancer prediction, Bi-level opti-
misation, Meta learning, Diffusion model

1. INTRODUCTION

Various MR sequences are used in the image-based diagnosis
of prostate cancer. Among these sequences, T2-weighted
(T2w) images typically have shorter acquisition times, com-
pared to other commonly used sequences such as diffusion-
weighted imaging (DWI) with multiple b-values and dynamic
contrast enhanced sequences. This fast acquisition is partly
because efficient and robust T2w protocols are widely es-
tablished and relatively standardised. For comparison, DWI

protocols for prostate cancer diagnosis rely on specialised ex-
perience and, currently, exhibit higher variability in terms of
sensitivity to prostate cancer, potentially because of variable
factors including signal-to-noise ratio, susceptibility and rec-
tal air artifacts [1]. The adoption of a T2-only diagnostic ap-
proach could substantially reduce the cost both in required ex-
pertise and imaging time, considerably streamlining prostate
cancer patient care, compared with the recently-proposed
machine learning (ML)-based approaches that require two or
more sequences, e.g. [2, 3].

We argue that enabling T2-only prostate cancer diagnosis
is not only desirable but also feasible, especially with mod-
ern ML models. First, DWI-visible tumours that are invisi-
ble (or challenging to identify by radiologists) on T2w were
previously estimated to be ∼30% of all clinically significant
cases [4, 5]. However, since no correlation has been estab-
lished between radiologist false positives and DWI lesion in-
visibility (and such correlation is unlikely to be perfect), the
actual number of cases missed by omitting DWI should be
lower. This estimate is further complicated by the different
yet unknown number of cases in radiologist false positive and
false negative, which may be corrected by ML models (e.g.
by learning underutilised inter-sequence and/or T2-to-cancer
correlations). Furthermore, It is conceivable that the use of a
single T2-only modality circumvents a number of challenges
in multiparametric MR diagnosis, such as ground-truth la-
bel ambiguity due to inter-sequence spatial misalignment [6],
variable DWI protocols and quality discussed above. There-
fore, it is worth investigating ML models to localise prostate
cancer on T2w images, but maintaining competitive accuracy
over models using multiple sequences.

This work focuses on developing a system that can best
localize radiologist-identified cancer using only T2w images,
in contrast to conventional diagnostic approaches that rely on
multiple sequences. This is considered the first step to under-
stand the feasibility of the T2-only approach, before develop-
ing models that are trained on and predict for histopathology
labels. This step enables us to directly assess the model’s
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capability to identify and localize cancerous regions from
T2w images using radiologist annotations, without the ad-
ditional complexity introduced by histopathological ground-
truth sampling uncertainty [7]. Such understanding is crucial
for localization tasks requiring pixel-level annotations and
may inform future development of histopathology-predicting
models. Models developed in this work to predict radiologist
labels can, on their own, enable a number of clinically useful
applications including automating radiologist readings, and
providing second opinions or assisting consensus during a
radiology examination.

To maximise the potential of predicting prostate cancer on
T2w images, we propose 1) utilising existing DWI sequences
during training - a form of learning using privileged informa-
tion [8], 2) maximising the utilisation of the inference-omitted
DWI sequences using conditional denoising diffusion mod-
els [9], and 3) developing a new meta-learning framework to
effectively train and predict prostate cancer using only T2w
as input during inference. This concludes our contributions
in a) proposing a new clinical application, b) developing a
new technical ML algorithm, and c) a set of rigorous eval-
uation experiments, with open-source code, using three co-
horts from more than 3,000 prostate cancer patients, tested on
both a publicly available PROMIS dataset [10] and an internal
multicentre MR-Targeted data set from multiple clinical trials
[11, 12, 13, 14].

2. METHODS

We propose a bi-level meta-learning framework that alter-
nately optimizes two key components: a modality translator
generating synthetic target modality M̂t from source modal-
ity Ms, and a cancer predictor leveraging both Ms and M̂t

for regions of interest (ROI) prediction. Figure 1 illustrates
our pipeline. The training dataset Dtrain = (Ms,Mt,G)
contains source modality images Ms, target modality im-
ages Mt, and ROI ground truth G. We randomly split Dtrain
into equal-sized subsets DT and DP for training the modality
translator and cancer predictor respectively.

2.1. Modality translator: T2w-conditioned diffusion

A modality translator fT(·; θ) : Ms → Mt learns a map-
ping from a source modality Ms to a target modality Mt,
where θ represents the learnable parameters. In this work, we
use the diffusion model translator (DMT) based on the dif-
fusion probabilistic diffusion model (DDPM) [15] [9]. Once
trained, the translator utilizes a diffusion process to generate
a synthetic target modality M̂t = fT(Ms; θ̂) from the given
source modality Ms, where the target modality Mt in this
work is DWI with high b-values. Training is performed us-
ing paired real images sampled from both Ms and Mt, de-
noted as {mk

s ,m
k
t }Nk=1, where N represents the total number

of sample pairs. The modality translator is trained to optimize

Fig. 1. Illustration of the proposed bi-level meta learning
framework MetaT2. Details are described in Sec. 2.

the quality of the generated m̂k
t , using both the real target

modality mk
t and a measure of cancer predictor performance,

detailed in Sec. 2.3.

2.2. Cancer predictor for lesion segmentation

The cancer localisation tasks are tested with a segmentation
network, fP(·;ω) : (Ms,M̂t) → G, with learnable param-
eters ω, which takes as input the source modality Ms and
the synthetic target modality M̂t generated by the modality
translator. In this work, we use UNet [16] as the backbone
for the cancer predictor. The objective of the predictor is to
predict ROI which in this work is prostate lesion, denoted as
Ĝ = fP((Ms,M̂t); ω̂). The model is trained with ground
truth G sampled from real data, expecting to perform well on
the synthetic target modality M̂t with good quality, further
discussed in Sec. 2.3.

2.3. MetaT2: a bi-level meta-learning algorithm

Our bi-level meta learning framework iteratively optimizes
both the modality translator and the cancer predictor in a co-
ordinated manner, enabling each network to benefit from the
improvements of the other. This process involves two main
phases, also known as inner and outer loops in bi-level op-
timization terminology: optimizing the cancer predictor and
optimizing the modality translator.

2.3.1. Optimizing the cancer predictor

Let LDice denote the Dice loss, which measures the overlap
between the prediction and the ground truth G, thus the cancer
predictor is optimized by minimising loss LP:



LP = E(Ms)∼DPLDice (fP((Ms, fT(Ms; θ));ω),G)

The network aims to improve the performance in predict-
ing ROI with the synthetic modality fT(Ms; θ).

2.3.2. Optimizing the modality translator

The loss function LMSE measures the mean-squared-error
(MSE) between the output of the modality translator fT(Ms; θ)
and the target modality Mt. The modality translator is opti-
mised using a joint loss that combines the LMSE and a quality
score Q. Q = LDice (fP((Ms, fT(Ms; θ));ω),G), is com-
puted with respect to the cancer predictor, representing the
accuracy of the prediction on the synthetic modality. The
overall loss function thus is:

LT = E(Ms,Mt)∼DT [αLMSE (fT(Ms; θ),Mt) + (1− α)Q]

where α is the hyperparameter balancing between the LMSE
and the quality score Q, experimented in Sec.3.3.

2.3.3. Bi-level optimisation of the networks

To jointly train the cancer predictor fP and the modality trans-
lator fT, we employ a bi-level optimization framework that
consists of two nested optimization loops: an inner loop and
an outer loop. The inner loop optimizes the modality transla-
tor’s parameters θ to generate synthetic modalities that aims
to improve the cancer predictor performance. The outer loop
optimizes the cancer predictor’s parameters ω , aiming for ac-
curate cancer prediction while considering the improvements
provided by the modality translator. The optimization prob-
lem is formulated as:

ω∗ = argmin
ω

LP(ω, θ
∗(ω)),

s.t. θ∗(ω) = argmin
θ

LT(ω, θ)

Here, θ∗(ω) represents the optimal parameters of the
modality translator obtained from the inner loop for a given
set of cancer predictor parameters ω. Training alternates be-
tween updating θ to minimize translator loss LT given ω in
the inner loop, and updating ω to minimize the predictor loss
LP using the updated θ∗(ω) in the outer loop.

3. EXPERIMENTS

3.1. Dataset

MR-Targeted: This dataset includes multiparametric T2w
and DWI MR images from 850 patients across UK clinical
trials led by UCLH [11, 12, 13, 14]. Among these, 689 pa-
tients with PIRADS≥3 lesions were manually annotated by
radiologists and split into 275/275/139 for training the modal-
ity translator, cancer predictor, and testing. All 3D images

were resampled to 0.3mm × 0.3mm × 1mm resolution, and
lesion-containing slices were extracted and center-cropped to
256× 256 pixels. Details are in [3].

PROMIS: The PROMIS dataset is a publicly available
multicenter study comprising multiparametric 3D MR im-
ages from 566 patients blind to prior biopsy [10]. Lesions
were contoured by radiologists on reports and annotated on
T2w images by a biomedical imaging researcher. Following
the same preprocessing as MR-Targeted dataset, we used this
dataset exclusively to test our proposed method.

PICAI: This dataset contains 1285 multiparametric 3D
prostate MR images from patients who underwent MR and
ultrasound-guided biopsy[17]. Following the same prepro-
cessing as MR-Targeted dataset, we used DWI from this
dataset to pre-train DDPM in the modality translator.

3.2. Evaluation Metrics

We evaluated performance using both voxel and lesion-level
metrics. At voxel level, we used Dice similarity coefficient
(DSC) for overlap and 95th percentile Hausdorff Distance
(HD95) for boundary accuracy. At lesion level, following
[3], we calculated: (1) Lesion-level Recall Rec.∗GT, where
a ground-truth lesion is counted as true positive if sufficiently
overlapping with any prediction; (2) Lesion-level Precision
Prec.∗Pd, where a predicted lesion is counted as true positive
if sufficiently overlapping with any ground truth.

3.3. Implementation Details

The DDPM was pre-trained on PICAI following Nichol et
al.[18]’s ImageNet settings. For cancer prediction, UNet and
nnUNet [19] served as benchmarks. The modality translator
and cancer predictor were pre-trained on DT and DP for 60
and 180 epochs respectively, followed by 10 epochs of bi-
level optimization. We used Adam optimizer with learning
rate 1 × 10−4 and set α = 0.75 for translator optimization.
All experiments ran on NVIDIA Quadro GV100 GPUs.

3.4. Comparison and ablation studies

We evaluate the performance of our proposed MetaT2 frame-
work by comparing it with the model trained under different
modality configurations: (1) UNet (T2w, DWI): Trained
and tested on both T2w and DWI images. (2) UNet (T2w):
Trained and tested solely on T2w images. (3) nnUNet (T2w):
Trained and tested solely on T2w images. (4) DDPM+UNet:
A modality translator is first trained using paired T2w and
DWI images to generate synthetic DWI. Then, a UNet is
trained and tested using T2w images and the synthetic DWI.

4. RESULTS

Figure 2 shows example segmentation results from different
methods. Table 1 summarizes quantitative results for prostate



Table 1. Comparisons of different methods for prostate MR lesion segmentation on MR-Targeted and PROMIS datasets.

Method Train Test MR-Targeted PROMIS

DSC↑ HD95↓ Rec.∗GT ↑ Prec.∗Pd↑ DSC↑ HD95↓ Rec.∗GT ↑ Prec.∗Pd↑

UNet T2w, DWI T2w, DWI 0.3322(0.2679) 23.30(22.63) 0.3980 0.3116 0.3156(0.2612) 24.56(23.29) 0.3305 0.2391

UNet T2w T2w 0.2844(0.2172) 27.59(12.02) 0.5011 0.1324 0.3124(0.2228) 26.22(12.20) 0.4555 0.1279
nnUNet T2w T2w 0.3035(0.2840) 29.51(31.49) 0.3025 0.3594 0.3209(0.2882) 26.76(28.23) 0.2968 0.2947

DDPM+UNet T2w, DWI T2w 0.3038(0.2685) 25.92(25.81) 0.3453 0.2693 0.2973(0.2639) 24.98(23.45) 0.3198 0.2161
Ours(MetaT2) T2w, DWI T2w 0.3392(0.2358) 21.46(11.76) 0.5397 0.2862 0.3351(0.2359) 22.48(11.44) 0.4786 0.2240

Fig. 2. Samples with segmentation from the tested methods.
The red and green contours represent ground truth and pre-
diction, respectively.

lesion segmentation on the MR-Targeted and PROMIS. Our
proposed MetaT2 framework achieves the highest perfor-
mance on both datasets, with a larger improvement on the
unseen PROMIS dataset. UNet and nnUNet models trained
only on T2w images obtain worse DSC and HD95 scores
on MR-Targeted compared to UNet trained with both T2w
and DWI images. This suggests that relying solely on T2w
images limits segmentation accuracy, perhaps due to the lack
of complementary information from DWI. However, MetaT2
achieves segmentation performance comparable to, or even
surpassing, the UNet (T2w, DWI) method, despite requiring
only T2w images at inference. Specifically, MetaT2 improves
DSC by 2.1% on the MR-Targeted dataset and 6.2% on the
PROMIS dataset compared to UNet (T2w, DWI). This may
indicate that the proposed meta-learning effectively leverages
multi-modal data during training to enhance segmentation
performance in single-modality inference. The improve-
ment may result from reduced false positives due to omitting
DWI or other factors discussed in Sec. 1. Consequently, this
suggests that a diagnostic approach using only T2-weighted
images is feasible without compromising accuracy.

The comparison between MetaT2 and DDPM+UNet
serves as an ablation study on the effectiveness of the bi-
level meta-learning framework. As shown in Table 1, incor-
porating bi-level meta-learning strategy improves the model

Fig. 3. Samples of T2w images, corresponding real DWI,
and DWI images generated by different methods. The red
contours indicate the lesion ground truth.

performance. Compared to DDPM+UNet, which does not
use the meta-learning framework, MetaT2 improves DSC for
prostate lesion segmentation by 11.65% on the MR-Targeted
dataset and 12.71% on the PROMIS dataset.

MetaT2 provides the highest Rec.∗GT, achieving 0.5397
on MR-Targeted and 0.4786 on PROMIS datasets, surpassing
all other methods. However, its lower precision Prec.∗Pd is
expected to indicate a trade-off between the improved lesion
detection coverage and false positive predictions.

Figure 3 shows the results of our modality translator.
The synthesized DWI demonstrates comparable lesion sig-
nal characteristics and contrast to real DWI, while reducing
common artifacts and distortions.

5. CONCLUSION

We have presented MetaT2, a bi-level meta-learning frame-
work that enables accurate prostate cancer lesion prediction
using only T2-weighted MRI data at inference. By lever-
aging DWI information during training and jointly optimiz-
ing the modality translator and the cancer predictor, MetaT2
achieves superior performance compared to tested baseline
methods. Our results suggest that a T2-only diagnostic ap-
proach is both feasible and beneficial, potentially improving
efficiency and accessibility in prostate cancer prediction.
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