
Modeling Multiple Normal Action Representations for Error Detection in
Procedural Tasks

Wei-Jin Huang1,∗ Yuan-Ming Li1,∗ Zhi-Wei Xia1 Yu-Ming Tang1 Kun-Yu Lin1

Jian-Fang Hu1 Wei-Shi Zheng1,2,3,4,†

1School of Computer Science and Engineering, Sun Yat-sen University, China
2Peng Cheng Laboratory, China

3Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education, China;
4Guangdong Province Key Laboratory of Information Security Technology, China

{huangwj235, liym266}@mail2.sysu.edu.cn; wszheng@ieee.org

Abstract

Error detection in procedural activities is essential for con-
sistent and correct outcomes in AR-assisted and robotic sys-
tems. Existing methods often focus on temporal ordering
errors or rely on static prototypes to represent normal ac-
tions. However, these approaches typically overlook the
common scenario where multiple, distinct actions are valid
following a given sequence of executed actions. This leads
to two issues: (1) the model cannot effectively detect er-
rors using static prototypes when the inference environment
or action execution distribution differs from training; and
(2) the model may also use the wrong prototypes to de-
tect errors if the ongoing action label is not the same as
the predicted one. To address this problem, we propose
an Adaptive Multiple Normal Action Representation (AM-
NAR) framework. AMNAR predicts all valid next actions
and reconstructs their corresponding normal action repre-
sentations, which are compared against the ongoing action
to detect errors. Extensive experiments demonstrate that
AMNAR achieves state-of-the-art performance, highlight-
ing the effectiveness of AMNAR and the importance of mod-
eling multiple valid next actions in error detection. The
code is available at https://github.com/iSEE-
Laboratory/AMNAR.

1. Introduction

Understanding procedural activities is an important field in
video action understanding [19–23, 49, 50], as it reflects
how an AI model recognizes actions [1, 37, 39, 41, 44, 45],
separates steps [2, 6, 15, 17, 29, 43, 46], and plans move-
ments [10, 12, 26, 35], similar to how humans conduct daily

*: Equal contributions. †: Corresponding author.

Executed Actions
up to t-1

Potential Valid Actions
at time t

Ongoing Action
at time t

Prepare filterBoil water

Prepare filter
(with error)Time:

…

1 t-2 t-1

……

Predict

Select

Prepare filter
(Normal)

Top Matching
Action

Valid Action 1 Valid Action n

Normal
Action

√ ×/

Compare

Threshold
Check

Error
Action

Figure 1. Illustration of error detection using multiple valid
next actions at time t. After “Grinding Coffee Bean” at time t−1,
valid next actions include “Boil Water” and “Prepare Filter.” The
best matching action is selected and compared with the ongoing
action. If their distance exceeds the threshold, the action is marked
as an error; otherwise, it is marked as normal.

tasks (e.g., cooking, assembling toys, using tools, etc.).
Since procedural tasks require consistent outcomes with-
out errors, being able to detect natural mistakes is a crucial
ability for next-generation AR assisted and robotic systems
[5, 11, 36, 38, 47, 48].

Achieving reliable error detection requires a founda-
tional understanding of what a normal action should be, al-
lowing comparison to the ongoing action. So, for error de-
tection using AI, a key challenge is constructing a “normal
action representation” of the current action. Approximat-
ing a “normal action representation,” some current methods
[4, 7, 33] model transition relationships from correctly ex-
ecuted action sequences, thereby predicting the correct cur-
rent action label based on prior actions. However, while
these approaches can detect label-level errors by comparing
predicted and actual action labels, they often fail to capture
the full representation of a normal action, leading them to

ar
X

iv
:2

50
3.

22
40

5v
2

 [
cs

.C
V

]
 2

 A
pr

 2
02

5

https://github.com/iSEE-Laboratory/AMNAR
https://github.com/iSEE-Laboratory/AMNAR

overlook cases where the correct action label is executed but
deviates from the expected normal behavior. For instance,
pouring water into a filter but spilling some outside shares
the same label as the correct action, yet introduces an error
(spillage) that current methods often miss.

Recently, a contrastive learning method[16] tackles this
limitation by leveraging prototype-based representations.
This method learns a series of prototypes during training to
represent the normal execution of each action class. During
inference, it detects errors by comparing the current action’s
representation to the closest prototype in the same class.
While effective in some scenarios, these prototypes are
static after the training stage and cannot adaptively change
with action executions, which struggles to detect errors ef-
fectively when the action distribution varies from that of the
training samples (e.g., diverse execution styles, tools with
varied appearances, or distinct environments).

To detect errors with varying action distributions, we ar-
gue that an effective error detection model should be capa-
ble of dynamically generating a normal action representa-
tion for the current action, conditioned on previously ex-
ecuted actions. Such adaptability allows the model to ac-
count for variations in action execution that static proto-
types cannot handle. From this perspective, a straightfor-
ward implementation might attempt to predict a normal ac-
tion representation of the current action from the past action
sequence. However, this naive approach introduces a new
challenge: after a sequence of executed actions, multiple
valid next actions may logically follow, depending on user
preferences or contextual factors, rather than adhering to a
strictly defined sequence. For instance, in the process of
making coffee, after grinding the coffee beans, the next step
might involve boiling water, preparing the filter, or select-
ing a cup—each of which is a valid action depending on
the task context, as illustrated in Fig. 1. This range of valid
next actions following a given sequence of actions makes
it challenging for a single normal action representation to
encompass all possible correct action representations.

To overcome these challenges, we propose a novel Adap-
tive Multiple Normal Action Representation (AMNAR)
framework for error detection that predicts and models
multiple valid next actions, dynamically creating multiple
adaptable normal action representations that accurately cap-
ture the diversity of procedural task execution. Specifically,
our approach first employs an action segmentation model to
provide an initial executed action sequence, which serves
as input for the Potential Action Prediction Block (PAPB).
Subsequently, PAPB predicts all valid actions based on
executed actions leveraging the task graph and dynamic
programming. Next, our Representations Reconstruction
Block (RRB) reconstructs multiple normal action represen-
tations for each valid action. As shown in Fig. 2, these
modules enable AMNAR to represent all valid actions adap-

tively in error detection. Finally, the Representation Match-
ing Block (RMB) selects the most likely normal action rep-
resentation of current execution step and assesses its con-
formity with the ongoing action. By comparing this confor-
mity to a predefined threshold, we determine whether the
current action has an error.

We evaluate our error detection framework on three
datasets: EgoPER [16], HoloAssist [38], and Captain-
Cook4D [28]. Our method improves Error Detection Ac-
curacy (EDA) by 7.4% and Area Under the Curve (AUC)
by 6.5% on EgoPER, 3.7% and 1.3% on HoloAssist, and
2.5% and 5.3% on CaptainCook4D, proving its robustness
across tasks. Furthermore, ablation studies on our frame-
work validate the contributions of each component, reveal-
ing several insights.

The main contributions of our work are as follows:
1. We introduce a novel approach that dynamically gener-

ates multiple normal action representations for the cur-
rent action, conditioned on previously executed actions,
addressing the challenge of adaptively representing all
normal action representations of the current action.

2. We develop a new framework utilizing task graphs and
dynamic programming to predict multiple valid next ac-
tions. This enables precise and context-aware error de-
tection by comparing the current action with adaptively
generated multiple normal action representations.

3. Comprehensive experiments on the EgoPER, HoloAssist
and CaptainCook4D datasets validate the effectiveness
of each component in our framework, achieving state-of-
the-art performance and demonstrating robustness and
flexibility in handling diverse procedural task errors.

2. Related Work
Error Detection [4, 7, 8, 11, 13, 14, 16, 18, 25, 27, 28, 32–
34, 38] is a task to detect when errors occur in proce-
dural activities. Starting from EPIC-Tent[34], many re-
searchers have begun to focus on the Error Detection task.
Ding et al.[4] attempt to identify both order-related errors in
toy assembly and part-relative placement errors by solving
the Error Detection problem using the constructed Graphs
method. Subsequently, several works [7, 33] focus on de-
tecting order-related errors. Specifically, Flaborea et al.[7]
focus on utilizing large language models to identify order-
related errors, while Seminara et al.[33] propose using dif-
ferentiable task graph matrices for the same purpose. Re-
cently, EgoPED [16] expands this field by introducing er-
rors beyond action order (e.g., omission, addition or modi-
fication of steps) and proposes a new contrastive step proto-
type learning framework. Our work shares the same prob-
lem formulation with EgoPED [16]. Differently, we ad-
dress the challenge of multiple valid next actions that can
follow any given step in procedural tasks. Our approach
adaptively models all normal action representations of these

Action Feature at time t

Action Feature
up to time t-1

…

1 t-2 t-1 t

Action Segmentation

0 1 8 2 5 4 5

0

1

2

4

5

6

7

8
Task Graph

0

1

2
0

4

5

8

Subsequences

0

1

2

4

5

Filtered Subsequence

6

7

Valid Actions

V
al

id
 A

ct
io

n
s

Te
m

po
ra

l
V

is
u

al
 F

ea
tu

re

M
LP

 E
nc

od
er

M
LP

 E
nc

od
er

D
ila

te
d

Co
nv

Co
nv

 1
D

Co
nv

 1
D

Co
nv

 1
D

Cr
os

s
At

te
nt

io
n

O
ut

pu
t M

LP

(a) Potential Action Prediction Block (b) Representation Reconstruction Block

Q

K

V

Normal Representations
of Valid Actions

Corresponding

Executed Actions Ongoing Action

Executed Action Labels

DP Merge Child Nodes

D
is

ta
nc

e
Co

m
pa

re

Top Matching
Action Representation

…

(c) Representation Matching Block

Error Threshold Comparison

Select
Smallest

Distance from Valid Actions
to Ongoing Action

Is action at time t
an error?/√ ×Class Thresholds

Class 0: 0.85
Class 1: 0.67

……

Compute during Training

Apply during inference

Figure 2. Overview of the Adaptive Multiple Normal Action Representation (AMNAR) framework. The process begins with an
Action Segmentation module identifying executed actions from video input. (a) Potential Action Prediction Block predicts valid next
actions using a task graph from executed action labels. (b) Representation Reconstruction Block generates normal action representations
for these valid actions, leveraging temporal visual features. (c) Representations Matching Block compares the ongoing action’s feature
at time t with the generated representations to detect errors, indicated by a checkmark (✓) for normal actions or a cross (✗) for errors.

valid actions, enabling robust error detection through adap-
tively generated normal action representations for each pos-
sible action.

Video Anomaly Detection (VAD) focuses on spotting un-
usual events (e.g., accidents or suspicious behaviors) in
surveillance footage. VAD identifies deviations from nor-
mal activities in videos, which could indicate dangerous or
unexpected situations such as falls or unauthorized entries
into restricted areas. One of the main branches in this field
is the reconstruction-based VAD [9, 24, 30, 31, 42]. In this
branch, the models are trained to reconstruct normal frames
or accurate sequences, and detect the anomaly by measur-
ing the reconstruction error between the reconstructed and
original frames (or sequences). Unlike VAD, which primar-
ily detects deviations based on low-level visual or statistical
anomalies, our approach assesses whether ongoing actions
align with the predicted normal action representations of all
valid next actions. Additionally, while VAD typically re-
constructs a single normal scene, our method addresses the
challenge of error detection in complex procedural tasks by
simultaneously modeling multiple normal action represen-
tations for multiple valid next actions.

3. Method
To adaptively reconstruct all normal action representations
of valid actions, which are compared with ongoing actual
action to detect errors, we propose an Adaptive Multiple
Normal Action Representation (AMNAR) framework that
explicitly models diverse normal action representations of
all valid next actions based on executed action sequence.

We will first introduce problem formulation in Sec. 3.1.
After that, we provide an overview of the proposed method

AMNAR in Sec. 3.2, and introduce the detailed designs in
Secs. 3.3 to 3.7.

3.1. Problem Formulation
Following previous work[16], we train our model with nor-
mal videos and their corresponding action labels for each
procedural task execution step. Each video, denoted as
V = {fi}Ni=1, is paired with frame-wise action labels
Y = {yi}Ni=1, where N indicates the number of frames,
and each yi maps to one of S predefined action classes or to
a background class, expressed as yi ∈ {1, 2, . . . , S, S + 1}.
During inference, the objective is to detect error actions, de-
noted as E = {ej}Mj=1, where M is the number of errors.

3.2. Method Overview
Given that multiple valid next actions may follow a given
executed action sequence, we need to create accurate repre-
sentations for each possible valid action to detect small de-
viations in how actions are executed, even if the overall ac-
tion type is correct. Combining all valid actions with video
context, our method reconstructs all normal action represen-
tations for each possible current action. The top matching
representation to the actual action is then selected and used
to detect errors. To do this, we propose an Adaptive Mul-
tiple Normal Action Representation (AMNAR) framework,
as illustrated in Fig. 2.

AMNAR initially extracts visual features from videos
using a visual feature extractor. The features are then fed
into an Action Segmentation Model, which outputs labeled
action segments with start and end frames. Subsequently,
the Potential Action Prediction Block predicts all valid
next actions based on the task graph and executed actions.
The Representation Reconstruction Block then generates

representations for these predicted actions. Lastly, the Rep-
resentation Matching Block assesses any deviations be-
tween these representations and the ongoing action features
to identify possible errors in the ongoing action.

3.3. Action Sequences and Features Execution
We represent procedural task actions using a pre-trained
feature extractor (e.g., I3D [1]) to obtain initial visual fea-
tures, which are processed by the Action Segmentation
Model (ASM). The ASM identifies action segments A =
{ak}Hk=1 = {(yk, stk, edk)}Hk=1, where H is the total num-
ber of actions, yk is the label for the k-th segment, and stk
and edk denote the start and end frames. The ASM also
generates a refined feature set F = {fi}Ni=1, with each fi as
a frame-level feature vector.

The executed action sequence up to time t, denoted
st = {yk}t−1

k=1, captures prior actions. To account for vary-
ing segment lengths, we compute an action feature f action

t

by averaging frame-level features within each segment:

f action
t = average({fi}edt

i=stt
), (1)

where the average is taken over frames from stt to edt.

3.4. Potential Action Prediction Block
In procedural tasks, multiple valid actions may follow a
given execution sequence. To address this, our Potential Ac-
tion Prediction Block (PAPB) identifies all valid next steps
using a predefined task graph G that encodes task-specific
action sequences. PAPB maps the current action sequence
st = {y1, y2, . . . , yt−1}, where each yi represents an exe-
cuted action label, onto G to determine the set of logically
valid next actions.

To handle potential inaccuracies of action segmentation
label, such as mislabeled or omitted actions, PAPB employs
dynamic programming (DP) to compute s∗t , the filtered sub-
sequence of st that aligns with G, as illustrated in part (a)
of Fig. 2 and Fig. 5. For example, given an executed se-
quence st = [0, 1, 8, 2, 5, 4, 5]. Using DP, PAPB identi-
fies the longest common subsequences (lcs) that form non-
branching paths in G. It maintains two arrays: dp[i], track-
ing the length of the longest non-branching subsequence
ending at index i, and subseq[i], storing the corresponding
subsequence. Updates occur as follows:

dp[i] = max(dp[i], dp[j] + 1), (2)

subseq[i] =

{
subseq[j] ∪ {yi}, if dp[j] + 1 > dp[i],
subseq[i] ∪ (subseq[j] ∪ {yi}), if dp[j] + 1 = dp[i],

(3)

where a non-branching subsequence is a continuous path in
G without splits (e.g., [0, 1, 2] in the task graph).

Next, PAPB merges these subsequences into a unified
subgraph, as shown in part (a) of Fig. 2 and Fig. 5. Since
node 0 is shared between lcs1 and lcs2, they are merged

0

1

2

4

5

6

7

8

Task Graph

s௧ = [0 1 8 2 5 4 5]

PD

𝑙𝑐𝑠ଵ= [0 1 2] 𝑙𝑐𝑠ଶ= [0 4 5] 𝑙𝑐𝑠ଷ = [8]

Merge

Child Nodes

𝐶௧= [6 7]

s௧
∗= [0 1 2 4 5]

Figure 3. Overview of the Potential Action Prediction Block.
Using Dynamic Programming (DP), this module identifies all
longest common subsequences (lcs) from the executed action se-
quence st via the task graph G. These lcs are interconnected into
a unified subgraph, forming the filtered sequence s∗t . Reachable
child nodes from G are then extracted as valid next actions Ct.

into s∗t = [0, 1, 2, 4, 5], capturing all relevant executed ac-
tions. Finally, PAPB identifies the valid next actions Ct by
extracting the child nodes of s∗t in G:

Ct = (
⋃
a∈s∗t

A[a]) \ s∗t , (4)

where
⋃

a∈s∗t
A[a] aggregates all successors of nodes in s∗t

from the adjacency list A of task graph G, and \s∗t excludes
already executed actions. For instance, in Fig. 5, the child
nodes of s∗t include nodes 6 and 7, Ct = [6, 7]. This pro-
cess ensures Ct robustly represents all potential valid next
actions, enhancing error detection in complex procedural
workflows. More details can be found in supplementary.

3.5. Representation Reconstruction Block
We propose the Representation Reconstruction Block
(RRB) to generate normal action representations for valid
next actions, as shown in part (b) of Fig. 2. Starting with
frame-wise features F1:edt−1

= {fi}edt−1

i=1 up to time t, we
apply dilated convolution to capture long-range dependen-
cies, yielding F conv

1:edt−1
.

Then, we use local cross-attention to align the valid ac-
tions with the temporal context. Here, Ct serves as the
query, while F conv

1:edt−1
provides the keys and values. This

mechanism generates a contextual feature for each valid ac-
tion yt,i ∈ Ct. To enhance robustness, we adopt a cluster-
residual prediction approach. Specifically, for each valid
action yt,i, we predict a residual rt,i that refines the cluster
center ct,i of the corresponding action class. The normal
action representation f normal

t,i is then computed as:

rt,i = Eres(yt,i, F
conv
1:edt−1

), (5)

f normal
t,i = ct,i + rt,i, (6)

where Eres denotes the residual prediction operation via
cross-attention, and ct,i is the precomputed cluster center
for action class yt,i, derived from normal training sam-
ples. The resulting set of representations, denoted f normal

t =

{f normal
t,i }|Ct|

i=1 , encapsulates all valid next actions:

f normal
t = E(Ct, F1:edt−1

), (7)
where E integrates all operations within this block. This ap-
proach leverages the cluster center as a stable baseline while
adapting to context-specific variations through the residual.

3.6. Normal Action Representation Alignment and
Conformity Assessment

To assess action conformity and detect potential errors, we
propose the Representation Matching Block (RMB), as il-
lustrated in part (c) of Fig. 2. This component measures the
deviation between normal action representations f normal

t and
ongoing action features f action

t . Specifically, RMB evaluates
the alignment between the ongoing action feature f action

t and
each potential normal action representation feature f normal

t,i

for valid next actions. We calculate the Euclidean distance
dt,i as follows:

dt,i = ∥f action
t − f normal

t,i ∥2. (8)
To identify the best alignment, we select the smallest of
these distances (i.e., dmin

t = mini dt,i) as the top matching
of ongoing action to any normal action representation.

Error Detection Criterion. To determine if an ongoing
action deviates from all potential normal action represen-
tations, we apply a threshold θ(yt) specific to each action
class yt, based on the distribution of alignment distances in
normal samples. An action is flagged as an error if:

Error =

{
1, if dmin

t > θ(yt),

0, otherwise.
(9)

If dmin
t exceeds θ(yt), this indicates that the ongoing action

at time t does not conform to any normal action representa-
tion, thereby identifying it as an error. If it remains within
the threshold, the ongoing action is considered to conform
to an expected, normal action.

3.7. Training Strategy and Objective Function
In this section, we outline the model training process and
our objective function.

During training, segments predicted by the Action Seg-
mentation Model may include inaccuracies, such as incom-
plete or incorrect boundaries. To filter these samples, we
calculate an overlap ratio Roverlap between each predicted
segment Spred and its closest ground truth segment SGT. The
overlap ratio Roverlap is defined as:

Roverlap =
|Spred ∩ SGT|
|Spred|

. (10)

We filter the segment based on whether Roverlap meets a
predefined threshold τ :

Sfiltered =

{
0, if Roverlap < τ (exclude),
1, if Roverlap ≥ τ (retain).

(11)

For retained segments, the assigned label may still need
refinement. We assign each action segment a representative
label y∗t by selecting the most frequently occurring ground
truth label within the frames of the segment. Let

Lt = {yGT
i | i ∈ segment}, (12)

where yGT
i is the ground truth label for the i-th frame within

the segment. Then, we define y∗t as:
y∗t = argmax

y
count(y, Lt), (13)

where argmax identifies the label y that appears most fre-
quently in Lt.

Since each training sample video corresponds to a sin-
gle target action at time t in Ct, we omit the Potential Ac-
tion Prediction Block (PAPB) and set the query size of the
Representation Reconstruction Block (RRB) to one during
training. Using features from Sec. 3.3, we obtain frame-
wise features F1:edt−1

= {fi}edt−1

i=1 up to time t, as well
as the action feature f action

t . Based on Ct and F1:edt−1
, our

method then predicts an normal action representation vector
f normal
t for the action at time t:

f normal
t = E(Ct, F1:edt−1

), (14)
where E represents the operations within the Representation
Reconstruction Block (Sec. 3.3).

Since Ct contains only one action during training, f normal
t

includes only one expected representation, f normal
t,1 . Our op-

timization objective then minimizes the distance between
this normal action representation and the actual action fea-
ture f action

t , as shown below:

Lnormal =
∥∥f normal

t,1 − f action
t

∥∥2 . (15)

4. Experiments
In this section, we first introduce our experimental setup
in Sec. 4.1, followed by the evaluation metrics used to as-
sess the performance of our method in Sec. 4.2. Finally,
we conduct ablation studies in Sec. 4.3 to demonstrate the
effectiveness of our proposed AMNAR framework.

4.1. Experimental Setup
Datasets. We conduct experiments on the EgoPER [16],
HoloAssist [38] and CaptainCook4D[28] datasets. The
EgoPER dataset is an egocentric video dataset with five
cooking tasks (i.e., Quesadilla, Qatmeal, Pinwheel, Cof-
fee and Tea). It includes 386 videos (28 hours) with both
normal and erroneous executions, together with frame-level
action and error annotations. The HoloAssist dataset fea-
tures 166 hours of video from 350 instructor-performer
pairs completing real-world tasks (e.g., furniture assembly,
device operation). The CaptainCook4D dataset is an ego-
centric dataset of cooking activities, comprising 384 record-
ings of 24 recipes. It captures both normal and error execu-
tions, with step annotations and seven error types.

Table 1. Comparison with existing methods on the EgoPER dataset for each task and the average over all tasks.

Methods Quesadilla Oatmeal Pinwheel Coffee Tea All
EDA AUC EDA AUC EDA AUC EDA AUC EDA AUC EDA AUC

Random 19.9 50.0 11.8 50.0 15.7 50.0 8.20 50.0 17.0 50.0 14.5 50.0
HF2-VAD [24] 34.5 62.6 25.4 62.3 29.1 52.7 10.0 59.6 36.6 62.1 27.1 59.9
HF2-VAD + SSPCAB [30] 30.4 60.9 25.3 61.9 33.9 51.7 10.0 60.1 35.4 63.2 27.0 59.6
S3R [40] 52.6 51.8 47.8 61.6 50.5 52.4 16.3 51.0 47.8 57.9 43.0 54.9
EgoPED[16] 62.7 65.6 51.4 65.1 59.6 55.6 55.3 58.3 56.0 66.0 57.0 62.0

AMNAR (Ours) 61.4 71.9 65.0 75.4 65.0 65.4 73.5 67.8 57.0 61.9 64.4 68.5

Table 2. Comparison on HoloAssist dataset. Lacking action seg-
mentation annotations, we train with fine-grained noun and verb
labels. “Noun” and “Verb” denote ASM training with only noun
or verb annotations, respectively; “All” averages both results.

Methods Noun Verb All
EDA AUC EDA AUC EDA AUC

Random 48.3 52.4 49.8 48.7 49.0 50.6
EgoPED[16] 65.2 56.1 67.2 54.3 66.2 55.2

AMNAR (Ours) 67.2 56.8 72.6 56.2 69.9 56.5

Table 3. Comparison on the CaptainCook4D dataset.

Methods Precision EDA AUC

Random 49.9 49.7 51.2
EgoPED [16] 56.5 69.8 54.9

AMNAR (Ours) 66.8 72.3 60.2

Evaluation Metrics. Following prior work [16], we eval-
uate models with Error Detection Accuracy (EDA) and
Area Under the Curve (AUC). EDA measures the accu-
racy in identifying both erroneous and normal segments, re-
flecting the model’s overall accuracy in error detection at
the segment level. AUC evaluates the ability of the model
to distinguish between errors and non-errors by comparing
true and false positive rates across varying thresholds.

Implementation Details. Following EgoPED[16], we
adopt I3D [1] for video feature extraction and ActionFormer
[46] for action segmentation, with the segmentation model
pretrained before joint training with other components. For
EgoPER, we use provided task graphs, while for HoloAssist
and CaptainCook4D, we construct task graphs from train-
ing sequences. In the Representation Reconstruction Block
(Sec. 3.5), actions in Ct are represented by their class clus-
ter centers. The error detection threshold θ(yt) (Sec. 3.6) is
set at the 0.85 quantile of the distance distribution from nor-
mal training instances, with an overlap threshold τ = 0.6.
More details are in the supplementary.

4.2. Comparisons with SoTA Methods
We compare our AMNAR with SoTA error detec-
tion approaches [16, 24, 30, 40] on the EgoPER[16],
HoloAssist[38] and CaptainCook4D[28] datasets.

As shown in Tab. 1, our results on the EgoPER dataset

outperform all methods, with AMNAR achieving an aver-
age 7.4% improvement in EDA and 6.5% in AUC over
EgoPED [16]. For the HoloAssist dataset (Tab. 2), AMNAR
improves EDA by 3.7% and AUC by 1.3%. On the Cap-
tainCook4D dataset (Tab. 3), AMNAR surpasses EgoPED
with improvements of 10.3% in Precision, 2.5% in EDA,
and 5.3% in AUC, demonstrating robustness across diverse
procedural tasks with complex action sequences.

4.3. Ablation Studies
In this section, we conduct a series of ablation studies on
the EgoPER dataset [16] to evaluate the contributions of
each component in our AMNAR framework.
Potential Action Prediction Block (PAPB). The PAPB
identifies valid next actions in procedural tasks, enabling
AMNAR to model multiple normal action representations
post-sequence, as outlined in the method section. We eval-
uate its role by comparing “AMNAR” with “Random Se-
lection”, a variant using random action selection instead of
PAPB’s contextual prediction. As shown in Tab. 4, AM-
NAR with PAPB boosts EDA by 5.8% and AUC by 5.5%
over the random variant, proving that task-informed predic-
tion enhances error detection in complex workflows.

Representation Reconstruction Block (RRB). The RRB
generates context-aware normal action representations for
PAPB-predicted actions, as described earlier. We test its im-
pact by comparing “AMNAR” against “w/o PAPB & RRB”,
which omits RRB and uses past action features with self-
attention. Tab. 4 shows AMNAR with RRB improves EDA
by 4.4% and AUC by 4.5% over this variant, confirming
RRB’s role in enhancing error detection through tailored
representations.

Action Representation Types. AMNAR uses cluster-
centered action representations to model the diversity of
valid next actions by dynamically capturing their average
distribution within each action class. Compared to text-
based embeddings (e.g., BERT [3]), our ablation study
(Tab. 5 (a)) shows superior performance, likely due to better
alignment with the model’s feature space, enhancing robust-
ness to subtle execution errors.

Prediction Methods. We compare direct prediction, which
generates full features from context, with residual-based

Table 4. Ablation studies on the Potential Action Prediction Block (PAPB) and the Representation Reconstruction Block (RRB).
“w/o PAPB & RRB” excludes both PAPB and RRB, using only previously executed action features with a local self-attention mechanism.
“Random Selection” indicates a variant where candidate actions are randomly selected instead of using PAPB to predict valid next actions.

Variants Components Quesadilla Oatmeal Pinwheel Coffee Tea All
PAPB RRB EDA AUC EDA AUC EDA AUC EDA AUC EDA AUC EDA AUC

w/o PAPB & RRB ✗ ✗ 58.7 68.7 58.9 68.4 55.5 56.6 67.6 64.7 59.5 61.5 60.0 64.0
Random Selection ✗ ✓ 56.9 67.2 60.1 72.5 50.2 56.2 71.7 61.7 54.1 57.3 58.6 63.0
AMNAR ✓ ✓ 61.4 71.9 65.0 75.4 65.0 65.4 73.5 67.8 57.0 61.9 64.4 68.5

Table 5. Ablation studies across six configurations: action representation types, prediction methods, video features, distance metrics,
training sample selection strategies, task graph construction. The highlighted rows indicate our default implementation.

(a) Action Representation Types

Variants EDA AUC

Text-Based 65.6 64.1
Cluster-Centered 64.4 68.5

(b) Prediction Methods

Variants EDA AUC

Direct Prediction 64.2 62.2
Cluster Center Residual 64.4 68.5

(c) Visual Features

Variants EDA AUC

DINOv2 Feature 71.0 69.2
I3D Feature 64.4 68.5

(d) Distance Metrics

Variants EDA AUC

L1 Norm 62.4 63.9
Cosine Similarity 63.2 62.9
Euclidean 64.4 68.5

(e) Training Sample Selection Strategies

Variants EDA AUC

Training on GT Segments 69.3 51.4
Training on ASM Output 65.1 65.0
Hybrid Training 64.4 68.5

(f) Task Graph Construction

Variants EDA AUC

Training Set Graph 66.6 66.1
Predefined Graph 64.4 68.5

prediction, where the model predicts deviations from a clus-
ter center for each intention-aligned action class. Per Tab. 5
(b), the residual method boosts EDA by 0.2% and AUC by
6.3%. It enhances the learning of action-context relation-
ships and sensitivity to subtle deviations from normal action
distributions.

Distance Metrics. We compare L1-norm, cosine similarity,
and Euclidean distance for feature alignment. As shown in
Tab. 5 (d), Euclidean distance outperforms others, achiev-
ing an EDA of 64.4% and AUC of 68.5%, against cosine
similarity (63.2% EDA, 62.9% AUC) and L1-norm (62.4%
EDA, 63.9% AUC). Its sensitivity to magnitude and direc-
tion offers the best balance for error detection in complex
procedural tasks.

Training Sample Selection Strategies. Effective training
samples are key to robust error detection. We assess three
approaches: (1) GT Segments, using ground-truth data for
high accuracy but less resilience to ASM noise; (2) ASM
Output, leveraging unfiltered ASM predictions for deploy-
ment alignment, risking label errors; and (3) Hybrid Train-
ing (Sec. 3.7), filtering ASM segments by an overlap thresh-
old (τ) with GT, balancing accuracy and ASM consistency.
Per Tab. 5 (e), Hybrid achieves the best AUC (68.5%) with
a solid EDA (64.4%), optimizing robustness and precision.

Visual Features. Our AMNAR utilizes clip-level features
from I3D for fair comparisons with existing works[16]. Be-
sides, Fig.S3 (2nd row, rightest) of Supplementary shows
that AMNAR can detect fine-grained errors with I3D fea-
tures. Moreover, using more robust feature representations
further helps error detection. To highlight this, we replace

the I3D with DINOv2, and the results are in Tab. 5 (c).
Task Graph Construction. Following the previ-
ous works[4, 16, 33], AMNAR uses predefined task
graphs.Note that we can also construct task graphs from
the training set. Tab. 5 (f) shows that the impact of con-
structing the graph from the training set is mild. Also,
experiments on HoloAssist (Tab. 2) and CaptainCook4D
(Tab. 3) utilize task graphs constructed from the training set
and gain significant performance improvement.

4.4. Influence of Previous Errors
In procedural tasks, errors can accumulate over time. Since
our method relies on temporal context from previous ac-
tions, a natural question could be raised: How do errors in
previous actions affect the future reconstruction of subse-
quent normal action representations?

To address this, we conduct an ablation study to evaluate
the robustness of AMNAR when prior errors are present in
the action sequence. As shown in Tab. 6, we divide the test
samples into two groups: the “w/o previous errors” group,
which includes the first error in a sequence along with prior
normal actions, and the “w previous errors” group, which
covers actions following one or more prior errors. The re-
sults indicate that multiple prior errors cause a mild reduc-
tion in error detection performance. The “w/o previous er-
rors” group achieves a higher EDA (70.8%) compared to
the “w previous errors” group (64.3%), likely due to fewer
distortions in the temporal context. However, the AUC re-
mains comparable (67.3% vs. 68.0%), suggesting that AM-
NAR retains reasonable robustness even when prior errors
are present. This demonstrates that, while prior errors intro-

Predicted Action - Discard paper filter and coffee ground
Ground Truth Action - Grind coffee for 20 second

Misclassification
EgoPED AMNAR

ASM Results:
Ground Truth:

action 1 action 2 action3 action4

MultipleValid Actions

D
ev

ia
ti

on

D
ev

ia
ti

onDeviation
Over Threshold

Closest Deviation
Under Threshold

Static Prototypes

Figure 4. Error detection when the Action Segmentation Model (ASM) misclassifies an action. AMNAR correctly identifies the action as
normal. In contrast, the EgoPED framework incorrectly detects a false positive.

Table 6. Influence of previous errors. Previous errors cause only
a mild reduction in error detection performance.

Variants EDA AUC

w/o previous errors 70.8 67.3
w previous errors 64.3 68.0

Table 7. EDA of non-deterministic actions in EgoPER dataset.
AMNAR consistently outperforms baselines, excelling in han-
dling complex, non-deterministic action sequences.

Methods&Variants Quesadilla Oatmeal Pinwheel Coffee Tea All

EgoPED[16] 74.0 65.5 56.5 65.3 64.8 65.2
AMNAR (w/o PAPB & RRB) 60.2 61.4 61.3 72.5 63.4 63.8
AMNAR (Random) 57.9 63.8 61.7 71.5 57.6 62.5
AMNAR 73.8 75.5 66.8 76.7 75.6 73.7

duce some challenges, our adaptive representation strategy
mitigates their impact effectively.

4.5. Ability of Handling Multiple Valid Next Actions
We provide more discussions about our AMNAR on the
ability of handling multiple valid next actions. On the one
hand, on the task of “coffee”, which contains the most com-
plex action branching patterns, our AMNAR achieves sig-
nificant performance improvement of EDA by 18.2% and
AUC by 9.5% according to Tab. 1.

On the other hand, we conduct an evaluation on those
non-deterministic actions, which are preceded by actions
with multiple valid next options. Results in Tab. 7 demon-
strate AMNAR achieves a top EDA of 73.7% overall
and 76.7% for “coffee”, outperforming EgoPED and its
variants, underscoring its strength in managing complex,
non-deterministic sequences. Details of frequency anal-
ysis of multiple valid next actions and definition of non-
deterministic actions are in Supplementary B.4 & B.5.

4.6. Discussions on Action Segmentation Module
We further present the Action Segmentation (AS) results.
Although AMNAR and EgoPED employ the same AS mod-
ule for fair comparison, AMNAR consistently outperforms
EgoPED, as shown in Tab. 8. This performance gap arises
due to differences in feature utilization—EgoPED modi-
fies features through clustering and contrastive learning,

Table 8. Analysis of Action Segmentation Module. Left:
Our AMNAR outperforms EgoPED on action segmentation task.
Right: EgoPED under-performs our AMNAR even if used with
action segmentation results of AMNAR (noted it by *).

Methods IoU Edit F1@0.5 Acc

EgoPED 44.6 61.3 47.5 68.5
AMNAR 56.3 69.4 57.3 75.3

Methods Avg. EDA Avg. AUC

EgoPED* 63.1 61.9
AMNAR 64.4 68.5

whereas AMNAR uses them as input for reconstruction.
Notably, even when EgoPED leverages AMNAR’s segmen-
tation results (denoted as EgoPED* in Tab. 8), it still under-
performs in Error Detection (ED). This demonstrates that
AMNAR’s superior ED performance stems from its inno-
vative design, beyond mere improvements in AS.

4.7. Visualization
As shown in Fig. 7, a “coffee” task sample demonstrates
resilience of AMNAR to ASM misclassification. The
ground truth action, “Grind coffee for 20 seconds,” is er-
roneously labeled by ASM as “Discard paper filter and cof-
fee grounds.” EgoPED, hindered by an incorrect prototype,
misclassifies it as an error. In contrast, AMNAR employs
multiple normal action representations, selecting the top
matching one to accurately classify the action as normal.
This underscores robustness of AMNAR in handling label
ambiguity and varied action sequences. More visualization
samples are in Section C of supplementary material.

5. Conclusion
In this work, we uncover a critical limitation in existing
error detection approaches: their inability to effectively
handle scenarios of multiple valid next actions. To ad-
dress this, we develop the Adaptive Multiple Normal Action
Representation (AMNAR) framework, which dynamically
predicts and reconstructs representations for all valid next
actions. Through comprehensive experiments—including
comparative analyses, ablation studies, and evaluations of
non-deterministic actions across three datasets—we con-
firm the effectiveness of AMNAR. We believe this adap-
tive, multi-representation strategy could improve error de-
tection and contribute to advancements in broader action
understanding fields.

Acknowledgement
This work was supported partially by NSFC(92470202,
U21A20471), National Key Research and Development
Program of China (2023YFA1008503), Guangdong NSF
Project (No. 2023B1515040025). The authors thank anony-
mous reviewers and ACs for their constructive suggestions.

References
[1] Joao Carreira and Andrew Zisserman. Quo vadis, action

recognition? a new model and the kinetics dataset. In pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 6299–6308, 2017. 1, 4, 6

[2] Yu Cheng, Quanfu Fan, Sharath Pankanti, and Alok Choud-
hary. Temporal sequence modeling for video event detection.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2227–2234, 2014. 1

[3] Jacob Devlin. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 6

[4] Guodong Ding, Fadime Sener, Shugao Ma, and Angela
Yao. Every mistake counts in assembly. arXiv preprint
arXiv:2307.16453, 2023. 1, 2, 7

[5] Jiafei Duan, Wilbert Pumacay, Nishanth Kumar, Yi Ru
Wang, Shulin Tian, Wentao Yuan, Ranjay Krishna, Dieter
Fox, Ajay Mandlekar, and Yijie Guo. Aha: A vision-
language-model for detecting and reasoning over failures
in robotic manipulation. arXiv preprint arXiv:2410.00371,
2024. 1

[6] Yazan Abu Farha and Jurgen Gall. Ms-tcn: Multi-stage tem-
poral convolutional network for action segmentation. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 3575–3584, 2019. 1

[7] Alessandro Flaborea, Guido Maria D’Amely di Melen-
dugno, Leonardo Plini, Luca Scofano, Edoardo De Mat-
teis, Antonino Furnari, Giovanni Maria Farinella, and Fabio
Galasso. Prego: online mistake detection in procedural ego-
centric videos. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 18483–
18492, 2024. 1, 2

[8] Reza Ghoddoosian, Isht Dwivedi, Nakul Agarwal, and Be-
hzad Dariush. Weakly-supervised action segmentation and
unseen error detection in anomalous instructional videos. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10128–10138, 2023. 2

[9] Dong Gong, Lingqiao Liu, Vuong Le, Budhaditya Saha,
Moussa Reda Mansour, Svetha Venkatesh, and Anton
van den Hengel. Memorizing normality to detect anomaly:
Memory-augmented deep autoencoder for unsupervised
anomaly detection. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 1705–1714,
2019. 3

[10] Dayoung Gong, Joonseok Lee, Manjin Kim, Seong Jong Ha,
and Minsu Cho. Future transformer for long-term action
anticipation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3052–
3061, 2022. 1

[11] Kristen Grauman, Andrew Westbury, Lorenzo Torresani,
Kris Kitani, Jitendra Malik, Triantafyllos Afouras, Kumar
Ashutosh, Vijay Baiyya, Siddhant Bansal, Bikram Boote,
et al. Ego-exo4d: Understanding skilled human activity
from first-and third-person perspectives. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 19383–19400, 2024. 1, 2

[12] Hongji Guo, Nakul Agarwal, Shao-Yuan Lo, Kwonjoon
Lee, and Qiang Ji. Uncertainty-aware action decoupling
transformer for action anticipation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 18644–18654, 2024. 1

[13] Yuto Haneji, Taichi Nishimura, Hirotaka Kameko, Keisuke
Shirai, Tomoya Yoshida, Keiya Kajimura, Koki Yamamoto,
Taiyu Cui, Tomohiro Nishimoto, and Shinsuke Mori.
Egooops: A dataset for mistake action detection from
egocentric videos with procedural texts. arXiv preprint
arXiv:2410.05343, 2024. 2

[14] Youngkyoon Jang, Brian Sullivan, Casimir Ludwig, Iain
Gilchrist, Dima Damen, and Walterio Mayol-Cuevas. Epic-
tent: An egocentric video dataset for camping tent assembly.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision Workshops, pages 0–0, 2019. 2

[15] Colin Lea, Michael D Flynn, Rene Vidal, Austin Reiter, and
Gregory D Hager. Temporal convolutional networks for ac-
tion segmentation and detection. In proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 156–165, 2017. 1

[16] Shih-Po Lee, Zijia Lu, Zekun Zhang, Minh Hoai, and Ehsan
Elhamifar. Error detection in egocentric procedural task
videos. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 18655–
18666, 2024. 2, 3, 5, 6, 7, 8, 14, 16

[17] Shijie Li, Yazan Abu Farha, Yun Liu, Ming-Ming Cheng,
and Juergen Gall. Ms-tcn++: Multi-stage temporal convolu-
tional network for action segmentation. IEEE transactions
on pattern analysis and machine intelligence, 45(6):6647–
6658, 2020. 1

[18] Yuan-Ming Li, Wei-Jin Huang, An-Lan Wang, Ling-An
Zeng, Jing-Ke Meng, and Wei-Shi Zheng. Egoexo-fitness:
Towards egocentric and exocentric full-body action under-
standing. In European Conference on Computer Vision,
2024. 2

[19] Yuan-Ming Li, An-Lan Wang, Kun-Yu Lin, Yu-Ming Tang,
Ling-An Zeng, Jian-Fang Hu, and Wei-Shi Zheng. Tech-
coach: Towards technical keypoint-aware descriptive action
coaching. arXiv preprint arXiv:2411.17130, 2024. 1

[20] Yuan-Ming Li, Ling-An Zeng, Jing-Ke Meng, and Wei-
Shi Zheng. Continual action assessment via task-consistent
score-discriminative feature distribution modeling. IEEE
Transactions on Circuits and Systems for Video Technology,
2024.

[21] Kun-Yu Lin, Jia-Run Du, Yipeng Gao, Jiaming Zhou, and
Wei-Shi Zheng. Diversifying spatial-temporal perception for
video domain generalization. Advances in Neural Informa-
tion Processing Systems, 36:56012–56026, 2023.

[22] Kun-Yu Lin, Henghui Ding, Jiaming Zhou, Yu-Ming Tang,
Yi-Xing Peng, Zhilin Zhao, Chen Change Loy, and Wei-

Shi Zheng. Rethinking clip-based video learners in cross-
domain open-vocabulary action recognition. arXiv preprint
arXiv:2403.01560, 2024.

[23] Kun-Yu Lin, Jiaming Zhou, and Wei-Shi Zheng. Human-
centric transformer for domain adaptive action recognition.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2024. 1

[24] Zhian Liu, Yongwei Nie, Chengjiang Long, Qing Zhang, and
Guiqing Li. A hybrid video anomaly detection framework
via memory-augmented flow reconstruction and flow-guided
frame prediction. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pages 13588–13597,
2021. 3, 6

[25] Michele Mazzamuto, Antonino Furnari, and Giovanni Maria
Farinella. Eyes wide unshut: Unsupervised mistake detec-
tion in egocentric video by detecting unpredictable gaze.
arXiv preprint arXiv:2406.08379, 2024. 2

[26] Himangi Mittal, Nakul Agarwal, Shao-Yuan Lo, and Kwon-
joon Lee. Can’t make an omelette without breaking
some eggs: Plausible action anticipation using large video-
language models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
18580–18590, 2024. 1

[27] Rohith Peddi, Shivvrat Arya, Bharath Challa, Likhitha Pal-
lapothula, Akshay Vyas, Qifan Zhang, Jikai Wang, Vasund-
hara Komaragiri, Nicholas Ruozzi, Eric Ragan, et al. Put on
your detective hat: What’s wrong in this video? 2

[28] Rohith Peddi, Shivvrat Arya, Bharath Challa, Likhitha Pal-
lapothula, Akshay Vyas, Jikai Wang, Qifan Zhang, Vasund-
hara Komaragiri, Eric Ragan, Nicholas Ruozzi, et al. Cap-
taincook4d: A dataset for understanding errors in procedural
activities. arXiv preprint arXiv:2312.14556, 2023. 2, 5, 6,
14

[29] Alexander Richard and Juergen Gall. Temporal action de-
tection using a statistical language model. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 3131–3140, 2016. 1

[30] Nicolae-Cătălin Ristea, Neelu Madan, Radu Tudor Ionescu,
Kamal Nasrollahi, Fahad Shahbaz Khan, Thomas B Moes-
lund, and Mubarak Shah. Self-supervised predictive convo-
lutional attentive block for anomaly detection. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 13576–13586, 2022. 3, 6

[31] Nicolae-C Ristea, Florinel-Alin Croitoru, Radu Tudor
Ionescu, Marius Popescu, Fahad Shahbaz Khan, Mubarak
Shah, et al. Self-distilled masked auto-encoders are efficient
video anomaly detectors. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 15984–15995, 2024. 3

[32] Tim J Schoonbeek, Tim Houben, Hans Onvlee, Fons Van der
Sommen, et al. Industreal: A dataset for procedure step
recognition handling execution errors in egocentric videos in
an industrial-like setting. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision,
pages 4365–4374, 2024. 2

[33] Luigi Seminara, Giovanni Maria Farinella, and Antonino
Furnari. Differentiable task graph learning: Procedural ac-

tivity representation and online mistake detection from ego-
centric videos. arXiv preprint arXiv:2406.01486, 2024. 1, 2,
7

[34] Fadime Sener, Dibyadip Chatterjee, Daniel Shelepov, Kun
He, Dipika Singhania, Robert Wang, and Angela Yao. As-
sembly101: A large-scale multi-view video dataset for un-
derstanding procedural activities. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 21096–21106, 2022. 2

[35] An-Lan Wang, Kun-Yu Lin, Jia-Run Du, Jingke Meng, and
Wei-Shi Zheng. Event-guided procedure planning from in-
structional videos with text supervision. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 13565–13575, 2023. 1

[36] An-Lan Wang, Nuo Chen, Kun-Yu Lin, Yuan-Ming Li, and
Wei-Shi Zheng. Task-oriented 6-dof grasp pose detection in
clutters. arXiv preprint arXiv:2502.16976, 2025. 1

[37] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-
ing He. Non-local neural networks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 7794–7803, 2018. 1

[38] Xin Wang, Taein Kwon, Mahdi Rad, Bowen Pan, Ishani
Chakraborty, Sean Andrist, Dan Bohus, Ashley Feniello, Bu-
gra Tekin, Felipe Vieira Frujeri, et al. Holoassist: an egocen-
tric human interaction dataset for interactive ai assistants in
the real world. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 20270–20281,
2023. 1, 2, 5, 6, 14

[39] Zejia Weng, Xitong Yang, Ang Li, Zuxuan Wu, and Yu-Gang
Jiang. Open-vclip: Transforming clip to an open-vocabulary
video model via interpolated weight optimization. In In-
ternational Conference on Machine Learning, pages 36978–
36989. PMLR, 2023. 1

[40] Jhih-Ciang Wu, He-Yen Hsieh, Ding-Jie Chen, Chiou-Shann
Fuh, and Tyng-Luh Liu. Self-supervised sparse representa-
tion for video anomaly detection. In European Conference
on Computer Vision, pages 729–745. Springer, 2022. 6

[41] Angchi Xu, Ling-An Zeng, and Wei-Shi Zheng. Likert scor-
ing with grade decoupling for long-term action assessment.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3232–3241, 2022. 1

[42] Zhiwei Yang, Jing Liu, Zhaoyang Wu, Peng Wu, and Xiaotao
Liu. Video event restoration based on keyframes for video
anomaly detection. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
14592–14601, 2023. 3

[43] Fangqiu Yi, Hongyu Wen, and Tingting Jiang. As-
former: Transformer for action segmentation. arXiv preprint
arXiv:2110.08568, 2021. 1

[44] Ling-An Zeng and Wei-Shi Zheng. Multimodal action qual-
ity assessment. IEEE Transactions on Image Processing,
2024. 1

[45] Ling-An Zeng, Fa-Ting Hong, Wei-Shi Zheng, Qi-Zhi Yu,
Wei Zeng, Yao-Wei Wang, and Jian-Huang Lai. Hybrid
dynamic-static context-aware attention network for action
assessment in long videos. In Proceedings of the 28th ACM
international conference on multimedia, pages 2526–2534,
2020. 1

[46] Chen-Lin Zhang, Jianxin Wu, and Yin Li. Actionformer: Lo-
calizing moments of actions with transformers. In European
Conference on Computer Vision, pages 492–510. Springer,
2022. 1, 6

[47] Dian Zheng, Xiao-Ming Wu, Shuzhou Yang, Jian Zhang,
Jian-Fang Hu, and Wei-Shi Zheng. Selective hourglass
mapping for universal image restoration based on diffusion
model. In CVPR, 2024. 1

[48] Dian Zheng, Xiao-Ming Wu, Zuhao Liu, Jingke Meng, and
Wei-shi Zheng. Diffuvolume: Diffusion model for volume
based stereo matching. IJCV, 2025. 1

[49] Jiaming Zhou, Junwei Liang, Kun-Yu Lin, Jinrui Yang, and
Wei-Shi Zheng. Actionhub: a large-scale action video de-
scription dataset for zero-shot action recognition. arXiv
preprint arXiv:2401.11654, 2024. 1

[50] Jiaming Zhou, Teli Ma, Kun-Yu Lin, Zifan Wang, Ronghe
Qiu, and Junwei Liang. Mitigating the human-robot domain
discrepancy in visual pre-training for robotic manipulation.
arXiv preprint arXiv:2406.14235, 2024. 1

Overview
In this supplementary material, we provide the following
sections:
• Appendix A: More details about our proposed Adap-

tive Multiple Normal Action Representation (AMNAR)
framework.

• Appendix B: More details about the experiment setups.
• Appendix C: More visualizations for further demonstra-

tion on the effectiveness of the proposed AMNAR.

A. More Details about AMNAR
A.1. Potential Action Prediction Block
The Potential Action Prediction Block (PAPB) is a key com-
ponent designed to predict all potential next actions based
on the task graph G and the executed action sequence s.
The variable-definition reference table and pseudocode for
PAPB are shown in Tab. 9 and Algorithm 1, respectively.
Adjacency List Construction. PAPB begins by converting
the task graph G into an adjacency list A, where each node
in the graph links to its direct successors.
Longest Subsequence Identification. PAPB employs dy-
namic programming to find the longest subsequence s∗ in
s that adheres to the relationships defined by G. The al-
gorithm maintains two tables: subseq[i], which stores the
longest non-branching subsequence ending at index i, and
dp[i], which stores the subseq[i]. A non-branching subse-
quence is defined as a sequence of nodes that form a contin-
uous path in the task graph G, where all nodes are connected
sequentially without any splits or branches (e.g., [0, 1, 2] in
Fig. 5).

For each action yi in s, the algorithm iterates over all
previous actions yj (where j < i) and checks whether yi
and yj are connected in the task graph G. If this condition
is met, dp[i] and subseq[i] are updated as follows:

dp[i] = max(dp[i], dp[j] + 1), (16)

subseq[i] =

{
subseq[j] ∪ {yi}, if dp[j] + 1 > dp[i],
subseq[i] ∪ (subseq[j] ∪ {yi}), if dp[j] + 1 = dp[i].

(17)
After processing s, the algorithm identifies the maxi-

mum value in dp, locating the index k with the longest non-
branching subsequence L.
Merging Connected Nodes. While the longest subse-
quence identified in dynamic programming represents a
non-branching path (e.g., [0, 1, 2] in Fig. 5), it may not
capture all executed actions in scenarios where multiple
branches exist in the task graph. To address this, PAPB iter-
atively examines each subsequence. For each subsequence,
if any of its nodes matches a node in L, the subsequence is

0

1

2

4

5

6

7

8

Task Graph

s௧ = [0 1 8 2 5 4 5]

PD

𝑙𝑐𝑠ଵ= [0 1 2] 𝑙𝑐𝑠ଶ= [0 4 5] 𝑙𝑐𝑠ଷ = [8]

Merge

Child Nodes

𝐶௧= [6 7]

s௧
∗= [0 1 2 4 5]

Figure 5. The Potential Action Prediction Block (PAPB) derives
the longest matching subsequence from the executed sequence us-
ing the task graph. This subsequence is then used to identify all
reachable nodes, representing valid next actions. This figure is re-
produced from the main text for reference.

considered connected to L, and its nodes are merged into
L. This merging process ensures that L includes all nodes
relevant to the executed actions, resulting in the complete
merged sequence s∗, which accurately reflects all executed
actions within the task graph.

Next Action Prioritization. Based on s∗, PAPB computes
the set of potential next actions PA as:

PA = (
⋃
a∈s∗

A[a]) \ s∗. (18)

In this formula, A[a] represents the set of direct successors
of node a in the task graph G, as derived from the adjacency
list. By iterating over all nodes a in the longest merged sub-
sequence s∗, the union

⋃
a∈s∗ A[a] aggregates the succes-

sors of all nodes in s∗. The subtraction \s∗ ensures that
only actions not already included in s∗ are retained in PA.
This guarantees that PA contains all valid next actions that
can logically follow the executed actions, without duplica-
tion.

PAPB efficiently combines dynamic programming and
graph traversal to provide actionable insights from s and G.
For detailed implementation, refer to Algorithm 1.

Algorithm 1 Potential Action Prediction Block (PAPB)

Input: Task graph G, Executed action sequence s
Output: Prioritized list of next actions PA
Build Adjacency Lists:
Initialize A[u] = ∅ for all u ∈ G
for each edge (u, v) in G do
A[u]← A[u] ∪ {v}

end for
DP Process:
Initialize dp[i]← 1 and subseq[i]← {yi} for all i
for i← 1 to n do

for j ← 1 to i− 1 do
if yi ∈ A[yj] or yj ∈ A[yi] then

if dp[j] + 1 > dp[i] then
dp[i]← dp[j] + 1
subseq[i]← subseq[j] ∪ {yi}

else if dp[j] + 1 == dp[i] then
subseq[i]← subseq[i] ∪ subseq[j] ∪ {yi}

end if
end if

end for
end for
Collect Max-Length Subsequences:
k ← max(dp[1], dp[2], . . . , dp[n])
L←

⋃
{subseq[i] | dp[i] = k}

Merge Connected Nodes in L:
Initialize s∗ ← L
for each node in L do

for each neighbor ∈ A[node] do
if neighbor ∈ L then

s∗ ← s∗ ∪ {neighbor}
end if

end for
end for
Collect Potential Next Actions:
PA← (

⋃
a∈s∗ A[a]) \ s∗

Return PA

Table 9. Variable Definitions of PAPB

Variable Definition

G Task graph
s Executed action sequence
s∗ The longest matching subsequence
A Adjacency list of G
A[a] The set of direct successors of node a
subseq[i] Longest non-branching subsequence ending at index i
dp[i] Length of subseq[i]
k Index with the maximum dp[k]
L Longest non-branching subsequence
PA Final potential next actions

…

𝐹ଵ:௘ௗ೟షభ 𝑓௧,௜
௖௟௔௦௦ି௘௠

Dilated Conv

Local Cross Attention
Key and Value Query

𝑓௧,௜
௡௢௥௠௔௟

Figure 6. Architecture of the Representation Reconstruction Block
(RRB). The RRB reconstructs the i-th normal action representa-
tion f normal

t,i for time t by combining the frame-wise refined features
F1:edt−1 (key and value) and the action class embedding f class-emb

t,i

(query).

A.2. Representation Reconstruction Block
The Representation Reconstruction Block (RRB) is de-
signed to reconstruct multiple normal action representations
at time t using the frame-wise features of executed actions
and the embedding of the t-th action. The RRB consists
of two key components: a dilated convolutional layer and a
local cross-attention module, as illustrated in Fig. 6.

To ensure temporal causality, all modules within the
RRB are implemented in a causal manner. Specifically,
when reconstructing the normal action representations at
time t, the frame-wise features corresponding to time t and
any future frames are not accessible, thereby adhering to the
sequential nature of the task.
Dilated Convolutional Layer. The dilated convolutional
layer employs a kernel size of 3 and consists of 5 layers.
The dilation rate of the first layer is set to 1, while the subse-
quent layers follow an exponential growth pattern. Specif-
ically, the dilation rate di for the i-th layer is defined as:

di = 3i. (19)

This design allows the receptive field to expand exponen-
tially with depth.
Local Cross Attention. The local cross attention module
consists of a single attention layer with a local window
length of 32 and 2 attention heads. Depthwise convolu-
tions project the query, key, and value features, with causal
padding ensuring only past and current time steps are acces-
sible, preserving temporal causality.

Action Class Embedding. As mentioned in Section 3.3
of the main text, F1:edt−1 represents the frame-wise re-
fined visual features extracted from the Action Segmenta-
tion Model up to frame edt−1. The f class-emb(y) represents
the class embedding for action class y, computed as the
mean feature of all action samples belonging to this class.
Formally, it is defined as:

f class-emb(y) =

∑
t∈Iy

f action
t

Ny
, (20)

where Iy is the set of indices for samples belonging to class
y, Ny = |Iy| is the total number of samples in this class,
and f action

t represents the feature of the t-th action sample.
This class embedding serves as a representative feature for
action class y.

The f class-emb
t,i represents the class embedding for the i-th

potential action class corresponding to the t-th action. It is
used as the query input in the Local Cross Attention module
(see Fig. 6), where it interacts with the key and value fea-
tures derived from the frame-wise refined features F1:edt−1

after processing through the dilated convolution layer.

B. More Experimental Setups

In this section, we provide comprehensive details about the
experimental setup to complement the descriptions in the
main text. Specifically, we elaborate on the preprocessing
and usage of the HoloAssist[38] datasets, frequency analy-
sis of multiple valid next actions, as well as the experimen-
tal environment and hyperparameter settings.

B.1. HoloAssist Dataset

Since the official release of the HoloAssist dataset lacks a
designated test set, we train our AMNAR and EgoPED [16]
frameworks on the training set, compute thresholds using
the training set, and evaluate performance on the validation
set. The tasks used for training and validation, along with
their respective durations, are summarized in Table 10. To
train the Action Segmentation Model (ASM), we utilize the
fine-grained action annotations, specifically either verb or
noun labels, as segment labels.

The HoloAssist training set includes both normal and er-
roneous actions. To ensure accurate learning of normal ac-
tion representations, we train AMNAR exclusively on nor-
mal actions, excluding erroneous ones during training. For
HoloAssist experiments, due to the absence of an official
test set, we follow a standard split by training on the pro-
vided training set (approximately 166 hours of video from
350 instructor-performer pairs) and evaluating on the vali-
dation set. Additionally, we exclude the “Belt” task from
final evaluations, as it contains only one error-free sample,
which could skew performance metrics.

Table 10. Duration of Training and Validation Sets for HoloAssist
Tasks (in minutes)

Task Name Train (min) Val (min)

atv 84.63 12.37
circuitbreaker 45.30 8.62
coffee 137.17 16.38
computer 226.43 38.95
dslr 289.22 38.15
gladom assemble 320.95 50.60
gladom disassemble 211.03 29.02
gopro 561.58 78.18
knarrevik assemble 843.08 114.08
knarrevik disassemble 465.00 71.63
marius assemble 357.58 52.28
marius disassemble 208.38 36.83
navvis 122.65 21.25
nespresso 225.47 28.47
printer big 162.15 26.87
printer small 295.05 42.32
rashult assemble 942.42 128.90
rashult disassemble 545.65 68.47
switch 469.07 70.82

Moreover, some action classes appear only in the vali-
dation set and are absent from the training set. To main-
tain consistency during inference, we classify these unseen
classes as background actions. For task graph construction,
since HoloAssist lacks predefined task graphs, we generate
them by analyzing all training sequences.

We also introduce a random baseline for HoloAssist ex-
periments. This baseline employs the same ASM trained
with the aforementioned strategy and, during inference, ran-
domly classifies each action segment as either normal or er-
roneous.

B.2. CaptainCook4D Dataset
The CaptainCook4D dataset [28] is a large-scale egocentric
4D dataset designed for understanding errors in procedu-
ral cooking activities. It comprises 384 recordings (94.5
hours) of individuals performing 24 different recipes in real
kitchen environments. The dataset includes videos of par-
ticipants correctly following recipe instructions as well as
instances where they deviate and introduce errors. It pro-
vides 5.3K step annotations and 10K fine-grained action an-
notations, with errors categorized into seven distinct types.
Data modalities include RGB video, depth, 3D hand joint
tracking, and IMU data, captured using a head-mounted Go-
Pro and HoloLens2.

For our experiments, since CaptainCook4D lacks prede-
fined task graphs, we generate them by analyzing all train-
ing sequences, similar to the approach used for HoloAs-

Algorithm 2 Task Graph Generation

Input: Action sequences S
Output: Task graph G as a list of edges
Compute Transition Weights:
Initialize T [(u, v)]← 0 for all possible (u, v)
for each seq ∈ S do

for i← 0 to len(seq)− 2 do
for j ← i+ 1 to len(seq)− 1 do
T [(seq[i], seq[j])]← T [(seq[i], seq[j])] + 1

end for
end for

end for
Sort Transitions by Weight:
P ← sort(T.items(), key = weight, descending)
Build Maximum-Weight DAG:
Initialize G← ∅
for (u, v) in P do

if adding (u, v) to G keeps G acyclic then
G← G ∪ {(u, v)}

end if
end for
Return G

sist. To focus on execution-related errors, we exclude the
“Missing Step” and “Ordering” error types during evalua-
tion, as these sequence-level anomalies are beyond the pri-
mary scope of AMNAR.

B.3. Task Graph Generation for Procedural Task
Modeling

To better model procedural tasks in both HoloAssist and
CaptainCook4D, we derive task graphs from action se-
quences, as these datasets do not provide predefined graphs.
Each task graph is represented as a Directed Acyclic Graph
(DAG) that captures valid action transitions based on ob-
served sequences.

The graph construction consists of three steps: 1. Ex-
tract Action Sequences: Identify non-background action
sequences from the recordings and insert a start state (e.g.,
background) at the beginning of each sequence. 2. Com-
pute Transition Weights: Measure the co-occurrence fre-
quency of each action pair across all sequences to form a
weighted transition matrix. 3. Build a Maximum-Weight
DAG: Use a greedy algorithm to select the highest-weight
edges while disallowing cycles, preserving only acyclic
paths.

This procedure ensures that frequent, logically coherent
transitions are included in the final task graph, providing
a reliable structure for analyzing procedural tasks. For the
complete pseudocode of this task graph generation process,
please refer to Algorithm 2.

This approach ensures the task graph reflects frequent,

logical action transitions while maintaining an acyclic struc-
ture, suitable for procedural task analysis.

B.4. Frequency Analysis of Multiple Valid Next Ac-
tions

In Section 4.4 of the main text, we compare average im-
provements across tasks, noting that the coffee task has the
highest occurrence of multiple valid next actions. This
observation stems from a frequency analysis of multi-
ple valid next actions using the following metrics: non-
deterministic action ratio, average number of valid next
actions and average maximum transfer probability.

A non-deterministic action is defined as an action
whose preceding action has more than one potential next
action. As illustrated in Figure 5, consider action a1, which
follows action a0. Since action a0 has multiple potential
next actions (actions a1, a4, a7), action a1 is considered a
non-deterministic action (as are a4 and a7).

The non-deterministic action ratio refers to the propor-
tion of non-deterministic actions among all actions within
a task. A higher ratio indicates a greater prevalence of
multiple valid next actions, contributing to task complex-
ity. As shown in Table 11, the tasks tea, coffee, and oat-
meal have notably high non-deterministic action ratios of
75.00%, 70.59%, and 69.23%, respectively.

The average number of valid next actions represents
the mean count of potential valid next actions for each ac-
tion in a task. For instance, if action a0 has potential next
actions a1, a2, and a3, the number of valid next actions is 3.
A higher average indicates that actions generally have more
possible subsequent actions, increasing the task’s complex-
ity. In terms of this metric, the coffee task stands out with a
value of 2.82, higher than those of other tasks.

The average maximum transfer probability is the av-
erage of the highest probabilities with which actions transi-
tion to their next actions. For example, if action a0 tran-
sitions to a1, a2, and a3 with probabilities of 20.00%,
25.00%, and 55.00%, the maximum transfer probability for
a0 is 55.00%. A lower average maximum transfer probabil-
ity indicates greater uncertainty in transitioning to a specific
next action, reflecting higher diversity in valid next steps.
As shown in Table 11, the coffee and oatmeal tasks have
lower average maximum transfer probabilities of 67.27%
and 67.09%, respectively.

The coffee task stands out across all three metrics, indi-
cating a high frequency of multiple valid next actions. This
complexity makes it the most suitable task for demonstrat-
ing the effectiveness of our Adaptive Multiple Normal Ac-
tion Representation (AMNAR) framework. Consistent with
our frequency analysis, AMNAR achieves the most sub-
stantial improvement in error detection accuracy for the cof-
fee task, as evidenced in Table 1 of the main text. This cor-
relation underscores the advantage of AMNAR in handling

tasks with diverse and multiple valid action sequences.

Table 11. Metrics for Task Transition Matrices Across Five Tasks.
Higher non-deterministic ratios (↑) indicate greater complexity
due to multiple valid next actions. Higher average numbers of
valid next actions (↑) suggest increased complexity of a task.
Lower average maximum transfer probabilities (↓) indicate greater
uncertainty in action transitions.

Metric Tea Coffee Pinwheels Oatmeal Quesadilla

Non-deterministic Ratio (%) ↑ 75.00 70.59 26.67 69.23 40.00
Avg. Valid Next Actions ↑ 1.75 2.82 1.13 1.85 1.20
Avg. Max Transfer Prob. (%) ↓ 74.02 67.27 88.15 67.09 75.00

B.5. EDA of non-deterministic actions
In Sec. 4.4 of the main paper, we evaluate the Error De-
tection Accuracy (EDA) of non-deterministic actions. This
experiment measures the average frame-wise accuracy of
non-deterministic actions in error detection.

B.6. Experimental Environment and Hyperparam-
eters

All experiments are conducted on an Nvidia Tesla V100
GPU with 32GB of VRAM. The training process uses a
batch size of 8 and runs for 200 epochs. The learning rate is
initialized to 0.001 and adjusted dynamically using a cosine
annealing schedule.

C. Visualization Examples
Fig. 7 presents additional visualization examples of error
detection using the AMNAR framework on the EgoPER
dataset [16]. These examples highlight how AMNAR effec-
tively identifies various types of errors in procedural tasks,
demonstrating its robustness and adaptability in complex
scenarios.

As shown in Fig. 8, the AMNAR framework accurately
detects errors even when they occur within actions sharing
the same label, effectively distinguishing between normal
and erroneous executions.

Action label: Measure 4 Tablespoons of quick-cook oats
Error: Directly pour quick oats into bowl

Action label: # Additional action
Error: Weigh bowl containing oats using scale

Ground Truth:

Prediction:

Ground Truth:

Prediction:

Sample: oatmeal_u1_a3_error_017

Sample: oatmeal_u1_a4_error_013

Action label: Measure 4 Tablespoons of quick-cook oats
Error: Directly pour quick oats into bowl

Action label: # Additional action
Error: Clean spoon after stirring using paper towel

Action label: Stir using spoon
Error: Stir using knife

erroneousnormal

erroneousnormal

Ground Truth:

Prediction:

Sample: quesadilla_u1_a5_error_002

Action label: Place tortilla on cutting board
Error: Drop tortilla

Action label: Place tortilla on cutting board
Error: Discard tortilla and place a new one

Action label: # Additional action
Error: Add a handful of raisins to tortilla

erroneousnormal

Figure 7. Visualization examples from the EgoPER dataset using the AMNAR framework. In the top sample, two errors are detected: a
misoperation—quick oats are poured directly into the bowl without measuring, and an additional action. The middle sample also contains
three errors: a misoperation, an additional action, and using the wrong tool—stirring with a knife instead of a spoon. The bottom sample
illustrates a sequence of errors: an accidental error—dropping the tortilla to the ground, followed by a corrective action—replacing the
dropped tortilla with a new one, and finally an additional action—adding an incorrect ingredient.

Segments:

oatmeal_u1_a4_error_016

Action label: Stir using spoon
Error Detection Result: √

Action label: Stir using spoon
Error Detection Result: √

Segments: … …

Action label: Stir using spoon
Error Detection Result: √

Action label: Stir using spoon
Error Detection Result:
Using Knife instead of Spoon

×

sharing same action label

韦锦4

Figure 8. In this example, the AMNAR framework encounters two actions sharing the same label: one is a correctly executed action
(normal), and the other is an erroneous action. Despite the shared label, AMNAR successfully detects the error in the second action (using
a knife instead of a spoon) while correctly identifying the first action as normal, avoiding any false positives.

	Introduction
	Related Work
	Method
	Problem Formulation
	Method Overview
	Action Sequences and Features Execution
	Potential Action Prediction Block
	Representation Reconstruction Block
	Normal Action Representation Alignment and Conformity Assessment
	Training Strategy and Objective Function

	Experiments
	Experimental Setup
	Comparisons with SoTA Methods
	Ablation Studies
	Influence of Previous Errors
	Ability of Handling Multiple Valid Next Actions
	Discussions on Action Segmentation Module
	Visualization

	Conclusion
	More Details about AMNAR
	Potential Action Prediction Block
	Representation Reconstruction Block

	More Experimental Setups
	HoloAssist Dataset
	CaptainCook4D Dataset
	Task Graph Generation for Procedural Task Modeling
	Frequency Analysis of Multiple Valid Next Actions
	EDA of non-deterministic actions
	Experimental Environment and Hyperparameters

	Visualization Examples

