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Fig. 1: Evolution of perception-centric offerings of the course. (a) course based on simulation, (b) course based on a
real-world obstacle course, and (c) new course based on the proposed VizFlyt framework, where the image is a real-time
photorealistic render of a hallucinated camera on an aerial robot used for autonomy tasks. All the images in this paper are
best viewed in color on a computer screen at 200% zoom.

Abstract— Autonomous aerial robots are becoming
commonplace in our lives. Hands-on aerial robotics courses
are pivotal in training the next-generation workforce to
meet the growing market demands. Such an efficient and
compelling course depends on a reliable testbed. In this paper,
we present VizFlyt, an open-source perception-centric
Hardware-In-The-Loop (HITL) photorealistic testing
framework for aerial robotics courses. We utilize pose
from an external localization system to hallucinate real-time
and photorealistic visual sensors using 3D Gaussian Splatting.
This enables stress-free testing of autonomy algorithms on
aerial robots without the risk of crashing into obstacles. We
achieve over 100Hz of system update rate. Lastly, we build
upon our past experiences of offering hands-on aerial robotics
courses and propose a new open-source and open-hardware
curriculum based on VizFlyt for the future. We test our
framework on various course projects in real-world HITL
experiments and present the results showing the efficacy
of such a system and its large potential use cases. Code,
datasets, hardware guides and demo videos are available at
https://pear.wpi.edu/research/vizflyt.html

I. INTRODUCTION

The use of aerial robots (drones) has surged in the past
decade, with applications ranging from search and rescue [1]
to farming [2] and inspection [3]. However, most drones are
manually operated, limiting their scalability and use in harsh
conditions. Hence, there is a growing need for autonomous
drones and the software to operate them. Aerial robotics
courses [4]–[10] play a pivotal role in training students from
K-12 to graduate levels, focusing on skills from piloting to
autonomy software development. While many courses teach
manual piloting [11], [12] or drone hardware building [4],
fewer focus on real-time autonomy using onboard sensing
and computation. Hands-on learning has consistently proven
effective for robotics education, and aerial robotics is no
exception. However, running a hands-on drone autonomy
course faces challenges such as (a) procuring the right
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hardware platform with long-term support, (b) ensuring safe
operation for students, (c) minimizing costs for operation,
maintenance, and repair, (d) providing an extensive and
user-friendly API for sensor and control access, (e) allowing
modularity for adding new sensor/computational payloads,
and (f) ensuring stability, robustness, and repeatability.
Depending on the course’s focus, some factors may outweigh
others. For example, in courses focused on teaching controls
and planning, it might be possible to avoid using onboard
sensors and simply use an external localization system
mated to an offboard PC that communicates to the robot
via a wireless link. Furthermore, in courses that involve
sensor fusion or perception, it becomes essential to use
onboard sensors/computation due to the requirement of high
rate and low latency processing to hit the control targets
required. This paper focuses on developing a scalable, robust
framework for teaching vision-based drone autonomy, which
is widely used for its cost-effectiveness and ubiquity.

Currently, aerial robotics courses rely on custom-built
or educational drone platforms [13]–[15], many of which
are discontinued. This presents significant logistical
challenges, as course materials must be regularly updated
to accommodate new hardware. The issue is compounded
by hardware damage from collisions with environmental
elements, leading to costly spare part replacements.
Additionally, an autonomy-focused aerial robotics
course requires integrating hardware like front-facing,
downward-facing, and/or stereo cameras. This added
complexity increases both the effort and cost of running the
course, making it difficult to scale for larger student groups.

A solution is to conduct the course entirely on a simulator
[16]–[18]. We encourage reading [19] for a study on aerial
robot simulators. While simulators can effectively replicate
certain aspects of drone operation, they fall short in providing
the real-world experience needed to develop robust, reliable
algorithms for safety-critical systems in aerial vehicles.

Recent research [20]–[22] has utilized
Hardware-In-The-Loop (HITL) simulation, where a
physical robot flies in the real world, eliminating the
need to simulate flight dynamics. This approach is more
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flexible than using real robots with onboard sensing and
computation, as it allows for quick adaptation to various
environmental settings, reduces collision risk, and retains
flight dynamics fidelity. Inspired by this, we combine a
photorealistic rendering framework with HITL to create a
scalable method for teaching. This enables students to focus
on autonomy concepts at any level (perception, planning,
and controls) in a realistic environment. For instructors
and teaching assistants, it reduces the logistical burden
(e.g., maintaining drones and experimental setups), lowers
operational costs, minimizes repair times, and simplifies
live-grading efforts.

The authors have collectively participated in five
aerial robotics courses [8]–[10] across three universities
(University of Pennsylvania, University of Maryland,
College Park, and Worcester Polytechnic Institute) in roles
ranging from student to teaching assistant to instructor.
These courses spanned multiple departments (Robotics
Engineering, Computer Science, Aerospace Engineering, and
Mechanical Engineering) and catered to both undergraduate
and graduate students. Our experiences have provided us
with a well-rounded perspective on running a hands-on drone
autonomy course with minimal logistical challenges.

We propose VizFlyt, a perception-centric pedagogical
framework for autonomous aerial robotics based on HITL
concepts. By leveraging 3D Gaussian Splatting (3DGS)
[23] for real-time view synthesis from robot pose,
VizFlyt decouples aerial robotics coursework from hardware
dependency, providing a flexible, robust, and cost-effective
solution for testing in complex visual environments. It is
an intuitive framework designed for ease of use, expandable
to novel features, requiring no prior background knowledge,
making it a perfect framework for teaching aerial robotics.
The key contributions of the VizFlyt framework are:

• VizFlyt eliminates the need for onboard proprioceptive
sensors, reducing hardware complexity and reliance on
specific robots, while facilitating RGBD updates at over
100 Hz per sensor.

• VizFlyt enables rapid dynamic asset generation for
novel environment creation using synthetic or real data,
supporting flight testing across a variety of scenarios.

• We demonstrate VizFlyt’s effectiveness for teaching
aerial robotics through key tasks such as Visual
Odometry (VO), high-speed obstacle avoidance, and
navigation through known and unknown gaps in
real-world experiments.

• The VizFlyt framework (software and hardware) will be
open-source, making it future-proof and expandable.

II. LEARNINGS FROM CURRENT CURRICULA

A. Others’ Aerial Robotics Coursework

Several aerial robotics courses offer first-hand experience
and often involve 3 distinctive modules (i) Development
and assembly of drone hardware, (ii) Flying and operating
drones, (iii) Development of drone autonomy software.
Drone autonomy encompasses tasks or objectives focused
on motion planning [6], [8], [10], control systems [4],
[7], [8], [10], and perception algorithms [4], [5], [7], [8],
[10]. Course projects are tailored around fundamental tasks
such as SLAM, sensor fusion, quadrotor dynamics, path
planning, pose estimation, and obstacle avoidance. While

some of the projects provide an introductory understanding
of quadrotor operation, others are more advanced, catering
to graduate-level expertise. Some of the courses focus on
software integration for robust performance. However, testing
under various conditions of these projects is limited due to
time constraints, and dynamic variations in the environment
are not addressed, as static datasets are used to facilitate
easier evaluation. Majority of these courses use educational
drones [13]–[15] that are currently discontinued rendering
the course inoperable.

B. Our Latest Past Course Offering
The aerial robotics courses we have taught [8], [9], [24],

[25] have been built around the philosophy of gamification
of education (Fig. 1), where advanced course knowledge is
disseminated to students by encouraging healthy competition
to learn quickly, particularly useful for aerial robotics with
a high barrier of entry.

RBE595-F02-ST: Hands-On Autonomous Aerial Robotics
is an advanced graduate course tailored for robotics students.
The course dealt with advanced concepts of vision-based
autonomy for a challenging obstacle course based on
multiple drone racing competitions [26]–[28]. Specifically,
the course included flight through drone-racing like windows,
an unknown-shaped gap and a dynamic window. The course
was run using a custom Blender® simulator with dynamics
mimicking the ArduCopter stack for the initial projects and
the final projects were performed on DJI Tello Edu drones.
Over the course, 4/6 teams completed the final obstacle
course. Though the course ran successfully, it had challenges
which need to be addressed for the course to smoothly run
in the future.

Instructor and Teaching Assistant Feedback: The
major setback in the course was frequent failure of drone
hardware with about eight robots, multiple propellers,
multiple propeller guards, 10 batteries breaking completely
due to wear and tear and crashes. This necessitated keeping
a stockpile of spare drones (parts), which was burdening
and increased the cost of operation. The DJI Tello Edu
was discontinued after the first run of this course which
forces a redesign of the course. Furthermore, grading using
live demonstrations took significant time since autograding
was not possible. This coupled with scheduling conflicts for
evaluation resulted in a rigorous responsibility.

Student Feedback: The majority of students pointed to
hardware reliability as their biggest issue which included
unreliable takeoffs, frequent connection problems and packet
loss issues. The Python API for controlling the drone was
seen as cumbersome and inconsistent. On average, students
reported crashing the drone more than 20 times per project.
The students reported that they spent a significant amount of
time dealing with hardware issues (about 40% of the total
time spent), rather than solving the actual project.

Overall, looking back from the first offering in 2017
[24] to the latest offering in 2023 [9], we learned that
educational drones constantly get discontinued, resulting in
a lot of breakages due to collisions with the environmental
components of the obstacle course, present major safety
concerns making recurring offerings of the courses hard due
to limited budgets, smaller offering capacity and lack of
enough assistant support to maintain robots. To this end,
we noticed that we have to solve the following problems:
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(a) minimize environmental components in the flying space
to decrease the probability of collision, (b) change to
open-source hardware and software designs to enable future
support and adaptation, (c) robust robot design to minimize
breakages, (d) scalability to various environments that can
be photo-realistically rendered in real-time for vision-based
autonomy. The VizFlyt framework presented next will be
used as the base of the proposed course curriculum to address
the aforementioned issues.

III. VizFlyt FRAMEWORK

A. Digital Twin Scene Generation

The first step is to create a digital model or clone of
the real world to be used as the base of HITL. This
can be obtained either from digital modeling software
like Blender® where assets (for obstacles) are manually
crafted or obtained through photogrammetry, which is
generally time-consuming. As an efficient alternative, we
train high-fidelity 3DGS models, that represent complete
scenes (not just the obstacles), using real images which will
be later used for hallucinating proprioceptive vision-based
sensors. We ensure that rendering from the 3DGS scene
is consistent across viewpoints by capturing images from
diverse perspectives.

B. Hardware Setup

To enable accurate HITL testing for autonomy stack, an
aerial robot flies in a netted flying space equipped with
an external localization system such as Vicon® motion
capture [29], Bitcraze LoCo. [30], April Tags [31] or IR
based tracking [32], providing accurate real-time robot pose
updates. The robot has an onboard IMU, but all other visual
sensors such as RGB or RGBD cameras are synthesized
(hallucinated) using 3DGS from the external pose (akin
to Virtual Reality for drones). The real and hallucinated
sensor data are used for autonomy processing on a tabletop
embedded computer (to simulate real-time constraints).

C. Collision Detection

To detect collisions for auto-grading assignments, a robust
collision detection system is required. Given that the 3DGS
environment does not include built-in collision detection
methods, we calculate a 3D occupancy voxel grid map
by exporting the 3DGS environment as a point cloud. A
radius-based collision check is employed where we check
for voxels lying inside a fixed-radius sphere centered around
the current robot position. When a collision is detected in
the 3DGS environment, the real-world drone is promptly
switched to land mode with a visualizer indication (Fig. 2).

Fig. 2: Termination of attempt during a crash (yellow
highlight). (a) Real crash in the old version of the course
leading to damages and manual grading, (b) automatic
crash reporting from the hallucinated camera with no robot
damages.

D. Framework Architecture

We use 14 Vicon® Vero V2.2 cameras to obtain the
drone’s real-time pose on a Windows PC (Motion Capture
PC, Fig. 3). This pose data is then transferred via UDP to
a ROS2 (Humble) [33] node running on a dedicated Ubuntu
22.04 machine (3DGS Rendering PC with an Intel® Core i7
processor with 48GB RAM and NVIDIA® RTX 3080 GPU
with 10GB VRAM). The 3DGS Rendering PC is responsible
for generating a pose-dependent RGBD stream which is
published via a ROS2 node.

To simulate real-time hardware constraints, we implement
our vision-based autonomy software on an embedded
platform, such as the NVIDIA Jetson Orin Nano. The
embedded board is connected to the rendering PC via
Ethernet and RGBD frames are obtained by subscribing to
the ROS2 node.

After the frames are processed, the control commands
are computed and transmitted to the robot using the
MAVLink UDP protocol over an ESP8266-based Wi-Fi
link. Our framework remains hardware-agnostic up to the
drone protocol level, allowing compatibility with a variety of
systems. To minimize crashes, geo-fencing is implemented
using the ground truth pose of the drone, ensuring it lands
automatically if it exceeds the boundaries of the designated
safe flying area.

IV. PROPOSED COURSE CURRICULUM

The next offering of the course will be based on the VizFlyt
framework as described next.

A. Learning Objectives

The course is designed as a senior undergraduate class
and/or an advanced graduate class. The course will introduce
students to the fundamental principles and challenges of
real-time perception and autonomy in aerial robotics. It
aims to provide a hands-on experience with high-level tasks
such as object detection, visual servoing, depth estimation,
obstacle avoidance, and navigation using onboard real-time
constraints of sensing and computation. The curriculum
focuses on developing the students’ ability to design,
implement, and evaluate algorithms that enable autonomous
aerial robots to interact with their environments in complex
conditions. At the culmination of the course, students are
expected to understand both theoretical and practical aspects

Fig. 3: (a) Artistic impression of the previous iteration of
the course with experiments run with real obstacles and
sensors, (b) Artistic impression of the proposed course with
experiments run using the VizFlyt framework to hallucinate
sensors for HITL testing, and (c) VizFlyt framework
Architecture.



of autonomous navigation, as well as develop skills that are
directly applicable to real-world aerial robotics challenges.

B. Course Setup
The course consists of a custom Blender® based simulator

with quadrotor dynamics and the control stack build around
Arducopter to test the initial prototypes of algorithms and
generation of data for deep learning training. For the
hardware experiments, we use a custom-built quadrotor
platform PeARWhippet160 in the VizFlyt framework as
described in §III-D. We use the information from onboard
IMU and hallucinated RGB/RGBD sensors. Different sensor
suites can be used to adapt the difficulty of the projects
in the course for various educational levels and technical
backgrounds, making our curriculum widely applicable.

C. Course Curriculum
The course is semester-long hands-on and project based

with six projects and 5 in-class quizzes. The concepts from
each project build on top of each other to culminate into the
final drone obstacle race. Each project is performed in groups
of three since that optimally balances enabling teamwork
and giving a great experience to the students and enough
time with the robots. The projects expose the students to the
real-world challenges of integration, filtering and edge case
handling of autonomy stack on aerial robots with real-time
constraints. In-class quizzes help to strengthen mathematical
concepts without the burden of large-scale exams. The course
projects cover a wide range of topics from sensing, sensor
fusion, planning, control, vision, integration and AI. The
undergraduate and graduate versions of the course have
slightly different project expectations which will be denoted
by UG and G and are described next. The sensor suite used in
UG and G versions involve RGBD (front + down-facing with
IMU) and RGB (front + down-facing with IMU) respectively.

Project 0: Since the course is fast-paced and has
high-expectations of time and effort commitment from
students, there is a zeroth project that is due on the second
day of class. This helps students gauge the difficulty level and
their preparedness to take the course. The project consists
of implementing a simple complementary filter for attitude
estimation and setting up the Blender® quadrotor simulator
to get familiar with the API. This project remains same for
UG and G.

Project 1: The next project covers topics from
sensor fusion to estimate attitude from a 6-DoF Inertial
Measurement Unit (IMU) using Madgwick [34] (UG and
G) and Unscented Kalman Filters [35] (G).

Project 2: In this project, students learn about path
planning in a known map and also get exposed to the
robot hardware to learn the API for path following using
acceleration, velocity and position commands. The students
implement A*/RRT* path planners in the UG/G versions
respectively in the Blender® simulator. For the hardware
experiments, the UG expects positional waypoint commands
only whereas the the G expects both positional and velocity
commands to follow polynomial trajectories.

Project 3: This project covers concepts of instance
segmentation, sim2real transfer for neural networks and
synthetic data generation. The goal is to detect known custom
racing windows inspired from the AlphaPilot challenge [26].
The students generate synthetic data in Blender®, use it to

train a neural network (with no real data) to distinguish
between windows. Then they use these detected windows
to estimate their 3D pose to fly through them.

Project 4: This project is inspired by real-world issues in
search and rescue operations: to fly through unknown shaped
gaps. This project is more open-ended than the previous ones,
where the sensor suite can drastically change the approach to
the solution. In previous offerings, students have solved this
assignment using depth based clustering (in RGBD case) and
optical flow based clustering (in RGB case) from concepts
inspired from [36], [37].

Project 5: The final project culminates the learnings from
all the previous projects into a final race through a tough
obstacle course which also contains a dynamic window,
which is a colored rectangular window with a clock like
hand rotating at a fixed speed. The robots start from a starting
position and navigate through the course in stages involving
two racing windows, an unknown shaped gap and finally the
dynamic window (Fig. 1c). Each robot run is timed with the
timer starting at takeoff and the timer stops the moment the
robot passes through the dynamic window or collides with
any part of the scene (in real-life such as nets or in virtual
reality through our auto-grader). A leaderboard is maintained
with the number of stages passed successfully and the time
taken. The team with the lowest time and the most number
of stages wins bragging rights and a trophy.

D. Grading and Evaluation
Since the focus of the course is on real-world deployment

of autonomy, each project is evaluated on live experiments.
To enable efficient evaluation, we also develop an autograder
system for live experiments based on collision detection from
§III-C 3DGS (Fig. 2). The specific evaluation depends on
factors like safety, speed of task completion and robustness
to various factors. Furthermore, our system allows evaluation
on various environmental conditions. This only takes a
few seconds rather than hours to physically change the
environmental settings for every team in the past iterations
of our course.

E. Logistics and Cost of Operation
We also try to minimize the course logistics by

streamlining the operation. VizFlyt is centered around having
a pose estimate for the robot to hallucinate vision based
sensors. This can be achieved through an optical motion
capture system (commonly found in aerial robotics research
labs) or a much more cost-efficient Ultra-Wideband (UWB)
position system like LoCo. This has a one time cost of 5-50K
USD which remains operational for 10+ years with minimal
maintenance. Each robot costs around 475USD (reducible
to 300USD with basic controllers). The embedded computer
would incur an additional cost. The radio transmitter used
for safety kill switch costs about 95USD. During our
VizFlyt experiments and extensive stress testing over the
last 8 months from nine lab members of all educational
levels, we only broke three propellers, burnt two motors,
three batteries and two 3D printed parts costing us a total
of 125USD. Extrapolating this information, we estimate
62.5USD per group per year in maintenance/replacement
costs. We also assume that the course takes two robots
to run which will be replaced in their entirety every year.
The cost to run the course for 30 students per semester



Fig. 4: (a) Flight test for proposed project 3: flight through racing windows, (b) Flight test for proposed project 4: flight
through unknown gap, (c) Proposed project 5’s dynamic window and (d) High-speed flight experiment. The red highlights
denoted as VizFlyt view show hallucinated cameras seen by the robot in (a) to (c). In (d), the entire scene is hallucinated
with the real-robot overlaid.

in teams of three for 10 years for both semesters in
the year including all the equipment and maintenance
cost would be 110USD/student/offering including buying a
Vicon® motion capture system (14 Vero V2.2 cameras) and
26.26USD/student/offering if a motion capture system exists.
This is less than 1% of the average student tuition. Lastly,
due to changing regulations parts might need to be ordered
from the same country, which are easily facilitated due to the
hardware agnostic nature of our course. The students perform
experiments first in Blender® simulation mated to 3DGS
and then test their work out in the lab in their assigned lab
slots. About 4hrs/team/week to run the hardware experiments
is recommended from our experience. Furthermore, the
open-source software stack and the hardware manuals would
be maintained and updated yearly for long-term support.

V. EXPERIMENTS

We test our VizFlyt framework as a prototype for running
the next generation of aerial robotics courses for vision-based
autonomy through a series of experiments detailed next.

A. Digital Twin Of The Test Scene
We capture high-resolution (2K) images of real scenes

from the previous offering of the course using an Insta360
GO 3 [38]. We first use COLMAP [39], [40] to compute
image poses and a sparse point cloud, which is used to
train a high-fidelity model using Splatfacto [41] with the
default hyperparameters for 8000 iterations. It takes about
≈ 5 minutes to train a 3DGS model from 600 images given
the image poses on the rendering PC.

B. Quadrotor Setup
We use a custom-built quadrotor platform

PeARWhippet160 for all our flight experiments. The
robot has a Holybro Pix32 v6 flight controller running
Arducopter v4.6.0-dev firmware and an ESP8266 module.

The T-Motor F1507 3800KV motors are driven by the
Hobbywing XRotor Micro 40A 6S BLHeli32 4-in-1 ESC.
The main body frame is made from 2mm carbon fiber with
3D-printed mounts for additional components. The system
is powered by a Tattu R-Line 4S 1300mAh LiPo battery.
The all-up weight of the robot is about 400g (maximum
thrust-to-weight ratio of 6.26:1) with a flight time of about
10 minutes. Six 9.5mm diameter passive Vicon® markers
are placed in a unique 3D pattern on the robot to enable
accurate 6D pose estimation.

C. Flight Environment

We test our VizFlyt framework in the PeAR Washburn
flying space which is a netted facility of dimension 11m×
4.5m×3.65m equipped with 14 Vicon® Vero V2.2 cameras
running Tracker 4.0 software for accurate pose estimates.

D. Prototype Course Experiment 1: Racing Window
Navigation (Fig. 4a)

This mimics project 3 of the proposed course from §IV-C.
The goal is to navigate through three racing windows of
known size and shape as fast as possible. The windows are
detected using a simple UNet-based [42] segmentation model
trained on Blender® simulated images. The pose is recovered
using cv2.solvePnP function from OpenCV, fed into a
simple vector-field planner [43] mated to a PID controller.
We achieved a max. speed of 1.65ms−1 in our experiments.

E. Prototype Course Experiment 2: Unknown Gap
Navigation (Fig. 4b)

We designed project 4 of the course based on GapFlyt
[36]. We utilized the same strategy as GapFlyt and achieved
similar statistics while navigating through an unknown gap.



Fig. 5: Comparison of various visual odometry methods on (a) square, (b) spiral and (c) lemniscate trajectories.

F. Prototype Course Experiment 3: Dynamic Window
Navigation (Fig. 4c)
The unique part of project 5 not covered in other parts is

the dynamic window. Since we are using 3DGS, it does not
support dynamic scene changes, i.e., moving the clock-like
hand of the dynamic window. To enable this, we overlay
a synthetic clock-like hand using temporally changing
homography projections computed using the relative pose of
the robot to the window [44]. A similar approach generates
the corresponding temporally changing occupancy grid for
auto-grading. We use color thresholding combined with
tracking and prediction of the hand using a linear model
to fly through this window.

G. Prototype Course Experiment 4: High-Speed Obstacle
Avoidance (Fig. 4d)

Testing high-speed obstacle avoidance is challenging
mainly due to the potential danger of damage to the robot
and the environment. Our VizFlyt framework can enable safe
testing in such scenarios enabling future coursework and
research on high-speed drone navigation. This also pushes
the boundaries of our framework’s utility by stress testing for
latency and system update rate. We utilize the hallucinated
depth images coupled to a potential field algorithm [45] to
navigate towards a goal direction while avoiding obstacles.
The experiment is performed on an outdoor 3DGS forest
environment and a max. speed of 5.3ms−1 was achieved.

H. Prototype Course Experiment 4: Visual Odometry
To compare VizFlyt with the previous course offering, we

devise a simple Visual Odometry (VO)) experiment. A DJI
Tello Edu is flown to execute three different trajectories:
square, spiral and lemniscate. The ground truth poses were
obtained from the Vicon® system. We hallucinate a front and
a down-facing RGB camera. We compare the state-of-the-art
DPVO [46] on our hallucinated camera images against the
ground truth poses, the built-in odometry from DJI Tello
Edu over the Absolute Trajectory Error (ATE) metric using
the MATLAB implementation of [47], [48]. We obtain a
maximum ATE error of 0.12m using hallucinated images
on all the trajectories, this is 2.8× better than Tello’s
in-built odometry (Fig. 5). The results indicate a minimal
sim-to-real gap and ensure that our framework can be used
for teaching/researching VO methods similar to what datasets
[49], [50] offer but supplemented by HITL.

VI. DISCUSSION AND FUTURE WORK

With VizFlyt, all the course projects were completed
with lower effort, time and number of crashes leading to
less frustrating and more efficient learning experience. We
also observed that using hallucinated photorealistic sensors

provided a virtually identical learning experience to using
real cameras on robots. Since our framework is adaptable, we
can build experiments that are not easily possible with real
sensors such as changing intrinsics and extrinsics of sensors,
and placement of multiple sensors since they can be changed
real-time and on-the-fly. Furthermore, testing over multiple
scenarios is easier with our framework.

The conceptualization of this work started from the
frustration built up as instructors of the course. However,
during the development of the VizFlyt framework, we noticed
that such an approach is vital to push the boundaries of
vision-based drone autonomy research further. This coupled
with regulations of flying outside limits the capabilities
of testing outdoors which can be now hallucinated.
Furthermore, this forms a cycle of development that spurs
from teaching to building a robust framework for testing,
which in turn aids higher-quality research. This research
enables better course content to train the future workforce.
This self-reinforcing loop is favorable to society and forms
an efficient teaching-research synergistic loop.

For a future direction, it is simple to integrate adverse
weather-based effects (through image translation networks
[51] or wavelet method for simulating fluids [52]) into
our hallucinated images to test autonomy software easily
which is currently arduous. Note that, these only model
the perception-centric sensor characteristics and not the
physical effects on the robot. Furthermore, modeling and
simulating commonly used depth-based sensors such as
LiDAR, RADAR and Ultrasound is possible with minimal
effort using the depth maps hallucinated by our work. This
will enable pushing embodied AI further for aerial robots
through data generation, testing and evaluation.

VII. CONCLUSION

The performance of autonomy software on aerial robots
is bounded by their testing frameworks. This is even more
true when students need to be trained on interdisciplinary
concepts and algorithms for advanced autonomy with
real-time constraints. Testing by deploying software on
robots with obstacles in the scene not only makes it
challenging but is time and resource-intensive due to frequent
crashes which detracts students from learning. We presented
VizFlyt, a HITL framework to hallucinate photorealistic
visual sensors in real-time to enable reliable, repeatable and
flexible testing of drone autonomy software. We use VizFlyt
to propose a new curriculum to prepare the next generation
of workforce in aerial robot autonomy. We test the proposed
projects in our framework and showcase their efficacy. We
believe VizFlyt will not only enable efficient teaching but
also aid aerial robotics research to push the boundaries of
autonomy further.
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