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Abstract

3D Gaussian splatting enables high-quality novel view syn-
thesis (NVS) at real-time frame rates. However, its quality
drops sharply as we depart from the training views. Thus,
dense captures are needed to match the high-quality expec-
tations of some applications, e.g. Virtual Reality (VR). How-
ever, such dense captures are very laborious and expensive
to obtain. Existing works have explored using 2D gener-
ative models to alleviate this requirement by distillation or
generating additional training views. These methods are of-
ten conditioned only on a handful of reference input views
and thus do not fully exploit the available 3D information,
leading to inconsistent generation results and reconstruc-
tion artifacts. To tackle this problem, we propose a multi-
view, flow matching model that learns a flow to connect
novel view renderings from possibly sparse reconstructions
to renderings that we expect from dense reconstructions.
This enables augmenting scene captures with novel, gen-
erated views to improve reconstruction quality. Our model
is trained on a novel dataset of 3.6M image pairs and can
process up to 45 views at 540×960 resolution (91K tokens)
on one H100 GPU in a single forward pass. Our pipeline
consistently improves NVS in sparse- and dense-view sce-
narios, leading to higher-quality reconstructions than prior
works across multiple, widely-used NVS benchmarks.

1. Introduction
3D reconstruction is the process of estimating the geometry
and appearance of a 3D scene from a set of 2D images of
that scene. Given a large and dense enough set of images of
the 3D scene, modern 3D reconstruction methods such as
neural radiance fields (NeRF) [36] and 3D Gaussian splat-
ting (3DGS) [24] can reconstruct 3D scenes in such high
quality that the resulting 3D representations can be rendered
into novel views that are almost indistinguishable from re-
ality. This is the task of novel view synthesis (NVS), and it
enables various applications such as immersive VR experi-
ences inside of photo-realistically captured real scenes.
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Figure 1. Flowing from sparse to dense 3D reconstructions.
Contrary to previous diffusion and flow matching models that map
a standard multivariate Gaussian distribution p0(z) to an, often
conditional, target distribution p1(z | y), we consider source dis-
tributions of the form p0(z | y). We use novel view renderings
of sparse reconstructions as source distribution samples, which we
map to the target distribution p1(z | y) that represents reconstruc-
tions obtained under optimal, dense conditions (i.e. ground truth).

However, for these methods to achieve such results, an
extremely large number of captured images is needed for a
given 3D scene. Capturing such a large number of images
is laborious and not always possible. Thus, one of the core
challenges in 3D reconstruction and novel view synthesis
is how to build an algorithm that can achieve equivalently
good results with far fewer images, while also being able
to take advantage of a large set of images when they are
available.

In this paper, we present our FlowR method to tackle this
problem. FlowR consists of two parts: (a) a robust initial re-
construction pipeline based on 3DGS [24] but designed for
both sparse- and dense-view settings. We use MASt3R [27]
to estimate tracked correspondences which are then used to
triangulate an initial point cloud; and (b) a data densifica-
tion procedure, which uses flow matching [32] to generate
high-quality extra views which can be used to improve re-
construction.

Although several previous approaches [12, 19, 33, 43,
56, 58, 64] have used generative models to generate novel
views to improve reconstruction, we are, to the best of our
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knowledge, the first to pose the problem as a flow matching
problem, learning the transformation between the distribu-
tion of (incorrect) rendered images and ground truth images.
Flow matching is a paradigm for generative modeling where
the model learns a velocity field that can be used to map
samples from a noise distribution to samples from the data
distribution. However, in this work, instead of modeling the
velocity field between noise and data, we model the veloc-
ity field between the incorrect novel view renderings and the
respective real images of that viewpoint (see Fig. 1). In this
way, if we already have enough dense input images that our
initial reconstruction is good enough for a particular view,
the flow matching model can simply learn not to change the
input. This formulation ensures that the generative model
does not generate unnecessary new details that are incon-
sistent and conflict with existing scene content, and thus re-
sults in sharp scene details, avoiding blurred-out averages
of inconsistent generations.

Our flow matching model generates N images simulta-
neously with a single multi-view diffusion transformer to
ensure that all generated images are consistent with each
other, while also conditioning the generation of these N im-
ages with M input images from the initial reconstruction to
ensure that the novel generated views are consistent with
the input views. To train our model, we create a dataset
of 10.3k reconstructed scenes using our robust initial re-
construction approach, from which we obtain 3.6M pairs of
novel view reconstructions with their corresponding ground
truth images. In summary, we introduce FlowR, a pipeline
that bridges the gap between sparse and dense 3D recon-
structions. Our contributions are as follows.

• We develop a scalable and robust 3D reconstruction
pipeline that produces semi-dense, metric-scale 3D re-
constructions from arbitrary view distributions and col-
lect a large-scale dataset with 3.6M rendered and ground-
truth image pairs.

• We propose a flow matching formulation that directly in-
corporates novel-view renderings from initial reconstruc-
tions as a surrogate for the initial “noise” distribution.

• We demonstrate that our trained model enhances the qual-
ity of 3D reconstructions in both sparse and dense view
scenarios by simply incorporating novel-view renderings
fixed by our flow matching model into the reconstruction
process.

We demonstrate that our approach leads to superior novel
view synthesis results across various benchmarks, outper-
forming prior methods in sparse- and dense-view scenarios.

2. Preliminaries

We describe the core ideas that our approach is built
upon, specifically 3D Gaussian splatting (Sec. 2.1) and flow
matching (Sec. 2.2).

2.1. 3D Gaussian Splatting
3D Gaussian splatting [24] generalizes point clouds as a
representation of 3D scenes.
Representation. Let I := {Ii := (Ii,Pi,Ki)}Ni=1 denote
a set of N input images Ii with camera to world transfor-
mation Pi := [Ri|ti] and intrinisc matrix Ki. We are in-
terested in representing the underlying 3D scene as a set of
3D Gaussian primitives G := {gk}Kk=1. Each 3D Gaussian
gk ∈ G is parametrized by gk := {µk, sk,qk, αk, ck}, i.e.
position, scale, rotation, opacity and view-dependent color,
respectively. The Gaussian kernel takes the following form

gk(p) := exp

(
−1

2
[p− µk]

⊤Σ−1
k [p− µk]

)
. (1)

Here, the covariance matrix factorizes as Σk :=
Uk diag(sk)

2U⊤
k , where Uk is the rotation matrix corre-

sponding to quaternion qk and sk ∈ R3
+ entails positive

scaling factors turned into a diagonal matrix with diag().
Rendering. To render the 3D scene from a camera c, we
map the 3D Gaussians to the image plane. In particular, for
each primitive gk, let gck denote a 2D Gaussian kernel with
its mean µc

k defined as the primitive’s position projected to
the image plane, i.e. µc

k := Πc(µk), and its covariance de-
fined as Σck := JckΣkJ

c⊤
k , where Jck is the Jacobian of the 3D-

to-2D projection function Πc evaluated at µk. To render the
color of pixels p′ of camera c, we apply alpha compositing
on the depth-sorted primitives gk:

c(p′) :=

K∑
k=0

ckwk

k−1∏
j=0

(1− wj) , (2)

where wk := αkg
c
k(p

′).
Optimization. Using the differentiable rasterizer in [24],
we fit the set of 3D Gaussians G to the training images I by
applying the following per-image loss function:

LGS(I;G) := (1−λssim)∥Î−I∥1+λssim SSIM(Î, I) , (3)

where Î is a rendered image as per Eq. (2) from the same
viewpoint of training image I, λssim := 0.2, and SSIM(·)
is the structural similarity loss [55]. The optimization is
interleaved with an adaptive density control (ADC) mecha-
nism [24] that prunes transparent primitives, and splits and
clones primitives in over- and under-reconstructed areas, re-
spectively.

2.2. Flow Matching
Flow matching is a paradigm for generative modeling that
we briefly introduce in this section and refer to the original
papers [30, 32] for further details.
Model. Let z0 denote a sample from a source distribution
p0 that we wish to map to a sample z1 of a target distri-
bution p1. We model this transformation as a continuous
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Figure 2. Overview. Given a set of source input images Isrc (blue), we use our robust reconstruction method (Section 3.1) to create an
initial reconstruction result that can be rendered at various perspectives (gray). We use these renderings as the source samples of our flow
matching model (Section 3.2), which maps the rendered images to the target distribution, i.e. ground-truth images. We use the generated
views (orange) to improve the quality of the reconstruction (Section 3.3).

probability flow with time t ∈ [0, 1], governed by an ordi-
nary differential equation (ODE):

dzt = v(zt, t)dt (4)

where v(zt, t) is a time-dependent velocity field that in-
duces a probability path pt interpolating p0 and p1. As-
suming an optimal transport path, the state zt should satisfy

zt := tz1 + (1− (1− σmin)t)z0 (5)

where σmin := 10−5. It follows from differentiating the
equation w.r.t. t that the true velocity field is given by

vt :=
dzt
dt

= z1 − (1− σmin)z0 . (6)

Training. We train a network with parameters θ to approx-
imate vt with the conditional flow matching loss [1, 30]:

LCFM(θ) := Et,z0,z1∥vθ(zt, t)− vt∥22 (7)

where zt and vt are given as per Eqs. (5) and (6) with z0
and z1 sampled from p0 and p1, respectively, and t sampled
from a logit normal distribution [15]. Note that, although
this formulation can transport samples between two arbi-
trary distributions, in practice p0 is often a standard Gaus-
sian distribution N (0, I).
Inference. To transport a sample z0 from p0 to p1, we
numerically solve the ODE in Eq. (4) using the estimated
velocity vθ(zt, t) and Euler’s method, but other numerical
solvers are viable.

3. Method
Our goal is to improve the quality of an initial reconstruc-
tion of a scene created from a possibly sparse set of posed
images. We exploit flow matching to improve the quality of
novel view renderings from the initial reconstruction, which
serve as auxiliary training data to fit an improved 3D rep-
resentation. Although our method works potentially with

different scene representations, it is convenient to adopt
Gaussian primitives because they can be trained fast. In
fact, since our approach is data-driven, we need to con-
struct a dataset of reconstructions under different sparsity
levels, and Gaussian splatting ensures better scalability for
this purpose. In Sec. 3.1, we describe our robust 3D recon-
struction method that serves as a basis for generating our
dataset of 3D reconstructions and provides the initial scene
reconstructions. Sec. 3.2 describes how we employ flow
matching to improve novel-view renderings from the ini-
tial reconstructions, which, in turn, are used to improve our
reconstruction results in Sec. 3.3. See Fig. 2 for an illustra-
tion.

3.1. Robust 3D Reconstruction
We aim to devise a semi-dense, metric-scale 3D reconstruc-
tion pipeline that is robust to the input view distribution, i.e.
sparse and dense view distributions ranging from a few to
thousands of input views. To this end, we combine recent
advances in learning-based structure-from-motion (SfM)
and monocular depth estimation with classical SfM tools.

First, we define a sparse co-visibility graph Gvis :=
(I, E) on the set of posed input images I similar to [14].
We sample

√
N keyframes using farthest point sampling.

The edges E ⊂ I × I are constructed by densely con-
necting all keyframes and connecting other nodes to their
closest keyframe and to the k nearest neighbors. For
both keyframes selection and edge construction we con-
sider the simple image co-visibility metric, S(Ii, Ij) :=

1− D(Ii,Ij)
maxij D(Ii,Ij)

, where

D(Ii, Ij) := ∥Ri −Rj∥F + η∥ti − tj∥2 . (8)

Here, ∥ · ∥F is the Frobenius norm and η := 1
6 .

Second, we run MASt3R [27] on all edges E to ob-
tain 3D points and descriptors for each view pair. We ex-
tract matches following [27] with a coarse-to-fine nearest-
neighbor search on the descriptors. Since extracting dense
matches is useful for dense geometry reconstruction from a
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small number of observations, but not beneficial for scenes
with many images, we subsample matches using confidence
and pixel tolerance thresholds based on the number of avail-
able input views.

Third, given the feature matches for each pair of views
in E , we can take advantage of Gvis to create feature tracks
by exploiting the transitivity of the matches. Finally, we
use COLMAP [47] to triangulate 3D points from the given
feature tracks. To achieve a 3D reconstruction on a metric
scale, we align the reconstructed depth D with the monocu-
lar depth estimates D̂ of [22] by computing a scalar scaling
factor β solving minβ

∑N
i=1 Wi∥βDi − D̂i∥1, where Wi is the

confidence of the monocular depth estimate D̂i.
Fitting 3D Gaussians. Using this reconstruction as an ini-
tialization, we fit 3D Gaussians G from the input images
with a short schedule. We train for 5k steps with a warm-
up phase of 200 steps. After warm-up, we use ADC with
AbsGrad [61] metric until step 2.5k. Compared to previous
works [17] that use 3D points obtained from global point-
cloud alignment [27] as initialization, our pipeline has two
advantages. First, it refines the geometry by using track
constraints. Second, it removes duplicated and inconsistent
3D points from the initialization, improving performance
and scalability (see Sec. 4.2).
Dataset generation. We leverage our robust reconstruction
pipeline and recent large-scale NVS benchmarks [29, 62]
to generate a dataset of rendered and ground-truth image
pairs. For each scene, we first select an input view subset
with a varying degree of view sparsity to achieve a large
variety of view distributions (see Appendix A.1). Next,
we utilize all views not in this subset as privileged infor-
mation for our flow matching model. We reconstruct the
scenes from the input view subset with our aforementioned
pipeline and create rendering, ground-truth pairs from all
other available views, producing a training dataset of 3.6M
image pairs from 10.3k sequences. Processing all scenes
took about 1.1k GPU hours or 6.5 minutes on average per
scene on budget GPUs like RTX 2080 Ti.

3.2. Flowing from Sparse to Dense Reconstructions
We use flow matching to model a joint distribution of novel-
view (target) images z :=

{
I

tgt
i

}
i

conditioned on y :=
(Isrc,Ptgt), namely a set of (source) posed, reference im-
ages Isrc and a set of target novel-view poses Ptgt. Ideally,
it is supposed to match the true data distribution p1(z|y). A
classical way to implicitly fit p1(z|y) in the flow matching
framework consists of learning a vector field vθ(z,y, t) that
depends also on the conditioning variables y, which gen-
erates a (conditional) probability density path connecting
a standard multivariate Gaussian as the source distribution
p0(z) to the target distribution p1(z|y).

Inspired by [31], in our work we adopt a different strat-
egy and condition also the source distribution p0 on y, i.e.

we consider source distributions of the form p0(z|y). Now,
fitting a 3D Gaussian representation Gsrc to the set of posed
reference images Isrc can be interpreted as drawing a 3D
representation from a stochastic process [25]. Hence, ren-
dering novel views at the poses Ptgt using Gsrc can be inter-
preted as drawing a sample from a conditional distribution
z|y. Consequently, this process can characterize our condi-
tional source distribution p0(z|y). By doing so, our model
learns a flow connecting renderings z0 ∼ p0(z|y) obtained
from potentially sparse reconstructions (e.g. if Isrc has few
images) to renderings z1 ∼ p1(z|y) that we would have
under denser reconstructions (or even ground-truth) as en-
forced by our training procedure.

Below, we detail the implementation of our multi-view
flow model and in particular the velocity field vθ(z,y, t).

Image encoding. In our model z does not entail images in
pixel space, but we use a pre-trained VAE encoder [16] to
encode each image to a latent tensor with dimensions h ×
w × 16. Similarly, conditioning images in ysrc undergo the
same encoding in latent space before entering our model.
Finally, a pre-trained VAE decoder is used to map this latent
representation back in pixel space.

Camera conditioning. The network implementing the ve-
locity field described below is conditioned on both source
and target camera poses. We encode camera information as
Plücker coordinate ray maps [41, 66] expressed in the co-
ordinate frame of the reference view that is closest to the
center of mass of all involved camera positions.

Velocity field vθ(z,y, t). We implement the velocity field
of the flow matching model using the diffusion transformer
(DiT) [15, 40] architecture. All image latents provided as
input, namely z and the encoded source images from ysrc,
are first split into 2×2 patches. We project each patch to the
token dimension and add a 2D positional encoding. In addi-
tion, we encode the index i of the image from which each to-
ken originates. To this end, we adopt a 1D sinusoidal encod-
ing γ(i) [52]. During training, the view index is chosen ran-
domly from [0, 1000], whereas at inference the view indices
are [0, N ] where N the number of images for a single for-
ward pass. Originally from LLM literature [10], this tech-
nique enables inference with very long context lengths and
has recently been applied to 3D reconstruction [59]. The
sequence of tokens is then processed with a series of trans-
former blocks to predict the output velocity tensor. Trans-
former blocks consist of a self-attention and a feed-forward
residual layer. To jointly process multiple reference and
target views while leveraging large-scale text-to-image pre-
training, we adapt the DiT block as follows. We first col-
lapse the view dimension into the batch dimension, keeping
the self-attention layer equivalent to the pre-trained image
model. Then, we collapse the view dimension into the spa-
tial dimension. We add the image index encoding γ(i) to
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the state, concatenate it with the ray map embeddings, and
linearly project the concatenated tokens back to the original
dimension. We then insert a second self-attention layer to
enable full multi-view attention. Finally, before adding the
output to the prior state of the block, we insert a zero linear
layer [67] to keep the pre-trained initialization intact. See
Appendix A.2 for an illustration.

3.3. Improving the 3D Reconstruction
We sketch how we employ the flow matching model pre-
sented in the previous section to improve the initial 3D re-
construction Gsrc that we obtain by running the procedure
described in Sec. 3.1 on the initial source views Isrc.
Generation of target views Ptgt. We first select a set
of camera poses suitable for augmenting the initial input
views. We distinguish between scenes where sparse input
views lie on a continuous trajectory, i.e. input views are
ordered, and unordered photo collections. If input views
are ordered, we fit a smooth trajectory to the source cam-
era poses using B-spline basis functions. If not, we use the
distance metric in Eq. (8) to select reference poses with far-
thest point sampling. For each reference pose, we generate
candidate points on a sphere with a random radius using Fi-
bonacci sphere sampling [48]. We select the point with the
maximum distance to the source cameras and apply a small
perturbation to the reference view orientation to obtain the
target camera pose. Finally, we filter target camera poses
with too many points close to the camera or too few points
inside the view frustum using the initial 3D reconstruction
results, yielding the final set of target poses Ptgt.
Renderings of target views. Renderings obtained from
our initial reconstruction Gsrc at the target poses Ptgt can be
considered a sample z0 of the conditional prior distribution
p0(z|y) as argued in Sec. 3.2. Thus, the inference process of
our flow matching model yields refined renderings z1 start-
ing from z0. Once decoded, these renderings together with
the respective poses Ptgt form additional training data de-
noted by Itgt that complements the original set Isrc.
Refined reconstruction Gref. Finally, we fit an improved
3D scene representation Gref on the union Isrc∪Itgt of source
and target novel-view posed images. However, the two sets
of images undergo different loss functions. Namely, we ap-
ply the loss function in Eq. (3) to images in Isrc and the
following loss function to images in Itgt:

Ltgt(I;G) :=(1− λ′
ssim)∥Î− I∥2

+ λ′
ssim SSIM(Î, I) + λlpips LPIPS(Î, I) ,

where λlpips = λ′
ssim := 0.02 and LPIPS(·) denotes percep-

tual similarity [68]. Since color values are bound to [0, 1],
the L2 loss is less strict in terms of color variations. For the
reconstruction, we employ the method provided in Sec. 3.1,
but restrict the selection of keyframes to Isrc.

4. Experiments

Implementation details. We initialize our flow matching
model from an image generation model trained on a large
collection of image-text pairs similar to [15]. The base
model has 2.7B parameters, and we drop the text condition-
ing layers, leaving us with 1.6B pre-initialized parameters.
We train all multi-view layers from scratch; the total pa-
rameters are 1.75B. We use FlashAttention2 [13] for more
efficient attention computation. We train our model on 64
H100 GPUs for 125k steps (48 hours) at batch size 64 with
12 views per batch element and 512px width, keeping the
original aspect ratio of each image. We use a cosine learn-
ing rate (LR) schedule with a warmup phase of 1k steps and
a maximum LR of 10−5 scaled by

√
n where n is the num-

ber of batch elements. We fine-tune our model at 960px
width for 55k steps with 6 views per batch element for an-
other 31 hours. We lower the maximum LR to 5 · 10−6,
keeping the same schedule. For 3D Gaussian color ck, we
use spherical harmonics degree of three.

Experimental setup. We compare to prior art across mul-
tiple benchmarks, i.e. DL3DV140 [29], ScanNet++ [62],
and Nerfbusters [57]. For DL3DV140, we first split each
sequence into training and evaluation views and create
two training splits by sampling k ∈ {12, 24} equally
spaced views from the training trajectory. We evaluate
each sequence at the original 540 × 960 resolution. For
ScanNet++, we use the validation set, follow the official
training and testing splits, and evaluate at 640 × 960 reso-
lution. For Nerfbusters, we follow the original evaluation
protocol in [57]. We measure view quality in terms of both
low-level similarity via PSNR and SSIM [55], and high-
level, perceptual similarity using LPIPS [68].

Baselines. We compare to state-of-the-art approaches that
are open-source, i.e. ViewCrafter [64] and InstantSplat [17]
in sparse-view settings, and GANeRF [45] in the dense-
view setting. We also compare to Nerfbusters [57] on their
proposed benchmark.

4.1. Comparison to State-of-the-Art
In Tab. 1, we compare to state-of-the-art sparse-view meth-
ods on the DL3DV [29] benchmark. In particular, we com-
pare to InstantSplat [17] and ViewCrafter [64]. For a fair
comparison, we use the same prior information (i.e. posed
images) and downstream pipelines (i.e. our refined recon-
struction) if applicable. While InstantSplat performs com-
petitively to our initial reconstructions in the 12-view set-
ting, its performance stagnates in the 24-view setting, high-
lighting its limitation to sparse view scenarios. The gen-
erated views from ViewCrafter do not improve reconstruc-
tions meaningfully in our experiments, as its results with
our downstream pipeline lag behind our initial reconstruc-
tions. Our full method on the other hand improves 3D re-
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12-view 24-view
Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Splatfacto [49] 16.71 0.528 0.478 22.17 0.738 0.309
InstantSplat† [17] 20.47 0.698 0.297 19.57 0.710 0.326
ViewCrafter∗ [64] 19.19 0.638 0.375 21.95 0.734 0.298
FlowR (Initial) 20.86 0.715 0.333 24.30 0.818 0.252
FlowR 22.43 0.766 0.280 25.13 0.836 0.212

FlowR++ 22.60 0.793 0.261 25.33 0.863 0.193

Table 1. Sparse-view 3D reconstruction on DL3DV140 [29]. †

official code with GT poses, ∗ official code with GT poses and our
refined reconstruction method. Additionally, we report results of
our generative model refining the test views (FlowR++).

Method PSNR ↑ SSIM ↑ LPIPS ↓

Splatfacto [49] 22.41 0.843 0.352
GANeRF [45] 23.95 0.856 0.306
FlowR (Initial) 23.84 0.860 0.331
FlowR 24.11 0.870 0.303

GANeRF w/ GAN 24.01 0.860 0.291
FlowR++ 24.90 0.922 0.250

Table 2. Dense-view 3D reconstruction on ScanNet++ valida-
tion [62]. We use the official training and testing splits. In addi-
tion, we report results of our flow-matching model refining the test
views (FlowR++), similar to [45] (w/ GAN).

construction results by a significant margin across all met-
rics, both in the 12-view and 24-view settings. The im-
provement is particularly pronounced in the 12-view setup,
and furthermore, the relative gain compared to our initial
reconstruction is the highest in perceptual quality (LPIPS).
Additionally, we report the results of our flow model applied
to the test view poses (FlowR++) to highlight its effective-
ness for refining renderings of unseen views.

In Tab. 2, we compare to state-of-the-art dense-view
methods on the ScanNet++ benchmark. This setting is
very challenging, as the initial reconstruction benefits from
a large set of source images, and the test view poses are
specifically chosen to represent out-of-distribution view-
points [62]. Despite these challenges, our method improves
significantly over our initial reconstruction results, outper-
forming GANeRF [45]. When applying post-hoc refine-
ment of rendered views (bottom two rows), we also out-
perform GANeRF by a large margin, improving our initial
results dramatically with a most significant improvement
in LPIPS. In Fig. 3 and Fig. 4, we show qualitative com-
parisons on the aforementioned benchmarks. Our method
exhibits strikingly fewer artifacts from floaters and poorly
reconstructed geometry than the baseline methods.

Finally, in Tab. 3, we report results on Nerfbusters [57].
The benchmark consists of completely disjoint training and
testing trajectories that cover distinct view angles and pos-
sibly scene content. Thus, the evaluation excludes areas
unseen during training for NVS quality assessment and
also reports coverage, i.e. the percentage of 3D points

Method PSNR ↑ SSIM ↑ LPIPS ↓ Coverage ↑

Splatfacto [49] 16.17 0.529 0.375 0.924
Nerfacto [49] 17.00 0.527 0.380 0.896
Nerfbusters [57] 17.99 0.606 0.250 0.630
FlowR (Initial) 17.02 0.567 0.365 0.932
FlowR 18.31 0.607 0.337 0.932
FlowR* 18.94 0.780 0.181 0.680

Table 3. Dense-view 3D reconstruction on Nerfbusters [57]. We
report view quality and coverage, i.e. how many pixels of the 3D
points seen during training the method reconstructed, on the test
trajectories. *using opacity thresholding.

seen in the training images reconstructed by a method,
on the test trajectories. Our initial reconstruction method
outperforms other reconstruction baselines like Nerfacto
and Splatfacto [49] but lags behind Nerfbusters. Our full
method outperforms Nerfbusters in PSNR and SSIM even
without any postprocessing w.r.t. coverage, i.e. maintaining
the same degree of coverage as our initial reconstruction.
When applying simple opacity thresholding to our render-
ings (see Appendix A.3), we outperform Nerfbusters by a
large margin on both NVS metrics and coverage.

4.2. Ablation Studies

Initial reconstruction Gsrc. In Tab. 4 we ablate the compo-
nents of our reconstruction pipeline. Compared to the Splat-
facto [49] baseline (1), using the dense 3D pointcloud from
MASt3R [27] yields sizable gains in performance across
all metrics with LPIPS being improved particularly. How-
ever, there is a steep increase w.r.t. the number of Gaus-
sians |G|. In addition, several hundreds of view pairs are
needed to produce the initialization. The co-visiblity graph
Gvis (3) decreases the number of required view pairs dra-
matically, even on the relatively small scale 12 and 24
view splits of DL3DV. Re-triangulating the matches (4)
extracted from the MASt3R predictions, instead, dramat-
ically reduces the number of Gaussians while increasing
view quality in terms of PSNR and SSIM. However, (4)
exhibits a significantly higher LPIPS than variants (2) and
(3). This is because while the triangulated 3D points are
more precise, they exhibit holes in areas where geometry
is uncertain. If we do not use ADC to grow Gaussians in
these under-reconstructed areas, the LPIPS score will sig-
nificantly increase. Therefore, we enable ADC and achieve
the best result in LPIPS, while performing similarly to (4)
in terms of PSNR and SSIM. Finally, we show that our short
schedule with 5k training steps is indeed sufficient to obtain
a good reconstruction from an initial set of sparse views,
since longer training (6) does not improve performance.

Flow matching model. To show the importance of our for-
mulation for view generation quality, we first implement a
baseline model that retains a standard Gaussian distribution
as p0. In particular, we concatenate the input latents with the
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Figure 3. Qualitative reconstruction results on DL3DV140 [29]. We show several examples of test view renderings from reconstructions
obtained from our baselines and our method on the more challenging 12-view split.

MASt3R Graph Gvis Re-triang. ADC Train steps PSNR ↑ SSIM ↑ LPIPS ↓ |G| Pairs

1 - - - ✓ 30K 19.44 0.633 0.394 317K -
2 ✓ - - - 5K 21.72 0.739 0.294 2.01M 342
3 ✓ ✓ - - 5K 21.76 0.74 0.293 2.01M 129
4 ✓ ✓ ✓ - 5K 22.23 0.768 0.322 186K 129
5 ✓ ✓ ✓ ✓ 5K 22.58 0.766 0.292 244K 129
6 ✓ ✓ ✓ ✓ 30K 22.21 0.752 0.295 286K 129

Table 4. Initial reconstruction Gsrc. We compare 5 different variants (2-6) of our reconstruction pipeline to a naive Splatfacto [49] baseline,
reporting the average scores across our DL3DV [29] view splits. We observe that dense initialization (2) improves results dramatically, but
incurs a large computational burden. We show that our introduced co-visiblity graph Gvis (3), the triangulation of 3D points (4), and the
short schedule with ADC (4 and 5) consistently improve results while dramatically decreasing computational complexity.

p0
DL3DV140 ScanNet++

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

- - 23.35 0.782 0.220 24.18 0.861 0.278

1 N (0, I) 23.50 0.769 0.200 24.09 0.873 0.208
2 p0(z|y) 24.15 0.808 0.180 25.53 0.921 0.188

Table 5. Different source distributions. We report results on
ScanNet++ [62] validation and the average of our DL3DV140 [29]
view splits at 512px resolution. In the first row, we show the scores
of our initial reconstruction Gsrc which serves as input to our model
as reference. Our conditional formulation improves significantly
over a model with a standard Gaussian as source distribution.

latents of the conditioning views, i.e. target renderings and
reference images, and the raymaps, following [4]. We com-
pare the performance of this baseline to our model in Tab. 5.
We show the NVS metrics of the initial renderings as refer-
ence in gray. While the baseline (1) improves significantly
over the renderings in terms of LPIPS, the improvement is
weaker in terms of PSNR and especially SSIM, where on
DL3DV the model deteriorates the performance compared
to the renderings. Instead, our formulation (2) improves the
renderings consistently across all metrics and outperforms
the baseline by a significant margin.

Ltgt Re-init. PSNR ↑ SSIM ↑ LPIPS ↓

1 - - 23.53 0.795 0.279
2 ✓ - 23.72 0.799 0.248
3 ✓ ✓ 23.78 0.801 0.246

Table 6. Refined reconstruction Gref. We report the average
across our DL3DV [29] view splits. Both using Ltgt and incor-
porating generated views in the pointcloud initialization (Re-init.)
improve view synthesis quality.

Refined reconstruction Gref. In Tab. 6, we test if differen-
tiating the loss function between source and target images
and using generated views for pointcloud initialization in-
deed improves reconstruction results. To this end, we first
train a model (1) on Itgt with the vanilla objective LGS and
the pointcloud obtained from the source images. We then
train a model (2) with our alternative loss function Ltgt using
the same initialization. Finally, we re-initialize the point-
cloud (3) and train the model with it and Ltgt. The alterna-
tive loss applied to the generated target images significantly
improves all NVS metrics with a particularly-pronounced
improvement in LPIPS. Using the generated views for ini-
tialization leads to further improvement, however more pro-
nounced in the 12 view setting (see Appendix A.3).
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Figure 4. Qualitative reconstruction results on ScanNet++ [62]. We show out-of-distribution test view renderings of the baselines and
our method in the dense-view setting. This is a particularly challenging setting as the test views are far from the initial camera poses.

5. Related Work

We review works that approach 3D reconstruction and novel
view rendering based on non-exhaustive scene captures.

Geometric priors. To overcome the requirement of dense
input views in [24, 36], a line of works relied on geometry
regularizations such as depth smoothness [26, 38], ray en-
tropy [2, 26], and re-projection losses [35, 51] for a more
well-behaved scene-level optimization. Other works use
monocular depth and normals from off-the-shelf networks
as geometry priors [35, 44, 53, 65, 69]. Recently, several
works initialize 3DGS from either monocular [18] or multi-
view networks [17]. While our reconstruction pipeline
aligns with these recent efforts, we propose a more scal-
able approach handling arbitrary view distributions and re-
fine our reconstructions with generative priors.

Feed-forward methods. Another line of work aims to di-
rectly predict novel views [7, 21, 54, 63] from input im-
ages, skipping scene-level optimization entirely. Along a
similar axis, more recent works directly predict explicit 3D
representations from input images [6, 11, 12, 50]. Instead of
abandoning per-scene optimization, we propose a pipeline
that integrates data priors both in the initialization and the
training process of 3D Gaussian splatting.

Generative priors. Generative priors enable improvements
in both scene geometry and appearance. While earlier work
used normalizing flows [38] and GANs [45], many recent

works focus on diffusion models [12, 19, 33, 43, 56, 58, 64].
In particular, many works incorporate diffusion models in
the training of radiance fields [43, 56, 58], e.g. via dis-
tillation [43, 56]. However, since this requires continu-
ously evaluating the model during training, many recent
approaches focus on directly generating additional train-
ing views [19, 33, 64]. Among these, many works focus
on multi-frame architectures since such models have shown
great promise in video generation [4, 5, 9, 34, 42, 60], gen-
erating videos with high geometric consistency [28]. How-
ever, due to architectural limitations, these works only gen-
erate a handful of views at a time. Additionally, they keep
the generative process as is and inject prior information into
the model only as a conditioning. We instead propose a flow
matching process that directly refines initial reconstruction
results and design the model architecture such that it still
benefits from large-scale text-to-image pre-training.

6. Conclusion
We introduced FlowR, a novel pipeline that bridges the gap
between sparse and dense 3D reconstructions. Our method
enhances NVS by learning to map incorrect renderings to
their corresponding ground-truth images. By training on
a large-scale dataset of 3.6M image pairs, FlowR signif-
icantly improves 3DGS performance in both sparse- and
dense-view scenarios, outperforming previous generative
approaches that rely solely on 2D-conditioned synthesis.
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A. Appendix

A.1. Data Details
To collect our large-scale dataset of image pairs, we uti-
lize the large-scale NVS benchmarks DL3DV10K [29] and
ScanNet++ [62]. For DL3DV10K, we select k ∈ [6, 36]
equally spaced views as the initial sparse training set. We
use the 960P resolution images and undistort them before
reconstruction. We filter sequences based on scale factor
plausibility, i.e. we remove sequences with very large or
small scale factors. This makes our calibration pipeline ro-
bust to inaccuracies in initial camera parameters or depth
estimates. We store the reconstructions in a compressed for-
mat following [37]. For ScanNet++, we first use farthest
point sampling to determine a small number of keyframes
and subsequently select 25% - 50% of the remaining train-
ing set closest to these keyframes. This ensures good spatial
coverage while also allowing for target views far from the
initial training views, even in a dense view setting. Ad-
ditionally, we use the out-of-distribution test views for all
training sequences. We also undistort the images and resize
them to 640× 960 resolution.

A.2. Method Details

Camera selection. For unordered view sets, we exploit the
fact that our reconstructions are metric scale, which allows
us to choose a reasonable range for the radius of the sphere
that the candidate poses lie on. In practice, we found a range
of [0.2, 0.5] to work well, while for the orientation we use a
random perturbation within [0, 30] degrees in yaw and pitch.

Initial reconstruction. We check if too few reliable feature
tracks can be inferred, and if there are not enough feature
tracks, we resort to global pointcloud alignment [27] to en-
sure sufficiently dense 3D geometry estimates. This is usu-
ally only the case for very sparse input view scenarios, i.e.
9 input views or less.

Training details. For training our flow model, we found
it important to choose the right camera selection strategy
to ensure both sufficient viewpoint variability and high co-
visibility between input views. Therefore, given a pool of
target view candidates based on spatial similarity, we ran-
domly sample the pool of candidates. Then, we select k
reference views based on a k-means clustering of the target
views in a 6D space consisting of position and look-at di-
rection. Given the k clusters, we can choose the reference
view closest to each cluster center. For timestep scheduling
during training, we follow [15] and sample t from a logit
normal distribution with constant shift. Furthermore, we
sample t independently for each target frame [8], which we
found to speed up convergence.

Architecture details. We show an illustration of our multi-
view DiT block architecture Fig. 5. As mentioned in

𝐳𝑡𝑡
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Figure 5. Illustration of our multi-view DiT block. Here, we
denote ray map embeddings as c.

Sec. 3.3, we keep the first self-attention layer, the normal-
ization layers, and the feed-foward layer equivalent to [15],
and insert a multi-view attention layer after the first atten-
tion layer. This multi-view attention is concluded with a
zero linear layer to keep the initialization intact. As men-
tioned in Sec. 3.2, for each source input view i, we condi-
tion the model on its camera pose Pi and intrinsics Ki, i.e.
a pixel p′ of image i is represented as a ray r = ⟨o× d,d⟩
with o = R⊤

j (ti − tj) and d = R⊤
j RiK

−1
i p′ where j is

the reference view defining common coordinate frame.
Inference details. When the number of reference views
we can fit into a single forward pass is limited, we apply
the same reference view selection strategy as in training.
For target view selection, we use the method described in
Sec. 3.3 and use B-spline basis functions of degree 2. When
inferring our model, we use 20 timesteps in the procedure
described in Sec. 2.2, specifically:

zt+∆t = zt +∆tvθ(zt,y, t), (9)

where the step size ∆t is chosen empirically as a monoton-
ically decreasing function of t [15].
Runtime analysis. As mentioned in Sec. 3.1, our initial re-
construction takes an average of 6.5 minutes for pointcloud
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Ltgt Re-init.
12-view 24-view

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

1 - - 22.18 0.760 0.314 24.88 0.831 0.243
2 ✓ - 22.35 0.763 0.285 25.10 0.835 0.212
3 ✓ ✓ 22.43 0.766 0.280 25.13 0.836 0.212

Table 7. Refined reconstruction Gtgt ablation breakdown. We report the scores on both DL3DV [29] view splits. Incorporating generated
views in pointcloud initialization (Re-init.) benefits view synthesis, while the improvement is more pronounced in the 12 view setting.

3-view 6-view 9-view
Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

ZipNeRF [3] 12.77 0.271 0.705 13.61 0.284 0.663 14.30 0.312 0.633
ZeroNVS [46] 14.44 0.316 0.680 15.51 0.337 0.663 15.99 0.350 0.655
ReconFusion [58] 15.50 0.358 0.585 16.93 0.401 0.544 18.19 0.432 0.511
CAT3D [19] 16.62 0.377 0.515 17.72 0.425 0.482 18.67 0.460 0.460
FlowR 14.46 0.347 0.587 16.18 0.409 0.520 17.53 0.456 0.467

FlowR (Initial) 12.77 0.243 0.592 14.40 0.320 0.532 15.67 0.379 0.491

Table 8. Few-view 3D reconstruction on Mip-NeRF 360 [2]. We follow the experimental setting of [58].

initialization (6 minutes) and initial 3DGS training (30 sec-
onds). Our multi-view flow model takes approximately 1.5
minutes to generate 200 additional images, processing 45
views at 540 × 960 resolution (91K tokens) on one H100
GPU at each forward pass. The final reconstruction training
takes on average 42.4 minutes, as we use a longer, 30k step
schedule and an additional LPIPS loss for the target views.

Limitations. While FlowR makes a significant step towards
high-quality, photo-realistic 3D reconstructions from non-
exhaustive captures, there remain meaningful directions for
future work. For instance, our method relies on heuris-
tics to select the camera views which are used to refine
the 3D reconstruction results. In this regard, incorporating
uncertainty quantification [20, 23] and active view selec-
tion [39] could improve results. Additionally, because our
method aims to map incorrect renderings to ground-truth
images, its performance depends on the initial 3D recon-
struction. In particular, if there are large areas entirely un-
seen in the source views, our model will not hallucinate new
content. Incorporating a proper prior distribution for such
cases opens up a promising avenue for future research.

A.3. Additional Experiments

Evaluation details. We use LPIPS with VGG-16 fea-
tures unless otherwise specified in the benchmark, i.e. we
use VGG-16 for all experiments except for the Nerfbusters
benchmark which uses AlexNet. Note that for Nerfbusters
we resort to the test trajectory for target view selection since
it is entirely disconnected from the initial reconstruction and
as such it is not possible to do an effective refinement by
interpolating along the training trajectory or by sampling
poses around it. Finally, we optionally apply naive opac-
ity thresholding, i.e. we define a single minimum opacity

value applied to all rendered views to achieve a compara-
ble coverage to our baselines. The intuition behind this is
that high opacity along a pixel ray usually correlates with
well-defined scene geometry.
Comparison to closed-source methods. In Tab. 8, we
compare with closed-source methods such as ReconFu-
sion [58] and CAT3D [19] using their provided data splits in
MipNeRF360 [2]. For a fair comparison, we choose a simi-
lar camera selection strategy as CAT3D, where we generate
an elliptic trajectory on a hemisphere around the common
look-at point of the initial cameras. We note that the evalu-
ation setting of [58] is distinct from ours since the training
and evaluation splits are chosen so that there is a large frac-
tion of the scene in the test views that was not observed in
the training views. As such, an evaluation with view synthe-
sis metrics is only approximate, as there are many plausible
3D scenes for a set of partial observations. We show that
our method, despite not being tailored for scene extrapola-
tion as mentioned in Appendix A.2, performs competitively
to prior works. We further observe that the gap between
our method and the state-of-the-art approach narrows when
increasing the number of input views, where our method
is almost on-par with CAT3D [19] in terms of SSIM and
LPIPS in the 9-view setting.
Refined reconstruction ablation breakdown. As men-
tioned in Sec. 4.2, we observed that the benefit of incor-
porating generated views into the pointcloud reconstruction
is more pronounced in the 12-view setting, as can be seen
in Tab. 7 where we provide a breakdown of the two splits.
We attribute this to the fact that with an increasing number
of co-visible views, there are enough reliable matches to tri-
angulate a good initialization from the source input images
and adding more views therefore ceases to improve results.
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