
JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

JEAN-MARC DESHOUILLERS

FRANÇOIS HENNECART

BERNARD LANDREAU
Waring’s problem for sixteen biquadrates. Numerical results
Journal de Théorie des Nombres de Bordeaux, tome 12, no 2 (2000),
p. 411-422
<http://www.numdam.org/item?id=JTNB_2000__12_2_411_0>

© Université Bordeaux 1, 2000, tous droits réservés.

L’accès aux archives de la revue « Journal de Théorie des Nombres
de Bordeaux » (http://jtnb.cedram.org/) implique l’accord avec les condi-
tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti-
lisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=JTNB_2000__12_2_411_0
http://jtnb.cedram.org/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


411-

Waring’s problem for sixteen biquadrates -
Numerical results

par JEAN-MARC DESHOUILLERS, FRANÇOIS HENNECART
et BERNARD LANDREAU

A Jacques Martinet, pour ses soixante ans

RÉSUMÉ. Nous expliquons les algorithmes qui nous ont permis
de vérifier que tout entier congru à 4 modulo 80 dans l’intervalle

[6 x 1012; est la somme de 5 bicarrés, et que tout entier
congru à 6, 21 ou 36 modulo 80 dans l’intervalle [6 x 1012 ; 1.36 x
1023 est la somme de 7 bicarrés. Nous indiquons également des
résultats déduits de calculs portant sur les petites sommes de
bicarrés. L’escalade de Dickson appliquée à ces résultats montre
que tout entier de l’intervalle [13793 ; 10245] est la somme de 16
bicarrés.

ABSTRACT. We explain the algorithms that we have implemented
to show that all integers congruent to 4 modulo 80 in the interval
[6 x 1012 ; 2.17 x 1014] are sums of five fourth powers, and that
all integers congruent to 6, 21 or 36 modulo 80 in the interval
[6 x 1012 ; 1.36 X 1023 are sums of seven fourth powers. We also
give some results related to small sums of biquadrates. Combining
with the Dickson ascent method, we deduce that all integers in
the interval [13793 ; 10245] are sums of 16 biquadrates.

1. Introduction

Davenport [1] showed in 1939 that every sufficiently large integer is a
sum of (at most) 16 biquadrates; Kempner [6], considering the integers
31 x 16k had previously shown that the value 16 cannot be reduced. In
the other direction, Thomas [8] showed in 1974 that every integer in the
range [13793 ; 10g~~ is a sum of 16 biquadrates. Although Davenport’s
method is effective, that is to say that it can lead to a numerical value
for an integer No beyond which every integer is a sum of 16 biquadrates,
such a No would be completely out of reach of numerical computation. In
a forthcoming paper, Kawada, Wooley and the first-named author show
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that 10220 is an admissible value for No: it thus makes sense to pursue
Thomas’ computation. The main result of this paper is

Theorem. Every positive integer in the interval [13793 ; 10245] is the sum
of sixteen fourth powers.

The list of the 96 integers in 1 13792] which require at least 17 bi-
quadrates is given in Proposition 7, at the end of the fifth section.

2. Scheme of the proof

In the sequel, we shall write that an integer n is a BS (or is BS) if n is the
sum of s fourth powers. For M &#x3E; b &#x3E; a &#x3E; 0, we shall say that n belongs
to a ~ b modulo M when the residue class of n lies in the interval [a, b~.
Even if the general scheme of the proof is classical, we give in this section

the main argument leading to our result.
The first step consists in the numerical verification that all integers in

some finite arithmetic progression (we deal with residue 4 modulo 80) are
B5- We explain our algorithm in Section 3. Then, by a 11-fold application
of the ascent argument (cf. Lemma 1), we deduce that all integers in
the much larger interval I = (5 865 530 312 564 ; 10245] ] and belonging to
4 ---&#x3E; ) 15 modulo 16 are Bls. The lower bound of I is the largest integer
found by our algorithm congruent to 4 modulo 80 which is not a B5. A
probabilistic argument, similar to that explained for the sums of four cubes
(cf. [5]), would show that 5865530312564 is most likely the last non-B5
in this arithmetic progression.
By applying again the ascent method on some very short arithmetic

progressions of B9 (checked of course on a computer by a straightforward
implementation), we show in Section 5 that any integer, not a multiple of
16, in the interval (2.5 x 105 ; 1016) is a Bls. This section is completed by
showing that any integer in [13793 ; 2.5 x 105] is a B16, and by giving the
non-Bl6 integers up to 13792.

In Section 6, we show how the remaining non-zero residue classes modulo
16 can be covered by a slight modification in the ascent application (cf.
Lemma 2).
Now since 16 is a biquadrate, any integer n E [13793 ; 16 x 10245] divisible

by 16 will be a B16 if n/16 is itself a Bls. We may repeat this argument until
we obtain an integer n/16a which is either in the interval [13793 ; 10245] and
belonging to 1 ~ 15 modulo 16, or lies in a short interval [13793 ; 2.5 x
105] covered by the sequence of B16.
We now give an ascent lemma, which is the key of our argument. This

result is a slight variation of the standard greedy algorithm [2], and already
appeared more or less in [4]. For any real number ~, we denote by the
smaller integer greater than or equal to x. For any non-empty sets A and
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B of integers, we write A + B the set of all the sums m + n where m E A
andnEB.

Lemma 1. Let M &#x3E; 1 be an integer, and a, b two residues modulo M. For
to and L integer, we denote by A the finite arithrnetic progression consisting
of the integers n in (fo, L] congruent to a modulo M, and B an infinite
sequence of biquadrates congruent to b modulo M: bl  bi  ~ ~ ~  b,  ....
We assume that T = maxk(bk+l - bk) exists.

Then the sumset A -f- B contains all integers congruent to a + b modulo
M lying in the interval

which contains the interval

Proof. Let Ak = A + b 4. For any k such that bk - L - to, the set
U Ak contains all the integers congruent to a + b modulo M in the

interval (~o + bk_1, L ~- B~~. Since

we have bk - bk_1  4Tb~, for any k 2:: 1. Thus the set U~=1 Ak contains
all integers congruent to a + b modulo M in the interval (~o + bi, L + 
if bk  ((L - for any k  s.
By (1), the integer bs may be chosen greater or equal than

Lemma 1 is proved. D

The following lemma will enable us to use a modified ascent argument
for B14’s congruent to 1 modulo 16 by starting from B13’s with non-zero
residue class modulo 16. We have

Lemma 2. Let n be an integer congruent to 1 modulo 16. Then among
any set of 50 consecutive integers,
(i) there exists an odd integer u such that mu := (n - u4)/16 belongs to
4 H 12 modulo 16 and mu - n mod 5,
(ii) there exists an odd integer v such that mv := (n - v4)/16 belongs to
4 ~ 12 modulo 16 and mv - n - 1 mod 5.

Proof. We first observe that the sequence S := of the residue
class modulo 16 of (1 - (2q + 1)4)/16 is 32-periodic; its first 32 terms are
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We now describe how we proceed if we require further the residue class
modulo 5 of m~ _ (n - u4)/16 to be fixed (we have either m - n or
n - 1 mod 5), we choose either u - 5 mod 10 or u - 1 mod 10.
We first look at the subsequence So :_ 0 and u - 5 mod 10}:

So is also 32-periodic and its first 32 terms are

Let k &#x3E; 0 such that n = 1 + 16k. In order to have mu in 4 ~---~ ) 12 modulo
16 and mod 5, we may choose u - 5 mod 10 such that Su + k
belongs to 4 E--~ 12 modulo 16.
We easily observe that for each k mod 16, the longest series of consec-

utive terms in So + k which are not in 4 H ) 12 modulo 16 have at most
four elements. Remember that a difference of five between the ranks of two
elements in the sequence So + k corresponds to 25 in the whole sequence
S + k, and thus corresponds to 50 in the set of integers. This proves (i).
We now examine the case where we need to get u such that

n - (n - v4)/16 + 1 mod 5. We thus take the subsequence Sl := ~sv : v &#x3E;
0 and v - 1 mod 10}: Sl which is also 32-periodic and its first 32 terms
are

By considering again the shifted sequence Sl + 1~ where n = 1 + 161~, we
still realize that the longest series of consecutive elements of Sl + k which
are not in 4 H 12 modulo 16 is four terms long.

This ends the proof of Lemma 2. D

Although the ascent method is rather efEcient, we may largely improve
the final bound if we jump by a single ascent from to B7’s with B2’s
instead of two ascents with Bl’s as was noticed in [4]. We shall use

Lemma 3. Let M &#x3E; 1 be an integer, and a, b two residues modulo M.
For .~o and L integers, we denote bg A the finite arithmetic progression
consisting of the integer n in L] congruent to a modulo M, and by B
a set of integers bl  b2  ~ ~ ~  bs all congruent to b modulo M and such
that bk - L - for 2  1~  s.

Then the sumset A + B contains all integers congruent to a + b modulo
M lg2ng in the interval (~o + bl, L + bs).

Proof. This easily follows from the fact that for any 1~, 2  1~  s, the set
contains all the integers lying in the interval (to+bk-1, L +

and congruent to a + b modulo M. D
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3. On the B5’s congruent to 4 modulo 80

In this section, we explain how we obtain the following

Proposition 1. Every integer lying in the interval

which is congruent to 4 modulo 80 is a B5.

Since the sequence of B3’s has a zero density, the least number of sum-
mands necessary to represent a large arithmetic progression of integers is 4:
it is a great problem to know whether the sequence of B4’s has a positive
density or not. On the contrary, a density argument and numerical evidence
lead us to expect infinite arithmetic progressions of B5’s.

Let us now explain our choice of the arithmetic progression 4 modulo 80.
Our goal is to find an arithmetic progression which is rich in sums of

5 biquadrates. For a fixed modulus M and any residue 1~, this can be
measured thanks to the number p(k, M) which is the number of incongruent
solutions of 1~ -~- x2 -~ x3 + x 4+ x 4 mod M. For an odd prime p =
3 mod 4, since biquadrates coincide with squares modulo p, there is an
almost uniform distribution of the B5’s modulo p. For p - 1 mod 4, the
numbers are badly distributed when p is small and especially for
p = 5. The number p(k, 5) is maximal for k = 4. Indeed we have

TABLE 1. Number of representations modulo 5

Biquadrates also are badly distributed modulo 16: every biquadrate is
congruent to 0 or 1 modulo 16. Starting from an interval of B5’s, we still
have 11 biquadrates to add. Since every biquadrate is congruent to 0 or
1 modulo 16, in order to represent integer congruent to 15 modulo 16, we
are led to select either B5’s congruent to 4 modulo 16, or B5’s congruent to
5 modulo 16. There have more sums of five fourth powers congruent to 4
modulo 16 than congruent to 5 modulo 16. Hence we have considered the
arithmetic progression 4 modulo 80.

TABLE 2. Number of representations modulo 16
In the following table, we describe the action of the ascent on the residue

classes modulo 16 and modulo 5. In the right hand column, we indicate
the value of T when applying Lemma 1.



416

* The residue class modulo 80 of the added B1 is fixed among those given at each
ascent step Bj to according to the considered arithmetic progression modulo 80 of
the 

TABLE 3. the 11-fold ascent
A biquadrate is congruent to 0,1,16 or 65 modulo 80. Thus the only

ordered representations of 4 modulo 80 as sums of five biquadrates are

4-0+1+1+1+1-1+1+1+16+65mod80

It is easy to see that the second representation type generates much more
B5’s than the first one (the ratio is 4). In our algorithm, we thus have
first used the most productive representation, and the other one only when
necessary.

Our algorithm may be described as follows:
. Compute all Bl’s up to a given bound L, divide them by 80, and

rearrange their quotient in four different arrays Uo, Ul, U16 and U65
according to their remainder modulo 80.

. Calculate separately the B2’s up to L congruent to 1 modulo 80, and
the ones congruent to 2 modulo 80 in the following way.
- For each class 1 or 2 and each interval, a bits array is initialized

to zero, and a two-loops routine on each pair (Uj, Uk) - consid-
ering (j, k) = (1,1) for B2’s congruent to 2, and (j, k) = (0,1)
or (16,65) for B2’s congruent to 1- switches at each new B2 the
corresponding bit to one.

- Then read the B2’s identified by the location of the bits "one" in
the bits array and arrange them in two different arrays according
to their class modulo 80: array Yl for the B2’s congruent to 1
(mod 80) and array Y2 for the B2’s congruent to 2 mod 80. Next
interval is considered.
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~ In order to check that a fixed interval I of integers congruent to 4
modulo 80 contains only B5’s, we associate to each quotient modulo
80 a bit which is initialized to zero.
A three loops routine on U1, 1 and % sifts the interval I, by switching
at each new B5 the corresponding bit to one.

. When all the bits are to one, checking is stopped. Next interval is

considered.

4. On the B7’s congruent to 6, 21 or 36 modulo 80

We deal in this section with B2’s. We show

Proposition 2. For each k E {2,17,32}~ the increasing sequence (bj :
j &#x3E; 1 ~ of the B2 ’s congruent to k modulo 80 is such that there exists an
elements bs 1.36 X 1023 and 2.11 x 1014.

A single application of Lemma 3 leads to the following

Proposition 3. Every integer lying in the interval

[5.87 x 1012 ; 1.36 x 1023]
which is congruent to 4, 5 or 6 modulo 16 and to 1 modulo 5 is a B7.

We give in Table 4, for each step j &#x3E; 1 of the ascent, the upper bound
related to the sums of 5 + j fourth powers in the arithmetic progressions
described in Table 1. We have denoted by L5+. j , j &#x3E; 1, the decimal loga-
rithms of these bounds. We give for comparison the bounds obtained when
using two ascents with Bl’s from B5’s to B7’s. In the four last ascents from
Bl2’s to B16 ’s, the bounds are calculated from Lemma 1 in the worst case
T = 10.

TABLE 4. Upper bounds in the ascent
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Below we state precisely two useful consequences.

Proposition 4. Every integer lying in the interval [5.87 x 1012 ; 10107~
which is congruent to 1 or 2 modulo 5 and to 4, 5, fi, 7, 8, 9,10,11 or 12
modulo 16 is a B13 ·

Every integer lyzng in the intervals [5.87 x lOl2 ; 10245] which is congruent
to 4, 5, 6, 7, 8, 9,10,11,12,13,14 or 15 modulo 16 is a B16 ~

It is not surprising to notice that the ascent with B2’s is much better than
two ascents with Bl’s. Indeed the numbers of B2’s up to X is asymptotically
equivalent to r(1/4 Z yIX, and the B2’s appears to be more or less as well-32r(3/2) 
distributed as a regular sequence of squares. Hence we may expect that
one ascent with B2’s increases the bound on B5’s by a power 2, when two
ascents with Bl’s gives only 3.3 = 9 . Unfortunately, the sequence of B2’s
is not so regular than expected, but this trick yet provides a significant gain
on the bound for B7’s, which leads to a major improvement on the bound
for B16’s.

We now present the calculations leading to Proposition 3. In each residue
class 1~ E f 27 177 321 modulo 80, we simply have computed the values of B2’s
and noticed the highest difference.

In order to reach the upper bound 2 x 1023, we proceed as follows. We
easily compute the values of B2 lying in an interval [a, b[ and put them
in a large vector say V (with at most 107 numbers). We quickly sort this
vector by ascending order and then compute all the differences between two
consecutive B2’s. As soon as a new highest difference is found, we record
it as well as the two corresponding B2’s.
To deal with B2’s up to 1024, although these calculations have been

performed on a DIGITAL workstation (64 bits) we need to use a special 128
bits structure. Since the number of B2’s lying in an interval is decreasing,
and in order to work for quickness with an interval of maximal length L,
we were led to change several times the value of L keeping in mind that
the number of B2’s for V should be less than 107. These calculations took
about 20 hours CPU time in each residue class 2 or 32 and 40 hours in the
residue class 17.

Table 5 below gives the largest differences between two consecutive B2’s
that occur in one of the arithmetic progressions 2, 17 or 32 modulo 80 in
the range [1023 ; 2 x 1023].
We observe that up to 1.36 x 1023, in each residue class 2,17 or 32 modulo

80, the largest difference between two consecutive B2’s is not greater than
210 565 453 462 800 which implies Proposition 3.
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TABLE 5. Largest differences between consecutive B2’s in the range
(IO23 ; 2 X 1023]

5. Small values, exceptions

The last number fo congruent to 4 modulo 80 which is not a B5 is too
large and does not permit to check directly (even with a powerful computer)
the whole interval (0, fo) to know whether a number is a B16 or not.
Many computations on fourth powers have been performed. Those de-

scribed by Thomas in [7, 8] lead to show that all integers in the interval
[13793 ; 1080 are B16 (see also [3] for comments), which is widely sufficient
to our needs.

In order to make our result depending only on our algorithms, we chose
to perform our own calculations which are closely adapted to our needs.
We checked

Proposition 5. All integers in the intervals [13793 ; 2.5 x 105~ ] are B16.
All integers in the interval [2.5 x 105 ; 5 x 105] congruent to 1 f--~ 8

modulo 16 are B9.

Starting from the Bg’s, we apply a 7-fold ascent using Lemma 1 with
T=2.
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TABLE 6. The 7 -fold ascent for small B16 ’s
We deduce

Proposition 6. All integers not divisible by 16 in the interval [13793 ; 101s~
are B16 .

We recall in the following the only known numbers which are not 

Proposition 7. The following 96 numbers
47,62,63,77,78,79,127,142,143,157,158,159,207,222,223,237,238,239
287, 302, 303, 317, 318, 319, 367, 382, 383, 397, 398, 399, 447, 462, 463, 477,
478, 479, 527, 542, 543, 557, 558, 559, 607, 622, 623, 687, 702, 703, 752, 767,
782, 783, 847, 862, 863, 927, 942, 943, 992,1007,1008,1022,1023,1087,
1102,1103,1167,1182,1183,1232,1247,1248,1327,1407,1487,1567,
1647,1727,1807, 2032, 2272, 2544, 3552, 3568, 3727, 3792, 3808, 4592,
4832, 6128, 6352, 6368, 7152, 8672,10992,13792
are the only non-Bl6 integers up to 13792 and satisfy

~ the integers 79 + 801~, 1~ = 0,1, ... , 6 are not 
~ the 24 integers

o the 65 integers

6. the remaining residues modulo 16 - End of the proof

We now look at the integers congruent to 1, 2 or 3 modulo 16.
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Let n be an integer congruent to 1 modulo 16 and to 1, 2 or 3 modulo 5,
lying in the interval [13793 ; 1OL14]. By Proposition 6, it suffices to consider
the case n &#x3E; 101s .
By Lemma 2, we may write n = 16m + u4 where m belongs to 4 ~ 12

modulo 16 and u  Lnl/4J. We assert that u and m may be chosen such
that 10107 and m = 1 or 2 modulo 5.

Indeed let u be the largest nonnegative integer less than Lnl/4J such that

We plainly have m - 1 or 2 mod 5. Moreover we get

then

which gives the following bounds:

by using L14 = 140.8 given in the third column of Table 4. By Proposition 4,
we deduce that m is a B13. Thus n = 24m + u4 is a B14·

It means that the upper bound L14 is still available for the integers n
congruent to 1 modulo 16 to be B14.
The last steps in the ascent in Tables 3 and 4 may be completed by

* 
means that the B14’s are written as the sum of 16 times a B13 and a Bl.

TABLE 7. The ascent for the classes 1, 2, 3 modulo 16
We summarize the results proved up to now in the following

Proposition 8. All integers in the interval [13793 ; 10245] and belonging
to 1 E---~ 15 modulo 16 are B16.

We end by considering the residue class 0 modulo 16. For that we use

Proposition 8, which concerns the integers non divisible by 16, and also the
first part of Proposition 5.
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Let now n be an integer congruent to 0 modulo 16 in the interval
[13793 ; 16 x IO2451. We may write n = 16’m where either m E [13793 ; 2.5 x
10~ or 16 and m E [13793 ; 10245]. In either case, m is a B16, thus n
is also a Bls.

This ends the proof of the theorem.
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