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Abstract

We compare the complexity of human gait time series from healthy subjects under di*erent
conditions. Using the recently developed multiscale entropy algorithm, which provides a way to
measure complexity over a range of scales, we observe that normal spontaneous walking has the
highest complexity when compared to slow and fast walking and also to walking paced by a
metronome. These 2ndings have implications for modeling locomotor control and for quantifying
gait dynamics in physiologic and pathologic states.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Quantifying the complexity of physiologic time series has been of considerable in-
terest. Algorithms developed for this purpose have potential applications both to the
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evaluation of dynamical models of physiologic control mechanisms and to bedside
diagnostics.
There is no formal de2nition of complexity. Intuitively, complexity is related to un-

derstanding, i.e., to our ability to provide a short description of a phenomenon. The
mathematical de2nition of complexity follows from information theory and it applies
to a string of characters. Mathematical complexity has been de2ned as the length of
the shortest binary input to a universal Turing machine such that the output is the
initial string [1,2]. This de2nition may be extended to apply to physical systems in
which case the states of the systems are mapped into strings of characters. However,
with the exception of some theoretical applications, the mathematical complexity of
a system cannot be easily calculated. For practical applications, several entropy-based
measures have been proposed, although there is no straightforward correspondence be-
tween entropy and complexity. These traditional algorithms may lead to misleading
results because an increase in the entropy of a system is usually but not always associ-
ated with an increase of complexity. For example, these algorithms may indicate higher
entropy/complexity values for randomized surrogate time series compared to original
time series even when the original series represent the output of complex systems and
incorporate correlations over multiple spatio-temporal scales. However, the processes
of generating surrogate data are designed to destroy correlations and degrade the in-
formation content of a signal. In these cases a higher entropy value only reJects an
increase in the degree of randomness and not an increase in the complexity of the time
series. Uncorrelated random signals (white noise) may be highly unpredictable even in
cases where the past history is fully known but, at a global level, they admit a very
simple description and, therefore, are not really “complex”.
One possible reason why traditional entropy-based algorithms may fail to correctly

quantify the complexity of a time series is the fact that these measures are single-scale
based. However, time series derived from complex systems are likely to present struc-
tures on multiple spatio-temporal scales. In contrast, time series derived from simpler
systems are likely to present structures on just a single scale. Therefore, a meaningful
measure of complexity should take into account multiple time scales. Recently, we
introduced a new method [3], multiscale entropy (MSE) analysis, to calculate entropy
over multiple scales.
In 1991, Zhang [4,5] proposed a new complexity measure that takes into account

multiple scales. His measure is de2ned as a weighted summation of scale-dependent
entropies. In contrast to the traditional de2nition of entropy for time series, it has the
desirable property of yielding higher complexity for long-range correlated noise (l/f
noise) than for uncorrelated noise (white noise). However, Zhang’s complexity measure
does not apply to “real world” time series because, being based on Shannon’s de2nition
of entropy, it requires a huge amount of almost noise-free data points. The method
we proposed is motivated by Zhang’s idea of computing entropy for multiple scales.
However, instead of using Shannon’s de2nition of entropy, it uses sample entropy
(SampEn) [6], a re2nement of the approximate entropy (ApEn) family of parameters
[7,8] introduced by Pincus to quantify the regularity of 2nite length time series.
Consider the distance between two vectors as the maximum of the absolute di*er-

ences between their components and 2x a threshold value r for determining when these
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vectors are close to each other. ApEn reJects the likelihood that sequences that are
close to each other, i.e., within r, for m consecutive data points remain close when
one more data point is known. Mathematically, ApEn is computed as follows: Let
{Xi} = {x1; : : : ; xi; : : : ; xN} represent a time series of length N . Consider the m-length
vectors: um(i)={xi; xi+1; : : : ; xi+m−1}. Let nim(r) represent the number of vectors um(j)
within r of um(i). Cmi (r)=nim(r)=(N−m+1) is the probability that any vector um(j) is
within r of um(i). De2ne, �m(r)=1=(N−m+1)

∑N−m+1
i=1 lnCmi (r). ApEn is de2ned as

ApEn(m; r) = limN→∞ �m(r)− �m+1(r). For 2nite N , it is estimated by the statistics,
ApEn(m; r; N ) = �m(r) − �m+1(r). Lower values of ApEn reJect more regular time
series while higher values are associated with less predictable (more complex) time
series.
Here, we apply the MSE method to the analysis of human gait time series obtained

under di*erent conditions [9] and compare the results with those obtained with tradi-
tional complexity algorithms and detrended Juctuation analysis [10–13]. We compare
the complexity of normal spontaneous walking with slow and fast walking, and with
walking timed by a metronome, in which case supra-spinal control mechanisms and
the intrinsic free-running pacemakers are overridden. The results give insight into the
physiologic control mechanisms of human gait above and below the spinal cord.

2. Material and methods

We brieJy describe the MSE method.
Given a time series, {x1; : : : ; xi; : : : ; xN}, we 2rst construct consecutive coarse-grained

time series by averaging a successively increasing number of data points in non-
overlapping windows (Fig. 1). Each element of the coarse-grained time series, y(�)j ,
is calculated according to the equation:

y(�)j = 1=�
j�∑

i=( j−1)�+1

xi ; (1)

where � represents the scale factor and 16 j6N=�. The length of each coarse-grained
time series is N=�. For scale 1, the coarse-grained time series is simply the original

Fig. 1. Schematic illustration of the coarse-graining procedure for scales 2 and 3.
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time series. Then we calculate SampEn [6] for each one of the coarse-grained time
series plotted as a function of the scale factor.
SampEn quanti2es the regularity of a time series. It reJects the conditional probabil-

ity that two sequences of m consecutive data points which are similar to each other will
remain similar when one more consecutive point is included. Being “similar” means
that the value of a speci2c measure of distance is less than r. Therefore, SampEn is a
function of m and r parameters. For all cases presented here, m = 2 and r = 0:15. In
general, Pincus suggested m=2 and r=0:2 for the analysis of heart rate data. Previous
studies of physiologic time series analysis have used an r value between 0.1 and 0.25.
The values we chose fall within this range. More importantly, empirically, we found
that our results were not very dependent on the speci2c values of m or r.
We applied MSE to the study of the stride interval times series derived from 10

young, healthy men (ages 18–29 yrs). The stride interval is a measure of the gait
rhythm and is typically de2ned as the time interval between consecutive heel strikes of
the same foot. To measure the stride interval, the output of ultra-thin, force sensitive
switches was recorded on an ambulatory recorder and heel strike timing was automat-
ically determined [12]. Subjects walked continuously on level ground for 1 h at their
self-determined usual, slow and fast paces around an obstacle free outdoor track (Fig. 2).
In order to get further insight into the control mechanisms of human gait, the subjects

were also asked to walk in time to a metronome that was set to each subject’s mean
stride interval, computed from each of the three unconstrained walks (Fig. 2).

Fig. 2. Representative stride interval time series obtained from a healthy subject who walked freely and
in time to a metronome at slow, normal (usual) and fast rates. The last two time series are examples of
randomized surrogate time series. They were generated by shuRing the values of the normal walking rate
time series presented here.
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3. Results and discussion

We 2rst applied the MSE method to compare the complexity of white and 1=f noise
“control datasets”, i.e., uncorrelated and correlated Juctuations. Numerical simulations
and analytic solutions are shown in Fig. 3a. The entropy for white noise time series
monotonically decreases with the scale factor while the entropy for 1=f noise remains
constant for all scales. Therefore, although for small scales white noise time series
are assigned higher entropy values than 1=f noise time series, the opposite is true
for scales larger than 5. These results are consistent with the fact that 1=f noise has
structure on multiple scales and, therefore, is more complex than white noise.
SampEn is largely independent of the time series length when the total number of

data points is larger than approximately 750 [6]. For smaller time series, error bars due
to 2nite size e*ects grow very fast as the total number of data points is reduced. Since
the length of coarse-grained time series depends on the scale factor, the magnitude
of the error bar for each SampEn value of the MSE curves also depends on the
scale factor. To quantify this source of error, we considered a white noise time series
and 20 surrogate data time series obtained by random shuRing of the original data
point sequences. We calculated the MSE curves for all 20 surrogate time series and
then, for each scale, we calculated the mean value of entropy ±SD (Fig. 3b). Next,

Fig. 3. (a) MSE analysis of Gaussian distributed white noise (mean zero, variance one) and 1=f noise.
On the y-axis, the value of SampEn [4] for the coarse-grained time series is plotted. Original time se-
ries have 3 × 104 data points. The value of parameters m and r, de2ned in Ref. [7] are 2 and 0.15,
respectively. The scale factor speci2es the number of data points averaged to obtain each element of
the coarse-grained time series. Symbols represent results of simulations and dotted lines represent ana-
lytic results. SampEn for coarse-grained white noise time series is analytically calculated by the expression:
−ln

∫ +∞
−∞

1
2

√
(�=2�)[erf ((x + r)=

√
(2=�)) − erf ((x − r)=

√
(2=�))]e−(1=2)x2� dx (for any m¿ 1): � and erf

refer to the scale factor and to the error function, respectively. For 1=f noise time series, the analytic value
of SampEn is a constant. Adapted from Ref [3]. (b) MSE analysis of a Guassian distributed white noise
time series and 20 corresponding shuRed time series. The symbols refer to mean values of sample entropy
(SampEn) for all time series and the broken lines to mean values ±SD. MSE curves for all time series
should coincide with the analytic solution obtained for uncorrelated random noise. This is the case for scale
one; but for larger scales, the dispersion of values around the analytic solution progressively increases due
to the shortening of the length of the coarse-grained time series. To quantify these 2nite size e*ects, we
calculated the area between the upper and lower curves, � = 0:36. Two MSE curves were then considered
signi2cantly di*erent if the area between them was ¿�.
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Fig. 4. (a–d) MSE analysis of unconstrained walking time series derived from healthy subjects who walked
for 1 h at slow, normal and fast rates (original time series), and of the corresponding surrogate shuRed time
series. Curves represent lines connecting mean values of sample entropy (SampEn). The di*erences between
mean MSE curves for physiologic and surrogate time series are all statistically signi2cant. In all cases,
physiologic time series are assigned higher entropy values than surrogate time series at larger scales. These
results indicate that physiologic time series are more complex than surrogate ones. In addition, panel(d)
shows that normal free walking dynamics are more complex than fast free walking dynamics, which in turn
are more complex than slow free walking.

we measured the area between the lower (mean value −SD) and the upper (mean
value +SD) curves and used this value, (�), to determine whether two MSE curves
were signi2cantly di*erent: MSE curves such that the area between them is 6 � were
considered not signi2cantly di*erent.
We next applied the MSE method to the analysis of the stride interval time series

derived from subjects who walked freely at di*erent speeds (Fig. 2). Previous studies,
using detrended Juctuation analysis (DFA) [11,13] indicated that Juctuations of human
gait cycle under free walking conditions do not represent uncorrelated random noise
but, instead, exhibit long-range correlations with a power-law decay. This means that,
at least in statistical terms, the value of any stride interval depends not only on the
values of the most recent stride intervals but also on the values of those at relatively
remote times (“memory e*ect”). These 2ndings are indicative of very complex dy-
namics. We used the MSE method to quantify the complexity of the stride interval
time series obtained from unconstrained walking at slow, normal and fast rates. We
further tested the hypothesis that the complexity of these time series is encoded in the
sequential ordering of the stride intervals and does not result from stride interval his-
tograms. Therefore, for each physiologic time series, we built a surrogate time series by
shuRing (randomly reordering) the sequence of data points. In this way, we destroyed
correlations among the stride intervals while preserving the statistical properties of the
distribution, particularly, the 2rst and second moments.
In Fig. 4, the MSE results for unconstrained walking time series and their corre-

sponding snuRed time series are presented. The curves shown are not the MSE curves
for some particular time series but represent lines connecting the mean values of Sam-
pEn for all physiologic and surrogate time series. Of note, for scale 1, corresponding
to traditional (single scale) SampEn, physiologic time series are assigned the lowest
values of entropy. However, while the entropy for shuRed time series monotonically
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Fig. 5. (a–d) MSE analysis of metronomically paced walking time series obtained from healthy subjects
who walked at slow, normal and fast rates for 30 min, and of the corresponding surrogate time series. There
is no qualitative di*erence between MSE curves corresponding to physiologic and surrogate time series. In
all cases, the values of entropy monotonically decrease with the scale factor similar to white noise time
series (Fig. 3), which indicates that all time series share a common random underlying dynamics.

decreases with increasing scale factor, similar to white noise, the entropy for physio-
logic time series tends to stabilize between scales 2 and 4 for normal walking speed,
and between scales 3 and 5 for slower and faster walking speeds. Therefore, for larger
scales, the entropy for all unconstrained walking time series is larger than the entropy
for the corresponding shuRed time series. The �-values measuring the areas between
original and surrogate time series for slow, normal and fast walking rates are 1.18,
0.68 and 0.89, respectively. These results show that physiologic time series are more
complex than surrogate ones. Therefore, a model based on random Juctuations super-
imposed on a constant value representing the mean walking speed does not account for
all properties of the physiologic dynamical process. In addition, the results show (Fig.
4d) that during usual gait, normal free walking has the most complex dynamics fol-
lowed by fast walking and 2nally slow walking. We note that the shuRed data in Figs.
4 and 5 are highly reproducible. Notice that these values are approximately the same
as those presented in Fig. 3 corresponding to uncorrelated noise. Furthermore, Fig.
3 shows both analytic and numerical results of MSE for correlated and uncorrelated
noise. Both agree and are quite robust.
In Fig. 5, we present the MSE results for metronomically-paced walking time series

and their corresponding surrogate time series. Once again, the curves connect mean
values of SampEn for all physiologic and surrogate time series. In contrast to the
2ndings for spontaneous walking, there is no qualitative di*erence between MSE curves
corresponding to physiologic and surrogate time series for all the paced walking speeds.
MSE curves monotonically decrease with scale factor similar to the MSE curve of white
noise time series (Fig. 3a). We measured the areas between physiologic and surrogate
MSE curves for the three walking speeds. For normal paced walking time series, the
area between the two MSE curves was 0.28, which is below the established level of
statistical signi2cance, 0.36 (Fig. 3 caption). Therefore, we concluded that they were not
signi2cantly di*erent. For slow and fast paced walking time series, the areas between
MSE curves were 0.41 and 0.40, respectively. These values are slightly larger than that
corresponding to normal speed, but still very close to the minimum value of statistical
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signi2cance. These results indicate that, in the case of paced walking, both physiologic
and surrogate time series share a common random underlying dynamics. Since walking
in time to a metronome has the e*ect of constraining supra-spinal pacesetters, these
results indicate that control mechanisms above the level of the spinal cord are essential
for the complex structure of free walking stride interval time series.
Finally, we note that our 2ndings complement those obtained from previously

reported DFA analysis of human gait data [10,13]. DFA revealed the presence of long-
range correlations in free walking stride interval time series and their breakdown with
metronomically-paced walking. To quantify the relationship between these two mea-
sures, we compared the results of MSE for scale 4 with the DFA results for the three
di*erent walking rates under free (non-metronomic) conditions. The correlation coeS-
cients were lower than 0.46, indicating that the two methods, MSE and DFA, are not
closely related.
In summary, we 2nd that the spontaneous output of the human locomotor system

during usual walking is more complex than walking under slow, fast or metronomically-
paced protocols. The results obtained using the MSE technique are notable because they
probe a dynamical property not identi2ed by other statistics and have implications for
quantifying and modeling gait control under physiologic and pathologic conditions.
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