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Multiscale entropy analysis of biological signals
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Traditional approaches to measuring the complexity of biological signals fail to account for the multiple time
scales inherent in such time series. These algorithms have yielded contradictory findings when applied to
real-world datasets obtained in health and disease states. We describe in detail the basis and implementation of
the multiscale entropyMSE) method. We extend and elaborate previous findings showing its applicability to
the fluctuations of the human heartbeat under physiologic and pathologic conditions. The method consistently
indicates a loss of complexity with aging, with an erratic cardiac arrhythatigal fibrillation), and with a
life-threatening syndromécongestive heart failuje Further, these different conditions have distinct MSE
curve profiles, suggesting diagnostic uses. The results support a general “complexity-loss” theory of aging and
disease. We also apply the method to the analysis of coding and noncoding DNA sequences and find that the
latter have higher multiscale entropy, consistent with the emerging view that so-called “junk DNA” sequences
contain important biological information.
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I. INTRODUCTION both approaches may provide complementary information

Physiologic systems are regulated by interacting mecha@Pout the underlying dynamics. The method we use in this

nisms that operate across multiple spatial and tempordl@Per for the analysis of physiologic time series does not

scales. The output variables of these systems often exhigSSUMe any particular mechanism. Instead, our method is

complex fluctuations that are not simply due to “contamina-2/med at comparing the degree of complexity of different

tive” noise but contain information about the underlying t@me series. Such cc_)mplexity-rel_ated r_“e”ﬁ@. have poten-
dynamics. tially important applications to discriminate time series gen-
rated either by different systems or by the same system

Two classical approaches to time series analysis are ré& ; "
P Y under different conditions.

lated to deterministic and stochastic mechanisms. A funda- Traditional methods quantify the degree of regularity of a
mental underpinning of the former approach is Takens’ theo:. : . - 5
rem [1,2], which states that it is possible to reach full time series by evaluating the appearance of repetitive pat

) . . L terns. However, there is no straightforward correspondence
knowle.dge of.a high d|menS|_onaI determ|n|st|c_ system beetween regularity, which can be measured by entropy-based
observing a single output variable. However, since experiy|qorithms, and complexity. Intuitively, complexity is associ-
mental time series, even when generated by deterministigieq with “meaningful structural richnes$5], which, in
mechanisms, are most likely affected by dynamical noise, thgontrast to the outputs of random phenomena, exhibits rela-
purely deterministic approach may be of limited use. Nevertijvely higher regularity. Entropy-based measures, such as the
theless, for some practical applications, a low dimenSiOﬂaéntropy rate and the K0|mogo|’ov Comp|exity' grow mono-
dynamics may be assumed and then the results tested fegnically with the degree of randomness. Therefore, these
internal consistenc§3]. measures assign the highest values to uncorrelated random

The stochastic approach is aimed at quantifying the stasignals(white noise, which are highly unpredictable but not
tistical properties of the output variables and developingstructurally “complex,” and, at a global level, admit a very
tractable models that account for those properties. The diffusimple description.
sion process is a classic example of how a stochastic ap- Thus, when applied to physiologic time series, traditional
proach may contribute to the understanding of a dynamicaéntropy-based algorithms may lead to misleading results. For
system. At a “macroscopic” level, the diffusion equation canexample, they assign higher entropy values to certain patho-
be derived from Fick's law and the principle of conservationlogic cardiac rhythms that generate erratic outputs than to
of mass. Alternatively, at a “microscopic” level it is possible healthy cardiac rhythms that are exquisitely regulated by
to derive the diffusion equation assuming that each particlenultiple interacting control mechanisms. Substantial atten-
can be modeled as a random walker, taking steps of ldngthtion, therefore, has been focused on defining a quantitative
in a given direction with probability. The theory of Brown- measurement of complexity that assigns minimum values to
ian motion, which is based on random walk models, togetheboth deterministic/predictable and uncorrelated random/
with experimental results, contributed to the understandinginpredictable signalfs]. However, no consensus has been
of the atomic nature of matter. reached on this issue.

Time series generated by biological systems most likely Our approach to addressing this long-standing problem
contain deterministic and stochastic components. Therefordnas been motivated by three basic hypothe&géthe com-
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plexity of a biological system reflects its ability to adapt and Il. BACKGROUND

function in an ever-changing environmernti) biological The entropyH(X) of a single discrete random variabte
systems need to operate across multiple spatial and tempor, Ia measure of its average uncertainty. Shannon’s entropy
scales, and hence their complexity is also multiscaled; an 2] is calculated by the equation

(iii) a wide class of disease states, as well as aging, whic

reduce the adaptive capacity of the individual, appear to de- HX)=- > p(x)logp(x) = - E[logp(x;)], (1)
grade the information carried by output variables. Thus, loss %€

of complexity may be a generic feature of pathologic dynamyyherex represents a random variable with a set of val@es
ics. Accordingly, our approach to defining a complexity mea-anq probability mass functiop(x)=P{X=x}, x € ®, andE
surement focuses on quantifying the information expressegbpresents the expectation operator. Note thisg p=0 if

by the physiologic dynamics over multiple scales. =0.

Recently, we introduced a new method, termed multiscale For a time series representing the output of a stochastic
entropy (MSE) [7-11]. Due to the interrelationship of en- process, that is, an indexed sequence cdndom variables,
tropy and scale, which is incorporated in the MSE analysis{X;}={X,,...,X,}, with a set of value®,,...,0,, respec-
the results are consistent with the consideration that botkively, andX; € O;, the joint entropy is defined as
completely ordered and completely random signals are not
really complex. In particular, the MSE method shows that Hn = H(X, Xa, .. X0)
correlated random signa(solored noisgare more complex == > D p(Xg,X)0g pXy, .. X, (2)
than uncorrelated random signéfghite nois¢. Compared to Xe0;  X,e0,
traditional complexity measures, MSE has the advantage of
being applicable to both physiologic and physical signals o
finite length.

here p(Xq, ..., Xp) =P{X;=Xq, ..., Xy =X,} is the joint prob-
ability for the n variablesXy, ..., X.

. . By applying the chain rule to Eq2), the joint entropy
In th'S, paper, we aF’p'y the MSE mgthod to the studyipf can be written as a summation of conditional entropies, each
the cardiac interbeat interval time series, the output of a Ma5¢ which is a non-negative quantity

jor physiologic system regulated by the involuntary auto-
nomic nervous system; and) biological codes. First, we
seek to characterize changes in the complexity of cardiac Hn:z HXi[Xio, 0 Xy). 3)
dynamics due to aging and disease, during both wake and =t
sleeping periods. This analysis is a major extension of oufherefore, one concludes that the joint entropy is an increas-
previous work[7] that focused on application of MSE to a ing function ofn.
more limited database. In addition, we address the question The rate at which the joint entropy grows withi.e., the
of applying the MSE method to binary sequences in order t@ntropy rateh, is defined as
study the complexity of coding versus noncoding human _H,
DNA sequences. h=lim—. (4)

The structure of the paper is as follows. In Sec. Il we n—e N
provide the mathematical background for calculating the en- For stationary ergodic processes, the evaluation of the rate
tropy rate and discuss its physical meaning. We also preseof entropy has proved to be a very useful parameter
a short description of the approximate entrggy) and the [2,5,13-17.
sample entropy(Sy) algorithms, which have been widely  Let us consider &-dimensional dynamical system. Sup-
used in the analysis of short, noisy physiologic time seriesP0S€ that the phase space of the system is partitioned into
In Sec. Ill, we review the MSE method, which incorporateshypercubes of content” and that the state of the system is
the S: statistics, and discuss the results of applying the MsgN€asured at intervals of timé Let p(ky,k, ..., k,) denote
method to white and T/noises. The analytical calculations the joint probability that the state of the system is in the
of S for both types of noises are presented in Appendix Ahypercube, att=4, in thek, at'F:Z_(S, and in the _hyperpube
In Sec. IV, we apply the MSE method to a cardiac interbe::l{(n att=né. The Kolmogorov-Sina(Ks) entropy is defined
interval database comprising recordings of healthy subjects"’}S
subjects with atrial fibrillation, an erratic cardiac arrhythmia, I |
and subjects with congestive heart failure. We address the ks=~ Ll_rg l'_rf}) lim no, Ek P(Ky, ... kn)log p(Ky, .., Kn)
guestion of quantifying the information in MSE curves for b
possible clinical use. We further discuss the effects of outli- = 1im fim lim iH (5)
ers, white noise superimposed on a physiologic time series, T 60e0noend ™
and finite sample frequency values in Appendix B. In Sec. V, ) )
we apply the MSE method to binary sequences of artificial FOF Stationary process¢s8, it can be shown that
and biological codes, aimed at quantifying the complexity of  Hy
coding and noncoding DNA sequences. Technical aspects of lim P lim H(X[ X1, -, %) (6)
applying the MSE method to such discrete sequences are e e
described in Appendix C. Section VI presents conclusions. Then, by the chain rule, it is straightforward to show that

n
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Hys= lim lim lim (H,.; - H,). (7) As(m,r,N) = dM(r) — d™(r), (12
6—0 e—0 n—»
. , , Az was not intended as an approximate value of ER en-
The state of a system at a certain instgnis partially  yopy RatherA is a regularity statistic. It applies to “real-
determined by its historyly,t, ..., ti-,. However, each new 44" time series and, therefore, has been widely used in

state carries an additional amount of new information. Th%hysiology and medicinf4]. Lower A¢ values are assigned

KS entropy measures the mean rate of creation of informag, 1,ore regular time series while highe values are as-

tion, in other words, the decrease of uncertainty at a receivegigned to more irregular, less predictable, time series.
by knowing the current state of the system given the past Recently, a modification of thég algorithm, sample en-

history. tropy (Se) [20], has been propose8: has the advantage of

Ngm:rlcally, onIE)/ entroplels of f'n'_tﬁ order can b'; ccl)m- 1, being less dependent on time series length, and showing rela-
puted. As soon as becomes large with respect to the length;, o consistency over a broader range of possibie, andN

of a given time series, the entropiy, is underestimated and values. Starting from the definition of the, entropy, Rich-

dec_ays toward zero. Thg(efore, E(q?, is of I'm'tfq use 10 man and Moorma20] defined the parameter
estimate the entropy of finite length “real-world” time series.

However, several formulas have been proposed in an attempt u™(r)

to estimate the KS entropy with reasonable precision. Grass- Se(mr) = hl,'ﬂl ~In umr) ’ (12)
berger and Procaccid5] suggested characterizing chaotic _ o
signals by calculating thi, entropy, which is a lower bound Which is estimated by the statistic
of the KS entropy. u™3(r)

Let {X}={X1,...,%,...,Xy} represent a time series of SE(m,r,N):—InUm—(). (13
length N. Consider the mrlength vectors: uy(i) '
={X, Xi+1, -+ Xism-1}, 1<i<N-m+1. Let n"(r) represent The differences betweed™(r) andC™(r), U™(r) and

the number of vectors,(j) that are close to the vectay(i), C™(r) result from(1) defining the distance between two vec-
i.e., the number of vectors that satisfiju.,(i),us(j)]<r,  tors as the maximum absolute difference between their com-
whered is the Euclidean distanc&€(r)=n"(r)/(N-m+1) ponents; (2) excluding self-matches, i.e., vectors are not
represents the probability that any veatgy|) is close to the compared to themselves; af@) given a time series witiN
vector uy(i). The average of theC™, C™(r)=1/(N-m data points, only the fird—m vectors of lengthm, u,(i), are

+1)Ei(=Nl_m+l)Cim(r)a represents the probability that any two considered, ensuring that, forsli < N—-m, the vectomu,, (i)

vectors are within of each otherK, is defined as of lengthm+1 is also definedS is precisely equal to the
negative of the natural logarithm of the conditional probabil-

K, = lim lim lim = In[C™%r) - C™(r)]. (8) ity that sequences close to each otherrfoconsecutive data
N—e Mo 1—0 points will also be close to each other when one more point

Following the same nomenclature, Eckmann and Ruellés added to each sequence. Figure 1 illustrates Bovalues
(ER) [2] defined the functon ®™r)=1/(N-m are calculated.
+1)SN™1n CM(r), considering the distance between two ~ Note that

vectors as the maximum absolute difference between their 1 Nmoogm
components:  dluy(i),um(j)]1=max|x(i +k) —x(j +k)|:0<k Ae(m,r,N) = mz In—— (14
<m-1}. Note that O™L(r)-P™(r) i=1 M

~ 3N Un[CM(r)/C™X(r)], represents the average of the g

natural logarithm of the conditional probability that se- Nem

quences that are close to each otherrfoconsecutive data S
points will still be close to each other when one more point is - N
known. Therefore, Eckmann and Ruelle suggested calculat- S(m,r,N) = InN__m—, (15
ing the KS entropy as S pyme
i
Her= lim lim lim[®M(r) - d™(r)]. (9) =1

N—o m—o r—0

where n/™ differs from n" to the extend that foS: self-
Although this formula has been useful in classifying low- matches are not countéd+ j) and 1<i<N-m.

dimensional chaotic systems, it does not apply to experimen- The difference betweeAs and S: can be related to the

tal data since the result is infinity for a process with superRenyi entropies, Sx(g), which are defined bySx(q)

imposed noise of any magnitudé9]. For the analysis of =In(3;pf)/(1-q). Az approximates the Renyi entropy of or-

short and noisy time series, Pindus’] introduced a family  der gq=1 (the usual Shannon entropgind S the Renyi en-

of measures termed approximate entrofiy(m,r), defined  tropy of orderq=2. The advantage of the latter is that the

as estimator[Eq. (15)] is unbiased 21].

Both S and A measure the degree of randomnéss

— i _ 1 ) . . .
Ae(m.r) = '\I‘erl[dbm(r) )], (10 inversely, the degree of orderlingssf a time series. How-
ever, as noted, there is no straightforward relationship be-
A is estimated by the statistics, tween regularity, measured by entropy-based metrics, and
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FIG. 1. A simulated time seriag 1], ...,u[N] is shown to illus- Y1 ¥2 1 3
trate the procedure for calculating sample entré®y for the case
m=2 and a given positive real value Dotted horizontal lines FIG. 2. Schematic illustration of the coarse-graining procedure.

around data points[1],u[2], andu[3] represenu[1]+r, u[2]+r,  Adapted from Ref[8].

andu[3]+r, respectively. Two data points match each other, that is,

they are indistinguishable, if the absolute difference between theradaptive (i.e., more impairel and therefore, presumably,

SD. The symbolO is used to represent data points that match the‘nonphysiologic” results is the fact thé andS: are based

data pointu[1]. Similarly, the symbols< and A are used to repre- o 5 single scale. We note that both the KS entropy and the

sent data points that match the data poiig] and u[3], respec- o |atedA_ parameters depend on a function’s one-step differ-

tively. Consider the two-componen©-X template sequence ence(e.g.,H..;—H,) and reflect the uncertainty of the next

(u[1],u[2]) and the three-componeft - X - A template sequence new point given the past history of the series. Therefore
. X se- ’

é‘fj[elglélje[s(]dﬁl[g’]])u[iia)tt;ﬁ ds(eu%zgn:[zz]%w?ﬁ;thg:t;ﬁh??emsp‘laate these measures do not account for features related to struc-
' ’ ’ ture and organization on scales other than the shortest one.

sequenceu[1],u[2]), but only oneO-X-A sequence that matches !
the template sequenc€e[1],u[2],u[3]). Therefore, in this case, the For physical systems, Zharig3,27 proposed a general

number of sequences matching the two-component template s@PProach to take into account the information contained in
quences is two and the number of sequences matching the threBUltiple scales. Zhang's complexity measure is a sum of
component template sequence is 1. These calculations are repeaffle-dependent entropies. It has the desirable property of
for the next tWO_Component and three_component temp]ate Se\lanishing in the extreme ordered and disordered |ImItS, and
quence, which aréu[2],u[3]) and (u[2],u[3],u[4]), respectively. IS an extensive quantity. However, since it is based on Shan-
The number of sequences that match each of the two- and thre@on’s definition of entropy, Zhang's method requires a large
component template sequences are again summed and added to &wount of almost noise-free data, in order to map the data to
previous values. This procedure is then repeated for all othea discrete symbolic sequence with sufficient statistical accu-
possible template sequences(u[3],u[4],u[5]),...,(U[N-2], racy. Therefore, it presents obvious limitations when applied
u[N-1],u[N]), to determine the ratio between the total number ofto free-running physiologic signals that typically vary con-
two-component template matches and the total number of threginuously and have finite length.
component template matcheS: is the natural logarithm of this To overcome these limitations, &] recently introduced
ratio and reflects the probability that sequences that match eagfhe multiscale entropfMSE) method, applicable both to
other for the first two data points will also match for the next point. physical and physiologic time series. Our method is based on
Zhang’s and Pincus’s approach.

complexity [22]. An increase in entropy is usually but not
always a}ssociated with an increase. in complexity. l_:or ex- IIl. MULTISCALE ENTROPY (MSE) METHOD
ample, higher entropy values are assigned to randomized sur-
rogate time series than to the original time series even when Given a one-dimensional discrete time series,
the original time series represent the output of compleXXs,...,X,..., Xy}, We construct consecutive coarse-grained
dynamics with correlational structures on multiple spatio-time series{y'”}, corresponding to the scale facter,First,
temporal scales. However, the process of generating surrave divide the original times series into nonoverlapping win-
gate data is designed to destroy correlations and, conseéows of lengthr; second, we average the data points inside
guently, degrades the information content of the originaleach window(Fig. 2). In general, each element of a coarse-
signal. In fact, entropy-based metrics are maximized for rangrained time series is calculated according to the equation
dom sequences, although it is generally accepted that both
perfectly ordered and maximally disordered systems possess
no complex structureg23]. A meaningful physiologic com-
plexity measure, therefore, should vanish for these two ex-
treme states. For scale one, the time seri@g?} is simply the original

Of related note, when applied to physiologic data, bgth  time series. The length of each coarse-grained time series is
and S algorithms assign higher entropy values to certainequal to the length of the original time series divided by the
pathologic time series than to time series derived from freescale factor,r.
running physiologic systems under healthy conditif24]. Finally, we calculate an entropy measui®) for each
However, pathologic time series represent the output of lessoarse-grained time series plotted as a function of the scale

iT
1
y== 3 x, l=j=Nr (16)
Ti=(j-1)7+1
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factor 7. We call this procedure multiscale entrofyISE)
analysis. 25 ¢
The MSE curves are used to compare the relative com-
plexity of normalized time serieésame variance for scale 20 1/f noise
one based on the following guidelineét) if for the major- & i e TTTUTTUOTTOCTD
ity of the scales the entropy values are higher for one time 1.5 ) )
series than for another, the former is considered more com- White noise
plex than the latter(2) a monotonic decrease of the entropy 1.0 |
values indicates the original signal contains information only
in the smallest scale. 0.5 . . ' ' .
Zhang defined complexity as the integral of all the scale- 0 4 8 12 16 20
dependent entropie&:=[Nd7H(7), which for a discrete sig- Scale factor

. _ N .
r?all could be estimated b&._Eile(.l)(N_}oo)' Due to the FIG. 3. MSE analysis of 30 simulated Gaussian distributed
finite length of re_a!—world time series, entropy Can, OT"Y b_e(mean zero, variance onevhite and 1f noise time series, each
calculated for a finite range of scales. The sum to infinity iSyith 3x 10# data points. Symbols represent mean values of entropy
not feasible. Since different sets of entropy values can yieldo, the 30 time series and error bars the SD, which in average is
the sameK value, we focus on the analysis of the MSE ¢ o5 for white noise and 0.02 for Lhoise. Lines represent numeri-
curves instead of assigning a single complexity value to eacha| evaluation of analytiS: calculation. Note that the differences
time series. Further, for application to biological systems, théetween the mean values 6f and the corresponding numerical
MSE curve may provide useful insights into the controlvalues are less than 1%. SD is larger forf Tbise time series
mechanisms underlying physiologic dynamics over differentecause of nonstationarity. Adapted from R@fl. (See Appendix
scales. We note, however, that an approximatiorKofor  A.)
scales between one and twenty further supports the conclu-

sions we present in this paper. coarse-grained time series. After the initial normalization,
Unless otherwise specified, the values of the parameter§ psequent changes of the variance due to the coarse-
used to calculat&: areN=2x10%, m=2, andr=0.15. graining procedure are related to the temporal structure of

The value of the parameteris a percentage of the time he original time series, and should be accounted for by the
series SD. This implementation corresponds to normalizingntropy measure. The initial normalization, however, insures
the time series. As a consequenge results do not depend  that the MSE values assigned to two different time series are
on the variance of th_e original time serie_s, ie., thel absolut@ot a trivial consequence of possible differences between
value of the data points, but only on their sequential orderyhejr variances but result from different organizational struc-
Ing. tures.

In general, however, the entropy measures reflect both the \we first applied the MSE method to simulated white and
variance of a time series and its correlation properties. Tq /f noises and compared the numerical results with the en-
illustrate this point, we ex_amine two special cases Wher‘%ropy values calculated analyticalihppendix A. Figure 3
these two effects can be isolated. Cdsg Consider tWo  presents the results. For scale one, a higher value of entropy
uncorrelated random variableX,and Y, with set of values s assigned to white noise time series in comparison with 1/
{X1.%,....xn} and {y1,Y,....ym}, respectively. Assuming time series. However, while the value of entropy for the
that all values are equally probable(x)=1/N, the entropy  coarse-grained ¥/series remains almost constant for all
of the random variablesX is H(X)=-2;1/Nlog 1/N  scales, the value of entropy for the coarse-grained white
=logN. Similarly, H(Y)=logM. If N>M, then H(X) noise time series monotonically decreases, such that for
>H(Y). Therefore, for the same level of resolution, the scales>4 it becomes smaller than the corresponding values
larger the set of alphabet of a random variable, the larger itfor 1/f noise. This result is consistent with the fact that,
variance and the entropy value. C42g Consider a periodic unlike white noise, 1f noise contains complex structures
signal with variancdal and a random signal with variance across multiple scald®23,27]. Note that in the case of white

|b|, such that|aj>|b|. The entropy of a periodic signal is noise, as the length of the window used for coarse-graining
zero, since each data point occurs with probability 1. Therethe time series increaséise., the resolution decreageshe

fore, the entropy of a periodic signal is never larger than theverage value inside each window converges to a fixed value
entropy of a random signal regardless of the variance of theince no new structures are revealed on larger scales. Conse-
signals. quently, coarse-grained time series are progressively

With the exception of such very simple cases, it is not‘smoothed out” and the standard deviation monotonically
possible to weight separately the contributions of the SD andecreases with the scale factor. Therefore, the monotonic de-
the correlation properties to the entropy value. Signals wittcrease of entropy with scale, which mathematically results
higher variability and those that are more random tend to b&om the decrease of standard deviation, reflects the fact that
more entropic. Nevertheless, the actual entropy value resuligshite noise has information only on the shortest scale. In
from a complex combination of these two factors. contrast, for 1f noise signals the average values of the fluc-

In the MSE methodr is set at a certain percentagesu-  tuations inside each window do not converge to a given
ally 15%) of the original time series SD, and remains con-value. In other words, the statistical properties of fluctuations
stant for all scale$10,28. We do not recalculate for each  within a window (e.g., 10 data pointsare not the same as
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those of the next window because new information is re- 1.1

vealed at all scales. The MSE uses the average value of th 09 | @
fluctuations as the representative statistical property for eacl
block and measures the irregularity of the block-to-block dy-  ¢7
namics.

The dlsqrepancy between the S|mulz;t|on and Fhe analyti‘g 0.5 0 200 200 600 200 1000
cal results is less than 0.5%. In Appendix B, we discuss howZ |3
the time series lengthy, and the values of parameterand s (b

terval

m affect & results for both white and T/noise time series.

10 |
We further discuss the effects of uncorrelated noise and out& WMW

liers on MSE results of cardiac interbeat interval time series.§ 08 T
g 0'6 1 1 1 1
= 0 200 400 600 800 1000
0.8
IV. MSE ANALYSIS OF CARDIAC INTERBEAT INTERVAL o ©)
TIME SERIES 0.6 |

We next apply the MSE method to the cardiac interbeat ¢4
(RR) interval time series derived from 24 hour continuous ‘
electrocardiographid ECG) Holter monitor recordings of 0.2
healthy subjects, subjects with congestive heart failure, ¢
life-threatening condition, and subjects with atrial fibrilla-
tion, a major cardiac arrhythmi'aNe test the hypothesis that FIG. 4. Representative interbeat interval time series fi@n
under free-running conditions, healthy interbeat interval dy-healthy individual(sinus rhythn, (b) subject with congestive heart
namics are more complex than those with pathology durindailure, and(c) subject with atrial fibrillation, a highly erratic car-
both daytime and nightime hours. diac arrhythmia.

The data for the normal control group were obtained from
24 hour Holter monitor recordings of 72 healthy subjects, 35ies derived from subjects with congestive heart failure
men and 37 women, aged 54.6+16.2 yeéamean+SD, markedly decreases on small time scales and then gradually
range 20-78 years. ECG data were sampled at 128 Hz. THecreases(iii) The entropy measure for time series derived
data for the congestive heart failure group were obtainedrom subjects with atrial fibrillatiorj31] monotonically de-
from 24 hour Holter recordings of 43 subje¢®8 men and creases, similar to white noiggig. 3).

15 women aged 55.5+11.4 yeafsnean+SD, range 22-78 For scale one, which is the only scale considered by tra-
years. New York Heart AssociatidfNYHA) functional clas- ~ ditional single-scale based “complexity” methods, the en-
sification [30] is provided for each subject: 4 subjects weretropy assigned to the heartbeat time series of subjects with
assigned to class I, 8 to class Il, 17 to class lIl, and 14 tcatrial fibrillation and those with congestive heart failure is
class IlI-1V. Fourteen recordings were sampled at 250 Hz andtigher than the entropy assigned to the time series of healthy
29 recordings were sampled at 128 Hz. The data for the atrial

0 200 400 600 800 1000
Beat number

fibrillation group were obtained from 10 hour Holter record- 247
ings sampled at 250 Hz of nine subjects. Datasets were fil- 22 —o— Healthy
tered to exclude artifacts, premature ventricular complexes, 201 —+ CHF
and missed beat detectiofsee Appendix B Of note, the 18 1 TXCAF
inclusion of the premature ventricular complexes does not & 16
qualitatively change our analysis. 14 ¢ g

Representative time series of healthy, congestive heart 12 | Tggggeeee
failure, and atrial fibrillation group subjects are presented in 10 ¢ M*
Fig. 4. 08

When discussing the MSE results of cardiac interbeat in- 06 Lo
terval time series, we refer to“large” and “small” time scales 0 4 8 12 16 20
when the scales are larger or smaller than one typical respi- Scale factor

ratory cycle length, that is, approximately five cardiac beats.

In Fig. 5, we present the results of the MSE analysis of FIG. 5. MSE analysis of RR time series derived from long-term
the RR interval time series for the three groups of subjectsECG recordings of healthy subjects in normal sinus rhythm, those
We observe three different types of behavidi$: The en- with congestive heart failur@CHF) in sinus rhythm, and those with
tropy measure for time series derived from healthy subjectgtrial fibrillation (AF). Symbols represent the mean values of en-
increases on small time scales and then stabilizes to a rel§oPy for each group and bars represent the standard €8ir

tively constant value(ii) The entropy measure for time se- =SD/\n), wheren is the number of subjedtsParameters to calcu-
late S arem=2 andr=0.15. Time series length is>210* beats.

- The S values from healthy subjects are significantlytest, p
IAll data analyzed here are available at http://physionet.org ané<0.05 higher than from CHF and AF subjects for scales larger
have been described in R¢R9]. than scale 2 and scale 20, respectively.
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subjects. In contrast, for sufficiently large scales, the time a) Waking period
series of healthy subjects are assigned the highest entropy 16 [
values.Thus, the MSE method indicates that healthy dynam- i
ics are the most complex, contradicting the results obtained 14 L[
using the traditional § and Az algorithms I
The time series of subjects with AF exhibit substantial 12 b
variability in beat-to-beat fluctuations. However, the mono- & f
tonic decrease of the entropy with scale reflects the degrada- 10
tion of the control mechanisms regulating heart rate on larger C & Young
time scales in this pathologic state. 08 ~®—Elderly
The largest difference between the entropy values of i —A—CHF
coarse-grained time series from congestive heart failure and 06—
healthy subjects is obtained for time scale 5. On small time 0 4 8 12 16 20
scales, the difference between the profiles of the MSE curves Scale factor
for these two groups may be due to the fact that the respira- b) Sleepi iod
tory modulation of heart ratéespiratory sinus arrhythmia ) Sleeping peri
has higher amplitude in healthy subjects than in subjects with 16 |
congestive heart failure. Since entropy is a measure of regu- Lo
larity (orderlinesy the higher the amplitude of the respira- 14 1 &
tory modulation, the lower the entropy values tend to be. Lo F 4.
However, the coarse-graining procedure filters out the peri- @ ™ |
odic respiratory-related heart rate oscillations. Therefore, 10 [
coarse-grained time series from healthy subjects on large I
time scales are likely more irreguléand are assigned higher 08 |
entropy valuesthan the original time series. i
For congestive heart failure subjects, the entropy of 06 ——— : '
coarse-grained time series decreases from scales 1-3 and 0 4 8 12 16 20
then progressively increases. This result suggests that for Scale factor

thesel Slf'bJIeCtSH the _Control :nechanlims regula};lng heart rate FIG. 6. MSE analysis of RR time series derived from 24 h ECG
on relatively short time scales are the most affected. HOWFecordings of 27 healthy young subjects, aged 34.5+7.3 years

ever, this finding could also result from the measurementyqan+sp, range 20 - 50 years, 45 healthy elderly subjects, aged
uncertainty of the interbeat intervals due to the finite sampleyo+3.97 years, range 66 - 75 years, and 43 congestive heart failure
frequency. Since time series from subjects with congestivecHp) subjects, aged 55+11.6 years, range 22 - 78 yéars\Vak-
heart failure have, in general, lower variance than time Serieﬁ]g period. For all scales thg: values from healthy young subjects
from healthy subjects, the signal-to-noise ratio tends to bere significantly(t-test, p< 0.05 higher than from CHF subjects.
lower for datasets from heart failure subjects. We note thathe S: values from healthy young subjects are significantly higher
the MSE coarse-graining procedure progressively eliminatethan from healthy elderly subjects for scales larger than scale 1. The
the uncorrelated random components such that the entropy 6 values from healthy elderly subjects are significarftiyest, p
white noise coarse-grained time series monotonically de<0.05 higher than from CHF subjects for scales between scales 5
creases with scal€Fig. 3). Therefore, the monotonic de- and 13, inclusively(b) Sleeping period. Both th& values from
crease of the entropy values with heart failure over short timéealthy elderly and healthy young subjects are significaftttgst,
scales may be related to the relatively low signal-to-noise? <0.05 higher than from CHF subjects for scales between scales 2
ratio. and 11, inclusively. Thé&e values from healthy young subjects are
We also find that the asymptotic value of entropy may notignificantly higher than from healthy elderly subjects for scales
be sufficient to differentiate time series that represent th&horter than scale 5. Symbols represent the mean values of entropy
output of different dynamical processes. As seen in Fig. 51:0r each group and the bars represent the_ standa_rd error. Pgrameters
for time scale 20, the value of the entropy measure for th&' %E‘l calculation arem=2 andr=0.15. Time series length is 2
heart failure(sinus rhythm and atrial fibrillation time series 10" beats.

is the same. However, these time series represent the outpgfiectively. Figures @) and Gb) show that during both the
of very different types of cardiac dynamicsherefore, not \aking and sleeping periods, the highest entropy values on
only the specific values of the entropy measure but also theimost time scales are assigned, in descending order, to the
dependence on time scale need to be taken into account twarse-grained time series derived from healthy young sub-
better characterize the physiologic process jects, healthy elderly subjects, and congestive heart failure
Next, to assess the effects of activity level, we comparesubjects. These results further support the concept that under
the complexity of the RR intervals time series during sleepfree-running conditions, the cardiac dynamics of healthy
and wake periods for the different subject groups. Using thgoung subjects are the most complex and are consistent with
24 h heartbeat interval time series of healthy and congestivithe hypothesized loss of complexity with aging and disease
heart failure subjects, the sleep and wake datasets were thgpd].
obtained by extracting the segments ok 20* consecutive Despite the fact that the entropy values for healthy elderly
data points(~5 h) with highest and lowest heart rate, re- subjects are lower than those for healthy young subjects, the
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profiles of MSE curves for both groups are similar, in par-
ticular over large time scales. Indeed, during sleep, a period
of minimal activity, the difference between the entropy val-
ues of both groups is significant over only small time scales.
These results are consistent with the known loss of high-
frequency modulation of the cardiac rhythm with d@2)],

and suggest that the control mechanisms operating over
small time scales, including the parasympathetic branch of
the autonomic nervous system, are the most affected with
aging. The monotonic decrease in entropy on large time
scales for both young and elderly groups indicates that the
coarse-grained time series become progressively more regu-
lar (less complexthan those corresponding to shorter time
scales, which is compatible with a previous stUy@g] re-
porting a reduction in long-range correlations in healthy sub-
jects during the sleeping period.

The MSE results for the waking and sleeping periods of
each group of subjects are shown in Fig. 7. For both young
and elderly healthy subjects, the profiles of the MSE curves
corresponding to the waking and sleeping periods are quali-
tatively different from each othdiFigs. 7a) and qb)]. For
subjects with congestive heart failure, however, there is only
a shift of the entropy values but not a significant change in
the profile of the MSE curvefFig. 7(c)]. Thus, differences
between the day versus night dynamics of subjects with a
severe cardiac pathology are less marked than for healthy
subjects. This loss of differentiation in the complexity of
sleep/wake dynamics may be a useful new index of reduced
adaptive capacity.

Further, we found that, contrary to the results obtained for
healthy young subjects, in healthy elderly and congestive
heart failure subjects, the coarse-grained time series obtained
from the waking period have lower entropy than those ob-
tained from the sleeping period. To the extent that aging and
disease degrade adaptive capacity, environmental stimuli
may exceed the system’s reserve. This situation would be
equivalent to what might occur if a young individual were
subject to prolonged physical or other stress throughout the
daytime hours.

Finally, to assist in clinical classification, we extracted
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two simple features of MSE curves, the slopes for small and FIG. 7. MSE analysis of RR time series derived from 24 h ECG

large time scales, i.e., the slopes of the curves define8by

recordings during waking and sleeping perio@.Young healthy

values between scale factors 1 and 5, and scale factors 6 afdbjects. TheS: values for the waking period are significantly
20, respectively. Results for the healthy and congestive heatttesd higher (p<0.05 than for the sleeping period on scales
failure groups corresponding to the sleeping period are préarger than scale 7b) Elderly healthy subjects. Th&: values for
sented in Fig. 8. There is a good separation between the tw§e sleeping period are significanti-tes higher (p<0.09 than
groups. Considering other features of the MSE curves, if®" the waking period on scales shorter than scale(@6Conges-

addition to these slopes, may further improve the separatioﬁ

Alternatively, methods derived from pattern recognition
techniques, e.g., Fisher’s discriminant, may also be useful f
clinical discrimination[9].

V. MSE ANALYSIS OF ARTIFICIAL AND BIOLOGICAL
CODES

In all cells, from microbes to mammals, proteins are re-

ive heart failure subjects. TH& values for the sleeping period are

significantly (t-tesh higher(p<0.05 than for the waking period on

Ozilll scales but scale 1. Symbols represent mean values of entropy for

each group and the bars represent the standard error. Parameters of
Sc calculation aren=2 andr=0.15. Time series length is>210*
beats.

complexity. However, several observations contradict this
reasoning 34,35.
Large regions of DNA, which in humans account for

sponsible for most structural, catalytic, and regulatory func-about 97% of the total genome, do not code for proteins and
tions. Therefore, the number of protein-coding genes that awere previously thought to have no relevant purpose. These
organism makes use of could be an indicator of its degree akgions have been referred to as “junk” DNA or gene
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FIG. 8. Scatter plot of the slope of the MSE curves between FIG. 9. MSE results for binary files of a computer execytgble
ogram (Linux kerne) and a compressed data file. The original

scale factors 6 and 20 vs the slope of the MSE curves between scef?é )
factors 1 and 5, for healthy and congestive heart faik@eiF) binary file has only two symbols, 0 and 1. However, the number of

groups during the sleeping period. For both groups, symbols Witﬁymbols in coarse-grained sequences increases with the scale factor,
error bars represent the mearyedixis values, and the error bars the which introduces a characteristic artifact on the MSE curves. In

corresponding SD. The groups are well separéfed0.005. order to av0|d. this artifact, |nste§d of the original sequences, we
analyze a derived sequence, which is constructed as follows: we

ivide the original sequence into consecutive nonoverlapping seg-

Fnts, each with 128 data points, and then calculate the number of
1's (0’s) within each segment. Some structural information is lost
since the procedure is not a one-to-one mapping. The derived se-
quences are expected to be more regular than the original ones.

ing, and condensation. . :
. However, this procedure does not alter the conclusions drawn from
Detrended fluctuation analyi87—39 revealed that non- our analysis P

coding sequences contained long-range correlations and pos-

sessed structural similarities to natural languages, suggestirg very different. The sequence derived from the executable

that these sequences could in fact carry important biologicgbtrogram exhibits long-range correlatiof8], while the se-

information. In contrast, coding sequences were found to bguence derived from the data file does not. These results

more like a computer data file than a natural language. indicate that the computer program, which executes a series
The biological implications of the presence of long-rangeOf instructions and likely contains several loops running in-

correlations in noncoding sequences, their origin, and theiide each other, possesses a hierarchical structure, in contrast

nature are still being debated. Audit al. [40,41 have in- t0 the computer data file. Therefore, the former is expected to

vestigated the relation between long-range correlations ang® more complex than the latter. ,

the structure and dynamics of nucleosomes. Their results When applied to discrete sequendésnary codey the

suggest that long-range correlations extending from 10 t SE results present a typical a_lrtlfact due to the dependence

200 bp are related to the mechanisms underlying the WrapQf Fhe entropy valges on the_ size of the sequence alphabet,

- : which we discuss in Appendix C.

ping of DNA in the nucleosomal structure. MSE analysis of the nonbiological codes reveds). 9)

Gene regulatory elements or enhancers are types of funﬁ—1 y g A

tional sequences that reside in noncoding regions. Until re e following. (i) For scale one, the sequence derived from
d g reg : the data file is assigned a higher entropy value than the se-
cently, enhancers were thought to be located near the gen

A ) aﬁence derived from the executable progrdii). Between
that they regulate. However, subsequentvivo studies  gcaies 2 and 6, the. measure does not separate the coarse-
[42,43 have demonstrated that enhancers and the genes {ained sequences of the two filgii.) For scales larger than

which they are functionally linked may be separated by morecale 6, the highest entropy values are assigned to coarse-
than thousands of bases. These results reinforce earlier erained sequences derived from the executable program file.
dence that the noncoding sequences contain biological infolEyrthermore, the difference betwe&n values assigned to
mation and further support the notion that there are severaoarsegrained sequences of the executable file and the com-
“layers” of information in genomic DNA. puter data file increases with scale factor. These results indi-
In this section, we apply the MSE method to the analysiscate, as hypothesized, that the structure of the executable file
of the complexity of both coding and noncoding DNA se-is more complex than the structure of the data file. Of note,
guences of human chromosomes. conventional(single scalg S- and Ag algorithms applied to
Because of possible parallelisms between artificial andequences of artificial languages fail to meaningfully quan-
biological codes, we first considered two examples of artifi-tify their overall complexity.
cial language sequences: the compiled version ot tkex Finally, we apply the MSE method to the analysis of DNA
Operating System, an executable computer program, and sequences, likely one of the most complex natural informa-
compressed nonexecutable computer data file, which cation databases.
both be analyzed as binary sequences. Although both files The DNA building units are four nucleotides. Two of
contain useful information, the structure of that informationthem contain a purine base, adeni{#g or guanine(G), and

“deserts.” However, these noncoding sequences are starti
to attract increasing attention as more recent studies sugg
that they may have an important role in regulation of tran-
scription, DNA replication and chromosomal structure, pair-
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0.7 — o Non-coding scale. As discussed in Appendix B, for simulated white and
06 | --® - Coding 1/f noises, both the mean value &f and the SD increase as
I —x —Random the length of the time series decreases. However, for all time
05 - series tested, the consistency of the results was preserved,
= I i.e., given two time seriesg and b, each with 3< 10* data
w 04| : i ; |
L points, wheneve: was higher(lower) for time seriesa than
03 r . for time seriesb, the same result held if only>10° data
oa | T~ }i points were considered. . .
I T~ i The minimum number of data points required to apply the
0] ————t— MSE method depends on the level of accepted uncertainty.
0 2 4 6 8 10 12 14 16 Typically, we use time series with>210* data points for
Scale factor analyses extending up to scale 20, in which case the shortest

coarse-grained time series hax 10° data points.

FIG. 10. MSE results for four coding, nine noncoding DNA  Another important consideration is related to nonstation-
sequences from human chromosome 22 and 30 binary random tirrga(ity_ To calculateS:, one has to fix the value of a parameter
series. All coding sequences with more than identified 14 bp ¢ depends on the time series SD. Therefore, the results
were selected. The longest coding sequences has 6762 bp. All nogsay pe significantly affected by nonstationarities, outliers,
coding sequences with more than 6000 and fewer than 6050 bgnd artifacts. As we discuss in Appendix C, removing local
were SeIECted' ;’hle Iendgtﬂ of thebra“dom Seq:ég;es Is GIOOO dafitacts and a small percentage of outliéxs2%) does not
points. The symbols and the error bars represe ean values . . . .
and SD, respectively. Due to a typical artifact that affects the MSE'"'Suf"l".y modify th(_a structure of the time series and its related

statistical properties. In contrast, attempts to remove nonlo-

results of discrete sequend@gppendix Q, only the entropy values . - . . .
for scales 1, 5, 9, 13, and 17 are plotted. Note the higher complexitg"’lI nonstatlonarl'gles, e.g'., trends, will ,mOSt_ likely modify the
structure of the time series over multiple time scales.

of the noncoding vs coding sequendgs=0.006 for scale P The

lowest entropy values are assigned to the randurmite noise: Further studies are needed to construct clinically useful
mean zero, variance) time series mapped to a binary sequence: 1indices for monitoring the complexity of biological systems,
if x>0 and 0 ifx <0. and for developing and testing the utility of complexity mea-

sures designed to quantify the degree of synchronization of
the other two contain a pyrimidine base, cytosi@® or  two time series over multiple scalg20].
thymine (T). There are many ways of mapping the DNA  we note that the cardiac analyses reported here pertain to
sequences to a numerical sequence that take into considgfterpeat interval dynamics under free-running conditions.
ation different properties of the DNA sequences. For thisthe phigh capability of healthy systems to adapt to a wide
application, we consider the purine-pyrimidine ri8—39. 546 of perturbations requires functioning in a multidimen-

Given (’;he origir:)al [iNA zeguence(,: basae§rA and G %r ional state space. However, under stress, the system is
mapped to number 1, and bases C an are mapped {8rced to work in a tighter regime. For example, during

number -1. ysical exercise, there is a sustained increase in heart rate

: . ph
In Fig. 10, we present the MSE results for selected COdm%ﬂd a decrease in the amplitude of the interbeat interval fluc-

and noncoding human DNA sequences. For scales larg tions in response to an increased demand for oxvaen and
than scale 55 values for noncoding sequences are highe uation P Y9

than for coding sequences. Consistently, for all scales but th@utrients. The dynamics is, therefore, limited to a subset of
first one, the lowesS: values are assigned to coarse—graineothe state space. We anticipate _that under a variety of stressed
time series derived from uncorrelated white noise mapped tgonditions, healthy systems will generate less complex out-
a binary sequences. Comparable results were obtained froR¥ts than under free-running conditiofisl].
the analysis of coding versus noncoding sequenced Finally, the potential applications of the MSE method to
% 10% bp) of all human chromosomes. These results showhe study of artificial and biological codes, with attention to
that the structure of noncoding sequences is more complethe effects of evolution on the complexity of genomic se-
than the structure of coding sequences analyzed here. quences, require systematic analysis.

These findings support previous studj83—39 suggest-
ing a parallelism between executable computer programs and
noncoding sequences, and data storing files and coding se-
guences. They also support the view that noncoding se- The long-standing problem of deriving useful measures of
guences contain important biological information. As pointedtime series complexity is important for the analysis of both
out by otherq35,36,40,4], biological complexity and phe- physical and biological systems. MSE is based on the obser-
notype variations should relate not only to proteins, whichvation that the output of complex systems is far from the
are the main effectors of cellular activity, but also to theextrema of perfect regularity and complete randomness. In-
organizational structure of the control mechanisms resporstead, they generally reveal structures with long-range corre-
sible for the networking and integration of gene activity.  lations on multiple spatial and temporal scales. These multi-

scale features, ignored by conventional entropy calculations,
VI. LIMITATIONS AND FUTURE DIRECTIONS are explicitly addressed by the MSE method.

The MSE method requires an adequate length of data to When applied to simulated time series, the MSE method

provide reliable statistics for the entropy measure on eackhows that 1f noise time series are more complex than

VII. CONCLUSIONS
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white noise time series. These results are consistent with the
presence of long-range correlations inf Iloise time series
but not in white noise time series.

Physiologic complexity is associated with the ability of
living systems to adjust to an ever-changing environment,
which requires integrative multiscale functionality. In con-
trast, under free-running conditions, a sustained decrease in
complexity reflects a reduced ability of the system to func-
tion in certain dynamical regimes possibly due to decoupling
or degradation of control mechanisms.

When applied to the cardiac interbeat interval time series .
of healthy subjects, those with congestive heart failure and
those with atrial fibrillation, the MSE method shows that
healthy dynamics are the most complex. Under pathologic FIG. 11. Gaussian distribution. Shadowed areas centered at
conditions, the structure of the time series variability maypoints -2 and 1 represent the probability that the distances between
change in two different ways. One dynamical route to dis-each of these points and any other point chosen randomly from the
ease is associated with loss of variability and the emergendéne series are less than or equakto
of more regular patterng.g., heart failure The other dy-
namical route is associated with more random types of outis also less than or equal 1o (i.e., [X_;—Xj_4|<Tr). Since
puts (e.g., atrial fibrillation. In both cases, MSE reveals a there is no correlation between any data point and the pre-
decrease in system complexity. ceding data points in white noisg&; reduces to the negative

Finally, we employed the MSE method to compare thenatural logarithm of the probability that the distance between
complexity of an executable computer program versus any two data points is less than or equal to
compressed nonexecutable computer data file, and selected To be specific, the joint probability of a finite sequence of
coding versus noncoding DNA sequences. We found that thindependent random variables is simply
executable computer program has higher complexity than the
nonexecutable computer data file, and similarly that the non-
coding sequences are more complex than the coding se-
quences examined. Our results support reaenitro andin
vivo studies suggesting, contrary to the “junk DNA” theory, One can show that
that noncoding sequences contain important biological infor-
mation[44].

N
p(xl!XZ! e !Xn) = H p(xl) . (Al)
i=1

Pr(lxi = x| < r[[Xi—1 = Xj-a| <T1)

- Pr(lx = x| <r Ofx_y = Xj_a| <)
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To summarize, white noise is a random process such that
all variables are independent. Therefore,

In this appendix, we provide detailed analytical deriva- S=-1n Pr(|xi —x[=n. (A2)
tions of MSE fo'r two speqal cases: c_orrelatgd and uncorre- Next, we calculate the probability distributic®(|x;—x;|
lated noises with Gaussian distributions. Linear Gaussiarcy),
correlation is a necessary assumption to make the derivation gg, 4 given value oR, the probability of finding other
possmle. In general, it is .dlffICU|t to derl\(e analyncal solu- yata points within the distanaefrom X is
tions for MSE of stochastic processes with nonlinear corre- i
lations. . [

First, we start with the case of uncorrelated ndishite Plx-x<n= . p(x)dx.
noise. For the casen=1, & is the negative natural loga- !

rithm of the conditional probability that the distance between For example, ifx=1 and r=0.3, (Fig. 11, P,(|1-x|

two data points is less than or equalrdi.e., |xi—xj|$r) <0.3) is the area under the Gaussian curve between the ver-
given that the distance between the two preceding data point&al lines x=0.7 andx=1.3. Similarly, forx,;=—2 and the

=P(|x = x| =71).

APPENDIX A: MSE RESULTS FOR WHITE AND 1/ f
NOISES

(A3)
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samer vaIue,Pr(|2—xj| =<0.3 is the area under the Gaussian X Cix=-0,04 XJ  Cx=-0.50;04 Xk Cy=0
curve between the vertical lines=-2.3 andx=-1.7. Since e, S
X; can assume any value betweem and +°, P(|x—Xx||
<r) is the average area centered at all possiplalues. In 17
other words,

+o0 X+ X; X; X;
Pl = x| <1) = f f PO 1 pOx)d % Cposoe % Gueaor

| »
1 =, ,
- f eX /ZUZdX- e IZUZdXi .,o‘ ".‘
2mwa? ), ! S

Xi=r L

1 o X +r Xi—r -
= — erfff —=| —erfl —= X X;
20V2mJ o\2 a2

2202 FIG. 12. Correspondence between the covariance and the shape

X e erdx, of the contours of a bivariate Gaussian density function. If two

where erf refers to the error function. random variables; and X, are independertC;,=C(Xj,X,)=0],
Without loss of generality, we considered a zero meaﬁhe shapes of the contours are ellipses with major and minor axes

(4=0) Gaussian distribution. Coarse-grained white r]Oiseparallel toX; and X, axes, respectively. If the variables have equal
ariance(o;=oy), the shape of the contour is a circle. In contrast, if

. . . . . Vi
time series still have a Zgro mean Qau$SIan deHSIty. becau&t\?o variables are not independent, the shapes of the contours are
they are_the output of a linear cqmblnatlon of Gaussian ranéllipses with major and minor axes that are not aligned with the
dom variables. However, the variance decreases as the scalg.cx anqg X,.

factor increases, !
o which they are independent. The dimension of this basis re-
- flects the extension of the system “memory.”

Let us consideN random variablesX;, X,, ..., Xy, with
where 7 refers to the scale factou;, to the variance of the mean values; for j=1,...,N. Elements of the covariance
coarse-grained time series corresponding to sga@do to matrix are defined by
the variance of the original time serid¢scale }. Conse-
quently, the probability that the distance between two data C(X;, %) = EL(X; _Z_)(xk_x_k)]_ (A5)
points of the coarse-grained time series corresponding to

scaler is less than or equal tois

g,.=

: (A4)

—
T

The diagonal elements are the variance of each random vari-

1 1 yi+r ableX;, i.e.,C(X;,X))=0f (see Fig. 12
Pr(|yjf— yl<r=—+/ —f erf( ',—) The covariance matrix is Hermitian since it is symmetric
20 N 2m)_.. oN2/T and all of its elements are real. Therefore, it has real eigen-
yi— 2 values whose eigenvectors form a unitary basis. Each of the
- erf( ',—) etz gy, eigenvectorsy;, and the corresponding eigenvaluks,sat-
oN2/T isfy the equation

The above expression can be approximated numerically.
We set the following conditions for our numerical calcula- CU;=\U;. (AB)
tion: (1) dx— Ax=1/5000;(2) the range of the integration is Hence
[-3,3]=[-(N/2)Ax,(N/2)Ax], with N=30000. Thus, we '
have

T T N ifj=Kk
1 - N KAX + KAX — I UjCUk:)\kUjUk: 0 Ifik (A?)
N> erf( — )—erf( — ) J
2V 2me-y & V2T Let U represent the matrix whose columns are the eigen-
« d-(kax2ry2 AX, vectors of the covariance matrix. Then,
The values obtained with the above formula are plotted in A, O 0
Fig. 3. These numerical values are in good agreement with 0 N\ O 0
those obtained by the MSE algorithm on simulated white 2
noise time series. u'cu=[0 -+ . -+ 0 |=A. (A8)
Next, we show the MSE derivation for . hoise. Note 0 -+ 0 N3 O
that a random process with a power spectrum that decays as 0 -+ - 0
1/f is correlated. In order to numerically calcul&efor 1/f - N

noise, we will show that there exists an orthogonal transfor- We show next thalTCU is also the covariance matrix of
mation that maps the correlated variables into a basis ithe transformed vectoré=UTX, whereX=[X;,X,, ..., X\]",
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Xy In order to calculate the covariance matrix numerically,
. we limit the frequency range of the power spectral density,
PN F denoted as§(w), of the 1/ noise signal to

(A12)

L J
"O "0 SX P(/O) for w1 Sws Wy
W) =
0 otherwise,

..". ’
/ " whereK is a constant. The upper and lower limits on fre-
quency range are useful constraints for numerical calculation
Xj and also realistic in real-world applications where the reso-
lution (sampling frequency of signaand length of data are
bounded.
The autocorrelation functiond, is obtained using the
Wiener-Khintchine theorem,

FIG. 13. The ellipse represents the contour of a bivariate Gauss- K (@
ian density function. The major and minor axes of the ellipse are not () = _f
parallel to the axe¥; and X,, meaning that the random variables
are correlated in this frame. However, there exists a rotation that (A13)
transforms the original frame into one defined by the axeand

Yi, which are aligned with the major and minor axes of the ellipse.where r represents the time lag and Ci is the cosine integral.
Therefore, in this frame the original variables are uncorrelated. The series expansion of the Ci is

W

COSwT

= > {Ciwz) - Cilwy),
ko

uTcU = UTE[(X - X)(X - X)TU = E[UT(X = X)(X - X)TU] Ci(7) = y+ In(7) + 2 (2k1))|k;2: (A14)
= E[(UTX - UTX)(XTU - XTU)] “

— — wherey=0.5772.. is Euler’s constant.
= E[(UT™X - UTX)(UT™X - UT™X)T] Therefore,

=E[(Y-Y)(Y-Y)T]. +o0
e 0= 2 0( 2]+ 3 D - g
Combining this result with Eq(A8), we prove that all trans- 2 w1) o (2k) 12k
formed variables are uncorrelated in the basis formed by the (A15)
ergenvectors of the covariance matiix Furthermore the
varrances;r of the transformed variabley¥;, are \)\ The autocorrelation function is the autocovariance divided
The physrcal meaning of the transformatlbﬁ is illus- by the variance. For any ergodic process, as is the case of
trated in Fig. 13.UT is an orthogonal transformation that 1/f noise, the relation between the autocovariance function
amounts to a rotation of the original coordinate system intaand the covariance matrix is
one defined by the eigenvectors of the covariance matrix, in B 7]

which the transformed variables are independent. ®0) d(r) ®27 - ®(N7)
The probability density function for am-dimensional d(r) PO P(D - DIN-1)D
Gaussian random vectoX, is c=| ®27) @ DO - D(N-2)7)
1 aTeLv_x)
X) = d-W2(x - xTCHx-x)] (A9

P = 2 : o(N) - B B0 |

. . . . (A16)
where|C| is the determinant of the covariance matrix.

For the transformed vecto¥,=UTX, the probability den- The eigenvalues of the covariance matrix are the vari-
sity function is ances of the transformed variables. Since the variafjlase
1 independentS: is calculated using
=
p(Y) = - d-22(Y = V)TAY-Y)] o
V(2m)"|A p(Y,) = L - Yi- Yl ) (A17)
V27TX1 le
(Yi-Yi
=[] ——exp- =[In(v), (A10) We consider k=In(w;/w,) for numerical calculation,
i=1 V27N 2\ i=1 - -
which corresponds to normalizing the power spectrum. We

where also setw;=1/(2A) and w,=N. The numerical calculation

yields the valueSz=1.8. We note that coarse-grainingfl/
{ 1<Y- _?)2} noise does not alter the correlation and the variance of the
I I
(Al11)

1
p(Y;) = ” Texp -—|— signal. Therefore, thé&: value calculated is valid for any

!
al\N2m 2 i scale.
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o White noise 23 1/f noise 50 ‘L*-\_ — 1/f noise 3.5 —— 1/f noise
2'2 40 x*.= ---- Whitenoise | 3.1 F ... ‘White noise
27 ¢ 2 r al §
. 27 L
= 2.6 + 21 ¢ mﬁ 30 + - ) 7 ___III
& 20 [ 23 ¢
251 19 + 20 - 19 | H+I+}{/I
241 1.8 | 1.0 Ly - 15 . . . \
P S RV [yl S 10 10 0 2 4 6 8
10 10 10 10 10 10 10 10 r value m value
N N

. ) . ‘ FIG. 15. S as a function of the parameter(left plot) and m
FIG. 14. & as a function of time series number of data points (right plot). N=3x10* and r=0.15 for all time series. Symbols

N. r=0.15 andm=2 for all time series. Symbols represent the represent the mean values &f for 30 simulated 1f and white
mean values of: for 30 simulated white and f/noise time series, noise time series, and error bars represent the SD.

and the error bars represent the SD.

As stated in Sec. Il, the value defines the similarity

APPENDIX B: TECHNICAL ASPECTS OF MSE criterion used to compare vectors. If the absolute difference

CALCULATIONS between any two matched vector components is larger than

r X SD, then the vectors are different; otherwise, they are
considered equal. Theoretically, for continuous processes,

1. Dependence on time series length and the values varies between 0 and 1; but for experimental time series, the
of parameters m and r recording resolution level determines the lowest possible

The MSE method uses tf& family of statistics. There- value. In any case, the actualalue determines the level of
fore, in this appendix we use simulated Gaussian distribute§CCePted noise, since for largevalues, fewer vectors are

(mean zero, variance) White and 1f noise time series to diStinguishable. Figure 1@eft plot) shows that as thevalue
illustrate the effects o of (i) the time series' finite length  INcreases, thes: value for both simulated ¥/and white
and (ii) the choice of parametera andr. noise tlrne series decreases. Of note, the consisten&¢ of

Figure 14 shows that the mean valueSpfdiverges as the values is preserved. Therefore, the SD$fvaIues(error_
number of data points decreases for both white anél 1/bars)_reflects_ the scatterlng of v_alu_e_s corresponding to differ-
noise. However, since /noise time series are not station- €Nt time seriesintersubject variability. _
ary, as the number of data points decreases, the discrepancy'9ure 15(right plo shows the variation oS with m
between theS: value calculated numerically and the meanValUe, i-e., the vector length. Betweem=1 andm=5, the
value for 30 simulated time series increases faster fgr 1/Mean values of vary less than 2% and the coefficient of
noise than for white noise time series. For both types ofaration(CV=SD/meanis less than 3% for both types of
noise, forN=1x 105, the discrepancy between the numerical"0iSe. For largem, both theS and the CV increase dramati-
and the mean value & for simulated time series is less cally due to the_f|n|te number of (_Jlata points, since longer and
than 0.5%. However, fak=1x 10° the discrepancy between longer time series are required in order to calculete the_fre-
these values is approximately 12% in the case dfrdise ~ duency of them and (m+1)-component vectors with suffi-
but still less than 1% in the case of white noise. FurthermoreSient statistical accuracy. _ _
even for very large time series, the SD®f values for 1f For a discussion of the optimal selectionmfandr pa-
noise is never as small as for white noise. These results af@meters, and the confidence intervalsSpfestimates, see
due to the fact that stationarity is a basic requiremerof ~[49]- We note that fom=2 andr=0.15, the discrepancies
The MSE method presents the same limitation. One possibleetween the mean values &f for simulated time series and
solution to this problem is to decompose the original timethe numerically calculated values are less than 1% for both
signal into multiple “well-behaved” signals, each corre- 1]f and vyhrte noises. This result suggests tha_t for most prac-
sponding to different time scales. tical appllcatlons,_the error bars associated with computation

We also note that as the number of data points decrease®f St values are likely smaller than the error bars related to
the consistency o8: results is progressively lost. Therefore, experlmental sources and also to inter- and intrasubject vari-
there is no guarantee thatS is higher for time serieathan ~ ability.
for time seriesh, both with N data points, the same result
will hold if only N’ data points are used to calcul&g in
particular if N>N’ or N’>N.

We note that the coarse-graining procedure generates The output of an experiment may be contaminated by
times series with a decreasing number of data points. Howdifferent types of noise. Here, we discuss the effects of MSE
ever, coarse-grained time series are not a subset of the origanalysis of superimposing uncorrelatéshite) noise on a
nal time series. Instead, they contain information about thghysiologic time series. Common sources of uncorrelated
entire original time series. Therefore, the error due to thenoise for interbeat interval time series are the analog-digital
decrease of coarse-grained time series length is likely loweconversion devices, whose accuracy depends both on the
than that resulting from selecting a subset of the originakample frequency and the number of bits used, and computer
time series. rounding errors. Figure 16 shows that superimposing un-

2. Effect of noise, outliers, and sample frequency
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FIG. 16. Effects of different amounts of Gaussian white noise TS e
on MSE curves. The MSE curve labeled “original” corresponds to -
the MSE results for the RR intervals time series from a healthy B 13 //'
subject. [ /‘\’\A
0.9 -
correlated noise on a time series affects mainly the entropy i
values on small scalesii) the discrepancy between the en- 0 T T e
tropy values assigned to the original time series and those 1
assigned to time series with superimposed uncorrelated noise L @
increases as the signal-to-noise ratio decredsgsior small 09 [
scales,S: values monotonically decrease with scale factor a [
similar to white noise time series. This effect becomes more © 0.8 [
prominent as the signal-to-noise ratio decreases. -
Outliers may also affecs: values because they change 0.7 -
the time series SD and, therefore, the value of paranteter 06 [ . ‘ ‘ .

that defines the similarity criterion.
In the interbeat interval time series, two types of outliers

12
Scale factor

16

20

are commonly found resulting frorti) missed beat detec-
tions by automated or visual electrocardiographic analysis, FIG. 18.(a) The interbeat interval time series of a young healthy
and(ii) recording artifact§Fig. 18a)]. These outliers do not Subject with 15 outliers that represent artifacts or missed beat de-
have physiologic meaning. However, they may dramaticallyiections. Note that the absolute value of the outliers is much larger
affect the entropy calculation if their amplitude is a few or- than the mean RR mterva(lb)_ The interbeat interval time _serles of
ders of magnitude higher than the mean value of the tim@n elderly healthy subject with frequent premature ventricular com-
series. pIexes(EVCs) (Fwo are represented in the f!gﬂlrféc) MSE results

For the analyis of physilogi thyhm dynamics, cardiac” 2 L7 seresshoun 1 o e sl ne s e VSE et
gﬁﬁitgr;ﬁii;“ggt?)t]m%;nnﬁg Stlr:leusarg?)ﬂteudrgagf bae” téi?(;ie:c at e same time series excluding outliers; and the dashed line is the
(sinus and |'.10nsinl)|.s';nterbeat’ intervals is of the same order MSE result for the original time series but using amalue that is

f itud heref he inclusi f latively | calculated by excluding the outlier®l) MSE results for time series
of magnitude. Therefore, the inclusion of a relatively low shown in plot(b): solid and dotted lines are the MSE results for

unfiltered and filteredPVCs removegltime series.

10 . S
2 5 percentage of nonsinus beats should not significantly change
2 the entropy values.
§ 8 1 Consider a time serieX, with N data pointsM of which
w 7L are outliers with amplitudé\. Let X’ represent the time se-
2 °r ries that is obtained from the time seriédy excluding the
.*_3 51 0.09 outliers. Assume tha¥l <N and thatA=aX’, whereX' is the
g 47 oo time series mean value. It can be shown #&X) - ?(X’)
< 3 003 =(a%e-ea’-2ea) u(X')?, wheree=M/N, and o and u are
2 N S the time series SD and mean value, respectively.

[~

04 0.6
% of outliers

0.8 1 Figure 17 shows that a small number of outliers with high
amplitude has similar effects on the variance as a higher
percentage of outliers with lower amplitude.

FIG. 17. Contour plot showing how the percentage of outliers Figure 18a) presents a time series with 0.05% outliers
and their amplituddrelative to the mean value of the time sejies which account for an increase in the time series SD of about

affects the variance of the time series. Lines connect pairs of value§4% Figure 1@) presents a time series with approximately
that change the variance by the same amount. ‘
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ten times more outliers than in Fig. . Since the ampli- 0.12
tude of the outliers is of the same order of magnitude as the o1 b
remaining data points, the difference between the SD of the )
time series which includes these outliers and that which ex- - 0.08 |
cludes them is only 1%. N
Changes of the time series SD proportionally affect the — 3% 006 -
value of parameter. Higherr values mean that fewer vec- g oo |
tors will be distinguishable and that the time series will ap- ~
pear more regular. Figure (@ presents the MSE results for B 0o |
the unfiltered time serie@®) (solid line) and the correspond-
ing time series obtained by excluding the outliédotted 0
line). As expected, the MSE curve corresponding to the un- 1 2 3 45 6 7 8 9 1011 12
filtered time series is lower than the MSE curve correspond- Scale factor

ing to the filtered time series. o S _

The presence of a small percentage of outliers may sig- FIG. 19. Probability of dIStIHQU!ShIng any tV\{O data_pomts_ran-
nificantly alter the SD but should not substantially modify dpmly chosen from the coarse-grained time series of binary discrete
the temporal structure of the time series. In Fig(clgthe  UMe Seriesr=0.59).
dashed line represents the MSE results for the unfiltered time
series obtained using thevalue derived from the filtered and between 1/2 and is higher that. Therefore, the prob-
time series. Note that when using the “correctValue, the  ability of distinguishing two data points randomly chosen
MSE curves for the unfiltered and the filtered time seriedrom the coarse-grained time seri€%(|x,—x,|>r), is p(0)
overlap. Xp(l)=1/4%x1/4=1/16=0.0625.

Figure 18d) compares the MSE results for time seribs Similarly, there are eight different three-component se-
and for the time series that results from excluding the outli-quences that can be built from the original binary series: 000,
ers. The two MSE curves almost overlap, showing that thé#01, 010, 100, 110, 011, 101, and 111. Consequently, the
entropy measure is robust to the presence of a relativelglphabet of the coarse-grained time series corresponding to
small percentage of low-amplitude outliers. scale 3 is0,={0,1/3,2/3,%} and the probabilities associ-

For a time series sampled at frequerfcythe temporal ated with the occurrence of each value are 1/8, 3/8, 3/8, and
location of the actual heartbeat can be identified only up tdl/8, respectively. For=0.5, only the distances between the
an accuracy ofA=1/f. Each data point of a coarse-grained coarse-grained data points 0 and 2/3, 1/3 and 1, and 0 and 1
heartbeat interval time series is an average of consecutivare higher tham. Therefore,P,(|x,—X,| >r)=p(0) X p(2/3)
differences. For exampley;=(RR+---+RR_p/7=[(t,  +p(1/3) X p(1)+p(0) X p(1)=0.1094.

—t)+- -+ (t,~t_)]=(t,~t))/ 7. Therefore, the accuracy of Note that the probability of distinguishing two data points
averaged heartbeat intervals of coarse-grained time series @ the coarse-grained time series increases from scale 2 to
A/ 7, i.e., the accuracy increases with scale. scale 3(Fig. 19. As a consequencé&: also increases, con-

S is underestimated for finite sample frequency valuedrary to both analytic and numerical results presented in Fig.
[48]. However, the discrepancy between the valu§otal- 3. This artifact, which affects discrete time series, is due to
culated for a time series sampled at a finite frequency and thidne fact that the size of the alphabet of the coarse-grained
value of S corresponding to the limit lig Sz decreases time series increases with scale.
with scale. For analysis on small time scales, it may be im- In general, for scal@, the alphabet set i®,={i/n} with
portant to consider a correction of this eff¢d8]. We note 0<i<n, and the corresponding probability sgi(i/n)} is
that the conclusions that we present in this paper are najenerated by the expressioni/[2"Xi!(n-i)!], O<i<n.

altered by the value of sample frequency. The value ofP,(|x,—xp|>T) is calculated by the equation
N-1 n

APPENDIX C: MSE ANALYSIS OF DISCRETE TIME P(|%a=Xp| > 1) = > p(j/n) > pliln), (C1)
SERIES i=0 i

Here we discuss an important artifact that affects the MSEvherei’=N+j+1 if n=2N (even scaleésandi’=N+]j if n
analysis of discrete time series, such as DNA sequences. =2N-1 (odd scales

Let us consider an uncorrelated random variaklewith Figure 19 shows how the probability varies with the scale
alphabe® ={0, 1}. Both symbols occur with probability 1/2. factor. We note an attenuated oscillation, which as a conse-

All possible different two-component sequences builtquence also shows up on the MSE output curve for the same
from the binary series are 00, 01, 10, and 11. Therefore, théme series. The period of this oscillation depends only on
alphabet of the coarse-grained time series corresponding ther value.
scale 2 is®,={0,1/2,1. The probabilities associated with  To overcome this artifact, one approach is to select the
the occurrence of the different values are 1/4, 1/2, and 1/4scales for which the entropy values are either local minima
respectively. Let us consider that thealue used to calculate or maxima of the MSE curve. We adopted this procedure in
S is 0.5. In this case, only the distance between the coarsealculating the complexity of coding versus noncoding DNA
grained values 0 and (and not between values 0 and 1/2, sequencegFig. 10. Note that for uncorrelated random bi-
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nary time seriegFig. 19, and forr=0.5, the sequence of windows of length 2. Since this procedure is not a one-to-

entropy values at odd or even scales monotonically decreasese mapping, some information encoded on the original time

with scale factor, similar to the MSE curve for white noise series is lost. Therefore, relatively long time series are re-

time series, as described in Sec. (Fig. 3). quired. We adopted this procedure in calculating the com-
An alternative approach is to map the original discreteplexity of binary time series derived from a computer execut-

time series to a continuous time series, for example by counipje file and a computer data filEig. 9).

ing the number of symbolg§l’'s or 0's) in nonoverlapping
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