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Traditional approaches to measuring the complexity of biological signals fail to account for the multiple time
scales inherent in such time series. These algorithms have yielded contradictory findings when applied to
real-world datasets obtained in health and disease states. We describe in detail the basis and implementation of
the multiscale entropysMSEd method. We extend and elaborate previous findings showing its applicability to
the fluctuations of the human heartbeat under physiologic and pathologic conditions. The method consistently
indicates a loss of complexity with aging, with an erratic cardiac arrhythmiasatrial fibrillationd, and with a
life-threatening syndromescongestive heart failured. Further, these different conditions have distinct MSE
curve profiles, suggesting diagnostic uses. The results support a general “complexity-loss” theory of aging and
disease. We also apply the method to the analysis of coding and noncoding DNA sequences and find that the
latter have higher multiscale entropy, consistent with the emerging view that so-called “junk DNA” sequences
contain important biological information.
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I. INTRODUCTION

Physiologic systems are regulated by interacting mecha-
nisms that operate across multiple spatial and temporal
scales. The output variables of these systems often exhibit
complex fluctuations that are not simply due to “contamina-
tive” noise but contain information about the underlying
dynamics.

Two classical approaches to time series analysis are re-
lated to deterministic and stochastic mechanisms. A funda-
mental underpinning of the former approach is Takens’ theo-
rem f1,2g, which states that it is possible to reach full
knowledge of a high dimensional deterministic system by
observing a single output variable. However, since experi-
mental time series, even when generated by deterministic
mechanisms, are most likely affected by dynamical noise, the
purely deterministic approach may be of limited use. Never-
theless, for some practical applications, a low dimensional
dynamics may be assumed and then the results tested for
internal consistencyf3g.

The stochastic approach is aimed at quantifying the sta-
tistical properties of the output variables and developing
tractable models that account for those properties. The diffu-
sion process is a classic example of how a stochastic ap-
proach may contribute to the understanding of a dynamical
system. At a “macroscopic” level, the diffusion equation can
be derived from Fick’s law and the principle of conservation
of mass. Alternatively, at a “microscopic” level it is possible
to derive the diffusion equation assuming that each particle
can be modeled as a random walker, taking steps of lengthl
in a given direction with probabilityp. The theory of Brown-
ian motion, which is based on random walk models, together
with experimental results, contributed to the understanding
of the atomic nature of matter.

Time series generated by biological systems most likely
contain deterministic and stochastic components. Therefore,

both approaches may provide complementary information
about the underlying dynamics. The method we use in this
paper for the analysis of physiologic time series does not
assume any particular mechanism. Instead, our method is
aimed at comparing the degree of complexity of different
time series. Such complexity-related metricsf4g have poten-
tially important applications to discriminate time series gen-
erated either by different systems or by the same system
under different conditions.

Traditional methods quantify the degree of regularity of a
time series by evaluating the appearance of repetitive pat-
terns. However, there is no straightforward correspondence
between regularity, which can be measured by entropy-based
algorithms, and complexity. Intuitively, complexity is associ-
ated with “meaningful structural richness”f5g, which, in
contrast to the outputs of random phenomena, exhibits rela-
tively higher regularity. Entropy-based measures, such as the
entropy rate and the Kolmogorov complexity, grow mono-
tonically with the degree of randomness. Therefore, these
measures assign the highest values to uncorrelated random
signalsswhite noised, which are highly unpredictable but not
structurally “complex,” and, at a global level, admit a very
simple description.

Thus, when applied to physiologic time series, traditional
entropy-based algorithms may lead to misleading results. For
example, they assign higher entropy values to certain patho-
logic cardiac rhythms that generate erratic outputs than to
healthy cardiac rhythms that are exquisitely regulated by
multiple interacting control mechanisms. Substantial atten-
tion, therefore, has been focused on defining a quantitative
measurement of complexity that assigns minimum values to
both deterministic/predictable and uncorrelated random/
unpredictable signalsf6g. However, no consensus has been
reached on this issue.

Our approach to addressing this long-standing problem
has been motivated by three basic hypotheses:sid the com-
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plexity of a biological system reflects its ability to adapt and
function in an ever-changing environment;sii d biological
systems need to operate across multiple spatial and temporal
scales, and hence their complexity is also multiscaled; and
siii d a wide class of disease states, as well as aging, which
reduce the adaptive capacity of the individual, appear to de-
grade the information carried by output variables. Thus, loss
of complexity may be a generic feature of pathologic dynam-
ics. Accordingly, our approach to defining a complexity mea-
surement focuses on quantifying the information expressed
by the physiologic dynamics over multiple scales.

Recently, we introduced a new method, termed multiscale
entropy sMSEd f7–11g. Due to the interrelationship of en-
tropy and scale, which is incorporated in the MSE analysis,
the results are consistent with the consideration that both
completely ordered and completely random signals are not
really complex. In particular, the MSE method shows that
correlated random signalsscolored noised are more complex
than uncorrelated random signalsswhite noised. Compared to
traditional complexity measures, MSE has the advantage of
being applicable to both physiologic and physical signals of
finite length.

In this paper, we apply the MSE method to the study ofsid
the cardiac interbeat interval time series, the output of a ma-
jor physiologic system regulated by the involuntary auto-
nomic nervous system; andsii d biological codes. First, we
seek to characterize changes in the complexity of cardiac
dynamics due to aging and disease, during both wake and
sleeping periods. This analysis is a major extension of our
previous workf7g that focused on application of MSE to a
more limited database. In addition, we address the question
of applying the MSE method to binary sequences in order to
study the complexity of coding versus noncoding human
DNA sequences.

The structure of the paper is as follows. In Sec. II we
provide the mathematical background for calculating the en-
tropy rate and discuss its physical meaning. We also present
a short description of the approximate entropysAEd and the
sample entropysSEd algorithms, which have been widely
used in the analysis of short, noisy physiologic time series.
In Sec. III, we review the MSE method, which incorporates
theSE statistics, and discuss the results of applying the MSE
method to white and 1/f noises. The analytical calculations
of SE for both types of noises are presented in Appendix A.
In Sec. IV, we apply the MSE method to a cardiac interbeat
interval database comprising recordings of healthy subjects,
subjects with atrial fibrillation, an erratic cardiac arrhythmia,
and subjects with congestive heart failure. We address the
question of quantifying the information in MSE curves for
possible clinical use. We further discuss the effects of outli-
ers, white noise superimposed on a physiologic time series,
and finite sample frequency values in Appendix B. In Sec. V,
we apply the MSE method to binary sequences of artificial
and biological codes, aimed at quantifying the complexity of
coding and noncoding DNA sequences. Technical aspects of
applying the MSE method to such discrete sequences are
described in Appendix C. Section VI presents conclusions.

II. BACKGROUND

The entropyHsXd of a single discrete random variableX
is a measure of its average uncertainty. Shannon’s entropy
f12g is calculated by the equation

HsXd = − o
xiPQ

psxidlogpsxid = − Eflogpsxidg, s1d

whereX represents a random variable with a set of valuesQ
and probability mass functionpsxid=PrhX=xij, xi PQ, andE
represents the expectation operator. Note thatp log p=0 if
p=0.

For a time series representing the output of a stochastic
process, that is, an indexed sequence ofn random variables,
hXij=hX1,… ,Xnj, with a set of valuesU1,… ,Un, respec-
tively, andXi PUi, the joint entropy is defined as

Hn = HsX1,X2,…,Xnd

= − o
x1PU1

¯ o
xnPUn

psx1,…,xndlog psx1,…,xnd, s2d

where psx1,… ,xnd=PrhX1=x1,… ,Xn=xnj is the joint prob-
ability for the n variablesX1,… ,Xn.

By applying the chain rule to Eq.s2d, the joint entropy
can be written as a summation of conditional entropies, each
of which is a non-negative quantity,

Hn = o
i=1

n

HsXiuXi−1,…,X1d. s3d

Therefore, one concludes that the joint entropy is an increas-
ing function ofn.

The rate at which the joint entropy grows withn, i.e., the
entropy rateh, is defined as

h = lim
n→`

Hn

n
. s4d

For stationary ergodic processes, the evaluation of the rate
of entropy has proved to be a very useful parameter
f2,5,13–17g.

Let us consider aD-dimensional dynamical system. Sup-
pose that the phase space of the system is partitioned into
hypercubes of content«D and that the state of the system is
measured at intervals of timed. Let psk1,k2,… ,knd denote
the joint probability that the state of the system is in the
hypercubek1 at t=d, in thek2 at t=2d, and in the hypercube
kn at t=nd. The Kolmogorov-SinaisKSd entropy is defined
as

HKS= − lim
d→0

lim
«→0

lim
n→`

1

nd
o

k1,…,kn

psk1,…,kndlog psk1,…,knd

= lim
d→0

lim
«→0

lim
n→`

1

nd
Hn. s5d

For stationary processesf18g, it can be shown that

lim
n→`

Hn

n
= lim

n→`
HsXnuXn−1,…,X1d. s6d

Then, by the chain rule, it is straightforward to show that
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HKS= lim
d→0

lim
«→0

lim
n→`

sHn+1 − Hnd. s7d

The state of a system at a certain instantti is partially
determined by its history,t1,t2,… ,ti−1. However, each new
state carries an additional amount of new information. The
KS entropy measures the mean rate of creation of informa-
tion, in other words, the decrease of uncertainty at a receiver
by knowing the current state of the system given the past
history.

Numerically, only entropies of finite ordern can be com-
puted. As soon asn becomes large with respect to the length
of a given time series, the entropyHn is underestimated and
decays toward zero. Therefore, Eq.s7d is of limited use to
estimate the entropy of finite length “real-world” time series.
However, several formulas have been proposed in an attempt
to estimate the KS entropy with reasonable precision. Grass-
berger and Procacciaf15g suggested characterizing chaotic
signals by calculating theK2 entropy, which is a lower bound
of the KS entropy.

Let hXij=hx1,… ,xi ,… ,xNj represent a time series of
length N. Consider the m-length vectors: umsid
=hxi ,xi+1,… ,xi+m−1j, 1ø i øN−m+1. Let ni

msrd represent
the number of vectorsums jd that are close to the vectorumsid,
i.e., the number of vectors that satisfydfumsid ,ums jdgø r,
whered is the Euclidean distance.Ci

msrd=ni
msrd / sN−m+1d

represents the probability that any vectorums jd is close to the
vector umsid. The average of theCi

m, Cmsrd=1/sN−m
+1doi=1

sN−m+1dCi
msrd, represents the probability that any two

vectors are withinr of each other.K2 is defined as

K2 = lim
N→`

lim
m→`

lim
r→0

− lnfCm+1srd − Cmsrdg. s8d

Following the same nomenclature, Eckmann and Ruelle
sERd f2g defined the function Fmsrd=1/sN−m
+1doi=1

N−m+1ln Ci
msrd, considering the distance between two

vectors as the maximum absolute difference between their
components: dfumsid ,ums jdg=maxhuxsi +kd−xs j +kdu :0øk
øm−1j. Note that Fm+1srd−Fmsrd
<oi=1

N−m+1lnfCi
msrd /Ci

m+1srdg, represents the average of the
natural logarithm of the conditional probability that se-
quences that are close to each other form consecutive data
points will still be close to each other when one more point is
known. Therefore, Eckmann and Ruelle suggested calculat-
ing the KS entropy as

HER = lim
N→`

lim
m→`

lim
r→0

fFmsrd − Fm+1srdg. s9d

Although this formula has been useful in classifying low-
dimensional chaotic systems, it does not apply to experimen-
tal data since the result is infinity for a process with super-
imposed noise of any magnitudef19g. For the analysis of
short and noisy time series, Pincusf17g introduced a family
of measures termed approximate entropy,AEsm,rd, defined
as

AEsm,rd = lim
N→`

fFmsrd − Fm+1srdg. s10d

AE is estimated by the statistics,

AEsm,r,Nd = Fmsrd − Fm+1srd. s11d

AE was not intended as an approximate value of ER en-
tropy. Rather,AE is a regularity statistic. It applies to “real-
world” time series and, therefore, has been widely used in
physiology and medicinef4g. Lower AE values are assigned
to more regular time series while higherAE values are as-
signed to more irregular, less predictable, time series.

Recently, a modification of theAE algorithm, sample en-
tropy sSEd f20g, has been proposed.SE has the advantage of
being less dependent on time series length, and showing rela-
tive consistency over a broader range of possibler ,m, andN
values. Starting from the definition of theK2 entropy, Rich-
man and Moormanf20g defined the parameter

SEsm,rd = lim
N→`

− ln
Um+1srd
Umsrd

, s12d

which is estimated by the statistic

SEsm,r,Nd = − ln
Um+1srd
Umsrd

. s13d

The differences betweenUm+1srd andCm+1srd, Umsrd and
Cmsrd result froms1d defining the distance between two vec-
tors as the maximum absolute difference between their com-
ponents; s2d excluding self-matches, i.e., vectors are not
compared to themselves; ands3d given a time series withN
data points, only the firstN−m vectors of lengthm, umsid, are
considered, ensuring that, for 1ø i øN−m, the vectorum+1sid
of length m+1 is also defined.SE is precisely equal to the
negative of the natural logarithm of the conditional probabil-
ity that sequences close to each other form consecutive data
points will also be close to each other when one more point
is added to each sequence. Figure 1 illustrates howSE values
are calculated.

Note that

AEsm,r,Ndu
1

N − m
o
i=1

N−m

ln
ni

m

ni
m+1 s14d

and

SEsm,r,Nd = ln

o
i=1

N−m

ni8
m

o
i=1

N−m

ni8
m+1

, s15d

where ni8
m differs from ni

m to the extend that forSE self-
matches are not countedsi Þ jd and 1ø i øN−m.

The difference betweenAE and SE can be related to the
Renyi entropies, SRsqd, which are defined bySRsqd
=lnsoipi

qd / s1−qd. AE approximates the Renyi entropy of or-
der q=1 sthe usual Shannon entropyd and SE the Renyi en-
tropy of orderq=2. The advantage of the latter is that the
estimatorfEq. s15dg is unbiasedf21g.

Both SE and AE measure the degree of randomnesssor
inversely, the degree of orderlinessd of a time series. How-
ever, as noted, there is no straightforward relationship be-
tween regularity, measured by entropy-based metrics, and
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complexity f22g. An increase in entropy is usually but not
always associated with an increase in complexity. For ex-
ample, higher entropy values are assigned to randomized sur-
rogate time series than to the original time series even when
the original time series represent the output of complex
dynamics with correlational structures on multiple spatio-
temporal scales. However, the process of generating surro-
gate data is designed to destroy correlations and, conse-
quently, degrades the information content of the original
signal. In fact, entropy-based metrics are maximized for ran-
dom sequences, although it is generally accepted that both
perfectly ordered and maximally disordered systems possess
no complex structuresf23g. A meaningful physiologic com-
plexity measure, therefore, should vanish for these two ex-
treme states.

Of related note, when applied to physiologic data, bothAE
and SE algorithms assign higher entropy values to certain
pathologic time series than to time series derived from free-
running physiologic systems under healthy conditionsf24g.
However, pathologic time series represent the output of less

adaptive si.e., more impairedd, and therefore, presumably,
less complex systemsf25,26g. One reason for obtaining these
“nonphysiologic” results is the fact thatAE andSE are based
on a single scale. We note that both the KS entropy and the
relatedAE parameters depend on a function’s one-step differ-
encese.g.,Hn+1−Hnd and reflect the uncertainty of the next
new point given the past history of the series. Therefore,
these measures do not account for features related to struc-
ture and organization on scales other than the shortest one.

For physical systems, Zhangf23,27g proposed a general
approach to take into account the information contained in
multiple scales. Zhang’s complexity measure is a sum of
scale-dependent entropies. It has the desirable property of
vanishing in the extreme ordered and disordered limits, and
is an extensive quantity. However, since it is based on Shan-
non’s definition of entropy, Zhang’s method requires a large
amount of almost noise-free data, in order to map the data to
a discrete symbolic sequence with sufficient statistical accu-
racy. Therefore, it presents obvious limitations when applied
to free-running physiologic signals that typically vary con-
tinuously and have finite length.

To overcome these limitations, wef7g recently introduced
the multiscale entropysMSEd method, applicable both to
physical and physiologic time series. Our method is based on
Zhang’s and Pincus’s approach.

III. MULTISCALE ENTROPY (MSE) METHOD

Given a one-dimensional discrete time series,
hx1,… ,xi ,… ,xNj, we construct consecutive coarse-grained
time series,hystdj, corresponding to the scale factor,t. First,
we divide the original times series into nonoverlapping win-
dows of lengtht; second, we average the data points inside
each windowsFig. 2d. In general, each element of a coarse-
grained time series is calculated according to the equation

yj
std =

1

t
o

i=s j−1dt+1

jt

xi, 1 ø j ø N/t. s16d

For scale one, the time serieshys1dj is simply the original
time series. The length of each coarse-grained time series is
equal to the length of the original time series divided by the
scale factor,t.

Finally, we calculate an entropy measuresSEd for each
coarse-grained time series plotted as a function of the scale

FIG. 1. A simulated time seriesuf1g ,… ,ufNg is shown to illus-
trate the procedure for calculating sample entropysSEd for the case
m=2 and a given positive real valuer. Dotted horizontal lines
around data pointsuf1g ,uf2g, anduf3g representuf1g± r, uf2g± r,
anduf3g± r, respectively. Two data points match each other, that is,
they are indistinguishable, if the absolute difference between them
is ør. Typically, r varies between 10% and 20% of the time series
SD. The symbols is used to represent data points that match the
data pointuf1g. Similarly, the symbols3 andn are used to repre-
sent data points that match the data pointsuf2g and uf3g, respec-
tively. Consider the two-components-3 template sequence
suf1g ,uf2gd and the three-components -3 - D template sequence
suf1g ,uf2g ,uf3gd. For the segment shown, there are twos-3 se-
quences,suf13g ,uf14gd and suf43g ,uf44gd, that match the template
sequencesuf1g ,uf2gd, but only ones-3-n sequence that matches
the template sequencesuf1g ,uf2g ,uf3gd. Therefore, in this case, the
number of sequences matching the two-component template se-
quences is two and the number of sequences matching the three-
component template sequence is 1. These calculations are repeated
for the next two-component and three-component template se-
quence, which aresuf2g ,uf3gd and suf2g ,uf3g ,uf4gd, respectively.
The number of sequences that match each of the two- and three-
component template sequences are again summed and added to the
previous values. This procedure is then repeated for all other
possible template sequences,suf3g ,uf4g ,uf5gd ,… ,sufN-2g ,
ufN-1g ,ufNgd, to determine the ratio between the total number of
two-component template matches and the total number of three-
component template matches.SE is the natural logarithm of this
ratio and reflects the probability that sequences that match each
other for the first two data points will also match for the next point.

FIG. 2. Schematic illustration of the coarse-graining procedure.
Adapted from Ref.f8g.
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factor t. We call this procedure multiscale entropysMSEd
analysis.

The MSE curves are used to compare the relative com-
plexity of normalized time seriesssame variance for scale
oned based on the following guidelines:s1d if for the major-
ity of the scales the entropy values are higher for one time
series than for another, the former is considered more com-
plex than the latter;s2d a monotonic decrease of the entropy
values indicates the original signal contains information only
in the smallest scale.

Zhang defined complexity as the integral of all the scale-
dependent entropies:K=e1

NdtHstd, which for a discrete sig-
nal could be estimated byK=oi=1

N HsidsN→`d. Due to the
finite length of real-world time series, entropy can only be
calculated for a finite range of scales. The sum to infinity is
not feasible. Since different sets of entropy values can yield
the sameK value, we focus on the analysis of the MSE
curves instead of assigning a single complexity value to each
time series. Further, for application to biological systems, the
MSE curve may provide useful insights into the control
mechanisms underlying physiologic dynamics over different
scales. We note, however, that an approximation ofK for
scales between one and twenty further supports the conclu-
sions we present in this paper.

Unless otherwise specified, the values of the parameters
used to calculateSE areN=23104, m=2, andr =0.15.

The value of the parameterr is a percentage of the time
series SD. This implementation corresponds to normalizing
the time series. As a consequence,SE results do not depend
on the variance of the original time series, i.e., the absolute
value of the data points, but only on their sequential order-
ing.

In general, however, the entropy measures reflect both the
variance of a time series and its correlation properties. To
illustrate this point, we examine two special cases where
these two effects can be isolated. Cases1d: Consider two
uncorrelated random variables,X and Y, with set of values
hx1,x2,… ,xNj and hy1,y2,… ,yMj, respectively. Assuming
that all values are equally probable,psxid=1/N, the entropy
of the random variablesX is HsXd=−oi=1

N 1/N log 1/N
=log N. Similarly, HsYd=log M. If N.M, then HsXd
.HsYd. Therefore, for the same level of resolution, the
larger the set of alphabet of a random variable, the larger its
variance and the entropy value. Cases2d: Consider a periodic
signal with varianceuau and a random signal with variance
ubu, such thatuau@ ubu. The entropy of a periodic signal is
zero, since each data point occurs with probability 1. There-
fore, the entropy of a periodic signal is never larger than the
entropy of a random signal regardless of the variance of the
signals.

With the exception of such very simple cases, it is not
possible to weight separately the contributions of the SD and
the correlation properties to the entropy value. Signals with
higher variability and those that are more random tend to be
more entropic. Nevertheless, the actual entropy value results
from a complex combination of these two factors.

In the MSE method,r is set at a certain percentagesusu-
ally 15%d of the original time series SD, and remains con-
stant for all scalesf10,28g. We do not recalculater for each

coarse-grained time series. After the initial normalization,
subsequent changes of the variance due to the coarse-
graining procedure are related to the temporal structure of
the original time series, and should be accounted for by the
entropy measure. The initial normalization, however, insures
that the MSE values assigned to two different time series are
not a trivial consequence of possible differences between
their variances but result from different organizational struc-
tures.

We first applied the MSE method to simulated white and
1/ f noises and compared the numerical results with the en-
tropy values calculated analyticallysAppendix Ad. Figure 3
presents the results. For scale one, a higher value of entropy
is assigned to white noise time series in comparison with 1/f
time series. However, while the value of entropy for the
coarse-grained 1/f series remains almost constant for all
scales, the value of entropy for the coarse-grained white
noise time series monotonically decreases, such that for
scales.4 it becomes smaller than the corresponding values
for 1/ f noise. This result is consistent with the fact that,
unlike white noise, 1/f noise contains complex structures
across multiple scalesf23,27g. Note that in the case of white
noise, as the length of the window used for coarse-graining
the time series increasessi.e., the resolution decreasesd, the
average value inside each window converges to a fixed value
since no new structures are revealed on larger scales. Conse-
quently, coarse-grained time series are progressively
“smoothed out” and the standard deviation monotonically
decreases with the scale factor. Therefore, the monotonic de-
crease of entropy with scale, which mathematically results
from the decrease of standard deviation, reflects the fact that
white noise has information only on the shortest scale. In
contrast, for 1/f noise signals the average values of the fluc-
tuations inside each window do not converge to a given
value. In other words, the statistical properties of fluctuations
within a window se.g., 10 data pointsd are not the same as

FIG. 3. MSE analysis of 30 simulated Gaussian distributed
smean zero, variance oned white and 1/f noise time series, each
with 33104 data points. Symbols represent mean values of entropy
for the 30 time series and error bars the SD, which in average is
0.05 for white noise and 0.02 for 1/f noise. Lines represent numeri-
cal evaluation of analyticSE calculation. Note that the differences
between the mean values ofSE and the corresponding numerical
values are less than 1%. SD is larger for 1/f noise time series
because of nonstationarity. Adapted from Ref.f7g. sSee Appendix
A.d
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those of the next window because new information is re-
vealed at all scales. The MSE uses the average value of the
fluctuations as the representative statistical property for each
block and measures the irregularity of the block-to-block dy-
namics.

The discrepancy between the simulation and the analyti-
cal results is less than 0.5%. In Appendix B, we discuss how
the time series length,N, and the values of parametersr and
m affect SE results for both white and 1/f noise time series.
We further discuss the effects of uncorrelated noise and out-
liers on MSE results of cardiac interbeat interval time series.

IV. MSE ANALYSIS OF CARDIAC INTERBEAT INTERVAL
TIME SERIES

We next apply the MSE method to the cardiac interbeat
sRRd interval time series derived from 24 hour continuous
electrocardiographicsECGd Holter monitor recordings of
healthy subjects, subjects with congestive heart failure, a
life-threatening condition, and subjects with atrial fibrilla-
tion, a major cardiac arrhythmia.1 We test the hypothesis that
under free-running conditions, healthy interbeat interval dy-
namics are more complex than those with pathology during
both daytime and nightime hours.

The data for the normal control group were obtained from
24 hour Holter monitor recordings of 72 healthy subjects, 35
men and 37 women, aged 54.6±16.2 yearssmean±SDd,
range 20-78 years. ECG data were sampled at 128 Hz. The
data for the congestive heart failure group were obtained
from 24 hour Holter recordings of 43 subjectss28 men and
15 womend aged 55.5±11.4 yearssmean±SDd, range 22-78
years. New York Heart AssociationsNYHA d functional clas-
sification f30g is provided for each subject: 4 subjects were
assigned to class I, 8 to class II, 17 to class III, and 14 to
class III-IV. Fourteen recordings were sampled at 250 Hz and
29 recordings were sampled at 128 Hz. The data for the atrial
fibrillation group were obtained from 10 hour Holter record-
ings sampled at 250 Hz of nine subjects. Datasets were fil-
tered to exclude artifacts, premature ventricular complexes,
and missed beat detectionsssee Appendix Bd. Of note, the
inclusion of the premature ventricular complexes does not
qualitatively change our analysis.

Representative time series of healthy, congestive heart
failure, and atrial fibrillation group subjects are presented in
Fig. 4.

When discussing the MSE results of cardiac interbeat in-
terval time series, we refer to“large” and “small” time scales
when the scales are larger or smaller than one typical respi-
ratory cycle length, that is, approximately five cardiac beats.

In Fig. 5, we present the results of the MSE analysis of
the RR interval time series for the three groups of subjects.
We observe three different types of behaviors:sid The en-
tropy measure for time series derived from healthy subjects
increases on small time scales and then stabilizes to a rela-
tively constant value.sii d The entropy measure for time se-

ries derived from subjects with congestive heart failure
markedly decreases on small time scales and then gradually
increases.siii d The entropy measure for time series derived
from subjects with atrial fibrillationf31g monotonically de-
creases, similar to white noisesFig. 3d.

For scale one, which is the only scale considered by tra-
ditional single-scale based “complexity” methods, the en-
tropy assigned to the heartbeat time series of subjects with
atrial fibrillation and those with congestive heart failure is
higher than the entropy assigned to the time series of healthy

1All data analyzed here are available at http://physionet.org and
have been described in Ref.f29g.

FIG. 4. Representative interbeat interval time series fromsad
healthy individualssinus rhythmd, sbd subject with congestive heart
failure, andscd subject with atrial fibrillation, a highly erratic car-
diac arrhythmia.

FIG. 5. MSE analysis of RR time series derived from long-term
ECG recordings of healthy subjects in normal sinus rhythm, those
with congestive heart failuresCHFd in sinus rhythm, and those with
atrial fibrillation sAFd. Symbols represent the mean values of en-
tropy for each group and bars represent the standard errorsSE
=SD/Înd, wheren is the number of subjectsd. Parameters to calcu-
late SE are m=2 andr =0.15. Time series length is 23104 beats.
The SE values from healthy subjects are significantlyst-test, p
,0.05d higher than from CHF and AF subjects for scales larger
than scale 2 and scale 20, respectively.
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subjects. In contrast, for sufficiently large scales, the time
series of healthy subjects are assigned the highest entropy
values.Thus, the MSE method indicates that healthy dynam-
ics are the most complex, contradicting the results obtained
using the traditional SE and AE algorithms.

The time series of subjects with AF exhibit substantial
variability in beat-to-beat fluctuations. However, the mono-
tonic decrease of the entropy with scale reflects the degrada-
tion of the control mechanisms regulating heart rate on larger
time scales in this pathologic state.

The largest difference between the entropy values of
coarse-grained time series from congestive heart failure and
healthy subjects is obtained for time scale 5. On small time
scales, the difference between the profiles of the MSE curves
for these two groups may be due to the fact that the respira-
tory modulation of heart ratesrespiratory sinus arrhythmiad
has higher amplitude in healthy subjects than in subjects with
congestive heart failure. Since entropy is a measure of regu-
larity sorderlinessd, the higher the amplitude of the respira-
tory modulation, the lower the entropy values tend to be.
However, the coarse-graining procedure filters out the peri-
odic respiratory-related heart rate oscillations. Therefore,
coarse-grained time series from healthy subjects on large
time scales are likely more irregularsand are assigned higher
entropy valuesd than the original time series.

For congestive heart failure subjects, the entropy of
coarse-grained time series decreases from scales 1–3 and
then progressively increases. This result suggests that for
these subjects, the control mechanisms regulating heart rate
on relatively short time scales are the most affected. How-
ever, this finding could also result from the measurement
uncertainty of the interbeat intervals due to the finite sample
frequency. Since time series from subjects with congestive
heart failure have, in general, lower variance than time series
from healthy subjects, the signal-to-noise ratio tends to be
lower for datasets from heart failure subjects. We note that
the MSE coarse-graining procedure progressively eliminates
the uncorrelated random components such that the entropy of
white noise coarse-grained time series monotonically de-
creases with scalesFig. 3d. Therefore, the monotonic de-
crease of the entropy values with heart failure over short time
scales may be related to the relatively low signal-to-noise
ratio.

We also find that the asymptotic value of entropy may not
be sufficient to differentiate time series that represent the
output of different dynamical processes. As seen in Fig. 5,
for time scale 20, the value of the entropy measure for the
heart failuressinus rhythmd and atrial fibrillation time series
is the same. However, these time series represent the output
of very different types of cardiac dynamics.Therefore, not
only the specific values of the entropy measure but also their
dependence on time scale need to be taken into account to
better characterize the physiologic process.

Next, to assess the effects of activity level, we compare
the complexity of the RR intervals time series during sleep
and wake periods for the different subject groups. Using the
24 h heartbeat interval time series of healthy and congestive
heart failure subjects, the sleep and wake datasets were then
obtained by extracting the segments of 23104 consecutive
data pointss,5 hd with highest and lowest heart rate, re-

spectively. Figures 6sad and 6sbd show that during both the
waking and sleeping periods, the highest entropy values on
most time scales are assigned, in descending order, to the
coarse-grained time series derived from healthy young sub-
jects, healthy elderly subjects, and congestive heart failure
subjects. These results further support the concept that under
free-running conditions, the cardiac dynamics of healthy
young subjects are the most complex and are consistent with
the hypothesized loss of complexity with aging and disease
f24g.

Despite the fact that the entropy values for healthy elderly
subjects are lower than those for healthy young subjects, the

FIG. 6. MSE analysis of RR time series derived from 24 h ECG
recordings of 27 healthy young subjects, aged 34.5±7.3 years
smean±SDd, range 20 - 50 years, 45 healthy elderly subjects, aged
70±3.97 years, range 66 - 75 years, and 43 congestive heart failure
sCHFd subjects, aged 55±11.6 years, range 22 - 78 years.sad Wak-
ing period. For all scales theSE values from healthy young subjects
are significantlyst-test, p,0.05d higher than from CHF subjects.
The SE values from healthy young subjects are significantly higher
than from healthy elderly subjects for scales larger than scale 1. The
SE values from healthy elderly subjects are significantlyst-test, p
,0.05d higher than from CHF subjects for scales between scales 5
and 13, inclusively.sbd Sleeping period. Both theSE values from
healthy elderly and healthy young subjects are significantlyst-test,
p,0.05d higher than from CHF subjects for scales between scales 2
and 11, inclusively. TheSE values from healthy young subjects are
significantly higher than from healthy elderly subjects for scales
shorter than scale 5. Symbols represent the mean values of entropy
for each group and the bars represent the standard error. Parameters
of SE calculation arem=2 and r =0.15. Time series length is 2
3104 beats.
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profiles of MSE curves for both groups are similar, in par-
ticular over large time scales. Indeed, during sleep, a period
of minimal activity, the difference between the entropy val-
ues of both groups is significant over only small time scales.
These results are consistent with the known loss of high-
frequency modulation of the cardiac rhythm with agef32g,
and suggest that the control mechanisms operating over
small time scales, including the parasympathetic branch of
the autonomic nervous system, are the most affected with
aging. The monotonic decrease in entropy on large time
scales for both young and elderly groups indicates that the
coarse-grained time series become progressively more regu-
lar sless complexd than those corresponding to shorter time
scales, which is compatible with a previous studyf33g re-
porting a reduction in long-range correlations in healthy sub-
jects during the sleeping period.

The MSE results for the waking and sleeping periods of
each group of subjects are shown in Fig. 7. For both young
and elderly healthy subjects, the profiles of the MSE curves
corresponding to the waking and sleeping periods are quali-
tatively different from each otherfFigs. 7sad and 7sbdg. For
subjects with congestive heart failure, however, there is only
a shift of the entropy values but not a significant change in
the profile of the MSE curvesfFig. 7scdg. Thus, differences
between the day versus night dynamics of subjects with a
severe cardiac pathology are less marked than for healthy
subjects. This loss of differentiation in the complexity of
sleep/wake dynamics may be a useful new index of reduced
adaptive capacity.

Further, we found that, contrary to the results obtained for
healthy young subjects, in healthy elderly and congestive
heart failure subjects, the coarse-grained time series obtained
from the waking period have lower entropy than those ob-
tained from the sleeping period. To the extent that aging and
disease degrade adaptive capacity, environmental stimuli
may exceed the system’s reserve. This situation would be
equivalent to what might occur if a young individual were
subject to prolonged physical or other stress throughout the
daytime hours.

Finally, to assist in clinical classification, we extracted
two simple features of MSE curves, the slopes for small and
large time scales, i.e., the slopes of the curves defined bySE
values between scale factors 1 and 5, and scale factors 6 and
20, respectively. Results for the healthy and congestive heart
failure groups corresponding to the sleeping period are pre-
sented in Fig. 8. There is a good separation between the two
groups. Considering other features of the MSE curves, in
addition to these slopes, may further improve the separation.
Alternatively, methods derived from pattern recognition
techniques, e.g., Fisher’s discriminant, may also be useful for
clinical discriminationf9g.

V. MSE ANALYSIS OF ARTIFICIAL AND BIOLOGICAL
CODES

In all cells, from microbes to mammals, proteins are re-
sponsible for most structural, catalytic, and regulatory func-
tions. Therefore, the number of protein-coding genes that an
organism makes use of could be an indicator of its degree of

complexity. However, several observations contradict this
reasoningf34,35g.

Large regions of DNA, which in humans account for
about 97% of the total genome, do not code for proteins and
were previously thought to have no relevant purpose. These
regions have been referred to as “junk” DNA or gene

FIG. 7. MSE analysis of RR time series derived from 24 h ECG
recordings during waking and sleeping periods.sad Young healthy
subjects. TheSE values for the waking period are significantly
st-testd higher sp,0.05d than for the sleeping period on scales
larger than scale 7.sbd Elderly healthy subjects. TheSE values for
the sleeping period are significantlyst-testd higher sp,0.05d than
for the waking period on scales shorter than scale 16.scd Conges-
tive heart failure subjects. TheSE values for the sleeping period are
significantlyst-testd highersp,0.05d than for the waking period on
all scales but scale 1. Symbols represent mean values of entropy for
each group and the bars represent the standard error. Parameters of
SE calculation arem=2 andr =0.15. Time series length is 23104

beats.
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“deserts.” However, these noncoding sequences are starting
to attract increasing attention as more recent studies suggest
that they may have an important role in regulation of tran-
scription, DNA replication and chromosomal structure, pair-
ing, and condensation.

Detrended fluctuation analysisf37–39g revealed that non-
coding sequences contained long-range correlations and pos-
sessed structural similarities to natural languages, suggesting
that these sequences could in fact carry important biological
information. In contrast, coding sequences were found to be
more like a computer data file than a natural language.

The biological implications of the presence of long-range
correlations in noncoding sequences, their origin, and their
nature are still being debated. Auditet al. f40,41g have in-
vestigated the relation between long-range correlations and
the structure and dynamics of nucleosomes. Their results
suggest that long-range correlations extending from 10 to
200 bp are related to the mechanisms underlying the wrap-
ping of DNA in the nucleosomal structure.

Gene regulatory elements or enhancers are types of func-
tional sequences that reside in noncoding regions. Until re-
cently, enhancers were thought to be located near the genes
that they regulate. However, subsequentin vivo studies
f42,43g have demonstrated that enhancers and the genes to
which they are functionally linked may be separated by more
than thousands of bases. These results reinforce earlier evi-
dence that the noncoding sequences contain biological infor-
mation and further support the notion that there are several
“layers” of information in genomic DNA.

In this section, we apply the MSE method to the analysis
of the complexity of both coding and noncoding DNA se-
quences of human chromosomes.

Because of possible parallelisms between artificial and
biological codes, we first considered two examples of artifi-
cial language sequences: the compiled version of theLINUX

Operating System, an executable computer program, and a
compressed nonexecutable computer data file, which can
both be analyzed as binary sequences. Although both files
contain useful information, the structure of that information

is very different. The sequence derived from the executable
program exhibits long-range correlationsf38g, while the se-
quence derived from the data file does not. These results
indicate that the computer program, which executes a series
of instructions and likely contains several loops running in-
side each other, possesses a hierarchical structure, in contrast
to the computer data file. Therefore, the former is expected to
be more complex than the latter.

When applied to discrete sequencessbinary codesd, the
MSE results present a typical artifact due to the dependence
of the entropy values on the size of the sequence alphabet,
which we discuss in Appendix C.

MSE analysis of the nonbiological codes revealssFig. 9d
the following. sid For scale one, the sequence derived from
the data file is assigned a higher entropy value than the se-
quence derived from the executable program.sii d Between
scales 2 and 6, theSE measure does not separate the coarse-
grained sequences of the two files.siii d For scales larger than
scale 6, the highest entropy values are assigned to coarse-
grained sequences derived from the executable program file.
Furthermore, the difference betweenSE values assigned to
coarsegrained sequences of the executable file and the com-
puter data file increases with scale factor. These results indi-
cate, as hypothesized, that the structure of the executable file
is more complex than the structure of the data file. Of note,
conventionalssingle scaled SE andAE algorithms applied to
sequences of artificial languages fail to meaningfully quan-
tify their overall complexity.

Finally, we apply the MSE method to the analysis of DNA
sequences, likely one of the most complex natural informa-
tion databases.

The DNA building units are four nucleotides. Two of
them contain a purine base, adeninesAd or guaninesGd, and

FIG. 8. Scatter plot of the slope of the MSE curves between
scale factors 6 and 20 vs the slope of the MSE curves between scale
factors 1 and 5, for healthy and congestive heart failuresCHFd
groups during the sleeping period. For both groups, symbols with
error bars represent the mean ofy-axis values, and the error bars the
corresponding SD. The groups are well separatedsp,0.005d.

FIG. 9. MSE results for binary files of a computer executable
programsLINUX kerneld and a compressed data file. The original
binary file has only two symbols, 0 and 1. However, the number of
symbols in coarse-grained sequences increases with the scale factor,
which introduces a characteristic artifact on the MSE curves. In
order to avoid this artifact, instead of the original sequences, we
analyze a derived sequence, which is constructed as follows: we
divide the original sequence into consecutive nonoverlapping seg-
ments, each with 128 data points, and then calculate the number of
1’s s0’sd within each segment. Some structural information is lost
since the procedure is not a one-to-one mapping. The derived se-
quences are expected to be more regular than the original ones.
However, this procedure does not alter the conclusions drawn from
our analysis.
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the other two contain a pyrimidine base, cytosinesCd or
thymine sTd. There are many ways of mapping the DNA
sequences to a numerical sequence that take into consider-
ation different properties of the DNA sequences. For this
application, we consider the purine-pyrimidine rulef37–39g.
Given the original DNA sequence, bases A and G are
mapped to number 1, and bases C and T are mapped to
number -1.

In Fig. 10, we present the MSE results for selected coding
and noncoding human DNA sequences. For scales larger
than scale 5,SE values for noncoding sequences are higher
than for coding sequences. Consistently, for all scales but the
first one, the lowestSE values are assigned to coarse-grained
time series derived from uncorrelated white noise mapped to
a binary sequences. Comparable results were obtained from
the analysis of coding versus noncoding sequencessù4
3103 bpd of all human chromosomes. These results show
that the structure of noncoding sequences is more complex
than the structure of coding sequences analyzed here.

These findings support previous studiesf37–39g suggest-
ing a parallelism between executable computer programs and
noncoding sequences, and data storing files and coding se-
quences. They also support the view that noncoding se-
quences contain important biological information. As pointed
out by othersf35,36,40,41g, biological complexity and phe-
notype variations should relate not only to proteins, which
are the main effectors of cellular activity, but also to the
organizational structure of the control mechanisms respon-
sible for the networking and integration of gene activity.

VI. LIMITATIONS AND FUTURE DIRECTIONS

The MSE method requires an adequate length of data to
provide reliable statistics for the entropy measure on each

scale. As discussed in Appendix B, for simulated white and
1/ f noises, both the mean value ofSE and the SD increase as
the length of the time series decreases. However, for all time
series tested, the consistency of the results was preserved,
i.e., given two time series,a and b, each with 33104 data
points, wheneverSE was higherslowerd for time seriesa than
for time seriesb, the same result held if only 13103 data
points were considered.

The minimum number of data points required to apply the
MSE method depends on the level of accepted uncertainty.
Typically, we use time series with 23104 data points for
analyses extending up to scale 20, in which case the shortest
coarse-grained time series has 13103 data points.

Another important consideration is related to nonstation-
arity. To calculateSE, one has to fix the value of a parameter
that depends on the time series SD. Therefore, the results
may be significantly affected by nonstationarities, outliers,
and artifacts. As we discuss in Appendix C, removing local
artifacts and a small percentage of outlierss,2%d does not
usually modify the structure of the time series and its related
statistical properties. In contrast, attempts to remove nonlo-
cal nonstationarities, e.g., trends, will most likely modify the
structure of the time series over multiple time scales.

Further studies are needed to construct clinically useful
indices for monitoring the complexity of biological systems,
and for developing and testing the utility of complexity mea-
sures designed to quantify the degree of synchronization of
two time series over multiple scalesf20g.

We note that the cardiac analyses reported here pertain to
interbeat interval dynamics under free-running conditions.
The high capability of healthy systems to adapt to a wide
range of perturbations requires functioning in a multidimen-
sional state space. However, under stress, the system is
forced to work in a tighter regime. For example, during
physical exercise, there is a sustained increase in heart rate
and a decrease in the amplitude of the interbeat interval fluc-
tuations in response to an increased demand for oxygen and
nutrients. The dynamics is, therefore, limited to a subset of
the state space. We anticipate that under a variety of stressed
conditions, healthy systems will generate less complex out-
puts than under free-running conditionsf11g.

Finally, the potential applications of the MSE method to
the study of artificial and biological codes, with attention to
the effects of evolution on the complexity of genomic se-
quences, require systematic analysis.

VII. CONCLUSIONS

The long-standing problem of deriving useful measures of
time series complexity is important for the analysis of both
physical and biological systems. MSE is based on the obser-
vation that the output of complex systems is far from the
extrema of perfect regularity and complete randomness. In-
stead, they generally reveal structures with long-range corre-
lations on multiple spatial and temporal scales. These multi-
scale features, ignored by conventional entropy calculations,
are explicitly addressed by the MSE method.

When applied to simulated time series, the MSE method
shows that 1/f noise time series are more complex than

FIG. 10. MSE results for four coding, nine noncoding DNA
sequences from human chromosome 22 and 30 binary random time
series. All coding sequences with more than identified 43103 bp
were selected. The longest coding sequences has 6762 bp. All non-
coding sequences with more than 6000 and fewer than 6050 bp
were selected. The length of the random sequences is 6000 data
points. The symbols and the error bars represent theSE mean values
and SD, respectively. Due to a typical artifact that affects the MSE
results of discrete sequencessAppendix Cd, only the entropy values
for scales 1, 5, 9, 13, and 17 are plotted. Note the higher complexity
of the noncoding vs coding sequencessp=0.006 for scale 9d. The
lowest entropy values are assigned to the randomswhite noise:
mean zero, variance 1d time series mapped to a binary sequence: 1
if xi .0 and 0 ifxi ,0.
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white noise time series. These results are consistent with the
presence of long-range correlations in 1/f noise time series
but not in white noise time series.

Physiologic complexity is associated with the ability of
living systems to adjust to an ever-changing environment,
which requires integrative multiscale functionality. In con-
trast, under free-running conditions, a sustained decrease in
complexity reflects a reduced ability of the system to func-
tion in certain dynamical regimes possibly due to decoupling
or degradation of control mechanisms.

When applied to the cardiac interbeat interval time series
of healthy subjects, those with congestive heart failure and
those with atrial fibrillation, the MSE method shows that
healthy dynamics are the most complex. Under pathologic
conditions, the structure of the time series variability may
change in two different ways. One dynamical route to dis-
ease is associated with loss of variability and the emergence
of more regular patternsse.g., heart failured. The other dy-
namical route is associated with more random types of out-
puts se.g., atrial fibrillationd. In both cases, MSE reveals a
decrease in system complexity.

Finally, we employed the MSE method to compare the
complexity of an executable computer program versus a
compressed nonexecutable computer data file, and selected
coding versus noncoding DNA sequences. We found that the
executable computer program has higher complexity than the
nonexecutable computer data file, and similarly that the non-
coding sequences are more complex than the coding se-
quences examined. Our results support recentin vitro and in
vivo studies suggesting, contrary to the “junk DNA” theory,
that noncoding sequences contain important biological infor-
mation f44g.
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APPENDIX A: MSE RESULTS FOR WHITE AND 1/ f
NOISES

In this appendix, we provide detailed analytical deriva-
tions of MSE for two special cases: correlated and uncorre-
lated noises with Gaussian distributions. Linear Gaussian
correlation is a necessary assumption to make the derivation
possible. In general, it is difficult to derive analytical solu-
tions for MSE of stochastic processes with nonlinear corre-
lations.

First, we start with the case of uncorrelated noiseswhite
noised. For the casem=1, SE is the negative natural loga-
rithm of the conditional probability that the distance between
two data points is less than or equal tor si.e., uxi −xjuø rd
given that the distance between the two preceding data points

is also less than or equal tor si.e., uxi−1−xj−1uø rd. Since
there is no correlation between any data point and the pre-
ceding data points in white noise,SE reduces to the negative
natural logarithm of the probability that the distance between
any two data points is less than or equal tor.

To be specific, the joint probability of a finite sequence of
independent random variables is simply

psx1,x2,…,xnd = p
i=1

N

psxid. sA1d

One can show that

Prsuxi − xju ø r uuxi−1 − xj−1u ø rd

=
Prsuxi − xju ø r ∧ uxi−1 − xj−1u ø rd

Prsuxi−1 − xj−1u ø rd

=
Prsuxi − xju ø rd 3 Prsuxi−1 − xj−1u ø rd

Prsuxi−1 − xj−1u ø rd

= Prsuxi − xju ø rd.

Using this approach recursively, it can be proved that this
result is valid for anym value, whenever the variables are
independent. In this appendix, we adhere to the standard no-
tations of usingPrsd for probability distributions andpsd for
probability density functions.

To summarize, white noise is a random process such that
all variables are independent. Therefore,

SE = − ln Prsuxj − xiu ø rd. sA2d

Next, we calculate the probability distributionPrsuxj −xiu
ø rd.

For a given value ofx̂, the probability of finding other
data points within the distancer from x̂ is

Prsux̂ − xu ø rd =E
x̂−r

x̂+r

psxddx. sA3d

For example, ifxi =1 and r =0.3, sFig. 11d, Prsu1−xju
ø0.3d is the area under the Gaussian curve between the ver-
tical lines x=0.7 andx=1.3. Similarly, for xi =−2 and the

FIG. 11. Gaussian distribution. Shadowed areas centered at
points −2 and 1 represent the probability that the distances between
each of these points and any other point chosen randomly from the
time series are less than or equal tor.
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samer value,Prsu2−xjuø0.3d is the area under the Gaussian
curve between the vertical linesx=−2.3 andx=−1.7. Since
xi can assume any value between −` and +̀ , Prsuxi −xju
ø rd is the average area centered at all possiblexi values. In
other words,

Prsuxj − xiu ø rd =E
−`

+` HE
xi−r

xi+r

psxjddxjJpsxiddxi

=
1

2ps2E
−`

+` HE
xi−r

xi+r

e−xj
2/2s2

dxjJe−xi
2/2s2

dxi

=
1

2sÎ2p
E

−`

+` HerfSxi + r

sÎ2
D − erfSxi − r

sÎ2
DJ

3 e−xi
2/2s2

dxi ,

where erf refers to the error function.
Without loss of generality, we considered a zero mean

sm=0d Gaussian distribution. Coarse-grained white noise
time series still have a zero mean Gaussian density because
they are the output of a linear combination of Gaussian ran-
dom variables. However, the variance decreases as the scale
factor increases,

st =
s

Ît
, sA4d

wheret refers to the scale factor,st to the variance of the
coarse-grained time series corresponding to scalet, ands to
the variance of the original time seriessscale 1d. Conse-
quently, the probability that the distance between two data
points of the coarse-grained time series corresponding to
scalet is less than or equal tor is

Prsuyj
t − yi

tu ø rd =
1

2s
Î 1

2p
E

−`

+` HerfS yi + r

sÎ2/t
D

− erfS yi − r

sÎ2/t
DJe−yi

2r/2s2
dyi .

The above expression can be approximated numerically.
We set the following conditions for our numerical calcula-
tion: s1d dx→Dx=1/5000;s2d the range of the integration is
f−3,3g=f−sN/2dDx,sN/2dDxg, with N=30 000. Thus, we
have

1

2
Î t

2p
o

k=−N

N HerfSkDx + r
Î2/t

D − erfSkDx − r
Î2/t

DJ
3ef−skDxd2tg/2Dx,

The values obtained with the above formula are plotted in
Fig. 3. These numerical values are in good agreement with
those obtained by the MSE algorithm on simulated white
noise time series.

Next, we show the MSE derivation for 1/f noise. Note
that a random process with a power spectrum that decays as
1/ f is correlated. In order to numerically calculateSE for 1/ f
noise, we will show that there exists an orthogonal transfor-
mation that maps the correlated variables into a basis in

which they are independent. The dimension of this basis re-
flects the extension of the system “memory.”

Let us considerN random variables,X1,X2,… ,XN, with
mean valuesXj for j =1,… ,N. Elements of the covariance
matrix are defined by

CsXj,Xkd = EfsXj − XjdsXk − Xkdg. sA5d

The diagonal elements are the variance of each random vari-
ableXj, i.e., CsXj ,Xjd=s j

2 ssee Fig. 12d.
The covariance matrix is Hermitian since it is symmetric

and all of its elements are real. Therefore, it has real eigen-
values whose eigenvectors form a unitary basis. Each of the
eigenvectors,Ui, and the corresponding eigenvalues,li, sat-
isfy the equation

CUj = l jUj . sA6d

Hence,

Uj
TCUk = lkUj

TUk = Hlk if j = k

0 if j Þ k
J. sA7d

Let U represent the matrix whose columns are the eigen-
vectors of the covariance matrix. Then,

UTCU =3
l1 0 ¯ ¯ 0

0 l2 0 ¯ 0

0 ¯ � ¯ 0

0 ¯ 0 lN−1 0

0 ¯ ¯ 0 lN

4 = L. sA8d

We show next thatUTCU is also the covariance matrix of
the transformed vectorsY=UTX, whereX=fX1,X2,… ,XNgT,

FIG. 12. Correspondence between the covariance and the shape
of the contours of a bivariate Gaussian density function. If two
random variables,Xj and Xk, are independentfCjk=CsXj ,Xkd=0g,
the shapes of the contours are ellipses with major and minor axes
parallel toXj andXk axes, respectively. If the variables have equal
variancess j =skd, the shape of the contour is a circle. In contrast, if
two variables are not independent, the shapes of the contours are
ellipses with major and minor axes that are not aligned with the
axesXj andXk.
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UTCU = UTEfsX − X̄dsX − X̄dTgU = EfUTsX − X̄dsX − X̄dTUg

= EfsUTX − UTX̄dsXTU − X̄TUdg

= EfsUTX − UTX̄dsUTX − UTX̄dTg

= EfsY − ȲdsY − ȲdTg.

Combining this result with Eq.sA8d, we prove that all trans-
formed variables are uncorrelated in the basis formed by the
eigenvectors of the covariance matrixC. Furthermore, the
variances,s j8, of the transformed variables,Yj, areÎl j.

The physical meaning of the transformationUT is illus-
trated in Fig. 13.UT is an orthogonal transformation that
amounts to a rotation of the original coordinate system into
one defined by the eigenvectors of the covariance matrix, in
which the transformed variables are independent.

The probability density function for ann-dimensional
Gaussian random vector,X, is

psXd =
1

Îs2pdnuCu
ef−s1/2dsX − X̄dTC−1sX−X̄dg, sA9d

whereuCu is the determinant of the covariance matrix.
For the transformed vector,Y=UTX, the probability den-

sity function is

psYd =
1

Îs2pdnuLu
ef−s1/2dsY − ȲdTL−1sY−Ȳdg

= p
i=1

N
1

Î2pli

exp −
sYi − Ȳid2

2li
= p

i=1

N

psYid, sA10d

where

psYid =
1

si8Î2p
expH−

1

2
SYi − Ȳi

si8
D2J . sA11d

In order to calculate the covariance matrix numerically,
we limit the frequency range of the power spectral density,
denoted asSsvd, of the 1/f noise signal to

Ssvd = HK/v for v1 ø v ø v2

0 otherwise,
J sA12d

whereK is a constant. The upper and lower limits on fre-
quency range are useful constraints for numerical calculation
and also realistic in real-world applications where the reso-
lution ssampling frequency of signald and length of data are
bounded.

The autocorrelation function,F, is obtained using the
Wiener-Khintchine theorem,

Fstd =
K

2p
E

v1

v2 cosvt

uvu
dv =

K

2p
hCisv2td − Cisv1tdj,

sA13d

wheret represents the time lag and Ci is the cosine integral.
The series expansion of the Ci is

Cistd = g + lnstd + o
k=1

+`
s− 1dkt2k

s2kd ! 2k
, sA14d

whereg=0.5772… is Euler’s constant.
Therefore,

Fstd =
K

2p
HlnSv2

v1
D + o

k=1

+`
s− 1dk

s2kd ! 2k
3 fsv2td2k − sv1td2kgJ .

sA15d

The autocorrelation function is the autocovariance divided
by the variance. For any ergodic process, as is the case of
1/ f noise, the relation between the autocovariance function
and the covariance matrix is

C =3
Fs0d Fstd Fs2td ¯ FsNtd
Fstd Fs0d Fstd ¯ F„sN − 1dt…

Fs2td Fstd Fs0d ¯ F„sN − 2dt…
] ] ] ] ]

FsNtd ¯ ¯ Fstd Fs0d
4 .

sA16d

The eigenvalues of the covariance matrix are the vari-
ances of the transformed variables. Since the variablesYi are
independent,SE is calculated using

psY1d =
1

Î2pl1

expS−
fY1 − Y1g2

2l1
D . sA17d

We consider k=lnsv1/v2d for numerical calculation,
which corresponds to normalizing the power spectrum. We
also setv1=1/s2Dd and v2=N. The numerical calculation
yields the valueSE=1.8. We note that coarse-graining 1/f
noise does not alter the correlation and the variance of the
signal. Therefore, theSE value calculated is valid for any
scale.

FIG. 13. The ellipse represents the contour of a bivariate Gauss-
ian density function. The major and minor axes of the ellipse are not
parallel to the axesXj and Xk, meaning that the random variables
are correlated in this frame. However, there exists a rotation that
transforms the original frame into one defined by the axesYj and
Yk, which are aligned with the major and minor axes of the ellipse.
Therefore, in this frame the original variables are uncorrelated.
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APPENDIX B: TECHNICAL ASPECTS OF MSE
CALCULATIONS

1. Dependence on time series length and the values
of parameters m and r

The MSE method uses theSE family of statistics. There-
fore, in this appendix we use simulated Gaussian distributed
smean zero, variance 1d white and 1/f noise time series to
illustrate the effects onSE of sid the time series’ finite length
and sii d the choice of parametersm and r.

Figure 14 shows that the mean value ofSE diverges as the
number of data points decreases for both white and 1/f
noise. However, since 1/f noise time series are not station-
ary, as the number of data points decreases, the discrepancy
between theSE value calculated numerically and the mean
value for 30 simulated time series increases faster for 1/f
noise than for white noise time series. For both types of
noise, forN=13105, the discrepancy between the numerical
and the mean value ofSE for simulated time series is less
than 0.5%. However, forN=13103 the discrepancy between
these values is approximately 12% in the case of 1/f noise
but still less than 1% in the case of white noise. Furthermore,
even for very large time series, the SD ofSE values for 1/f
noise is never as small as for white noise. These results are
due to the fact that stationarity is a basic requirement ofSE.
The MSE method presents the same limitation. One possible
solution to this problem is to decompose the original time
signal into multiple “well-behaved” signals, each corre-
sponding to different time scales.

We also note that as the number of data points decreases,
the consistency ofSE results is progressively lost. Therefore,
there is no guarantee that ifSE is higher for time seriesa than
for time seriesb, both with N data points, the same result
will hold if only N8 data points are used to calculateSE, in
particular if N@N8 or N8@N.

We note that the coarse-graining procedure generates
times series with a decreasing number of data points. How-
ever, coarse-grained time series are not a subset of the origi-
nal time series. Instead, they contain information about the
entire original time series. Therefore, the error due to the
decrease of coarse-grained time series length is likely lower
than that resulting from selecting a subset of the original
time series.

As stated in Sec. II, ther value defines the similarity
criterion used to compare vectors. If the absolute difference
between any two matched vector components is larger than
r 3SD, then the vectors are different; otherwise, they are
considered equal. Theoretically, for continuous processes,r
varies between 0 and 1; but for experimental time series, the
recording resolution level determines the lowest possibler
value. In any case, the actualr value determines the level of
accepted noise, since for largerr values, fewer vectors are
distinguishable. Figure 15sleft plotd shows that as ther value
increases, theSE value for both simulated 1/f and white
noise time series decreases. Of note, the consistency ofSE
values is preserved. Therefore, the SD ofSE values serror
barsd reflects the scattering of values corresponding to differ-
ent time seriessintersubject variabilityd.

Figure 15sright plotd shows the variation ofSE with m
value, i.e., the vector length. Betweenm=1 andm=5, the
mean values ofSE vary less than 2% and the coefficient of
variation sCV=SD/meand is less than 3% for both types of
noise. For largerm, both theSE and the CV increase dramati-
cally due to the finite number of data points, since longer and
longer time series are required in order to calculate the fre-
quency of them and sm+1d-component vectors with suffi-
cient statistical accuracy.

For a discussion of the optimal selection ofm and r pa-
rameters, and the confidence intervals ofSE estimates, see
f49g. We note that form=2 and r =0.15, the discrepancies
between the mean values ofSE for simulated time series and
the numerically calculated values are less than 1% for both
1/ f and white noises. This result suggests that for most prac-
tical applications, the error bars associated with computation
of SE values are likely smaller than the error bars related to
experimental sources and also to inter- and intrasubject vari-
ability.

2. Effect of noise, outliers, and sample frequency

The output of an experiment may be contaminated by
different types of noise. Here, we discuss the effects of MSE
analysis of superimposing uncorrelatedswhited noise on a
physiologic time series. Common sources of uncorrelated
noise for interbeat interval time series are the analog-digital
conversion devices, whose accuracy depends both on the
sample frequency and the number of bits used, and computer
rounding errors. Figure 16 shows thatsid superimposing un-

FIG. 14. SE as a function of time series number of data points
N. r =0.15 andm=2 for all time series. Symbols represent the
mean values ofSE for 30 simulated white and 1/f noise time series,
and the error bars represent the SD.

FIG. 15. SE as a function of the parameterr sleft plotd and m
sright plotd. N=33104 and r =0.15 for all time series. Symbols
represent the mean values ofSE for 30 simulated 1/f and white
noise time series, and error bars represent the SD.
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correlated noise on a time series affects mainly the entropy
values on small scales;sii d the discrepancy between the en-
tropy values assigned to the original time series and those
assigned to time series with superimposed uncorrelated noise
increases as the signal-to-noise ratio decreases;siii d for small
scales,SE values monotonically decrease with scale factor
similar to white noise time series. This effect becomes more
prominent as the signal-to-noise ratio decreases.

Outliers may also affectSE values because they change
the time series SD and, therefore, the value of parameterr
that defines the similarity criterion.

In the interbeat interval time series, two types of outliers
are commonly found resulting fromsid missed beat detec-
tions by automated or visual electrocardiographic analysis,
andsii d recording artifactsfFig. 18sadg. These outliers do not
have physiologic meaning. However, they may dramatically
affect the entropy calculation if their amplitude is a few or-
ders of magnitude higher than the mean value of the time
series.

For the analysis of physiologic rhythm dynamics, cardiac
beats not originating in the sinus node may be treated as
outliers fFig. 18sbdg. Of note, the amplitude of all cardiac
ssinus and nonsinusd interbeat intervals is of the same order
of magnitude. Therefore, the inclusion of a relatively low

percentage of nonsinus beats should not significantly change
the entropy values.

Consider a time series,X, with N data points,M of which
are outliers with amplitudeD. Let X8 represent the time se-
ries that is obtained from the time seriesX by excluding the
outliers. Assume thatM !N and thatD=aX8, whereX8 is the
time series mean value. It can be shown thats2sXd−s2sX8d
=sa2e−e2a2−2eadmsX8d2, wheree=M /N, and s and m are
the time series SD and mean value, respectively.

Figure 17 shows that a small number of outliers with high
amplitude has similar effects on the variance as a higher
percentage of outliers with lower amplitude.

Figure 18sad presents a time series with 0.05% outliers
which account for an increase in the time series SD of about
44%. Figure 18sbd presents a time series with approximately

FIG. 17. Contour plot showing how the percentage of outliers
and their amplitudesrelative to the mean value of the time seriesd
affects the variance of the time series. Lines connect pairs of values
that change the variance by the same amount.

FIG. 16. Effects of different amounts of Gaussian white noise
on MSE curves. The MSE curve labeled “original” corresponds to
the MSE results for the RR intervals time series from a healthy
subject.

FIG. 18. sad The interbeat interval time series of a young healthy
subject with 15 outliers that represent artifacts or missed beat de-
tections. Note that the absolute value of the outliers is much larger
than the mean RR interval.sbd The interbeat interval time series of
an elderly healthy subject with frequent premature ventricular com-
plexessPVCsd stwo are represented in the figured. scd MSE results
for the time series shown in plotsad: the solid line is the MSE result
for the unfiltered time series; the dotted line is the MSE results for
the same time series excluding outliers; and the dashed line is the
MSE result for the original time series but using anr value that is
calculated by excluding the outliers.sdd MSE results for time series
shown in plotsbd: solid and dotted lines are the MSE results for
unfiltered and filteredsPVCs removedd time series.
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ten times more outliers than in Fig. 18sad. Since the ampli-
tude of the outliers is of the same order of magnitude as the
remaining data points, the difference between the SD of the
time series which includes these outliers and that which ex-
cludes them is only 1%.

Changes of the time series SD proportionally affect the
value of parameterr. Higher r values mean that fewer vec-
tors will be distinguishable and that the time series will ap-
pear more regular. Figure 18scd presents the MSE results for
the unfiltered time seriessad ssolid lined and the correspond-
ing time series obtained by excluding the outlierssdotted
lined. As expected, the MSE curve corresponding to the un-
filtered time series is lower than the MSE curve correspond-
ing to the filtered time series.

The presence of a small percentage of outliers may sig-
nificantly alter the SD but should not substantially modify
the temporal structure of the time series. In Fig. 18scd, the
dashed line represents the MSE results for the unfiltered time
series obtained using ther value derived from the filtered
time series. Note that when using the “correct”r value, the
MSE curves for the unfiltered and the filtered time series
overlap.

Figure 18sdd compares the MSE results for time seriessbd
and for the time series that results from excluding the outli-
ers. The two MSE curves almost overlap, showing that the
entropy measure is robust to the presence of a relatively
small percentage of low-amplitude outliers.

For a time series sampled at frequencyf, the temporal
location of the actual heartbeat can be identified only up to
an accuracy ofD=1/ f. Each data point of a coarse-grained
heartbeat interval time series is an average of consecutive
differences. For example,y1

t =sRR1+¯ +RRt−1d /t=fst2
− t1d+¯ +stt− tt−1dg=stt− t1d /t. Therefore, the accuracy of
averaged heartbeat intervals of coarse-grained time series is
D /t, i.e., the accuracy increases with scale.

SE is underestimated for finite sample frequency values
f48g. However, the discrepancy between the value ofSE cal-
culated for a time series sampled at a finite frequency and the
value of SE corresponding to the limit limD→0SE decreases
with scale. For analysis on small time scales, it may be im-
portant to consider a correction of this effectf48g. We note
that the conclusions that we present in this paper are not
altered by the value of sample frequency.

APPENDIX C: MSE ANALYSIS OF DISCRETE TIME
SERIES

Here we discuss an important artifact that affects the MSE
analysis of discrete time series, such as DNA sequences.

Let us consider an uncorrelated random variable,X, with
alphabetQ=h0,1j. Both symbols occur with probability 1/2.

All possible different two-component sequences built
from the binary series are 00, 01, 10, and 11. Therefore, the
alphabet of the coarse-grained time series corresponding to
scale 2 isQ2=h0,1/2,1j. The probabilities associated with
the occurrence of the different values are 1/4, 1/2, and 1/4,
respectively. Let us consider that ther value used to calculate
SE is 0.5. In this case, only the distance between the coarse-
grained values 0 and 1sand not between values 0 and 1/2,

and between 1/2 and 1d is higher thatr. Therefore, the prob-
ability of distinguishing two data points randomly chosen
from the coarse-grained time series,Prsuxa−xbu. rd, is ps0d
3ps1d=1/431/4=1/16=0.0625.

Similarly, there are eight different three-component se-
quences that can be built from the original binary series: 000,
001, 010, 100, 110, 011, 101, and 111. Consequently, the
alphabet of the coarse-grained time series corresponding to
scale 3 isU2=h0,1/3,2/3,1j and the probabilities associ-
ated with the occurrence of each value are 1/8, 3/8, 3/8, and
1/8, respectively. Forr =0.5, only the distances between the
coarse-grained data points 0 and 2/3, 1/3 and 1, and 0 and 1
are higher thanr. Therefore,Prsuxa−xbu. rd=ps0d3ps2/3d
+ps1/3d3ps1d+ps0d3ps1d=0.1094.

Note that the probability of distinguishing two data points
of the coarse-grained time series increases from scale 2 to
scale 3sFig. 19d. As a consequence,SE also increases, con-
trary to both analytic and numerical results presented in Fig.
3. This artifact, which affects discrete time series, is due to
the fact that the size of the alphabet of the coarse-grained
time series increases with scale.

In general, for scalen, the alphabet set isQn=hi /nj with
0ø i øn, and the corresponding probability sethpsi /ndj is
generated by the expressionn! / f2n3 i ! sn− id ! g, 0ø i øn.
The value ofPrsuxa−xbu. rd is calculated by the equation

Prsuxa − xbu . rd = o
j=0

N−1

ps j /ndo
i=i8

n

psi/nd, sC1d

where i8=N+ j +1 if n=2N seven scalesd and i8=N+ j if n
=2N−1 sodd scalesd.

Figure 19 shows how the probability varies with the scale
factor. We note an attenuated oscillation, which as a conse-
quence also shows up on the MSE output curve for the same
time series. The period of this oscillation depends only on
the r value.

To overcome this artifact, one approach is to select the
scales for which the entropy values are either local minima
or maxima of the MSE curve. We adopted this procedure in
calculating the complexity of coding versus noncoding DNA
sequencessFig. 10d. Note that for uncorrelated random bi-

FIG. 19. Probability of distinguishing any two data points ran-
domly chosen from the coarse-grained time series of binary discrete
time seriessr =0.5d.
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nary time seriessFig. 19d, and for r =0.5, the sequence of
entropy values at odd or even scales monotonically decreases
with scale factor, similar to the MSE curve for white noise
time series, as described in Sec. IIIsFig. 3d.

An alternative approach is to map the original discrete
time series to a continuous time series, for example by count-
ing the number of symbolss1’s or 0’sd in nonoverlapping

windows of length 2n. Since this procedure is not a one-to-
one mapping, some information encoded on the original time
series is lost. Therefore, relatively long time series are re-
quired. We adopted this procedure in calculating the com-
plexity of binary time series derived from a computer execut-
able file and a computer data filesFig. 9d.
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