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Abstract 

This paper presents a control system based on the recurrent wavelet fuzzy cerebellar 

model articulation controller (RWFCMAC) for a class of multiple-input–multiple-output 

(MIMO) uncertain nonlinear systems to achieve the high-precision position tracking. The 

proposed control system is applied to imitate an ideal controller because it incorporates 

the advantages of the wavelet decomposition property with a fuzzy CMAC fast learning 

ability and an adaptive smooth compensator (SC) is designed to attenuate the effect of the 

approximation error caused by the RWFCMAC approximator. Furthermore, the online 

tuning laws of RWFCMAC and SC parameters are derived according to gradient descent 

method and Lyapunov function so that the stability of the system can be guaranteed. The 

experimental results of 2 DoF Helicopter and tank level system are provided to verify the 

robustness and effectiveness of the proposed control methodology. The proposed control 

system gives good agreements with the setpoint values including the external loading. 

Morever, it can be used for the unknown dynamic systems. 
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1. Introduction 

In recent years, several researches have devoted to the fuzzy control or fuzzy neural 

network control of nonlinear systems [1-5]. The fuzzy neural networks have been 

proposed by combining a fuzzy rule base system with and a neural network [2, 3]. A lot of 

applications using fuzzy neural networks have been presented in [4, 5]. The present study 

aims to propose a more generalizing fuzzy neural network and then applies it to control 

the uncertain nonlinear systems. 

Recently, many applications have been successfully implemented based on wavelet 

neural networks (WNNs) which combine the learning ability of neural network and 

capability of wavelet decomposition property [6–9]. Difference from conventional NNs, 

the membership functions of WNN is wavelet functions which are spatially localized. 

This result in the WNNs are capable of learning more efficiently than conventional NNs 

for control and system identification demonstrated in [14, 16]. As a result, WNNs have 
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been considered interest in the applications to deal with uncertainties and nonlinearity 

control system shown in [6–7]. 

To deal with disadvantages of NNs, cerebellar model articulation controller (CMAC) 

was proposed by Albus in 1975 [10] for the identification and control of complex 

dynamical systems, due to its advantage of fast learning property, good generalization 

capability and ease of implementation by hardware [11–13]. The conventional CMACs, 

regarded as non-fully connected perceptron-like associative memory network with 

overlapping receptive fields which used constant binary or triangular functions. The 

disadvantage is that their derivative information is not preserved. For acquiring the 

derivative information of input and output variables, Chiang and Lin [14] developed a 

CMAC network with a differentiable Gaussian receptive-field basis function and provided 

the convergence analysis for this network. The advantages of using CMAC over neural 

network in many applications were well documented [15–20]. However, in the above 

CMAC literatures, the structure of CMAC are not merited of the high-level human 

knowledge representation and thinking of fuzzy theory.  

In this article, we propose the adaptive recurrent wavelet fuzzy CMAC (RWFCMAC) 

control system for a class of multiple-input–multiple-output (MIMO) uncertain nonlinear 

systems to achieve the high-precision position tracking. This control system combines 

advantages of fuzzy inference system with CMAC and wavelet decomposition capability 

and a delayed self-recurrent unit in the association memory space and the adaptive single 

input fuzzy compensator which is designed to deal with the approximation errors between 

the estimating RWFCMAC and the ideal controller to the stability of system is 

guarantied. The online tuning laws of RWFCMAC and SC parameters are derived 

according to gradient descent method and Lyapunov function so that the stability of the 

system can be guaranteed. 

This paper is organized as follows: System description is described in Section II. 

Section III presents RWFCMAC control system. Experiment results of 2 DoF hellicopter 

and tank level systems are provided to demonstrate the tracking control performance of 

the proposed RWFCMAC system in Section IV. Finally, conclusions are drawn in Section 

V. 

 

2. Problem Formulation 

Consider a class of MIMO nonlinear dynamic system described in the following 

form: 

       0 0

n
x f x G x u L x

y x

   




 (1) 

Where mx  is the state, mu  is the control input, and 
my  is the system 

output. Define ( 1)T T
T T n nmx x x x   

 
as the system state vector. It is assumed 

to be available for measurement. In addition, 0 ( ) mf x  and 0 ( ) mG x   are system 

nominal nonlinear vector-and matrix-valued functions, respectively, and they are assumed 

to be bounded and available. Meanwhile, assume the nonlinear system of (1) is 

controllable and 
1

0 ( ) mG x   exists for all x . ( ) mL x   denotes the unknown 

uncertainty, which is assumed to be bounded. If there exist mismodelings between 

practical systems and the nominal functions, they can be absorbed into the uncertainty.  

The control purpose is to design a control system such that the system output can track 

a desired trajectory signal 
m

dy  . Define the tracking error as 

de y y 
 (2) 
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and the system tracking error vector is defined as 

( 1), ,...,
T

T T n T nme e e e      (3) 

Define an integrated sliding function as 

1 2

1

0

( )
t

n n

ns e K e K e d      (4) 

where 
m m

iK  , 1, 2,i n , are positive constant matrices and define 

1

T
T T nm m

nK K K     . If the nominal functions 0 ( ) mf x  and 0 ( ) mG x   and 

the uncertainty ( ) mL x  are exactly known, then an ideal controller can be designed as 

     * 1 ( )

0 0

n T

du G x y f x L x K e        (5) 

By substituting the ideal controller (5) into (1), the error dynamic equation is given as 

follows: 

( ) 0n Ts e K e    (6) 

It is obvious that errors will be asymptotically tend to zero if the gain matrices of 

1

T
T T nm m

nK K K      is determined so that the roots of the characteristic 

polynomial
1

1( ) n n

nP I K K       lie strictly in the open left haft of complex 

plane. However, the ideal controller in (5) can not determine, because of ( )L x  is exactly 

unknown for practical applications. So, in order to this problem, a proposed adaptive 

RWFCMAC control system is shown in Figure 1 which comprises a RWFCMAC 

RWFCMACu  and a smooth compensator SCu  as follows: 

RWFCMAC SCu u u   (7) 

d/dt
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Figure 1. Block Diagram of the RWFCMAC Feedback Control System 
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3. Adaptive RWFMAC Control System Design 
 

3.1. Brief of the RWFCMAC 

The main difference between the FCMAC and the original CMAC is that association 

layer in the FCMAC is the rule layer which is represented as follows. 

:lR  if 1X  is jk1  and 2X  is 
2 , ,

ijk nX  is ijk  then For 1, 2, , ,ii n  1, 2, , ,jj n  

and 1, 2, , .k jl n n  (8) 

Where in  is the number of the input dimension, jn  is the number of the layers for each 

input dimension, kn  is the number of blocks for each layer, 
k jl n n  is the number of the 

fuzzy rules and ijk  is the fuzzy set for ith input, jth layer and kth block, jkw  is the output 

weight in the consequent part. 

Based on the [21] a novel RWFCMAC is represented and shown in Figure 2. It is 

combines a wavelet function with the FCMAC including input, association memory, 

receptive field, and output spaces, is proposed to implement the RWFCMAC estimate in 

RWFCMAC control system shows in Figure 1. The signal propagation is introduced 

according to functional mapping as follows: 

The first mapping AXX : : assume that each input state variable 

1 2[ ]
inX X X X  can be quantized into en discrete states and that the information 

of a quantized state is regarded as region a wavelet receptive-field basic function for each 

layer. The mother wavelet is a family of wavelets. The first derivative of basic Gaussian 

function for each layer is given here as a mother wavelet which can be represented as 

follows: 
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Figure 2. Architecture of a RWFCMAC 
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Figure 3. Block Division of 
RWFCMAC with Wavelet Function 

2

( ) exp
2

ijk

ijk ijk ijk

F
F F

 
   

  

1, 2, , ,ii n   1, 2, , kk n  (9) 

Where ( ( ) )ijk rsi ijk ijkF d k m   , ijkm  is a translation parameter and ijk  is dilation. In 

addition, the input of this block can be represented as 
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( ) ( ) ( 1)rsi si ijk ijkd k d k r k    (10) 

Where 
ijkr is the recurrent gain, k is denotes the time step, and ( 1)ijk k   denotes the 

value of ( )ijk k  through a time delay. Clearly, the input of this block contains the 

memory term ( 1)ijk k  , which stores the past information of the network and presents 

the dynamic mapping. 

The second mapping : :A A R  the information ijk of each kth block and each jth 

layer relates to each location of receptive field space. The Figure 3 illustrates a structure 

of two-dimension )2( in  RWFCMAC with wavelet basic function with 3jn  and 

3kn   case. Areas of receptive field space is formed by multiple-input regions are called 

hypercube; i.e. in the fuzzy rules in (9), the product is used as the “and” computation in 

the consequent part. The firing of each state in jth each layer and kth each block can be 

obtained the weigh of each hypercube corresponding. Assume that in 2-D RWFCMAC 

case is shown in Figure 4, where input state vector is (6, 3), then, the content of lth 

hypercube can be obtained as follows: 

1

( )
in

jk ijk ijk

i

b F


   For 1, 2, , jj n  and 1, 2, , kk n  (11) 

Finally, The RWFCMAC output is the algebraic sum of the activated weighs with the 

hypercube elements. The output mathematic form can be expressed as follows: 

 
1 1 1 1 1

( )
j j ik k

n n nn n

jk jk ijk jk ijk ijk

j k j k i

u w b F w F
    

       

                 For 1, 2, , ,jj n 1, 2, , kk n  and 1, 2, , .ii n    (12) 

 

3.2. On-line Learning Algorithm 

By taking the time derivative of (4) and using (3), (8). We have 

( ) ( )

0 0( ) ( ) ( )n T n T

ds e K e f x G x u y L x K e         (13) 

The energy function is defined as 

21
( ( )) ( )

2
V s t s t  (14) 

Substituting equation (7) into equation (13) and multiplying both sides by ( )s t  

yield 

   ( )

0 0( ) ( ) ( )n T

SOWCM sc dss sf x sG x u u s y L x K e        (15) 

With the energy function ( ( )),V s t the parameters updating law based on the normalized 

gradient descent method can be derived as follows 

The updating law for the kth  weight memory can be derived according to 

0

( ) ( ) ˆˆ ( ) ( , ) ( )
ˆ

RWFCMAC
w wjk jk ijk

RWFCMAC jk

us t s t
w s t G x t b F

u w
 


  

 
 (16) 

Where w  is positive learning rate for the output weight memory .jkw  

The translations, dilations and recurrent gain of the thk  mother wavelet function can be 

also updated according to 
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2

0

1( ) ( )
늿 ( ) ( , )

ˆ ˆ( )ˆ

jk ijk ijkRWFCMAC
ijk m m jk jk

RWFCMAC ijk i ijkijkjk

b f Fus t s t
m s t G x t w b

u f X mmb
 

  
   

  
 (17) 

2

0

1( ) ( )
늿 ( ) ( , )

ˆ 늿
jk ijk ijkRWFCMAC

ijk jk jk

RWFCMAC ijk ijk ijkjk

b f Fus t s t
s t G x t w b

u fb
   

 

  
   

  
 (18) 

2

0

1( ) ( )
늿 ( ) ( , ) ( 1)

ˆ( )

ij ij ijkRWFCMAC
ijk r r jk jk ijk

RWFCMAC ij ij ij s ijk

F Fus t s t
r s t G x t w b k

u F r d m


  



  
   

    
 (19) 

Where ,m   and r are positive learning rates for the translation ˆ
ijkm , dilation ˆ

ijk  

and recurrent gain
îjkr . 

 

3.3. Smooth Compensator 

The update laws of equations (15), (16), (17) and (18) require a proper choice of the 

learning rates ,w ,m    and r  in order to the convergence of the output errors are 

guaranteed; however, this is not easy which depends on each person’s experience. In 

addition, the RWFCMAC is used to approximate the imprecise model or un-model of 

nonlinear system through learning. However, there exist errors between the estimating 

RWFCMAC and the ideal controller. So, to deal with these problems, the smooth 

compensator is designed to cope with the approximation errors and the stability of system 

is guarantied. 

Assume that, the approximation error between the ideal controller and the estimating 

RWFCMAC is ( ).t  Thus; the ideal controller can be represented as the following form: 

( )RWFCMACu u t    (20) 

Where the approximation error term ( )t , It is assumed that this is bounded by 

0 ( )t    in which is a positive constant. 

The smooth compensator is designed as 

1

0

1

0

ˆ (a)( ) sgn( )

ˆ (b)( )
sc

if sG x s
u

if sG x s





 

 

 
 


 (21) 

Where ̂ 
 is the estimated approximation error bound, ̂ 

is a free controller 

parameter, and δ is a positive constant revealing the linear region which is a trade-off 

between the chattering attenuation versus convergence speed. If δ is chosen small, it will 

easily result in chattering in the control force; on the contrast, if δ is chosen large to avoid 

chattering, the convergence speed will become too slow. 

Substituting (7) into (1) yields 

( )

0 0( ) ( )( ) ( ).n

RWFCMAC scx f x G x u u L x     (22) 

After some straightforward manipulations, the error equation governing the system can 

be obtained through (5), (7), (20), and (1) as follows: 

( )

0 ( ) .n T

sce K e G x u s     (23) 

In order to guarantee the stability of the AWFCB control system for the situation, 

s  , a Lyapunov function is defined as 
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2

1

1 1
( , )

2 2

TV s s s 


    (24) 

Where 1  is a learning rate with a positive constant and ˆ      Using the time 

derivative of the Lyapunov function (24) and using (23), (21a) yields: 

1 1

늿( , ) ( sgn( )) ( ) .T

D

V s ss s s s s
     

    
  

     
            (25) 

If the smooth compensator is designed for the situation, s   as shown in (21a), with 

the approximation error bound estimation law:  

1
ˆ s        (26) 

Then, from (25) becomes: 

     

 

늿( , )

0.

V s s s s s s s s

s

        

 

     



       

   
 (27) 

Since ( ( ), ( ))V s t t 
 is a negative semi-definite function, i.e. 

( ( ), ( )) ( (0), (0)),V s t t V s    it implies that ( )s t  and  
is bounded functions. Let 

function    1 1 1
( ) ( , )h t s s V s             and integrate function ( )h t  with 

respect to time 

0

( ) ( (0), ( )) ( ( ), ( ))
t

h t d V s t V s t t      (28) 

Because ( (0), (0))V s  
 is a bounded function, and ( ( ), ( ))V s t t 

 is a non-increasing 

and bounded function, the following result can be concluded: 

 
0

lim ( )
t

t
h d 


   (29) 

In addition, ( )h t  is bounded; thus, by Barbalat’s lemma can be shown that lim ( ) 0
t

h t


 . 

It can imply that s will be converging to zero as time tends to infinite. 

The compensator in (21a) uses a sign function to guarantee the system’s stability; its 

output tracks the desired trajectory, even in the unknown plant model. However, the 

compensator is usually discontinuous across s . This leads to control input chattering. In 

order to guarantee the stability of the RWFCMAC control system for the situation s   

a Lyapunov function is defined as 

2

2

1 1
( , )

2 2

TJ s s s 


    (30) 

Where 2  is a learning rate with a positive constant. Ideally, there exists an optimal 

constant,  
which matches the robust stability condition in (21b) as 

s    (31) 

 However, this optimal constant cannot be obtained, so an online estimation of this 

constant is proposed. The estimation error is defined as 
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ˆ      . (32) 

Using the time derivative of the Lyapunov function (30) and using (22), (21b) yields: 

2 2 2

2 2

2 2

2

2 2

2

ˆ
늿( , ) ( ) ( )

ˆ

ˆ
.

D

J s ss s s s s s s

s s s

s s s

     
      

  

 
  




  



     
    

 
 


 

         

   

 
     

 

  (33) 

The parameter estimation law is chosen as 

2

2
ˆ s    (34) 

and therefore, (33) becomes 

 

2 2 2 2

2

ˆ
( , )

0.

J s s s s s s s s

s s


       



 


    



 
         

 

   

 (35) 

Similarly to the discussion in the previous section, it is concluded that s  

converge to zero, as t→∞. As a result, the RWFCMAC control system for the 

situation s   asymptotically stabilizes the system. 

 

4. Experimental Results 
 

4.1. 2 DoF Hellicopter System 

A experimental results of 2 DoF Helicopter are examined to illustrate the effectiveness 

of the proposed control method. A photograph of the experimental system is shown in 

Figure 4. The control algorithm is implemented using a Pentium computer and the control 

software is Matlab 2013b. The interface device is implemented by the motion control card 

STM32F4, which can measure the angular positions with a resolution of 2500 

counts/revolution for pitch and yaw angle at the same time. The nonlinear dynamic 

equation of 2 DoF Helicopter system are given by [22]. 
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Figure 4. PC based 2 DoF Hellicopter Position Control System 

     x f x G x u L x    (36) 

where , [ ], [ ]T Tx x x x x         represent the position and velocity of the 

pitch and yaw angle, respectively;  G x  is the gain of the 2 DoF Hellicopter;  f x  

denotes a nonlinear dynamic function; u  is the input voltage; and  L x  is the normalized 

lump force of the uncertain nonlinearities such as friction, and external disturbance. Since 

the dynamic characteristic of 2 DoF hellicopter is difficult to obtain, the dynamic 

functions  f x ,  G x  and  L x  are assumed to be unknown. The proposed 

RWFCMAC system is applied to control the system by letting  0 1f x   and  0 1G x  . 

In this section, the proposed RWFCMAC control system is used for 2 DoF 

Hellicopter trajectory tracking control. The proposed recuurent wavelet fuzzy CMAC is 

shown in Figure 2 and is characterized by: number of input state variables are 1 2,s s , 

number of elements for each input state variable: 5en  , generalization: 4  , number 

of layers for each input dimension: 4jn  , number of blocks for each layer: 2kn  , 

number of rules: 8ln  . The parameters of the proposed RWFCMAC are selected as 

1 2 6k k  , 0.1,w  1 2 0.01m r         . All the parameters are determined 

through some trials in order to guarantee the desired control performance. The 

experimental results of the proposed RWFCMAC system due to a sinusoidal and constant 

commands are shown in Figure 5 and Figure 6 for no loading and 1kg loading at 57t   

and 2kg loading at 77t  , respectively. The experimental results indicate that highly-

accurate trajectory tracking responses have been achieved without control chattering and 

by the proposed RWFCMAC control. Moreover, in the 2 DoF hellicopter control system, 

its dynamic functions and external load are unknown. This shows that the proposed 

design method can handle this unknown dynamic system. 
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(a) Tracking responses of pitch axis 

 
(b) Tracking responses of yaw axis 

 
(c) Tracking error of pitch axis 

 
(d) Tracking error of yaw axis 

External Loading 

External Loading 
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(e) Control effort of pitch axis 

 
(f) Control effort of yaw axis 

Figure 5. Experimental Result of Proposed RWFCMAC Due to a Sinusoidal 
Command for 2 DoF Hellicopter: No Loading and with 1kg Loading at 

57t  and 2kg Loading at 77t   

 
(a) Tracking responses of pitch axis 

 
(b) Tracking responses of yaw axis 

External Loading 

External Loading 
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(c) Tracking error of pitch axis 

 
(d) Tracking error of yaw axis 

 
(e) Control effort of pitch axis 

 
(f) Control effort of yaw axis 

Figure 6. Experimental Result of Proposed RWFCMAC Due to a Constant 
Command for 2 DoF Hellicopter: No Loading and with 2kg Loading at 

54t  and 2kg Loading at 83t   
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4.2. Tank level System 
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Figure 7. PC based Tank Level Position Control System 

A other experimental results of tank level are examined to illustrate the effectiveness 

of the proposed control method. A photograph of the experimental system is shown in 

Figure 7. For the purpose of comparison, the experimental results for a PID control and 

the proposed RWFCMAC control for a tank level are given. Firstly, a PID controller is 

applied to control this system. The PID gains are selected as 4ck  , 0,75iT   and 

0.01dT  ; they are determined through trial-and-error to achieve satisfactory tracking 

performance. The experimental results of the PID controller are shown in Figure 8. The 

tracking response is shown in Figure 8(a); the associated control effort and tracking error 

are shown in Figure 8(b) and 8(c). Finally, the proposed RWFCMAC control is also 

applied to this system. The control parameters are selected the same 2 DoF hellicopter 

control system, where the number of input state variable is 
1s . The experimental results of 

the proposed RWFCMAC system due to a periodic step commands are shown in Figure 9. 

The tracking response is shown in Figure 9(a); the associated control effort and tracking 

error are shown in Figure 9(b) and 9(c). The experimental results indicate that highly-

accurate trajectory tracking responses have been achieved without control chattering by 

the proposed RWFCMAC control. A comparison of performance measures of the PID 
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control and RWFCMAC control system are tabulated in T able 1 which indicate that, the 

root mean square error of RWFCMAC control can achieve better tracking performance 

than the PID control system. 

Table 1. Performance Measures of PID Control and Proposed RWFCMAC 
Control System 

Tracking error PID Control System Proposed RWFCMAC Control 

System 

Total Root Mean 

Square Error (mm) 
1,8 1,2 

 

(mm)

Reference Command

Process Variable

(a) Tracking responses of tank level 

 
(b) Control effort 

 
(c) Tracking error of tank level 

Figure 8. Experimental Result of PID Due to a Periodic Step Command for 
Tank Level Control System 
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Reference Command

Process Variable

(mm)

 
(a) Tracking responses of tank level 

(V)

 
(b) Control effort 

 
(c) Tracking error of tank level 

Figure 9. Experimental Result of Proposed RWFCMAC due to a Periodic 
Step Command for Tank Level Control System 

5. Conclusion 

Due to dynamical system has a non-linear characteristic and time-varying behavior. It is 

difficult to establish exactly mathematical model for the design of a model-based control 

system. To due with these problems, the most of the control system was proposed based 

on the intelligent control theory to approximate non-linear function. In this paper, the 

novel RWFCMAC approximation with SC compensator is also developed and 

successfully used to control the 2 DoF hellicopter and tank level systems. In this proposed 

scheme, the main RWFCMAC controller incorporates the advantages of the wavelet 

decomposition property, dynamic response with fuzzy CMAC fast learning ability and the 

SC compensator is designed to attenuate the effect of the approximation error. The online 

tuning laws of RWFCMAC and SC parameters are derived based on gradient descent 

method and Lyapunov function. Finally, though the experimental results of the proposed 

RWFCMAC system can achieve favorable tracking performance for two these systems. 

Moreover, in the these control system, its dynamic functions are unknown. This shows 
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that the proposed design method can handle this unknown dynamic system. 
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