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Abstract

Energy arbitrage has the potential to make elec-
tric grids more efficient and reliable. Batteries
hold great promise for energy storage in arbitrage
but can degrade rapidly with use. In this paper,
we analyze the impact of storage degradation on
the structure of optimal policies in energy arbi-
trage. We derive properties of the battery degra-
dation response that are sufficient for the exis-
tence of optimal threshold policies, which are
easy to interpret and compute. Our experimen-
tal results suggest that explicitly considering bat-
tery degradation in optimizing energy arbitrage
significantly improves solution quality.

1 INTRODUCTION

Energy storage and arbitrage play an important role
in numerous domains including hybrid vehicle propul-
sion or electric grids [Walawalkar et al., 2007]. An
important challenge in this domain is to decide how
much energy to store or release based on current
and expected future prices. Related resource effi-
ciency optimization problems have been recently stud-
ied, among others, in the computational sustainability
research area [Gomes, 2009, Petrik and Zilberstein, 2011,
Ermon et al., 2011, Ermon et al., 2013]. Since computing
an energy arbitrage policy is a difficult sequential stochas-
tic optimization problem subject to significant uncertainty,
it is particularly relevant to the computational sustainability
community.

In this paper, we are concerned with optimizing energy
arbitrage under stochastically varying energy prices. The
goal of the decision maker is to maximize profits by charg-
ing an energy storage device when the price of energy is
low and discharging it when it is high. We show that opti-
mal policies have a threshold structure even when battery
degradation is considered and use this structure to develop
a practical algorithm.
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Our optimal threshold policy has two price-dependent
thresholds | and w (I < w). If the current state of charge
is less than [, then the battery is charged up to [. If the
current state of charge is greater than w, then the battery is
discharged to u. For any state of charge between [ and w,
no action is taken. Such threshold structure makes charging
policies easy to compute, analyze, and interpret.

The structure of optimal policies in energy arbitrage has
been analyzed previously without accounting for battery
degradation [Lifshitz and Weiss, 2014, Nadarajah, 2014,
Van de Ven et al., 2011, Harsha and Dahleh, 2011]. In case
of batteries—an important energy storage device—the
degradation can be significant and often represents an im-
portant limitation due to the high cost of batteries.
Batteries degrade most noticeably by losing capacity to
hold charge. Modeling how usage patterns affect differ-
ent battery types (e.g. NiMH and Li-ion) is an important
research problem [Ramadass et al., 2003, Aurbach, 2000].
In Li-ion batteries, the degradation is predominantly influ-
enced by 1) the state of charge, 2) the rate of charge and
discharge, and 3) the ambient temperature. We aim, in this
work, to minimize the battery’s capacity loss as it is influ-
enced by the state of charge.

Battery degradation has been explicitly consid-
ered in optimizing energy storage in hybrid ve-
hicles [Bashash et al., 2011, Serrao et al., 2005,
Hoke et al., 2011, Moura et al., 2011]. These meth-
ods solve a discretized dynamic program. The drawback
of this approach is that the computed policies are complex,
hard to implement and interpret. In addition, the discretiza-
tion and sampling issues can significantly degrade solution
quality as we show experimentally. On the other hand, the
optimality of threshold policies has been studied widely
in the inventory management literature [Porteus, 2002].
There is, however, no concept of storage degradation in
traditional inventory management domains.

The existence of an optimal threshold policy in our set-
ting is somewhat surprising. The standard threshold policy
results rely on the fact that the optimal value function is
convex or k-convex. The optimal value function for non-
trivial battery degradation functions, as we show, may be



non-convex. Yet, we establish the existence of a threshold
policy through the convexity of an auxiliary optimization
function.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the overall arbitrage model. We primarily
study models that faithfully capture the energy arbitrage
setting in electric grids. Section 3 describes the model of
battery degradation and derives some basic properties of
the degradation function. Then, we show sufficient con-
ditions for the existence of threshold policies in Section 4
and describe how the structure can be used in computing an
optimized policy in Section 5. Section 6 describes an appli-
cation of the methodology with the analysis of the results
and a comparison to discretization-based methods.

2 ENERGY STORAGE MODEL

This section describes the model of energy arbitrage and
storage. We assume multiple finite known price levels and
a stochastic evolution given a limited storage capacity. In
particular, the storage is assumed to be an electrical battery
that degrades when energy is stored or retrieved.

The underlying model is a Markov decision process. We
assume a discrete-time problem with either a finite horizon
T or a discounted infinite horizon. Prices are governed by a
Markov process with states ©. There are two energy prices
in each time step: p’ : © — R is the purchase (or input)
price and p° : © — R, is the selling (or output) price. To
simplify notation, the difference in these prices is also used
to model the energy loss in the charging and discharging
processes. In other words, the prices measure the cost of
energy as added or subtracted from the storage and may
not actually be sold or purchased.

We use s to denote the available battery capacity with sg
denoting the initial capacity. The current state of charge is
denotes as x or y and must satisfy that 0 < z; < s; at any
time step ¢. The action is the amount of energy to charge
or discharge, which is denoted by u. Positive v indicates
that energy is purchased to charge the battery; negative u
indicates the sale of energy.

We will make the following assumption regarding the pur-
chase and selling prices.

Assumption 1. Purchase price is higher than the selling
price per unit in a time step:

pp2pf VOEO.

Assumption 1 is virtually always satisfied in practice. If
violated, direct arbitrage by simultaneously purchasing and
selling energy in a single time step would then equalize the
prices. In addition, the purchase price p’ will be greater
than the selling price p° due to the inefficiencies involved
in charging and discharging.

As mentioned above, the focus of the paper is on degrada-
tion of battery capacity as a function of its use. In partic-
ular, we model the degradation as a function of the battery

capacity when charged or discharged. We use a general
model of battery degradation with a specific focus on Li-
ion batteries. The degradation function d(x,u) € R4 rep-
resents the battery capacity loss after starting at the state of
charge > 0 and charging (discharging if negative) by «
with —x < u < sg — z. This function indicates the loss of
capacity, such that:

St+1 = St — d(xhut)

We discuss the degradation function in more detail in Sec-
tion 3.

Our model makes several simplifying assumptions that are
reasonable in an electric grid scenario, but may not apply to
other scenarios such as a hybrid vehicle battery storage. In
particular, we assume that the purchase and selling prices
are independent of the energy quantity sold or purchased
and battery degradation is independent of current and tem-
perature.

The state set in the Markov decision problem is composed
of (z,s,0) where x is the state of charge, s is the bat-
tery capacity, and § € O is the state of the price process.
The available actions in a state (x,s,0) are u such that
—z < u < s — z. The transition is from (z, s, 6;) to
(xtJrl, St+1, 9t+1) giVCIl action Ut is:

Ti41 = Tt + uy

St+1 = St — d(xt,ut)
The probability of this transition is given by P [0;1|0;].
The reward for this transition is:
ifu; >0
ifu, <0°

—Ut 'pi —ct. d(fvt, Ut)

—uy - p° — ¢t d(zy,w)

’l"((xt, St, 915), ut) = {

That is, the reward captures the monetary value of the trans-
action minus a penalty for degradation of the battery. Here,
c? represents the cost of a unit of lost battery capacity.

The solution of the Markov decision process is a policy T,
which can be computed from a value function v and a post-
decision (or state-action) value function q. We focus on
both the discounted infinite horizon with a discount factor
A € (0, 1) and the finite horizon with the undiscounted total
return criterion.

The Bellman optimality equations for this problem are:

qr(z,s,07) =0
(@, 5,0;) = min{pp, [u], + p§, [u]_ +
+ cld(z,u)+

2.1)
+qi(z+u, s —d(z,u),6;) :

P u€ [~z s — a]}
a1 (2, 5,0;) = X - Elvpg1(w,5,0141)]
where [u], = max{u,0} and [u]_ = min{u,0} and the

expectation is taken over P(6;41|0:). For finite horzion
case, A = 1.



For the purpose of our theoretical analysis, we assume that
the lost capacity is immediately replaced and therefore the
battery capacity does not actually change (s;41 = s =
Sp). Instead, the degradation induces a penalty in the form
of capacity replacement cost governed by c4. In that case,
the capacity s can be omitted from the definition of v in
(2.1). The experimental results, however, study the setting
in which the capacity is not immediately replaced.

3 BATTERY DEGRADATION FUNCTION

This section describes properties of the degradation func-
tion d(x,u) that can capture the behavior of Li-ion
batteries [Aurbach, 2000, Ramadass et al., 2003] and can
guarantee the existence of an optimal threshold pol-
icy.  We focus on Li-ion batteries because of their
ubiquity and considerable promise in future applica-
tions [Peterson et al., 2010]. The chemical processes in
other battery types—such as NiMH and NiCd—are often
quite different [Serrao et al., 2005].

As noted above, we consider the dependence of the degra-
dation only on the state of charge because the other vari-
ables, such as the temperature and the current, can be effi-
ciently controlled in an electric grid energy application.

In broad terms, a Li-ion battery degrades significantly
while the state of charge is either very low or very high. A
naive policy that minimizes battery degradation will there-
fore attempt to use the battery as close to approximately
50% state of charge as possible.

Instead of considering a single degradation function, we
define a class of functions d(z, u), continuous in u for x €
[0, s¢], that in addition satisfy the following properties.

Al Convexity: function d(x, u) is convex in u for all x €
[0, 80} .

A2 Memorylessness: d(x,u; + ug) = d(x,uq) + d(x +
u1,us) when sgn(ug) = sgn(usz).

A3 Cycle linearity: function d(0, u) 4+ d(u, —u) is linear
in u.

Next we informally describe the meaning of the properties
above; a more detailed analysis of functions that satisfy
these properties follows later. The property Al is gener-
ally satisfied in Li-ion batteries in which the degradation is
more severe near the extreme range of the state of charge.
The property A2 requires that the degradation due to the
charging is independent of the amount charged, but instead
depends only on the current state of charge. Finally, the
property A3 requires that the degradation due to charging
an arbitrary amount from the state of charge 0 and subse-
quently fully discharging is linear in the amount charged.

The assumptions above, unfortunately, are hard to grasp
intuitively and therefore difficult to justify. To eluci-
date the definitions, consider the alternative definition of
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Figure 1: Example degradation function with 6, (z) = 22
and §_(r) =1 — 22

d(x,u) based on the degradation at any state of charge for
an infinitesimally small amount of energy charged d :
[0, so] — R4 or discharged 6_ : [0, sg] — R... The degra-
dation function is then simply defined as the following in-
tegral:

T+u .
d(:c,u)_{f” S (y)dy ifu>0 a1

f;_‘_u S_(y)dy ifu<0

Fig. 1 depicts an example of the immediate degradation
functions ¢4 and §_ and the corresponding degradation
function d for two values of the current state of charge.

The following proposition describes how the properties of
04+ and 0_ translate to properties of d(z, u).

Proposition 3.1. When d is defined as in (3.1) and

(i) both §_ and &, are continuous on [0, s

(ii) 64 is nondecreasing and _ is nonincreasing
(iii) 94+ (y) + 0—(y) is a constant for any y € [0, so]
Then, the battery degradation function d(x,w) satisfies the
properties of Al, A2 and A3.

Proof. The property (i) implies that there exist anti-
derivatives D and D_ to d4 and 6_ on the appropriate
intervals. Then:

d(z,u) = Dy(r+wu) = Dy(x)ifu>0
7 D_(z) = D_(z+u)ifu<0

We prove each property individually.

Al: Convexity. The convexity for a fixed  and u # 0
follows directly from the convexity of D, and —D_.
The functions D4 (z,u) and D_(z,u) are convex be-
cause their first derivatives d; and —d_ are nondecreas-
ing [Boyd and Vandenberghe, 2004]. Since both D, and
D_ are non-negative functions and d(x,0) = 0, we have
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Figure 2: Example degradation function with J;(z) =
0.01 -2 and 5_(z) = 0.005 - (1 — z)3.

that v = 0 is the minimum of d(x, u) and therefore it satis-
fies the convexity condition.

A2: Memorylessness. If u; > 0 and ug > 0,
Tt+uitusz
dau+u)= [ 5wy

rt+u1 rt+ui+us
- / 54 (y)dy + / 5. (y)dy

T4+uy

=d(x,u1) + d(z + u1, ug).

The property holds similarly when u; < 0 and ug < 0.
A3: Cycle linearity. Let u > 0,

d(0, ) + d(u, —u) = / " )y + / "5 )y

since 04 (y) + d_(y) is a constant, the cycle linearity is
satisfied. O

Note that the degradation function in Fig. 1 satisfies
the properties A1-A3. This can be easily seen since
d+(z) + 0_(x) = 1. However, the degradation of Li-
ion batteries may not always satisfies these properties.
Fig. 2 illustrates an example, based on real Li-ion behav-
ior [Bashash et al., 2011], which violates A3. The precise
form of the degradation function for any particular battery
design can be obtained either experimentally or by simula-
tion [Ramadesigan et al., 2012].

4 STRUCTURE OF OPTIMAL POLICIES

In this section, we show the existence of an optimal thresh-
old policy in the battery storage problem if properties Al—
A3 are satisfied. The analysis is based on a finite-horizon
version of the problem and we discuss how this structure
generalizes to discounted infinite horizon problems later in
the section.

A two-threshold charge policy is defined as follows:
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Figure 3: Example of a threshold policy. The upper (red)
line represents C'(#); the lower (green) line represents c(6).

Definition 4.1. A two-threshold charge policy with thresh-
olds (cy9,Cyg) With ¢, 9 < Cig for some § € © and
t =1...T is defined as:

co— e whenx <cpg
Ut = Ctﬂ — Tt when Tt > Ctﬁ (41)
0 otherwise

where ¢ is the current time step, x; is the current battery
charge, 6, is the price level state, and u; is the change in
the state of charge.

One of the main appealing properties of a threshold policy
is its simplicity and interpretability. Fig. 3 depicts an ex-
ample of a threshold policy. The x-axis represents the state
of the price process 6. In this example, the price of energy
grows linearly with 6 and the price transitions behave as
a martingale. If the current state of charge is in the red re-
gion, the next step is to discharge the battery to the red line.
Similarly, states in the green region are charged up to the
green line.

Note that the policy in Fig. 3 behaves very intuitively.
When the price of energy is low (small 6), the battery is
charged to a high level. It is not charged fully, however,
to prevent excessive degradation of capacity. No action
is taken for the medium energy price. When the energy
price increases to its maximum level, the battery is fully
discharged.

We are now ready to state the main theoretical result of the
paper.

Theorem 4.2. Assume that the battery degradation func-
tion satisfies properties Al, A2, and A3 and A = 1. Then,
there exists an optimal two-threshold charge policy for the
finite horizon problem with some time-dependent thresh-
olds (c(t,0),C(t,0)).

To prove the theorem, we need to show several auxiliary
properties. The following lemma describes the properties
of the degradation function induced by the assumptions
above.
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Figure 4: Degradation function in Example 4.4.

Lemma 4.3. A degradation function d that satisfies prop-
erty A2 also satisfies:
(i) d(xz,0) =0
(ii) d(z,y —x) = d(0,y) — d(0,x) wheny > x
(iii) d(z,y — ) = d(z,—x) —d(y,—y) wheny < x
In addition, when d satisfies property Al, then:
(iv) d(x,—x) is concave in ©
(v) d(xz,y — x) = max{d(0,y) — d(0,z),d(z,—x) —
d(y’ _y)}

Proof. The lemma follows by simple algebraic manipula-
tion for the individual cases as follows.
Case (i):

d(z,u + 0) = d(z,0) + d(z + 0,u) .
Case (ii):
d(0,y) =d(0,z 4+ (y — z)) =d(0,z) + d(z,y — x) .
Case (jii):
d(z, —z) =d(z,(y —x) —y) = d(z,y — x) + d(y, —y) -

Case (iv): by rewriting d(sg, —so) = d(so, —(so — ) — x)
we get:

d(z, —z) = d(so, —s0) — d(s0,z — s0) -

Function d(z, —x) is concave because d(sg, x — Sp) is con-
Vex.

Case (v): Note that d(0, =) is non-decreasing, and d(x, —x)
is non-increasing. The proof then readily follows from
properties (ii) and (iii). O]

We are now ready to prove the main result. The typical
proof of the threshold property in inventory management
settings is based on convexity of the value function. Unfor-
tunately, as the example described below in Example 4.4
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Figure 5: Example of functions in the proof of Theo-
rem 4.2. The current charge is x and the optimal action
is to discharge to y;.
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Figure 6: Example of functions in the proof of Theo-
rem 4.2. The current charge is = and the optimal action
is to leave the charge unchanged.

demonstrates, the value function in our setting may be non-
convex. Instead, we use property A3 to establish the con-
vexity of the post-decision value function (the concept is
similar to g-function in reinforcement learning). In partic-
ular, the linearity required by A1 can be used to cancel out
the value function non-convexities due to the battery degra-
dation.

Proof of Theorem 4.2. Like most structural proofs in dy-
namic programming, the proof is based a backward induc-
tion on time steps. But first, we need to derive a more con-
venient representation of the optimality equation (2.1). To
that effect, rewrite the term pj) [u] . + p§ [u]_ in (2.1) as a
maximum over two functions:

ph [u], + pf [u]_ = max{phu, pju} .



This holds from Assumption 1. It will be more convenient
to change the optimization variable in (2.1) from the charge
difference u to the new state of charge y = = + u. Also
using property (v) from Lemma 4.3 to express the degra-
dation function, the optimality expression for v;(x, f) now
reads as:

min maX{pé(y —x),pp(y — fff)} + q:(y, 0)+
y€[0,s0]

4. max{d(& y) - d(()7 I), d(x, *"E) - d(y7 72—/)}

Properties (ii) and (iii) from Lemma 4.3 and Assumption 1
imply that the two max operators attain their respective first
terms if and and only if y > « and therefore can be merged:

4(d(0,y)

)+ au(y, 0)}

Then we replace max{a, b} by maxeep,11{&a, (1 — £)b}.
Thus the Bellman optimality conditions become:

min  max €, x,60
yel0.50] £€01] be(y, € )

min max{pa(y x) + ¢ —d(0,z)) + q:(y,0),

y€(0,s0]

(o}

Py — z) + (d(z, —x) — d(y,

ve(z,0) =

where the main objective function ¢ is defined as:

+(1 =7 (. 0) + 97 (x,0)) -

The functions ¢° and ¢° represent terms that are constant
with respect to the optimization variable y:

9%(37,9) =
gf(m,@) =

—phx — cd(0, z)
—pox + cd(x, —x) .

On the other hand, the functions f* and f° represent terms
that depend on the optimization variable y:

fi(.0)
Ii(y,0) =

= ppy + c*d(0,y) + q:(y, 0)
Py — td(y. —y) + @ (y,9) .

The remainder of the proof focuses on showing that f* and
f¢ are convex and using this convexity to show the opti-
mality of a threshold policy in computing the minimization
over y.

We next show by induction on ¢t from¢ = T tot = 0
that the functions f; and f¢ are convex even if ¢; is not.
To prove the base case ¢ = T recall that gy = 0. The
convexity of f{ and f¢ then follows from property (iv) in
Lemma 4.3.

To prove the inductive step, assume that the functions f},
and f{,, are convex. Our focus is on showing convexity of

+; the derivation of convexity of f{ is analogous. Recall
that:

fi(y,0) = phy + c?d(0,y) + E [veg1 (2, Ops1)]

Since given a fixed x, the function ¢(y, &, x) is convex—
concave, continuous, and optimized on convex compact
sets we have by a generalized minimax theorem (e.g.
[Sion, 1958]) and further algebraic manipulation that:

min max ,x,0
yel0.50] £€[0.1] ¢t+1(y 3 )

= max_ min ,r,0
£€[0.1] € [0.30] br+1(y, € )

vt+1(:v, 9) =

= max{ng(x o) + Jg[lom ]ft+1(y»9)v

g1 (x,0) + H[})m ft+1(3/,9)}7

Note that the functions g;, and g¢, ; may not be convex,
but taking the maximum outside of the minimization will
help to establish the convexity of f}.

Next, plug in the above expression for v, and the defini-
tions of g, and g7, to f{(y,6). Further algebraic sim-
plification yields:

fi(y,0) = c¢*d(0,y)+
+E [max{—cd(0,y) + L1 (y), ¢"d(y, -
= E [max{Ls(y), ¢'d(0,y) + c"d(y, —y

y) + La(y)}]
)+ La(y)}]

where L1 (y) ... L4(y) represent functions that are linear
or constant in y. Now, recall from Lemma 4.3 that the
function d(y, —y) is concave. However, Assumption A3
implies that d(0,y) + d(y, —y) is a linear (convex) term.
Point-wise maximization and expectation preserve convex-
ity and thus the function f; is convex. The analogous proof
for f? requires that d(0, y)+d(y, —y) is concave (or linear)
and thus the linearity required by A3.

The final step in the proof is to show the two-threshold
structure in the solution to the action optimization problem:

min max{ f{(y.0) + gi(,0).

yE[O 50] ( 42)
f.0) +gi(.0)} .
Figs. 5 and 6 depict examples of functions in (4.2) for two
different values of the current state of charge x. The hor-
izontal axis represents the next state of charge y and the
bold dashed line highlights the maximum of the two func-
tions. Note that the change in the current state of charge x
only shifts the two functions without changing their shape.

Now, recall that from Lemma 4.3 and from the construction
of (4.2), the following inequalities hold:

y>a= fi(y,0) +gi(z,0) > f2(y,0)+ gl (x,0)
y<a= fi(y,0)+gi(z,0) < f2(y,0)+ g (x,0)
y=x= f{(y,0)+gi(z,0) = f2(y,0) + g (x,0)

Now let ei(y) = f{(y.0) + gi(2,0) and y; €
arg minye(o 5] €i(y). Also let e,(y) = f{(y,0) + g7 (z,0)
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and y; € argmingepg,s,] €o(y). We will show below that
the optimal solution to (4.2) can be either at i, yJ;, or at z.
There are three possible cases:

1. If y > =« then y; is optimal in (4.2) because
fi(y,0) + gi(2,0) < f7(y,0) + g7(x,0) for any
y <x.

2. If y; < x then y; is optimal in (4.2) as above.

3. If y¥ <z and y} > z then x is optimal in (4.2). Bar-
ring the trivial case y; = z, for any y > x, we have
ei(y)—ei(r) - ei(@)—e

Yy—x - zfy;
Therefore e;(y) > e;(x) for any y > x. A similar
argument for any y < x shows that e,(y) > e (x)
which proves the desired optimality of z in (4.2).

W) > 0 since e;(y) is convex.

These cases correspond to the threshold policy as described
in Definition 4.1. O

The following example illustrates that even when the con-
ditions A1—-A3 are satisfied, the optimal value function may
not be convex.

Example 4.4. Consider a two stage problem with the sale
price p* = p°® = 2, the degradation cost ¢ = 1 and the
degradation function being:

d(x,u) = max{(z+u)? — 22, (so —z —u)? — (s — x)?}.

The degradation function at x = 0.2 and x = 0.8 is de-
picted in Fig. 4.

The battery capacity is so = 1. It is easy to show that
the optimal policy in the last stage is simply to fully dis-
charge the battery. Then v1(x) = —p° - x + ¢ - d(z, —).
By Lemma 4.3, the function vi is concave as illustrated in
Fig. 7.

Note that the degradation function in Example 4.4 satisfies
the property A3 and, therefore, this property is insufficient

to guarantee the convexity of a value function. In fact,
the value function will only be convex only if d(z, —z)
is linear—the degradation function is linear only when the
degradation is independent of the battery charge.

Finally, note that Theorem 4.2 does not apply to discounted
problems. To apply to discounted problems, we require
a modified A3 that states that both functions d(0,u) +
Ad(u, —u) and —Ad(0,u) — d(u, —u) are convex.
Corollary 4.5. Assume that the battery degradation func-
tion satisfies properties Al, A2, and modified A3. Then
there exists an optimal two-threshold charge policy for the

discounted infinite horizon problem with time-independent
thresholds (c¢(0),C(9)).

The proof of Corollary 4.5 follows the same steps as the
proof of Theorem 4.2 and is provided in the appendix. The
stationarity follows using the standard argument for the ex-
istence of an optimal stationary policy, e.g. Theorem 6.2.7
in [Puterman, 2005].

The modified condition A3 is however more difficult to sat-
isfy and verify than the original A3. However, it may be
sufficient to satisfy either one of these properties approxi-
mately in order for a threshold policy be close to optimal.
This analysis is, however, beyond the scope of the present

paper.
5 OPTIMIZATION ALGORITHM

So far we described the structure of the optimal policy. It is
important to also develop an algorithm that can take advan-
tage of this structure and efficiently compute the optimal
policy. In this section, we describe such an algorithm and
prove its optimality. We focus on the infinite horizon prob-
lem which is more relevant in practice.

A naive approach to optimizing threshold policies is to
iteratively evaluate a given set of thresholds by simula-
tion and then optimize the threshold values. This class
of methods is known as simulation-optimization or policy
search [Carson and Maria, 1997]. Simply searching over
all sets of thresholds is intractable because the number of
threshold values that need to be computed is 2|©]. As we
show below this search can be decomposed by the states of
the price process 6 leading to Algorithm 1. The algorithm
optimizes each pair of thresholds independently for each
state of the price process.

The evaluation function f(cel ,Coys v 5€o,,Cops - o
o, ,Cp,) is computed by simulating the execution.
Using common random numbers when optimizing
a value by simulation in this setting can signifi-
cantly reduce sample variance and speed up the algo-
rithm [Glasserman and Yao, 1992]. To model the discount
factor, we assume a termination probability of 1 — A
in every step. The function fis computed as a sample
average.

In the remainder of the section, assume that the function f
can be evaluated precisely. The result readily generalizes to



Algorithm 1: Threshold Optimization by Simulation

// Initialize thresholds
1 (cg,Cy) < (0,1) VOe€©O;
// Initialize step counter
2 k<« 1;
3 go < inf,g_1 + inf ;
4 while g, _1 < g2 + ecdo
5 for 6 € © do
// Optimize thresholds for 6

6 CG’C{’, < argming, o, f(...,e,Co,...);
// f is sampled mean return

7 gk%f(cel,C’gl,...,c‘gn,an);

s | k+—k+1;

// Return computed thresholds
9 return {(0,cy9,Cy) : 0 € O}

the sampled setting by considering appropriate Hoeffding
or Bernstein concentration inequalities.

Proposition 5.1. Consider an energy arbitrage problem
that satisfies the properties Al, A2, and modified A3 suf-
ficient for the optimality of a threshold policy. Then Algo-
rithm I converges to the optimal solution in a finite number
of iterations.

Proof. We argue that Algorithm 1 corresponds to a variant
of the simplex algorithm implementation on the dual MDP
formulation (e.g., [Puterman, 2005]). First, note that using
the same argument as in the proof of Theorem 4.2 we can
show that the optimal solution to the minimization in Algo-
rithm 1 is also a threshold policy. Therefore, the algorithm
corresponds to a coordinate descent on the linear program
formulation of the MDP. The result then follows from the
finite number of coordinate blocks. O

6 NUMERICAL RESULTS

This section numerically evaluates Algorithm 1 in an ide-
alized, but realistic, model of daily energy price evolution
and a degradable Li-ion battery. First, we analyze the prop-
erties of the computed solution and study the impact of the
battery degradation on the quality of the computed policy.
Then, we compare the solution based on a threshold policy
to directly solving a discretized version of the problem.

The experimental setting assumes that energy is traded
daily in a large exchange market that is not influenced by
the trading policy. We compute policies for a discount fac-
tor of 0.9999 and report results of simulations of energy
arbitrage throughout 5 years (1825 days).

Our energy prices are based on data from the Intercon-
tinental Exchange (IEC) [IEC, 2015] for New England
for years 2001 through 2013. The price per MW h in
this period ranges between $24 and $312. Numerous pa-
pers have focused on building predictive models of energy
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Figure 8: Optimal threshold policy 7., Which does not
consider battery degradation. The price state 6 represents
the average price of energy in $/MW h.

prices, most auto-regressive or latent [Mateo et al., 2005,
Aggarwal et al., 2009]. Since the prediction problem is not
the main focus of this work, we simply use a Markov model
with quantized price data in $25 intervals. The model is de-
scribed in detail in Appendix A.1. More accurate models
of the energy price, such as ones that include seasonal ef-
fects, may lead to significantly greater returns. In addition,
to model transmission and battery inefficiencies, we use p’
that is 5% higher and p° that is 5% lower than the spot
market price.

The battery degradation process is based on a generic be-
havior of a Li-ion battery depicted in Fig. 2. The actual
degradation will depend on the specific construction of the
particular battery [Ramadesigan et al., 2012]. We assume a
battery of size 1 MW h; using a larger battery would sim-
ply linearly scale the results. We assume a low price of
Li-ion batteries at about $20 per kW h, which translates to
a degradation cost of ¢? = 20000. While the current price
of Li-ion batteries is considerably higher, it is expected to
decrease in the future.

Policies are computed using 10 iterations of Algorithm 1.
We first compute a policy 7o, that ignores the effects
of battery degradation. This is the approach taken by
some previous relevant work [Harsha and Dahleh, 2011,
Van de Ven et al., 2011]. This policy is depicted in Fig. 9.
Second, we compute the policy that considers the degrada-
tion 7gee and show it in Fig. 9.

Both policies 7o and geg charge the battery to a relatively
high level when the energy price is low and discharge it
when the energy price is high. However, note that mge,
charges the battery to a lower maximal level, and also is
more conservative in discharging the battery completely,
unless the price of energy is especially high. This behavior
decreases some potential trading revenues but minimizes
battery degradation.

Fig. 10 compares the capacity loss of the two policies as a
function of the trading day averaged over 10 runs. It is no-
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Figure 9: Optimal threshold policy e, Which considers

battery degradation. The price state 6 represents the aver-
age price of energy in $/MWh.
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Figure 10: Cost of the capacity loss as a function of the
trading day. The final capacity loss corresponds to about
10% of the initial capacity for mep.
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Figure 11: Cost of the capacity loss as a function of the
trading day. The final capacity loss corresponds to about
10% of the initial capacity for myep.

ticeable that the policy that does not consider ends up lead-
ing to battery degradation that is more than double of the
policy that is optimized for battery loss. Fig. 11 shows the
cumulative gains from the arbitrage less the cost of the lost
battery capacity. Note that the policy that does not consider
battery degradation ends up with negative returns. That is
the cost of the lost capacity is greater than the profits earned
from trading.

One note on practicality of using Li-ion batteries for en-
ergy storage is in order. Although we assumed a very
low cost of Li-ion batteries, it does not appear that the
return that we obtained is sufficient to offset the capi-
tal invested in the battery. However, when the capac-
ity is already available for a different purpose, such as
with an plug-in electric vehicle, energy arbitrage using
the battery may be viable [ Yudovina and Michailidis, 2014,
Peterson et al., 2010].

7 CONCLUSION

We described sufficient conditions that guarantee the exis-
tence of an optimal threshold policy for energy arbitrage
with a degradable battery storage. Threshold policies in
this setting are very appealing for several reasons. They are
relatively easy to compute and are simple to analyze, inter-
pret, and implement. Our experimental results indicate that
it is necessary to consider battery degradation in realistic
scenarios since the battery cost is significant in comparison
with energy prices. In addition, even when the degradation
function does not satisfy the threshold policy assumptions,
the proposed algorithm can compute very good solutions
that in fact outperform a dynamic programming solution of
the discretized problem.

Future work should characterize the structure of policies
for problems that violate A3. In addition, the threshold
policy property could be combine with a dynamic program-
ming approach instead of simulation optimization. Such
approach may lead to more efficient algorithms in terms of
computational and sampling complexities.
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