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Abstract

Computing expectations in high-dimensional
spaces is a key challenge in probabilistic infer-
ence and machine learning. Monte Carlo sam-
pling, and importance sampling in particular, is
one of the leading approaches. We propose a
generalized importance sampling scheme based
on randomly selecting (exponentially large) sub-
sets of states rather than individual ones. By col-
lecting a small number of extreme states in the
sampled sets, we obtain estimates of statistics
of interest, such as the partition function of an
undirected graphical model. We incorporate this
idea into a novel maximum likelihood learning
algorithm based on cutting planes. We demon-
strate empirically that our scheme provides accu-
rate answers and scales to problems with up to a
million variables.

1 INTRODUCTION

Probabilistic inference is one of the key computational
challenges in statistical machine learning and Bayesian
statistics. The key computational bottleneck for many sta-
tistical inference problems of interest lies in the computa-
tion of high-dimensional integrals. Examples include com-
puting posterior probabilities, model averaging, and eval-
uating partition functions of undirected graphical models.
The field is dominated by two main paradigms tracing their
roots to statistics and physics: Monte Carlo sampling meth-
ods [1, 15, 19] and variational techniques [16, 29]. Monte
Carlo sampling is an extremely influential idea leveraged
by numerous algorithms which have found an enormous
number of applications in many fields of scientific com-
putation, with application ranging from machine learn-
ing, statistics, and physics. It is often ranked among the
most important algorithms of all time in polls and sur-
veys [4]. The basic idea is to estimate properties of a high-
dimensional space (e.g., the integral of a function) by look-

ing at a small number of representative states. The major
difference between Monte Carlo schemes lies in how these
representative states are selected and weighted.

Importance sampling (IS) is one of the most popular Monte
Carlo sampling schemes. It is a simple and elegant idea,
which is at the core of other widely used techniques such
as Markov Chain Monte Carlo, Annealed Importance Sam-
pling [21], and others [10]. The approach is very gen-
eral: one can choose the samples randomly according to
any desired proposal distribution (some mild restrictions
have to be met), and IS provides a recipe to properly weight
the samples and obtain an estimate for the original high-
dimensional integral. The choice of the proposal distribu-
tion affects the variance of the estimate, and the number of
samples required to obtain a statistically reliable estimate
can grow exponentially in the problem size if the proposal
distribution is poorly chosen. Unfortunately, designing a
good proposal distribution is generally hard.

We introduce a more general scheme which we call im-
portance sampling over sets (ISS) where we randomly se-
lect (large) subsets of states (rather than individual sam-
ples) using a generalized notion of proposal distribution
called set-proposal distribution. Like traditional impor-
tance sampling, we provide a way to re-weight the sam-
ples and obtain an unbiased estimator for the original high-
dimensional integral of interest. Intuitively, the idea is that
by considering a very large (potentially, even exponential in
the dimensionality of the problem) number of samples, one
can significantly reduce the variance. Unfortunately, sim-
ply enumerating the samples would take exponential space.
We therefore consider specially structured set-proposal dis-
tributions such that the set of samples can be represented in
an implicit and compact way. The second main obstacle to
overcome is that it is no longer possible to do enumeration-
based inference on the samples. We therefore propose an
approximation based on the importance weight of the heav-
iest configuration in the sampled set. For many classes of
probabilistic models, e.g. log-supermodular [6], we can
compute these statistics efficiently, e.g. using graphcuts.
Surprisingly, we can show some strong formal guarantees



for this approximation. In particular, we identify a natu-
ral link between our scheme and some recently introduced
probabilistic inference schemes based on randomized hash-
ing and optimization [7, 8]. By reformulating these prior
results within our framework, we show that there exists
set-proposal distributions that are in some sense universal -
they are guaranteed to give accurate answers using a small
number of samples no matter what the underlying proba-
bilistic model is.

We improve the accuracy and efficiency of our approach
by developing a class of adaptive set-proposal distribu-
tions that can be tailored to the specific target probabilistic
model leveraging the samples we draw from the model. We
show that this approach provides very accurate estimates
for the partition function of undirected graphical models
on a range of benchmark problems. Our method is also ex-
tremely scalable: we are able to estimate the partition func-
tion for models with up to one million variables in a matter
of minutes. Finally, we develop a new maximum likeli-
hood parameter learning scheme based on our probabilistic
inference framework. Our technique is very different from
standard gradient descent approaches, and resembles struc-
tured prediction schemes such as structured SVM learning.
We empirically show the effectivness of our technique on
the standard MNIST handwritten digits dataset.

2 SETUP

Given an undirected graphical model with n binary vari-
ables, let X = {0, 1}n be the set of all possible configura-
tions (variable assignments or possible states of the world).
Define a weight function w : X → R+ that assigns to
each configuration x a score proportional to its probabil-
ity p(x): w(x) =

∏
α∈I ψα({x}α). The weight function

is compactly represented as a product of factors or poten-
tials. The partition function of the model Z is defined as
Z =

∑
x∈X w(x) =

∑
x∈X

∏
α∈I ψα({x}α). It is a nor-

malization constant used to guarantee that p(x) = w(x)/Z
sums to one. Computing Z is typically intractable because
it involves a sum over an exponential number of configura-
tions, and is often the most challenging inference task for
many families of graphical models. Computing Z is re-
quired for many inference and learning tasks, such as eval-
uating the likelihood of data for a given model, computing
marginal probabilities, and comparing competing models
of data [29, 17].

Given that probabilistic inference problems are intractable
in the worst case [23], a number of approximate inference
algorithms have been developed. There are two main fam-
ilies of algorithms: Monte Carlo sampling techniques and
variational approximations. Variational methods are based
on approximating the target distribution p using a family
of tractable approximating distributions, and minimizing a
notion of divergence. Sampling techniques are randomized

approaches where the key idea is to estimate statistics of in-
terest by looking at a small number of representative states.

3 IMPORTANCE SAMPLING

The simplest (naive) approach is to sample x1, · · ·xM uni-
formly from X , and estimate Ẑ = 1

M

∑M
i=1 w(xi)2

n.
This is an unbiased estimator of Z as E[Ẑ] =
1
M

∑M
i=1

∑
x∈X

1
2n 2nw(x) = Z. The variance of this esti-

mator can be very large since we are limited to a small num-
ber of samples M , while the number of possible configura-
tions |X | is exponential in n. The variance can be reduced
using importance sampling (IS) techniques, i.e. sampling
using a proposal distribution (which is closer to p(x)) rather
than uniformly [1, 15, 19]. Here, x1, · · ·xM are sampled
from X according to some proposal distribution q(x), and
weighted by their inverse likelihood, Ẑ = 1

M

∑M
i=1

w(xi)
q(xi)

.
This is also an unbiased estimator for Z.

Unfortunately, it is usually the case that the closer the pro-
posal distribution q is to the original intractable p(x), the
harder it gets to sample from it. Markov Chain Monte
Carlo sampling is one of the leading approaches for sam-
pling from arbitrary distributions [1, 15, 19]. The key idea
is to draw proper representative samples from p(x) by set-
ting up a Markov Chain over the entire state space which
has to reach an equilibrium distribution. For many statis-
tical models of interest, reaching the equilibrium distribu-
tion will require simulating the chain for a number of steps
which is exponential in n. Unless there are special regu-
larity conditions, if the random walk does not visit all the
possible states it might miss some important parts. In prac-
tice, the approach will therefore only give approximate an-
swers. There is generally little or no information on the
quality of the approximation. In fact, the Markov Chain
may get trapped in less relevant areas and completely miss
important parts of the state space.

Most similar to our approach is Greedy Importance Sam-
pling (GIS) [27], a reformulation of IS which achieves
variance reduction by sampling blocks of variables from
a proposal distribution and then searching for highly
weighted regions in the target distribution. The blocks of
points are non-overlapping and points within a block are
ordered, allowing points in a block to be selected using
a greedy search. This search increases the probability of
blocks containing highly weighted points and outperforms
naive methods which are unlikely to observe such points by
chance. These blocks can be seen as a special-case of sets
in the ISS technique, in which the sets are selected through
search. Whereas GIS blocks are likely to contain highly
weighted points due to explicit search, sets in ISS more
generally contain highly weighted points by sampling any
exponentially large subset of points and extracting statis-
tics of interest. For example ISS allows the use of order-
statistics (MAP/MPE estimation) which can often be com-



puted efficiently (e.g. using graphcuts, Viterbi), although
the search method of GIS is another approach. The meth-
ods are orthogonal and future work can investigate incor-
porating explicit search or other techniques such as ana-
lytic marginalization within ISS to further reduce variance.
Another key generalization of ISS is that sets of points can
overlap, which grants additional freedom in selecting set-
proposal distributions. For example when sets are defined
by parity constraints, set-proposal distributions implement
a strongly universal hash function, providing strong theo-
retical guarantees on the accuracy of the estimates.

4 IMPORTANCE SAMPLING OVER
SETS

We propose a generalized importance sampling procedure,
in which instead of randomly selecting a single configura-
tion x we randomly select a (large) subset of configurations
S ⊆ X . Let P (X ) denote the power set of X = {0, 1}n,
i.e. the set of all subsets of X . We define a probability
distribution q over P (X ) as a set-proposal distribution.
A set-proposal distribution induces the following function
γ : X → [0, 1]

γ(x, q) =
∑

S∈P (X )

1(x ∈ S)q(S) (1)

Intuitively, γ(x, q) is the probability of x being contained in
a set S sampled from q. We omit the dependency on q when
the set-proposal distribution used is clear from the context.
Standard proposal distributions used in Importance Sam-
pling are a special case of set-proposal distributions, as-
signing zero probability to all subsets S ⊆ X such that
|S| 6= 1. The following results generalizes the standard
importance sampling result to our more general case.

Proposition 1. Let q be any set-proposal distribution such
that w(x) > 0 implies γ(x, q) > 0. Let S ∼ q de-
note a random sample from the set-proposal distribution
q. Then

∑
x∈S

w(x)
γ(x,q) is an unbiased estimator for the par-

tition function Z.

Proof.

Z =
∑
x∈X

w(x) =
∑
x∈X

w(x)
γ(x)

γ(x)

=
∑
x∈X

w(x)

γ(x)

∑
S∈P (X )

1(x ∈ S)q(S)

=
∑

S∈P (X )

q(S)
∑
x∈X

w(x)

γ(x)
1(x ∈ S)

=
∑

S∈P (X )

q(S)
∑
x∈S

w(x)

γ(x)
= ES∼q

[∑
x∈S

w(x)

γ(x)

]

Note that when the set-proposal distribution q is a standard
proposal distribution (over singletons), one recovers the
standard importance sampling result. There are three main
aspects to consider for the practical usability of Proposition
1. We need to 1) sample a subset S from q efficiently, 2)
evaluate the importance weight γ(x) tractably, 3) when S
is (exponentially) large, represent S compactly and evalu-
ate the summation. The first two considerations apply to
traditional importance sampling as well. The third one is
new. For example, if q deterministically chooses S = X ,
then evaluating the estimator is just as hard as computing
the partition function. As this extreme example suggests,
the advantage is that by considering larger sets, one can
significantly reduce the variance. The following corollary
is very useful,

Corollary 1. Let q be any set-proposal distribution such
that w(x) > 0 implies γ(x) > 0. Let S ∼ q denote a
random sample from the set-proposal distribution q. Then
ES∼q

[
maxx∈S

w(x)
γ(x)

]
is a lower bound for the partition

function Z.

Proof. Since the weights are non-negative w(x) ≥ 0, it
follows that maxx∈S

w(x)
γ(x) ≤

∑
x∈S

w(x)
γ(x) and the claim fol-

lows from Proposition 1 by linearity of expectation.

Notice that if q is a standard proposal distribution, i.e.
q(S) = 0 if |S| 6= 1, the estimators

∑
x∈S

w(x)
γ(x)

and maxx∈S
w(x)
γ(x) coincide. In general, the value of

maxx∈S
w(x)
γ(x) can be exponentially far from

∑
x∈S

w(x)
γ(x) , for

example in the case of a constant (uniform) weight func-
tion w(·). The upside is that the max statistic, i.e. com-
puting the mode of the distribution, is often more tractable.
For example, there are numerous classes of probabilistic
models, such as attractive Ising models, where one can find
the mode of the distribution (MAP/MPE query) in polyno-
mial time, while computing the partition function is NP-
hard [11, 14].

4.1 EXAMPLES OF SET-PROPOSAL
DISTRIBUTIONS

In both examples below, let m ≤ n, let vm(x) =
{vi(xi), i = 1, · · · ,m} be a family of marginal distribu-
tions over individual variables. Let bi be independent sam-
ples from vi(xi) for i = 1, · · · ,m.

4.1.1 Constraining Variables

We can define a set-proposal distribution q where to sample
a set we define S = {x ∈ X : xi = bi,∀i ∈ {1, · · · ,m}}.
Note that γ(x) =

∏m
i=1 q(xi) =

∏m
i=1 vi(xi)

bi(1 −
vi(xi))

1−bi . The set can be represented compactly using
m equations (equivalently, additional factors to be added



to the graphical model that clamp some variables to cer-
tain values). Intuitively, this approach samples a set S
where |S| = 2n−m by constraining or "clamping" variables
x1, · · · , xm to fixed binary values.

4.1.2 Parity Constraints

As a second example of a set-proposal distribution, let
A ∈ {0, 1}m×n be a binary matrix with rows ai. We de-
fine a set-proposal distribution q according to the following
generative process. To sample a set S from q, we define
S = {x ∈ X : aix = bi mod 2,∀i ∈ {1, · · · ,m}}. It can
be seen that given any x ∈ X , the probability that x belongs
to a randomly chosen S ∼ q is again γ(x) =

∏m
i=1 q(xi).

This is the probability that x satisfies m parity equations
with randomly chosen right-hand side coefficients. The
set can be represented compactly using m linear equations
modulo 2. Parity constraints can be represented compactly
as a product of factors, using a linear number of extra vari-
ables [7].

5 MULTIPLE PROPOSAL
DISTRIBUTIONS

As noted earlier, the lower bound obtained with Corollary
1 given by L(S, q) = maxx∈S

w(x)
γ(x,q) might be loose com-

pared to A(S, q) =
∑
x∈S

w(x)
γ(x,q) , which is an unbiased es-

timator of Z by Proposition 1. Here we are making explicit
the dependence of γ(x, q) on the set-proposal distribution
q. Intuitively, this approximation is accurate when the
weight distribution over S is peaked, i.e. the mode is a good
approximation of the “total area”. On the other hand, the
lower bound is loose when there are “many” configurations
in S that have a weight comparable to the one of the heav-
iest assignment. If that is the case, it is intuitively possible
to randomly subsample the set S and obtain a smaller set
S′ ⊆ S such that maxx∈S w(x) ≈ maxx∈S′ w(x). Since
|S′| < |S|, the gap between the approximation introduced
by considering only the mode of the weight distribution on
S′ yields a smaller error. This suggests the use of another
set-proposal distribution q′ that is more likely to propose
smaller sets S′ compared to q. Because we do not know a
priori if the bound is tight or not, this discussion motivates
a more general scheme that relies on multiple set-proposal
distributions. By letting the typical size of a sampled set
change, e.g. from 1 to |X | = 2n, we can sample from a
wide variety of configurations and accurately predict logZ
for distributions which are peaked to various degrees.

Proposition 2. Let Q = (q1, · · · , qk) be a family of set-
proposal distributions. Let S1 ∼ q1, S2 ∼ q2, · · · , Sk ∼
qk. Suppose that for all i, w(x) > 0 implies γ(x, qi) > 0.
Then 1

k

∑k
i=1

∑
x∈Si

w(x)
γ(x,qi) is an unbiased estimator for

the partition function Z.

Proof.

ES1∼q1,··· ,Sk∼qk

[
1

k

k∑
i=1

∑
x∈Si

w(x)

γ(x, qi)

]
=

1

k

k∑
i=1

ESi∼qi

[∑
x∈Si

w(x)

γ(x, qi)

]
= Z

where the last step follows from Proposition 1.

The following corollary follows, and is implemented by Al-
gorithm 1 with input T = 1.
Corollary 2. Let Q = (q1, · · · , qk) be a family of set-
proposal distributions. Let S1 ∼ q1, S2 ∼ q2, · · · , Sk ∼
qk. Suppose that for all i, w(x) > 0 implies γ(x, qi) > 0.
Then 1

k

∑k
i=1 maxx∈Si

w(x)
γ(x,qi) is in expectation a lower

bound for the partition function Z.

Proof. Follows immediately from Corollary 1.

Input : w : X → R+, T , k, qi for i = 1, . . . , k
Output: Estimate of logZ = log

∑
x∈X w(x)

1 for i = 1, . . . , k do
2 Sample S1

i . . . S
T
i according to qi

3 for t = 1, . . . , T do
4 mt

i = maxx∈St
i

w(x)
γ(x,qi)

5 end
6 Mi ←Median(m1

i . . .mT
i )

7 end
8 Return 1

k

∑k
i=1Mi

Algorithm 1: Set importance sampling

If we now let the typical size of a sampled set change, e.g.
from |S| = 1 to |S| = |X | = 2n, the magnitude of the
various γ(x, qi) varies exponentially. Therefore it is often
the case that many terms in the sum

∑k
i=1 maxx∈Si

w(x)
γ(x,qi)

will not contribute significantly to the overall estimate ofZ.
In practice, a sufficiently accurate lower bound is obtained
by T samples of only the highest weighted sets,

k
max
i=1

max
x∈Si

w(x)

γ(x, qi)
(2)

The main advantage of this approach is computational, as
we have now reduced the inference procedure to a single
optimization problem. The following result shows that this
still provides a valid lower bound:
Corollary 3. Let Q = (q1, · · · , qk) be a family of set-
proposal distributions. Suppose that for all i, w(x) > 0
implies γ(x, qi) > 0. Let S1

i , · · · , STi ∼ qi be i.i.d
samples from the i-th set-proposal distribution qi. Then
maxki=1 Median

(
maxx∈S1

i

w(x)
γ(x,qi) , · · · ,maxx∈ST

i

w(x)
γ(x,qi)

)
is with high probability an approximate lower bound for
the partition function Z.



Proof. For every i, let us denote L(Si) = maxx∈Si

w(x)
γ(x,qi) .

Then by Proposition 1, ESi∼qi [L(Si)] ≤ Z. Therefore by

Markov’s inequality, P
[
maxx∈Si

w(x)
γ(x,qi) ≥ 4Z

]
≤ 1

4 . Let

S1
i , · · · , STi be samples from qi. It follows from Chernoff’s

inequality that

P [Median(L(S1
i ), · · · , L(STi )) ≥ 4Z] ≤ exp

(
− T

24

)
therefore from the union bound

P [∪k
i=1Median(L(S1

i ), · · · , L(ST
i )) ≥ 4Z] ≤ k exp

(
− T

24

)
Therefore

P [
k

max
i=1

Median(L(S1
i ), · · · , L(ST

i )) ≤ 4Z] ≥ 1−k exp
(
− T

24

)

Corollary 3 is implemented in Algorithm 1 with line 8
changed to return the maximum Mi instead of the mean.

To make the procedure of Corollary 3 clear, consider again
a family of set-proposal distributions qi constructed by con-
straining variables as in the example of section 4.1.1. This
can be implemented in Algorithm 1 by setting k = n + 1
and selecting qi to constrain the first i − 1 variables: The
outer-loop (line 1) searches for the qi which contributes
most towards the estimate of logZ by, in each iteration,
enforcing i "hard" variable constraints which limit the set
of possible configurations by defining sets Sti where |Sti | =
2n+1−i. Notice under this setup that if the maximum it-
eration is i = 1 (no variables constrained, |S| = |X | =
2n), then this is equivalent to approximating logZ by the
MAP/MPE configuration. Conversely, if the maximum is
at i = n + 1, then this is equivalent to naive importance
sampling based on proposal distribution qn+1 (all variables
constrained, |S| = 1). If the heaviest weighted set is not
one of these two special cases, then the set importance
sampling method will produce a more accurate estimate of
logZ. Also note that since empirically most of the itera-
tions do not contribute significantly to the overall estimate
of logZ, the outer loop in Algorithm 1 over all n variables
can search with a larger granularity or logarithmically for
the heaviest i. In practice, fixing the number of iterations
in the outer loop to 10 (sampling sets with a granularity of
n
10 constrained variables) is both accurate and fast to run.
In fact, this can be taken a step further by skipping the loop
altogether and searching for the heaviest weighted set as a
single optimization problem: rather than a loop which in-
crementally adds "hard" variable constraints, we can add all
the variable constraints at once as "soft" constraints which
an optimization oracle may choose to satisfy. The reward
for satisfying these constraints matches the scaling 1

γ(x,qi) .
Formulating the estimate of logZ as a single optimization
problem is useful for learning, see section 7.

5.1 RELATIONSHIP WITH RANDOMIZED
HASHING

The advantage of using multiple proposal distributions is
that one might be able to reduce the variance of the estima-
tor, in accordance with the intuitive motivation presented
earlier. In fact, it can be shown that there exists set-proposal
distributions (based on universal hash functions) such that
a polynomial number of samples is sufficient to obtain con-
centration of the estimate around the mean. The surprising
result is that these proposal distributions are “universal”,
in that they are guaranteed to give accurate estimates (con-
stant factor approximations) for any weight function w(·),
i.e., any underlying graphical model.

Let S ⊆ P (X ) be a family of sets defined as S = {{x ∈
X : Ax = b mod 2}, A ∈ {0, 1}i×n, b ∈ {0, 1}i}. Let qi
be a set-proposal distribution where to sample from qi we
randomly choose each entry of A, b uniformly at random
(independently). Then it can be shown that γ(x) = 2−i.
For a state space X = {0, 1}n, let us consider a family
of n proposal distributions QP = (q0, · · · , qn). These
set-proposal distributions can be interpreted as implement-
ing a strongly universal hash function, where each element
x ∈ X is sampled by the i-th proposal distribution qi with
probability 2−i, and elements are sampled pairwise inde-
pendently [9, 3, 12, 7, 8, 13]. As noted above, we can sam-
ple from qi tractably, and represent sets S ∈ S in a compact
way. Theorem 1 from [8] implies the follwing remarkable
result

Corollary 4. Let QP = (q0, · · · , qn) be defined as
above. Let L(Si) = maxx∈Si

w(x)
γ(x,qi) for every i.

Then for any weight function w(·) and 1 > δ > 0,∑n
i=1 Median(L(S1

i ), · · · , L(STi )) is with probability at
least 1 − δ a constant factor approximation of Z when
T = Θ(n lnn/δ).

Reinterpreted in our set-proposal distribution framework,
Corollary 4 is important because it shows that there exists a
family of universal set-proposal distributions that are guar-
anteed to work well for any underlying target probability
distribution p.

Although sets S ∈ S defined by parity constraints can be
represented compactly, the resulting optimization problems
maxx∈Si

w(x)
γ(x,qi) are generally difficult to solve, even when

w(·) can be tractably optimized, i.e., maxx∈X w(x) can be
solved efficiently. Rather than take a worst-case approach
and consider a proposal distribution that is guaranteed to
work for any weight function w as in [9, 3, 12, 7, 8, 13], in
this paper we consider a more general class of set-proposal
distributions. In particular, we construct proposal distri-
butions that are tailored to particular probabilistic models
(and weight function w). The main advantage of this ap-
proach is that we can leverage the structure of the origi-
nal problem, and the corresponding optimization problems



will be easier to solve, leading to massive improvements in
scalability. This is similar in spirit to traditional importance
sampling, where one typically uses some prior knowledge
on the underlying probabilistic model to construct good
proposal distributions.

6 ADAPTIVE SET IMPORTANCE
SAMPLING SCHEME

Similarly to standard adaptive importance sampling
schemes (e.g. [22]), we propose an adaptive procedure
where set-proposal distributions are adapted based on the
samples collected. This is an enhancement of Algorithm 1
in that its iterative procedure can be exploited to adaptively
improve the input set-proposal distributions.

Recall from section 4.1.1 that a set-proposal distribution
can be defined in which sets Si are sampled by constrain-
ing variables x1, · · · , xi. For a fixed i there are 2i such
sets Si (where |Si| = 2n−i), and as in the previous sec-
tion for each i we sample T such sets Sti . Next, let eti =

arg maxx∈St
i

w(x)
γ(x,qi) . We define empirical marginal distri-

butions v̂i+1(x) based on the fraction of samples eti that
have variables x1 to xi+1 set to one (with Laplace smooth-
ing). Intuitively, the adaptive set importance algorithm per-
forms the same iteration as Algorithm 1, sampling sets by
incrementally constraining variables x1 to xi, except that
it interpolates the input proposal distribution with the em-
pirical marginal distributions from the previous iteration to
define a new set-proposal distribution for the current itera-
tion. The full details of the algorithm are shown in Algo-
rithm 2. During each iteration, as in Algorithm 1, generate
T sets S1

i . . . S
T
i where each represents a set of configura-

tions x in which the first i binary variables are "clamped"
to 0 or 1. The solutions eti = arg maxx∈St

i

w(x)
γ(x,qi) produce

T samples which define the empirical marginal distribution
v̂i+1(x), and this empirical marginal distribution is used to
sample sets in iteration i+1. For the first iteration, the vari-
able x1 is sampled according to any proposal distribution
(uniformly by default). Note also that when obtaining the
MAP configuration of many variables is intractable, the it-
eration can begin with any number of variables constrained
according to any proposal distribution (not just x1). ISS is
still guaranteed to perform at least as well (and often much
better) as IS by selecting subsets small enough that calcu-
lating the mode by brute force enumeration is tractable.

7 LEARNING

Because set importance sampling provides fast and scal-
able partition function estimates, it can be used for learn-
ing. We consider the standard problem of maximum like-
lihood learning of the parameters of an undirected graph-
ical model. Given samples x1, · · · , xM from a parame-
terized probability distribution pθ(x) = 1

Z(θ) exp (θφ(x)),

Input : w : X → R+, T
Output: Estimate of logZ = log

∑
x∈X w(x)

1 M0 ← arg maxx∈X w(x)
2 Define v̂1(x) as uniform marginal over x1
3 for i = 1, . . . , n do
4 Sample S1

i . . . S
T
i using marginals v̂i(x) as in 4.1.1

5 for t = 1, . . . , T do
6 mt

i, eti = max, arg maxx∈St
i

w(x)
γ(x,qi)

7 end
8 Mi ← Median(m1

i . . .mT
i )

9 Compute v̂i+1(x) based on e1i . . . eTi (with Laplace
smoothing). This is the fraction of argmax results eti
with xj = 1, for j ∈ {1, · · · , i+ 1}.

10 end
11 Return 1

n+1

∑n
i=0Mi

Algorithm 2: Adaptive set importance sampling

find maximum likelihood estimate of the parameters

max
θ

M∑
i=1

log pθ(xi) (3)

which can be equivalently written as
maxθ θ

1
M

∑M
i=1 φ(xi) − logZ(θ). It is well known

that solving this parameter learning problem is very
challenging because it requires inference to evaluate the
partition function (or its gradient). In this section we
show how our importance sampling scheme can be used
to approximate the value of the partition function, leading
to a new learning algorithm. The algorithm we obtain is
similar to structured prediction learning algorithms and
cutting plane techniques[30, 28, 26], used for example
in training structured support vector machines. A key
difference is that our approach is used to (approximately)
optimize the likelihood (in a generative setting), rather
than minimizing a loss function in a discriminative setting.

7.1 LEARNING ALGORITHM

Structured support vector machines (SSVM) [30] and other
structured prediction learning methods [18, 5] are trained
by solving a convex optimization problem in which the
number of constraints is exponential. The problems can
be solved tractably by iteratively constructing a sufficient
subset of constraints and employing an optimization oracle
to find the next constraint to include. In this way the sub-
set of the constraints is enlarged iteratively and provides a
lower bound on the optimization objective.

The learning approach based on set importance sampling
is similar, but using the set importance sampling technique
as an optimization oracle. Beginning from the logarithm
of equation (3), maxθ θ

1
M

∑M
i=1 φ(xi)− logZ(θ), we can

introduce a variable α which takes the place of logZ and
cast the optimization as follows



maximize
θ,α

θ
1

M

M∑
i=1

φ(xi)− α

subject to α ≥ logZ(θ)

We then express Z(θ) using the approximation given by
equation (2) as

α ≥ logZ(θ) ≥ k
max
i=1

max
x∈Si

θφ(x)− log γ(x, qi) (4)

Note this is an exponentially large set of linear constraints
in θ and α, and therefore corresponds to a linear program
(LP). Because the number of constraints is exponential in
the number of variables, as in structured learning we con-
sider only a subset C of constrained configurations x. The
reduced LP becomes,

maximize
θ

θ
1

M

M∑
i=1

φ(xi)− α

subject to α ≥ θφ(x) + β(x) ∀ x ∈ C

(5)

where β(x) = maxi|x∈Si
(− log γ(x, qi))) and intuitively

is the maximum importance weight for a given x under all
set-proposal distributions qi (see Appendix A). C is ini-
tially set to the training data set {x1, · · · , xM}, and is en-
larged during each learning iteration by searching for the
most violated constraint, i.e. maxx θφ(x) + β(x).

The full learning procedure is described in Algorithm 3.
The input to the algorithm are theM training examples, the
vector of sufficient statistics φ and the (optional) choice of
set-proposal distributions q1 · · · qk (for example uniform,
based on the training examples, or adaptive if no qi are
provided). Each iteration of learning begins by finding the
optimal weights for the LP in equation (5). Following the
solution of the LP, we obtain the pair (θi, αi). Then, using
these learned weights θi, importance sampling over sets is
used to approximate logZ for various set-proposal distri-
butions and importance weights, and each of these samples
(modes) is added to constraint setC. Note that Algorithm 3
takes advantage of an optimization oracle to solve the LP
in equation (5). Another optimization oracle is used within
our importance sampling over sets procedure to estimate
logZ (by optimizing equation (4) using the current param-
eter estimate θi). Intuitively, the value of the partition func-
tion is not just approximated using the MAP assignment,
but thanks to the importance weights, we are able to obtain
better estimates. For example, if using the current weight
vector θi the distribution is close to uniform, an approxima-
tion based on the MAP assignment would be poor, but we
can still get good approximation to the partition function
thanks to the importance weights.

Because at each iteration a (convex) linear program is
solved to obtain the weights θ, at each iteration the weights
obtained for the constraints C are guaranteed to be glob-
ally optimal for the approximate likelihood objective. This

Input : xm,m = 1, . . . ,M , φ(x), T , qi, i = 1, . . . , k
Output: Learned weight parameters θ

1 converged← False
2 i← 0
3 C ← {xm,m = 1, . . . ,M}
4 while not converged do
5 i← i+ 1
6 θi, αi = solve LP (5) subject to C
7 for t = 1, . . . , T do
8 x∗i,t, logZest,t = Run ISS with θi, {q1, . . . qk}
9 end

10 logZest ← median
t=1,...,T

logZest,t

11 if αi ≥ logZest then
12 converged← True
13 else
14 C ← C ∪

{
x∗i,t, t = 1, . . . , T

}
15 end
16 end
17 Return θi

Algorithm 3: Iterative learning algorithm

is in contrast to gradient-based learning algorithms. More-
over, as more constraints are added to C at each iteration,
C approaches X and the LP objective is guaranteed to de-
crease monotonically towards the optimal approximate log
likelihood of the training data.

8 EXPERIMENTAL RESULTS

8.1 PARTITION FUNCTION

One application of importance sampling over sets is for
problems in which computing maxw(x) is tractable, but∑
x w(x) is intractable. An example are functions which

are log-supermodular. For such problems we can leverage
fast optimization (for example using graph cuts), as long as
w(x)/γ(x) stays tractable. For example, it is sufficient that
log(1/γ(x)) is supermodular.

We evaluated importance sampling over sets (ISS) against
standard inference algorithms: junction tree (EXACT), be-
lief propagation (BP), mean-field (MF), the MAP config-
uration (MAP), and naive importance sampling (IS). For
junction tree, belief propagation and mean-field, the libDAI
library was used [20].

First, we evaluated importance sampling over sets for func-
tions which are not log-supermodular, to demonstrate the
effectiveness of the method on general models. Table 1
shows estimates of the log partition function of the Ising
Models from the 2011 Probabilistic Inference Challenge
(PIC2011) 1. These models have “mixed” interactions and
therefore are not log-supermodular. For general functions

1www.cs.huji.ac.il/project/PASCAL/showNet.php



which are not log-supermodular, each arg max in ISS was
solved as an integer quadratic program (IQP) in CPLEX,
with a search granularity of n

10 to find the heaviest sets
as discussed in section 5. The log partition function es-
timates in Table 1 use a uniform proposal distribution to
show that even in the absence of a proposal distribution
the ISS method performs better than both naive impor-
tance sampling and the MAP configuration (which are both
special-cases of ISS).

Our second experiment validated ISS for functions which
are log-supermodular, and thus for which ISS can be run
in polynomial time. Fig. 1 evaluates the importance sam-
pling over sets method on attractive (log-supermodular)
Ising models with varying coupling strengths. Models have
a field factor of 2.0, although we observed that a range of
field factors gave almost identical results. For these log-
supermodular potentials, optimization was performed with
graph cuts using the OpenGM [2] library. For these ex-
periments, importance sampling algorithms (IS and ISS)
use the adaptive importance sampling scheme as a proposal
distribution, where first ISS was run and the final empirical
marginals in iteration n were also used for IS.
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Figure 1: Log partition function error of various infer-
ence algorithms for 10x10 Ising grids with attractive (log-
supermodular) interactions, a field factor of 2.0, and vari-
ous coupling strengths. Importance sampling (IS) and im-
portance sampling over sets (ISS) use adaptive set impor-
tance sampling.

Across a range of attractive Ising models, the set impor-
tance sampling technique provides very accurate estimates
of the log partition function. Moreover, due to the log-
supermodularity of the potentials, the ISS technique scales
to much larger models, providing accurate estimates in
polynomial time while other algorithms fail to converge.
Tables 2 and 3 show the log partition function estimates and
run-times for various Ising grid sizes, ranging from 10x10

Table 2: Log partition function estimates for various Ising
model sizes. "–" indicates that no solution was obtained
after 10 minutes. As in Table 1, ISS estimates are between
MF (which tends to under-estimate) and BP (which tends
to over-estimate)

BP MF MAP IS ISS
10 207.6 202.7 202.0 161.2 206.4
20 840.3 817.7 825.3 593.5 832.3
50 5195 4940 5110 3704 5125

100 20930 19910 20679 14670 20690
300 1.91E5 1.82E5 1.88E5 1.35E5 1.88E5
1000 2.11E6 – 2.09E6 1.48E6 2.09E6

Table 3: Time (in seconds) to estimate logZ for Ising model
sizes. "–" indicates that the algorithm did not converge
within 10 minutes.

EXACT BP MF MAP IS ISS
10 1 1 1 1 1 1
20 – 1 1 1 1 1
50 – 5 8 1 1 5

100 – 15 112 1 1 3
300 – 119 – 8 1 27
1000 – – – 105 15 300

to 1000x1000. Notably, for the 300x300 models mean-field
did not converge, but was still run for 10 minutes to give a
solution. Similarly for 1000x1000 models, belief propaga-
tion did not converge but gave a solution after 10 minutes.
For 1000x1000 models mean-field did not complete a sin-
gle iteration within 10 minutes.

Finally, we extend the evaluation beyond Ising models by
analyzing restricted Boltzmann machines (RBMs). Table 4
shows log partition function estimates for the largest RBM
in [25] (784 visible units, 500 hidden units, trained on the
MNIST dataset). AIS is the Annealed Importance Sam-
pling technique described in that work. BP failed to con-
verge. MF converged quickly but was less accurate than
AIS. The quick convergence of mean-field was also noted
by [24]. AIS was run in two modes, "no data" which es-
timated logZ from the model alone, and "data" which ad-
ditionally used the training data to initialize the algorithm.
In a similar spirit, due to the quick convergence of MF,
and further demonstrating the flexibility of ISS to use any
choice of proposal distribution, we ran mean-field to ob-
tain marginals and used these as the proposal distribution
for both IS and ISS. By leveraging MF as a proposal distri-
bution ISS matches the accuracy of AIS with data. The ISS
approach is valid even when no data is available.

8.2 LEARNING

In this final section we present preliminary analysis and
empirical justification for the learning algorithm. We gen-



Table 1: Comparison of methods estimating the log partition function for Ising Models. The Importance Sampling (IS)
and Importance Sampling over Sets (ISS) methods uses a uniform proposal distribution run over 5 random seeds, with the
median presented. Shown in brackets next to ISS is the median number of constrained variables in the heaviest weighted
set. The best estimate for each model is shown in bold.

EXACT BP MF MAP IS ISS (c)
grid10x10.f10 697.9 738.2 601.6 695.8 20.4 697.8 (3)

grid10x10.f10.wrap 767.5 837 695.4 766.5 65.85 767.9 (2)
grid10x10.f15.wrap 1146 1247 1036 1145.2 65.2 1146.6 (2)

grid10x10.f5.wrap 390.1 419.7 355.1 387.8 66.4 389.2 (2)
grid20x20.f10 3021 3234 2592 3015.7 299.1 3017.1 (2)
grid20x20.f15 4520 4756 3947 4517.3 309.3 4518.7 (2)

grid20x20.f2 671.7 677.9 621.6 635.7 282.9 637.8 (21)
grid20x20.f5 1531 1674 1391 1521.6 289.0 1522.4 (1)

Table 4: Log partition function estimates for a restricted
Boltzmann machine (RBM) trained on the MNIST dataset.
Annealed importance sampling (AIS) was run with and
without MNIST data for initialization. BP did not con-
verge. IS and ISS were initialized with mean-field
marginals as a proposal distribution and require no data.

Algorithm logZ
AIS (no data) 446.2

AIS (data) 451.1
BP –
MF 437.5

MAP 71.6
IS 447.2

ISS 450.2

eratively trained a naive Bayes model represented as an
MRF on the MNIST handwritten digit dataset (size 28x28
images) and observed the algorithm’s capability to learn
weights which accurately modeled the data. The learned
model contained 794 variables and 7840 parameters. Ex-
amples were used as described in Algorithm 3. Fig. 2
shows a visualization of the learned weights as training pro-
gresses. The top image in Fig. 2 shows weights after 5 it-
erations of training, while the bottom image shows weights
after 1000 iterations. Early in training the model captures
with high confidence the most common patterns in the dig-
its, but also noise. As training progresses, the model learns
to generalize and differentiate between random noise and
statistical variations in the data. Adaptive ISS was used as
a proposal distribution, and similar results were obtained
using marginals defined by the training data.

A straightforward extension of this work is extending the
learning to latent variable models such as restricted Boltz-
mann machines, which the cutting-plane technique may be
well-suited to given the accuracy of ISS in estimating RBM
partition functions. We leave learning larger and more
complex models to future work as the current contribution
focuses on the importance sampling over sets technique.

Figure 2: Visualization of learned weights of an undirected
naive Bayes model trained generatively on the MNIST
dataset. The top image shows weights after 5 iterations of
training while the bottom image shows weights after 1000
iterations. Large positive weights are shown in white and
large negative weights are shown in black.

9 CONCLUSIONS

We introduced a novel probabilistic inference algorithm
called importance sampling over sets, based on randomly
selecting (exponentially large) subsets of states rather than
individual ones as in traditional importance sampling. By
solving MAP inference queries over the sampled sets we
obtain estimates of the partition function of undirected
graphical models. This idea was incorporated into a novel
maximum likelihood learning algorithm where the opti-
mization oracle was used to obtain cutting planes. We
demonstrated empirically that our scheme provides accu-
rate answers on a range of benchmark instances and scales
to very large problems with up to a million variables.
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