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Abstract

Learning accurate Bayesian networks (BNs) is
a key challenge in real-world applications, es-
pecially when training data are hard to acquire.
Two approaches have been used to address this
challenge: 1) introducing expert judgements and
2) transferring knowledge from related domains.
This is the first paper to present a generic frame-
work that combines both approaches to improve
BN parameter learning. This framework is built
upon an extended multinomial parameter learn-
ing model, that itself is an auxiliary BN. It serves
to integrate both knowledge transfer and expert
constraints. Experimental results demonstrate
improved accuracy of the new method on a va-
riety of benchmark BNs, showing its potential to
benefit many real-world problems.

1 INTRODUCTION

Directed probabilistic graphical models, also known as
Bayesian networks (BNs), are a natural framework for
describing probabilistic dependencies among variables in
many real-world problems, such as medical symptom diag-
nosis (Velikova et al.||2014) and software defect prediction
(Fenton and Neill 2014). However, in problem domains
with limited or no relevant training data, there are major
challenges in accurately learning BN parameters (Friedman
et al.,|{1999).

There are several methods for handling parameter learning
with limited or no relevant data, described in a rich liter-
ature of books, articles and software packages, which are
briefly summarized in (Druzdel and Van Der Gaag| |2000;
Neapolitan, 2004 (O’Hagan et al., |2006). Without con-
sidering any domain knowledge, the simplest learning ap-
proaches usually fail to accurately estimate parameters in
a small dataset. To mitigate this problem, it may be possi-
ble to elicit numerical assessments from expert judgements,
but this process is inefficient and error-prone.

Researchers have shown that experts tend to feel more com-
fortable providing qualitative or semi-numerical judgments
(Feelders and van der Gaag|, 2006) with less cognitive ef-
fort. Such judgments expressed as constraints between pa-
rameters of interest (e.g. “the probability of people get-
ting cancer is smaller than 1%”) are more reliable than nu-
merical assessments, and have drawn considerable atten-
tion recently. In the work of (Zhou et all 2014a)), these
kinds of constraints are modelled as nodes in an auxiliary
BN model called MPL-C (Multinomial Parameter Learning
model with Constraints), which includes nodes modelling
training data statistics. The MPL-C improves parameter es-
timation accuracy by constraining the estimation with the
expert constraints.

An alternative approach to improving BN learning in scarce
data situations is to transfer knowledge from different but
related BNs that may have more training data available
(Luis et al., 2010). For example, transferring knowledge
from the same medical diagnosis network learned in a dif-
ferent country. This can be effective if data for one or
more sufficiently related source domains is available. How-
ever, the practical limitation is that transfer is contingent
on availability of suitable related sources, and the related-
ness of each source to the target task may not be known
in advance. Estimating relatedness is thus important but
challenging in practice, particularly when there are multi-
ple potential sources of possibly varying relatedness.

While incorporating either parameter constraints or transfer
learning from related data in source domains can improve
parameter estimation accuracy, there exists no generic
learning framework to synergistically exploit the benefits
of both approaches. Achieving this is non-trivial because
typical approaches to transfer (Luis et al.,[2010) and to con-
strained learning (Zhou et al.,20144a) use very different for-
malisations. In this paper we generalise the state-of-the-art
MPL-C model for learning with expert constraints to also
exploit knowledge from related source domains via a boot-
strap approach. The new model called MPL-TC (Multino-
mial Parameter Learning model with Transferred prior and
Constraints) synergistically exploits both forms of external



knowledge to improve learning performance in a target BN.

The rest of the paper is organized as follows. Section
discusses the related work. Section [3| provides a formal-
isation of the BN parameter learning problem. Section
[ introduces the MPL-C model and shows how it can be
used to learn with parameter constraints. Section [3] de-
scribes our novel generalisation for constrained parameter
learning with transfer from auxiliary sources (MPL-TC).
Our method estimates relatedness to pick the best source to
transfer from, and takes a bootstrap approach for generat-
ing target parameter priors from the source data. Section [6]
gives empirical results on a set of benchmark datasets. Sec-
tion[7]concludes the paper and discusses the future work.

2 RELATED WORK

Several models have been proposed to integrate parame-
ter constraints and improve learning accuracy. The con-
strained convex optimization (CO) formulation (Altendorf]
et al.,|2005; [Niculescu et al.| |2006; de Campos and Ji,2008;
de Campos et al., 2008; |[Liao and Ji, [2009; |de Campos
et al., 2009; Yang and Natarajanl [2013)) is the most popular
way to estimate the constrained parameters. In this setting,
the algorithm seeks the globaly optimal estimation (maxi-
mal data log-likelihood) with respect to the parameter con-
straints. The parameters also can be estimated by Monte
Carlo methods (Chang et al.l 2008), where only the sam-
ples that satisfy the constraints are kept. Recently, auxiliary
BN models (Zhou et al., 2014alb)) have been developed for
solving this problem. This approach provides an extensible
framework for parameter learning with additional informa-
tion. However, these auxiliary models only use uniform
parameter priors to regularize learning, which can be im-
proved by informative priors (Neapolitan, 2004)).

In the context of transfer learning in BNs, the multi-task
framework of (Niculescu-mizil and Caruanal, 2007)) consid-
ers structure transfer. However, it assumes that all sources
are equally related and simply learns the parameters for
each task independently. The transfer framework of (Luis
et al.,2010) (referred to as CPTAgg in this paper) measures
the relatedness of tasks via calculating K-L divergence be-
tween target and source CPTs, and employs the heuristic
weighted sum model for aggregating target and selected
source parameters. The weights are proportional to the
number of training samples. Finally, the study (Oyen and
Lane, 2012)) considers multi-task structure learning, again
with independently learned parameters. Their model shows
transfer performs poorly without knowledge of relatedness.
However, they address this by using manually specified re-
latedness.

No previous work considers a generic BN parameter learn-
ing framework combining both transferred knowledge and
constraints as discussed in this paper. Using the bootstrap
approach for variability measurement in BNs is not new.

For example, Friedman et al.| (1999) study the robustness
of network features based on DAGs learned on bootstrap
resamples. |[Elidan| (2011) uses bootstrap aggregation (bag-
ging) to find a stable prediction model through improved
computation of the log-likelihood score. However, to the
best of our knowledge, this is the first work to use boot-
strap to measure the variability of source MLEs and gener-
ate TNormaﬂ parameter priors for transfer purpose.

3 BACKGROUND

A Bayesian network (BN) consists of three components:
variables V' = {X;, X5, X3,..., X,,} corresponding to
nodes of the BN, a set of numerical parameters 6 of the
variables in V/, and a Directed Acyclic Graph (DAG) G
encoding the statistical dependencies among the variables.
For discrete variables, the probability distribution is de-
scribed by a conditional probability table (CPT) that con-
tains the probability of each value of the variable given each
instantiation of its parents as defined by graph G. We write
this as p(X;|m;) where 7; denotes the set of parents of vari-
able X; in DAG G. Thus, the BN defines a simplified joint
probability distribution over V' given by:

p(X1, X, .., X)) = [ [ p(Xilmi) )
=1

Let r; denote the cardinality of the space of X, and |m;|

represent the cardinality of the space of parent configura-
tions of X;. The k-th probability value of a conditional
probability distribution p(X;|m; = j) can be represented
as Qijk = p(Xi = k“ﬂ'i = j), where Qijk €0,1<i<n,
1§j§|7ri|and1§k;§ri.

In our BN parameter learning setting, we have data D
combined with V' and G to form the problem domain
D = {V,G, D}. Within a domain D, the goal of param-
eter learning is to determine parameters for all p(X;|m;).
Given data D, the estimation of CPT parameters 6 is con-
ventionally solved by the Maximum Likelihood Estima-
tion (MLE), § = argmaxylogp(D|6). Let Niji, be the
number of data samples in D for which X takes its k-
th value and its parents set 7; takes its j-th value, and

N;j = Y11 Niji. The MLE estimate for each parame-
ter is: N

. ik

g = = )

However, it is common (even for large datasets) that cer-
tain parent-child state combinations seldom appear, and
MLE learning fails in this situation. Another classic pa-
rameter learning algorithm (Maximum a Posteriori, MAP)
mitigates this by introducing a Dirichlet prior on 6 so that:
0 = argmaxg logp(D|#)p(A). This results in the MAP
estimate éij;c = W Intuitively, the hyperparam-
eters «;, in the Dirichlet prior correspond to an expert’s

I'The abbreviation of Truncated Normal distribution.



guess of the corresponding virtual data counts. When
there is no expert judgment, the K2 (o, = 1) or BDeLﬂ

1
(ovijx = ——, V1, J, k) priors are commonly used (Heck-
rs

erman et al.l, 1695).

4 MPL-C MODEL

For parameter learning with constraints, the auxiliary
multinomial parameter model has been proposed (MPL-C
(Zhou et al.l 2014a)). This method treats the parameters of
interest and constraints as nodes in an auxiliary model. The
parameter learning process is achieved via auxiliary model
inference given observed data statistics and constraint con-
ditions.

4.1 MODEL CONSTRUCTION

We use the estimation of probability distribution p(X;|m; =
j) (.e., the j-th columtﬂ of the CPT associated with the
variable X;) as an example to illustrate the construction of
the MPL-C model. Suppose there are r; states, and the
goal is to learn the r; probability parameters 0;;1, ..., 0,
corresponding to these states. Assume we have N;;; data
observations of the k-th state (1 < k < ;) and the to-
tal number of observations is N;;. Then we can create a
multinomial parameter learning BN model for each CPT
column (shown schematically in Figure [I) to estimate pa-
rameters 0;;1, ..., 0ijr,.

By+ Oz +6y,

Uniform(0,1)

Binomial(N;,6;1)

equation (3)

Normal(0,1

)
Binomial(Ny, 6;.) Uniform(0,1) equation (3)

Figure 1: Graphical model representation of MPL-C with M
constraints. For the constraint nodes, their equations follow the
representations in equation |3} The gray nodes are observed dur-
ing the inference.

Specifically, we start by creating an integer node named

Niji (corresponding to N, as defined above) for each
k that is Binomial distributed. This node has two parents

*Bayesian Dirichlet likelihood equivalent uniform prior.

3Note in some other works, e. g., Netica BN software, each
CPT row represents a discrete probability distribution given a par-
ent configuration.

N;; and 0, to model the total number of trials and suc-
cess probability in the Binomial distribution. The IV;; has a
Normal distributiorﬂ which provides an infinite range for
the total number of trials. The prior distribution of each
0;1 is uniform between 0 and 1. Finally, there is an integer
node sum, which is a shared child of 0;;, (k = 1,...,7;).
This node models the normalization constraint for the all
success probabilities, i.e., that they should sum to 1.

4.2 INCORPORATING CONSTRAINTS

In real-world applications, many expert judgments can be
described with linear inequality constraints and approxi-
mate equality constraints (Zhou et al., 2014a) having the
following generic form:

Bo + iy Brbije <0 3)
|6ijk — 9ijk’| <e (0 <e< ].)
Here the coefficients By, 8 (1 < k < r;) are real numbers,
and € is an appropriate (small) positive value selected by
the expert to represent 0,5, = 0,1

Given that an expert has identified a number of constraints
as defined above within a CPT column, then these con-
straints can be integrated as additional observed constraint
nodes within the MPL model to generate a new model
called MPL-C as shown in Figure

Each constraint node C,, is a deterministic binary
(truel false) node with expressions that specify the con-
straint relationships between its parents:

if(Bo + > 1y Brbiji <0, true, false)
if(abs(0ijx — Oijir) < €, true, false)

When the constraint is between a single parameter and a
constant (i.e., By + Bibijr < 0), the constraint node will
only have a single parent. Inference for the unobserved
0;1 in this auxiliary model implements constrained MAP
parameter learning for one CPT column of the target BN. In
the next section we show how to generalise this framework
to also take into account knowledge transfer from related
source domains.

S MPL-C MODEL WITH
TRANSFERRED PRIOR

5.1 THE TRANSFER LEARNING MODEL

The idea behind transfer learning is to improve the accu-
racy of a target BN by making use of one or more related
source BNs. For example, the target BN may be a model

“This can be replaced with Poisson distribution to only allow
positive integers. Because this root node is always observed with
a valid number of trials during the inference, using Normal or
Poisson distribution will produce the same results.



for diagnosis of a particular disease based on limited data in
one district or country. If there are other (source) BNs with
similar variables and objectives but from a different district
or country, then it make sense to exploit such models to im-
prove the accuracy of the target BN. Transfer learning does
this by providing methods for both determining suitability
of the data in the source and its transfer to the target.

The obvious practical limitation of transfer learning —
which limits the applicability of all work in this area in-
cluding this paper — is that the relatedness is never truly
known. The necessary assumptions to overcome this in-
troduce inevitable bias into the results. In this paper we
assume there is at least one source domain that is sampled
from similar distributions as the target, and that this can be
transferred to help learn the target BN parameters. How-
ever determining relatedness in a data driven way means
there is an inevitable confirmation bias in the sense that the
source BNs most likely to be selected are those that most
closely match the current target estimate. This limits the
extent that the source can ‘change’ the target when it is
more ‘correct’ than the current noisy target estimates.

If the chosen source and target are not sampled from sim-
ilar distributions, directly applying parameters learned in
another domain may be impossible or result in negative
transfer: the underlying tasks may have major quantitative
or qualitative differences (e.g., care procedures vary across
hospitals). This limits the effectiveness of existing methods
such as CPTAgg in (Luis et al.}, 2010). Our framework will
address this by robustly measuring piecewise relatedness.

Given the scarce data for parameter estimation in the target
domain D' = {V* G*, D'}, the knowledge in available
source domains should be mined to help the learning in the
target domain. We aim to learn a target domain D" lever-
aging sources {D*®} with potentially piecewise relatedness.
Typically relatedness is computed at domain or instance
level granularity, but for more flexible transfer we model
relevance as varying within-domain. Thus transfer can still
be exploited when different subsets of features/variables
are relevant to different source domains. Thus we allow
the heterogeneity V! # V* and G* # G*, and transfer at
the level of BN fragments.

Definition 1 BN fragment. A Bayesian network of do-
main D can be divided into a set of sub-networks (denoted
fragments) D = {D;} by considering the graph G. Each
fragment D; = {V;, G;, D;} is a single root node or a node
with its direct parents in the original BN, and encodes a sin-
gle CPT from the original BN. The number of fragments is
the number of variables in the original BN.

To achieve flexible BN parameter transfer, the target
domain and source domains are all broken into frag-
ments D' = {D!}, {D*} = {{D;}}. Assuming for
now no latent variables in the target domain, then each
target fragment ¢ can be learned independently éf =

3

source domain fragments {{D} }} in learning each 6!, we
consider each source fragment D}, as potentially relevant.
Specifically, for each target fragment, every source frag-
ment is evaluated for relatedness and the best fragment
mapping is chosen. Once the best source fragment is cho-
sen for each target, it will be used as parameter priors in
the target MPL-C model. This auxiliary model can then be
updated to infer the parameter posteriors given target data
D!, target constraints C! and source networks {D*}.

arg maxg: p(0f|C}, Dy, {{D; }}). To leverage the bag of

To realize this strategy, three issues must be addressed: 1)
which source fragments are transferrable, 2) how to deal
with variable name mapping, 3) how to quantify the re-
latedness of each transferrable source fragment in order to
find the best one. We next address each of these issues in
turn:

Fragment Compatibility For a target fragment ¢ and pu-
tative source fragment 7', we say they are compatible if they
have the same structure and state space. That is, the same
number of states and parents states. Additionally, if the
target fragment contains parameter constraints C?, the as-
sociated source parameter 67, should fall in the constrained
value ranges ch, SO

1 ifGEsz,&Gf,EQCf
& dim(0}) = dim(65)
0 otherwise

compatible(DL, D) =

where dim(0!) = dim(65) means r! = r{, and |7f| =
|7|. This assumption could be relaxed quite straightfor-
wardly at the expense of additional computational cost.
For example, if the target variable contains 2 states (true
and false), and one source variable contains 3 states
(high, medium and low), we can try multiple aggrega-
tions of the source states to generate three mappings to
the target: 1) true — high and false — medium, low; 2)
true —medium and false — high, low; 3) true — low and
false — high, medium.

Fragment Permutation Mapping For two fragments ¢
and ¢’ determined to be compatible, we still may not know
the mapping between variable names. For example, if ¢
has parents [a,b] and i’ has parents [d, |, the correspon-
dence could be a — d,b — cor b — d,a — c. The function
permutations(G, G3) returns an exhaustive list of pos-
sible mappings P, that map states of ¢’ to states of i.

Fitness Measurement To measure the relatedness be-
tween compatible target and source fragments D’ and D5,
we use Bayesian model comparison for two hypotheses:
H; is the relevance hypothesisﬂ that the source and target
data share a common CPT, and Hj, (not H1) is the indepen-

3Simplifying the fragment notation, so H; only refers the de-
pendent hypothesis between D! and D5,



dent hypothesis that the source and target data have distinct
CPTs. These two hypotheses are the outputs of our func-
tion fitness(D:, DS, p(H)), and can be computed with:

p(Hh|D3, DY) o / p(D10:)p(0:\ Dy, Hy )p(H )b,

p(HoID5, DY) o [ p(DI16p(6! Hop(Ho)dsl,
C))
For discrete data, the likelihood of H7, integrating out the

unknown CPTs 6;, is the Dirichlet compound multinomial
(DCM) or Pdélya distribution:

il o ri t s
(a3 ) D(Nijr + o)
DD}, Hi) = el | v
p(Dil 1) <F(ij + af/j) paliey P(O‘f/]‘k)

j=1
%)
where o, ;. indicates the aggregate counts from the source
domain and distribution prior, and c, ;= > kO ke Max-
imising p(H,|D;,, D}) over source networks s and frag-
ment i’ finds the fragment most likely to share the same
generating distribution as the target, and thus the best
source to transfer. Next we will discuss how to use the
selected source data to help learn the target parameters.

5.2 THE MPL-TC MODEL

Given a target fragment and selected source fragment, the
challenge is to fuse them in a robust manner. We solve this
fusion problem in a Bayesian way — treating the transferred
information as the target parameter priors. We refer to this
framework as MPL-TC, which contains three main steps:
1) for each BN fragment in the target domain, find its clos-
est source fragment and permutation in the source domain;
2) transfer the selected source fragment by converting the
source data statistics into prior distributions of parameters
in the target MPL-C model (see Section ) and 3) perform
the inference in this auxiliary model to learn the target pa-
rameters. The detail can be found in Algorithm I}

Fragment Fusion To fuse the selected source fragment
with the target fragment in the second step of our algo-
rithm, we perform the bootstrap approach in the source to
generate the priors of target parameters. Bootstrap is a re-
sampling method to measure the quality of true samples
(Duval, [1993). In this paper, we are interested in the qual-
ity of selected source parameters. We cannot access infinite
training samples of selected source, instead we only have
a sample of it (the selected best mapping source sample
D;, j), which means the MLE of 67, ik is not accurate.

From a specific subset of source samples, i.e., D}, > only
one estimate of the MLE for a parameter of interest 0}, ;,
can be obtained. In order to reason about the population,
we need some sense of the variability of the estimated

MLE. Thus, we apply the simplest bootstrap method — sam-

INPUT  : Target domain D’, source domains {D*}
and target constraints C*.

OUTPUT: The target parameters 6.

for each target fragment i do
for each source network s and fragment i’ do
if compatible(D}, D3 then
P = permutations(Gt, G%);
for permutation m = 1 to M do
Measure relatedness:
fitness(DL, P (D5)) =
p(H:1|D}, P (D7)
end
end

end
Find the best source fragment and permutation:
argmax; s m p(H1 |D§7 PVYL(DiS’ ))

for each parent state configuration j do
for each state value k do

() -

bootstrap(100, QM LE, Py, (D5;))

Fit the {Hf,jk,} with

Cirjx = TNormal(pije, oiji, 0,1)
end
Generate the auxiliary model in the target:
Wi, = mplte(D;, CF;, k)
Inference to get the parameters estimation:
0;; = inference(V};)

end
end

return 6! = {éf]}

Algorithm 1: Multinomial Parameter Learning with
Transferred Prior and Constraints

pling from the D7} ; to form a new sample (called a “resam-
ple” or bootstrap sample) that is also of size |Dj, j|. The
bootstrap sample is taken from the original using sampling
with replacement. This process is repeated multiple times
(100 or 1000), and for each of these bootstrap samples we
compute the MLE of 67, (each of these are called boot-
strap estimates). We now have a set of bootstrap estimates,
which are used to fit a TNormal distribution to encode how
much the source MLE varies.

In our MPL-TC approach, these TNormal distributions
(¢ jk}) are used to replace the uniform parameter priors
on % i (Figure (1) of MPL-C models in the target domain.
Thus the transferred prior, target training samples and con-
straints are now all encoded in the target MPL-TC models
(referred to as W}, in Algorithm [I). After observing the
sources, the target data statistics (N}, Nj;1, ..., Nj;,.) and
available constraints (The constraint nodes are all observed



with ‘true’ values), we can update (by in ference(-) func-
tion in Algorithm [T these auxiliary models to get the target
parameter posteriors:

P01, .. 0, INE, NGy, . NE

e i3 zjl’;"’ zjgi""
s s
s O1s oo Oy G s oo i,jri/,sum)

Because the auxiliary BNs are hybrid models, the up-
date/inference is performed via a state-of-the-art dynamic
discretization junction tree (DDJT) algorithm (Neil et al.,
2007) that is implemented in AgenaRiskﬁ The time com-
plexity of the inference is exponential in model treewidth,
which restricts the applicability at some point. However,
approximate inference could be used with dynamic dis-
cretization to improve the time efficiency.

5.3 ILLUSTRATIVE EXAMPLES

Bootstrap Fitting of TNormal Priors Figure 2] demon-
strates an example of fitted TNormal distributions for MLE
estimation ¢7,;, = 0.2 learned from sample sizes 10 and
100. As we can see, although the parameter estimations
of two source samples are the same, the estimation from
the large sample are definitely more reliable than the es-
timation from the small sample, where the fitted TNormal
distribution in [ D, ;| = 100 is much sharper than the distri-
bution in | D3, j\ = 10. Moreover, the number of bootstrap
replicates does not change the results much, and we use
100 replicates in all subsequent experiments.

\D‘S‘IIZIO‘ bootstrap repeat 100 times \D‘S,l|:100, bootstrap repeat 100 times

®

)

IS

N

0 0.2 0.4 0.6 0.8 1 [ 0.2 0.4 0.6 0.8 1

\Dﬁl|:10, bootstrap repeat 1000 times \Dﬁl|:100, bootstrap repeat 1000 times

1

0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 2: The fitted TNormal distributions for a parameter of
interest with different source sample sizes 10 and 100. The origi-
nal source MLE estimation of this parameter is 0.2, which means
there are 2 and 20 appearances of this parameter in sample sizes
10 and 100 respectively. The bootstrap process in each case is
repeated 100 and 1000 times.

Fragment Transfer Here we provide an illustrative ex-
ample of our framework for fragment-based parameter
transfer and the target parameter estimation: the target is
a three node BN shown in the left part of Figure [3[(a), and

®http://www.agenarisk.com/

the source is an eight node BN shown in the right part of
Figure a). We aim to estimate the CPT of S, which has
four parent state configurations — 7%, 7, 7% and 7}. As we
can see, there are two source fragments ({7, L°, E*} and
{E?®, B*,5°}) which are compatible with target fragment
(shown with dashed triangle in Figure[3{a)). Thus, there are
four permutations of compatible source fragments (assum-
ing binary parent nodes). All four of these options are then
evaluated for fitness, and the best fragment and permutation
is picked ({ B®, E¢, S°}). In Figure b), we generate four
auxiliary BNs (MPL-TC model) for each target parameter
column, the right part of Figure [3(b) shows the MPL-TC
model of the first parameter column, which is used to es-
timate 6%, and 6%,. The constraints and data statistics in
the target domain are modelled by nodes with gray color.
The parameter priors (nodes with white color) are TNormal
distributions fitted from source bootstrap samples. Finally,
these priors are updated by observing the target data statis-
tics and constraints to get the posterior parameter estimates.

Shortness of breath @
P — (Dyspnoea) ?

cPT |

SEEAEARAE |
| 4 Auxiliary BNs
Yes G| 61| 65| B4 |

> () ()
No 7 gztz Hi‘z L3

(b)

Figure 3: A simple example to show the framework of multi-
nomial parameter learning with transferred prior and constraints.
(a) The dashed triangle represents source fragments {7, L°, E°}
and {E°, B®, S°}, which are compatible to the target fragment.
(b) The structure representation of the MPL-TC model for esti-
mating 0%, and 6%, is in the first target parameter column, whose
parameter priors (7, and 675) are converted form the most fit
source fragment {B*, E°, S°} via bootstrap.

6 EXPERIMENTS

6.1 EXPERIMENT SETTING

In all cases, we assume that the structure of the model is
known and that the ‘true’ CPTs that we are trying to learn
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are those that are provided as standard with benchmark BN
models. For the purpose of the experiment we are not given
these true CPTs but instead are given a limited number of
sample observations which are randomly generated based
on the true target CPTs. To introduce noise between the
target and source for simulating varying relatedness, the
source datasets are also sampled from the true CPTs but
with ‘soft’ and ‘hard’ noise conditions: (1) soft: gener-
ate three source domains with 200, 300 and 400 sample
sizes to simulate continuously varying relatedness among a
set of sources; (2) hard: choose a portion (20%) of each
source’s fragments uniformly at random and randomise
their data/CPTs to make them irrelevant. This results in
a different subset of compatible but (un)related fragments
in each source. Introducing these two types of sampling
noise makes the sources similar but different to the target,
and hence simulates the kind of source-target relations that
may exist in practice.

The constraints are elicited from the true CPTs (so they are
certainly correct) and randomly assigned to parameters in
the network. Following the method of constraints genera-
tion in (Liao and Ji,[2009), for each true parameter 0;;1, we
create a constraint:

min((1 + €)0;jx, 1) > 07, > max((1 — )8y, 0)

where the ¢ = (.05 in the experiments. These elicited
constraints are encoded in the MPL-TC auxiliary models,
which are built with BN software AgenaRisk.

We compare our MPL-TC*® against following algorithms
and settings (the upper right superscript value associated
with learning algorithms represents the number of con-
straints used in these algorithms):

e MLE and MAP, conventional BN parameter learning
algorithms.

e MPL-Ct5, state-of-the-art parameter learning algo-
rithm with five constraints (Zhou et al., 2014a).

o CPTAgg, state-of-the-art parameter transfer learning
algorithm (Luis et al.l 2010).

e MPL-TC*?, our MPL-TC algorithm with zero con-
straints.

The resulting learned CPTs are evaluated against the true
CPTs by using the K-L divergence measure (Kullback and
Leibler, [1951). The smaller the K-L divergence is, the
closer the estimated CPT is to the true CPT. Here the K-
L divergence is locally measured for each CPT column and
averaged over the whole model. This is to ensure that the fit
of each distribution is equally weighted in the overall met-
ric. Each experiment is repeated 10 times, and the results
are reported with the mean and standard deviation of the
K-L divergences between estimated and true CPTs.

25

: :
—<— MLE
—&— MAP
28 T —+— MPL-C*® 1
—8— CPTAgg
MPL-TC*®
15F T —— MPL-TC"® 1

Average K-L divergence

05

0 10 20 30 40 50 60 70 80 90 100 110
Number of training data

Figure 4: Parameter learning performance in the Cancer BN un-
der different levels of data sparsity. Lower is better.

6.2 EXPERIMENTS ON CANCER BN

The Cancer BN (Korb and Nicholson, 2010) models the
interaction between risk factors and symptoms for the pur-
pose of diagnosing the most likely condition for a patient
getting lung cancer. This BN contains 5 Boolean nodes, so
each CPT column has just 2 parameters to learn; since the
parameters sum to 1, each column has only one indepen-
dent parameter. Hence there are 10 independent parame-
ters to learn in the model. In the target domain, training
samples under different sparsity levels (10 to 100 samples)
are drawn from the ground-truth Cancer BN.

Overall Figure [] presents the results of all learning al-
gorithms under varying data volumes in the target Can-
cer BN. It is clear that the average K-L divergence of all
learning algorithms decreases with increasing target sam-
ple size. With increasing sample sizes, the performance gap
between the algorithms decreaseﬂ Moreover, our MPL-
TC*5 always outperforms all the other competitors, which
demonstrates the effectiveness of our framework.

Considering models without parameter constraints (MLE,
CPTAgg, MAP and MPL-TC*?): MPL-TC*° provides
overall K-L divergence reductions (performance improve-
ments) of 93.4%, 84.1% and 52.3% compared with MLE,
CPTAgg and MAP respectively, thus demonstrating the ef-
ficacy of knowledge transfer.

After introducing 5 sampled constraints, MPL-TC™®
achieves even greater reductions in comparison with MLE,
CPTAgg and MAP, which are 97.1%, 93.0% and 79.1%
respectively. Due to the benefit of introducing parameter
constraints, MPL-C*5 algorithm also outperforms MLE,
CPTAgg and MAP. However, MPL-TC™5 still outperforms
MPL-C*® with 42.0% average K-L divergence reduction.

According to the results, the MPL-TC*® greatly outper-
forms the conventional MLE and MAP algorithms, and the

"Given enough target training samples, the learning perfor-
mance of all algorithms converge.
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Figure 5: Performance of MPL-C and MPL-TC when varying the
number of constraints (m = 1, ..., 10).

CPTAgg and MPL-C ™3 that only use transfer or constraints
alone. This demonstrates the complementarity of both con-
straints and sources of external knowledge when learning
with scarce target data.

Varying Number of Constraints To investigate how the
number of introduced constraints affect the learning per-
formance of MPL-C and MPL-TC, we vary the number of
sampled constraints in parameter learning (shown in Fig-
ure EI) As we can see, K-L divergence decreases with
more constraints for both MPL-C and MPL-TC in both data
sparsity settings. However, when the number of constraints
is small, our MPL-TC greatly outperforms MPL-C due to
the benefit of transferred parameter priors. When the num-
ber of constraints increases to 10 (every parameter is con-
strained), the learning results of MPL-C and MPL-TC both
converge to zero in both settings.

Priors vs. Posteriors To provide insight into the mecha-
nisms of our framework, we investigate the differences be-
tween MPL-TC(Priors) (transferred TNormal mean values)
and MPL-TC*?(Posteriors) (the updated parameter poste-
riors after inference given the target data and parameter
constraints) for each parameter in the Cancer BN. The re-
sults are presented in Figure [6| where the heights of the
bars represent the absolute differences between estimated
values and true CPT values.

As we can see, the MPL-TC(Priors) shows inaccurate
transfer in both two settings: parameters 7-9 in Figure [6{a)
and parameters 3—7 and 9 in Figure [6(b). This is caused
by the bias in target samples and noise in source domains.
Therefore, the estimates of MPL-TC(Priors) are far from
the true values, (average K-L divergence of 0.65 and 0.40
for sample sizes 20 and 100 respectively). However, af-
ter performing MAP learning in the MPL-TC™5 model,
the MPL-TC 5 (Posteriors) reduces the average K-L diver-
gence between the estimated values and true values to 0.09
and 0.03 respectively. These results demonstrate the ro-
bustness of the Bayesian learning in MPL-TC*5, and the
importance of systematically inferring the new parameters
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Figure 6: The differences between estimated probability values
(MPL-TC(Priors) and MPL-TC? (Posteriors)) and ground truth
for all parameters in the Cancer BN.

given available data and constraints. Next, we will compare
the performance of all these algorithms in different BN pa-
rameter learning problems.

6.3 EXPERIMENTS ON STANDARD BNS

We evaluate the algorithms on 12 standard BNﬁ (details in
Table [T). For each BN, 100 training samples and 5 con-
straints are drawn from the true CPTs in the target domain.

Overall Table[I|summarises the average K-L divergence
per parameter. The best results are presented in bold. The
statistically significant improvements of the best result over
competitors are indicated with asterisks * (two-sample t-
test at the default 5% significance level). In summary, the
MPL-C*® and MPL-TC*® methods outperform conven-
tional MLE and MAP in 11 out of 12 settings, the only ex-
ception is the learning performance in Weather BN, where
the learning results of these methods converge with enough
training sampleﬂ These results demonstrate the bene-
fit of learning with both sources of external knowledge.
Compared with the state-of-the-art MPL-C 5, MPL-TC >
wins in every setting (including the Weather BN, where
MPL-TC™*® achieves even smaller average K-L divergence
- 0.018 of MPL-TC*® vs. 0.020 of MPL-C™*%). Over all
BNs, MPL-TCt® gets 83.2%, 33.5% and 26.9% average
reduction of K-L divergence compared with MLE, MAP
and MPL-C*5 respectively.

Transfer vs. No Transfer Considering transfer learning
only, both CPTAgg and MPL-TC*? outperform conven-
tional MLE, which demonstrate the benefit of introducing
source domain knowledge. However, due to a simplistic
relatedness model and CPT fusion heuristic, CPTAgg even
fails to outperform MAP in some settings. In contrast, our
MPL-TC* outperforms CPTAgg and MAP with 74.1%

$http://www.bnlearn.com/bnrepository/

°As shown in Table the Weather BN only contains 9 param-
eters to learn, therefore 100 training samples are already enough
to train a good model.


http://www.bnlearn.com/bnrepository/

Table 1: Parameter learning performance (average K-L divergence) in 12 standard Bayesian networks.

Name Nodes Edges Para MLE MAP MPL-C*5  CPTAgg MPL-TC*®  MPL-TC*5
Alarm 37 46 509 236+0.10%  0.66+0.01*  0.614+0.02% 1.61+0.08* 0.42+£0.02  0.42 +0.01

Andes 223 338 1157 1.03+0.06* 0.1740.01*  0.15+0.01*  0.65+0.05%  0.08 £0.00  0.08 +0.00
Asia 8 8 18 0.5740.16%  0.34:+£0.04*  0.28+0.03* 0.314+0.05%  0.2240.02*  0.18 +0.03
Cancer 5 4 10 0.86+0.35%  0.09+0.04*  0.07+0.05%  0.544+0.11%  0.05£0.01*  0.03 £0.01
Earthquake 5 4 10 1.5040.82*  0.15+£0.04*  0.13+£0.03* 0.35+0.22% 0.11+0.01  0.10 +0.01
Hailfinder 56 66 2656 2.854+0.01* 0.46+0.00%* 0.41+0.00* 1.984+0.01* 031 +0.01  0.31 +£0.01
Hepar2 70 123 1453 3.18+0.13*  0.33+0.01*  0.33+£0.01*  2.58+0.15%  0.30+0.01  0.29 +0.00
Insurance 27 52 984  1954+0.18%  1.1740.03*  1.0740.03*  0.93+£0.06* 0.75+£0.03  0.75 +0.02
Sachs 11 17 178  1.74£029%  0.78+0.04*  0.71+0.05%  0.9840.08* 0.50 £0.03  0.50 -£0.02
Survey 6 6 21 0.3540.20%  0.05+£0.01*  0.05+0.01*  0.2440.15%  0.04£0.01  0.03 £0.01

Weather 4 4 9 0.02+0.02  0.03+£0.00  0.02+0.00  0.02+0.00  0.02+0.00  0.02+0.00

Win95pts 76 112 574  3.59+0.07% 0.814+0.01%  0.7840.02*  3.20+0.10*  0.67+0.02*  0.64 +0.01

and 31.2% average reduction of K-L divergence over all
the settings. In addition, after introducing both transferred
parameter priors and target constraints, our MPL-TC*>
shows additional improved learning performance over CP-
TAgg and MPL-TC*? (75.0% and 3.5% average reduction
of K-L divergence).

Importance of Transfer vs. Constraints As we can see,
our MPL-TC*? outperforms MPL-C*°, which indicates
the transferred prior is more helpful than a moderate num-
ber (i.e., 5) of constraints in improving parameter learn-
ing performance in these experiments. Given the burden
of constraint elicitation in the real world, we used a real-
istic limited number of constraints. Of course if sufficient
constraints were available, MPL-C would perform better
(cf Figure ) and this result would be reversed. But in
this case, the transferred prior makes a greater contribu-
tion in improving performance — despite the noise process
between source and target domain, and the imperfect esti-
mation of relevance. This is especially in the larger BN,
where the constraints are scarcer relative to the number of
parameters to learn. This also explains why MPL-TC*°
and MPL-TC*® have similar results in the Alarm, Andes,
Hailfinder, Insurance and Sachs BNs.

7 DISCUSSION AND CONCLUSIONS

When data is scarce, purely data driven BN parameter
learning is inaccurate. The broad goal of this paper was
to introduce a new method (MPL-TC) that is the first at-
tempt at BN parameter learning incorporating both trans-
fer learning and qualitative constraints in a complementary
way. Using the public BN repository, we showed that learn-
ing performance was greatly improved in MPL-TC across
a range of networks. In particular, we demonstrated that
MPL-TC worked well in every data and constraint sparsity
in the Cancer BN, and achieved the best performance in all
BN in the repository compared with other state-of-the-art
algorithms.

We currently assume there is at least one relevant source.
For each target fragment, we find the most relevant source
fragment to generate target parameter priors. Transferring
to a target fragment using information from >1 sources
would be a straightforward modification of the current
framework. However it would increase the risk of ‘nega-
tive transfer’ (Torrey and Shavlik}2009) that could be detri-
mental to performance (if some apparently relevant sources
used for transfer are actually false positives). This trade off
between maximum exploitable transfer, and robustness to
negative transfer is pervasive in transfer learning.

We discussed the limitations of all BN transfer learning
approaches with respect to the fact that, in practice relat-
edness is hard to guarantee or estimate. Thus data-driven
transfer (source selection) may be biased by inaccurate tar-
get data (resulting in bad choice of source and thus negative
transfer) in extremely scarce settings. In the spirit of syner-
gistically combining source data and constraints, available
target constraints clearly provide an opportunity to guide
and disambiguate transfer. In this paper, we only used tar-
get parameter constraints to exclude individual incompat-
ible source fragments. Richer models for guiding transfer
with constraints including cross-node constraints, source-
domain constraints, and cross-domain constraints should
be investigated in future.
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