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Abstract

We present a scalable Bayesian model for low-
rank factorization of massive tensors with binary
observations. The proposed model has the fol-
lowing key properties: (1) in contrast to the mod-
els based on the logistic or probit likelihood, us-
ing a zero-truncated Poisson likelihood for bi-
nary data allows our model to scale up in the
number ofones in the tensor, which is espe-
cially appealing for massive but sparse binary
tensors; (2) side-information in form of binary
pairwise relationships (e.g., an adjacency net-
work) between objects in any tensor mode can
also be leveraged, which can be especially use-
ful in “cold-start” settings; and (3) the model ad-
mits simple Bayesian inference via batch, as well
as online MCMC; the latter allows scaling up
even fordense binary data (i.e., when the num-
ber of ones in the tensor/network is also mas-
sive). In addition, non-negative factor matrices in
our model provide easy interpretability, and the
tensor rank can be inferred from the data. We
evaluate our model on several large-scale real-
world binary tensors, achieving excellent compu-
tational scalability, and also demonstrate its use-
fulness in leveraging side-information provided
in form of mode-network(s).

1 INTRODUCTION

With the recent surge in multiway, multirelational, or “ten

sor” data sets (Nickel et al., 2011; Kang etlal., 2012), learn

ing algorithms that can extract useful knowledge from su

ct@
data are becoming increasingly important. Tensor decom-

position methods (Kolda and Bader, 2009) offer an attrac
f

tive way to accomplish this task. Among tensor data, o
particular interest are real-worlidnary tensors, which are
now ubiquitous in problems involving social networks, rec-
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ommender systems, and knowledge bases, etc. For in-
stance, in a knowledge base, predicate relations defined
over the tuples (subjects, objects,verbs) can be repexsent

in form of a binary three-way tensm 012).

Usually, real-world binary tensors are massive (each di-
mension can be very large) but extremely sparse (very few
ones in the tensor). For example, in a recommender system,
each positive example (e.g., an item selected a set) implic-
itly creates several negative examples (itemschosen).
Likewise, in a knowledge base, the validity of one rela-
tion automatically implies invalidity of several other ael
tions. In all these settings, the number of negative exasnple
greatly overwhelms the number of positive examples.

Unfortunately, binary tensor factorization meth-
ods (Nickeletal.,| 2011;| Xuetal.| 2013; Raietal.,
), based on probit or logistic likelihood, scale poorly
for massive binary tensors because these require evauatin
the likelihood/loss-function ohoth ones as well as zeros
in the tensor. One possibility is to use heuristics such
as undersampling the zeros, but such heuristics usually
result in less accurate solutions. Another alternativeis t
use thesquared loss (Hidasi and Tikk| 2012; Nickel et al.,

) as the model-fit criterion, which facilitates linear
scalability in the number of ones in the tensor. How-
ever, such an approach can often lead to suboptimal

results|(Ermis and Bouchaid, 2014) in practice.

It is therefore desirable to have methods that can perform
efficient tensor decomposition for such data, ideally with a
computational-complexity that depends only on the num-
ber of nonzeros (i.e., the ones) in the tensor, rather than
the “volume” of the tensor. Motivated by this problem,
we present a scalable Bayesian model for the Canonical
PARAFAC (CP) tensor decompositio der,
), with an inference-complexity that scales lineanly i
the number of ones in the tensor. Our model uses a zero-
truncated Poisson likelihood for each binary observation i
the tensor; this obviates the evaluation of the likelihciods

the zero entries. At the same time, the significant speed-up
is not at the cost of sacrificing on the quality of the solu-
tion. As our experimental results show, the proposed like-




lihood model yields comparable or better results to logisti with the " rank-1 component, the;, x 1 column vec-
likelihood based models, while being an order of magni-tor ugk) represents thet” latent factor of modé:;, and®

tude faster in its running-time on real-world binary terssor denotes vector outer product.

Note that replacing the zero-truncated Poisson by the stan- . , .

dard Poisson makes our model also readily applicable folVe US€ subscript = {ii,... ix} to denote thek-

count-valued tensor$ (Chi and Kdlda, 2012); although, indlmen5|opal mdgx of thé-th entry in the tensop . U§|ng
this exposition, we will focus exclusively on binary tensor  tiS notation, the-th entry of the tensop’ can be written

R K (k)
aSy’L ~ f r= A’l‘ =1 r/)"
Often, side-information| (Acar et all, 2011; Beutel et al., (rma A i * )

), e.g., pairwise relationships (partially/fully ob-

served), may also be available for objects in some of thé3 TRUNCATED POISSON TENSOR
tensor dimensions. For example, in addition to a binary DECOMPOSITION FOR BINARY DATA

tensor representingUTHORS X WORDS X VENUES asso-
ciations, theAUTHOR x AUTHOR co-authorship networ

K Our focus in this paper is on developing a probabilistic,

may be available (at least for some pairs of authors). SucﬂJIIy E;ayesandrjr_]ethod for scalable Iow-radnk decompg&-
a network may be especially useful in “cold-start” settingst!o" ©f massivebinary tensors. As opposed to tensor de-

where there is no data for some of the entities of a mod&omposition models based on.the logistic IikeIih_ood for b|
in the tensor (e.g., for some authors, there is no data in th82'Y dataw.lm&m al., 2014), which require
tensor), but a network between entities in that mode may bgvaluatlon of the likelihood for both ones as well as zeros

available (See Figl1 for an illustration). Our model allows'" the tensor, e_mdbt_hus can be computaﬂonal(ljy mf((jaalsmlle
leveraging such network(s), without a significant c:ompu-to run on massive binary tensors, our proposed model only

tational overhead, using the zero-truncated Poissori-likel "2auires the likelihood evaluations on thenzero (i.e., the

hoodalso to model these binary pairwise relationships ones) entries in the tensor, and can therefore easily scale
" to massive binary tensors. Our model is applicable to ten-

To facilitate efficient fully Bayesian inference, we develo sors of any orde#s’ > 2 (the caseil = 2 being a binary
easy-to-implement batch as well esline MCMC infer- matrix).

ence; the latter is especially appealing for handtiegse
binary data, i.e., when the number of ones in the ten

Sopur model is based on a decomposition of the form given in
and/or the network is also massive. Another appealing aﬁqﬂ; however, ms.tead of using a B'ernoull|-log|st|c lifk
to generate each binary observatigrin )/, we assume an

pect about the model is its interpretability; a Dirichleiopr e )
on the columns of each factor matrix naturally imposesaOk_Jl'tIonal layer (Ed.12) Wh'Ch takeslatent count-valued
in Y and thresholds this latent count at one to gener-

non-negativity. In addition, the rank of decomposition can?é . . :
be inferred from the data. ate the actuadbinary-valued entry; in the observed binary

tensor, which we will denote bg:
2 CANONICAL PARAFAC (CP) TENSOR

DECOMPOSITION bi = 1yi=1) @
R

The Canonical PARAFAC (CP)  decomposi- Y ~ Pogd Nuo..oul) (3
tion (Kolda and Bader| 2009) offers a way to express r=1
a tensor as a sum of rank-1 tensors. Each rank-1 tensor u®  ~ Dir(a®, . . a®) (4)
corresponds to a specific “factor” in the data. More Dr
specifically, the goal in CP decomposition is to decompose Ar ~ Gammdg,, -— T) ®)
a tensor) of sizen; x ny x --- X ng, with n, denoting P~ Betace,e(l— ) (6)
the size ofy along thek'" mode (or “way”) of the tensor, " ’
into a set of K factor matricesU), ..., U where  warginalizing outy; from Eq.[2 leads to the following

U® = W™ ul], k= {1,...,K}, denotes the (equivalent) likelihood model

ny x R factor matrix associated with mode R K “
In its most general form, CP decomposition expresses the b; ~ Bernoulli(1 — exp(— Z; Ar kli[luikr)) (7)

tensor) via a weighted sum oR rank-1 tensors as o L )
Note that the thresholding if](2) looks similar to a probit

model for binary data (which however thresholdsoamal

at zero); however, the probit model (just like the logistic
model) also needs to evaluate the likelihood at the zeros,
In the above, the form of the link-functiofi depends on and can therefore be slow on massive binary data with lots
the type of data being modeled (e.fjGan be Gaussian for of zeros. Likelihood models of the form (HG. 7) have pre-
real-valued, Bernoulli-logistic for binary-valued, Peim  viously also been considered in work on statistical models
for count-valued tensors). Hele is the weight associated of undirected networks (Morup etlal., 2011; Zhou, 2015).

R
Ve O Ml o oul) 1)
r=1




Interestingly, the form of the likelihood i 7 also resem- &

bles the complementary log-log functibn Collétt (2002); S/ Mode-2

PPiegorsch 2), which is known to be a better model for
imbalanced binary data than the logistic or probit likeli- - Binary
. . . . Binary Network 3 Tensor
hood, making it ideal for handling sparse binary tensors. of Mode-1 Obj 3 | Completely
The conditional posterior of the latent couptis given by W Missing Part
yilbi, A, {uffl}k 1~ b; - Poisg ( Z Ar H uEfZ Figure 1: Binary tensor with an associated binary network be-
— tween objects in mode-1 of the tensor (in general, network for

other modes may also be available). In the “cold-start’setting as
where Pois (-) is zero truncated Poisson distribution. Eq. shown above, data along some of the tensor dimensions will be

@) suggests that ib; = 0, theny; = 0 almost surely ~completely missing
with probability one, which can lead to significant compu- denotes the relationship between mddentitiesi, and;j.

tational savings, if the tensor has a large number of zeroJ ik N d i del. del th
In addition, our model also enables leveraging a reparame- ust fike our ensc()kr ecomposttion model, we model the
mode# network A %) as a weighted sum of rank-1 sym-

terization (Sectiofi 3]2) of the Poisson distribution imtsr
metric matrices, with a similar likelihood model as we use

of a multinomial, which allows us to obtain very simple for the t b " | ticul |
Gibbs-sampling updates for the model parameters. orthe ensor observations. In par |cu ar, we assume a fa-

tent countX for each binary entryll L and threshold
Note that the Dirichlet prior on the latent factar§"” nat-

urally imposes non-negativity constrainlda,

it at one to generatd(k)

Ik

) on the factor matrice@' .., U Moreover, AEI:;A = 1(Xz(fy)k > 1) ©)
since th()e columns™ of these factor matrices sums to 1, o
eachur can also be interpreted agdestribution (e.g., a X*® ~ Ppoi (k) (k) 10
“topic”) over then,, entities in modek. Furthermore, the 5(7; b O u™) (10)
gamma-beta hierarchical constructi@tmma
of A\, (Eq@ and [B) allows inferring the rank of the ten- B ~ Gammdf,, ﬁ) (11)

sor by setting an upper bourfé on the number of factors
and inferring the appropriate number of factors by shrink- hy ~ Betdda, d(1 - ) (12)

ing the coefficients\,’s to close to zero for the irrelevant  Note that sinceA *) is symmetric, only the upper (or
factors. These aspects make our model interpretable as wédiwer) triangular portion needs to be considered, and more-
as provide it the ability to do model selection (i.e., inflegr ~ over, just like in the case of the tens@; due to the
the rank), in addition to being computationally efficient by truncated Poisson construction, the likelihood at only the
focusing the computations only on the nonzero entries imonzero entries needs to be evaluated for this part as well.
the tensoi.

3.2 REPARAMETERIZED POISSON DRAWS

3.1 LEVERAGING MODE NETWORKS
To simplify posterior inference (Sectidh 4), we make use

Often, in addition to the binary tensd, pairwise rela-  of two re-parameterizations of a Poisson dret al.,
tionships between entities in one or more tensor model@) The first parameterization is to express each latent
may be available in form of a symmetric binary network count variabley; andX( ), as a sum of another set &f

or an undirected graph. Leveraging such forms of S'deTatent countg i } 2, and{X(k) R
information can be beneficial for tensor decomposition, es- T T
pecially if the amount of missing data in the main ten-

sorB is very high (Acar et all. 2011; Beutel et al., 2014; Zy’”’ ir ~ POIg A, H ulf)) (13)
5), and, even more importantly, in “cold-

start” settlngs where there is no data in the tensor for enti ~

ties along some of the tensor mode(s), as shown ialFig 1. Iank ZXL(Z)W inier ~ POISBru Efz gil) (14)
the absence of any side- mformatlon the posterior distrib

tion of the latent factors.\” of such entities in that tensor The second parametenzatlon assumes that the latent counts

respectively

mode would be the same as the prior (i.e., just a randon{y }andX*) are drawn from a multinomial
draw). Leveraging the side-information (e.g., a network)
helps avoid this. Yily - - 73}1‘3 ~ Mult(y;; Ci1, - - -, Gir)
" k
For entities of thé:-th mode of tensoB, we assume a sym- Ar Hk 1 ngz

e Cor = (15)

metric binary networkA(®) ¢ {0, 1}7+*"x, where A; ZT LA Hk 1“zk2



P X e aemut(x ) k)R ) SApS
ikl > iR ik’ Vikjel? > Mgk R b . POI (k)
o yi ~ bi - Poisy (Y A [ uirh) (17)
(k) Brtg, s,y r=1 k=1
Fijir = SR 5 ) ) (16) o : U
2 Bty W where Pois (-) is zero truncated Poisson distribution. Eq.

As we show in Sectiofl4, these parameterizations enfld) suggests thatif; = 0, theny; = 0 almost surely; and
able us to exploit the gamma-Poisson as well as thdf b; = 1, theny; ~ Pois, (37 A, [T, ui’)). There-
Dirichlet-multinomial conjugacy to derive simple, closed fore they;'s only need to be sampled for the nonzéjts.
form Gibbs sampling updates for the model parameters. Sampling 7;,: The latent countgy;,} are sampled from

a multinomial as Eq.[{35). Note that this also needs to be
4 |INFERENCE done only for the nonzerly's.

Sampling uﬁk): The columns of each factor matrix have a
Exact inference in the model is intractable and we resorDirichlet posterior, and are sampled as

to Markov Chain Monte Carlo (MCMC)L(AW_eﬂaI.,

[2003) inference. In particular, the reparameterizatian di - u(™ ~ Dir(a®) +s{*), a® 15§, ... a® 50 ) (18)
cussed in Sectidn 3.2 allows us to derive simple Gibbs sam- _ _
pling updates for all the latent variables, except for the la Sampling p,: Using the fact thats, = }_,7;, and

tent countsy;, which are drawn from a truncated Poisson marginalizing over theugfz,'s in (I3), we haves, ~
distribution via rejection sampling. As discussed earlier Poig)\,.). Using this, along with[{5), we can expressus-

the computational-cost for our inference method scales lining a negative binomial distribution, i.es, ~ NB(g,., p;.).
early w.r.t. the number of ones in the tensor (plus the numbue to the conjugacy between negative binomial and beta,
ber of nonzeros in the network, if side-information is used) we can then sample. as

This makes our method an order of magnitude faster than

models based on logistic or probit likelihood for binary pr ~ Betdce + s, c(1 —€) + g.) (29)
data (Rai et dll, 2014; Xu etlal., 2013), without sacrificing

on the quality of the results. The relative speed-up depend8ampling A,.: Again using the fact that. ~ Poig\,.) and

on the ratio of total volume of the tensor to the number of(@), we have
ones, which is given bka:l ng)/nNnz(B); here nnzB)

denotes the number of nonzeros in the tensor.

Ar ~ Gammdg, + s, pr) (20)

In this section, we present both batch MCMC (Sedfioh 4.1)As can be observed, when updating”, p, and \,, the
as well as an online MCMC (Sectién_#.2) method for in- latent countgy;’s andg;,. corresponding to zero entries/h
ference in our model. The online MCMC algorithm is are all equal to zero, and have no contribution to sufficient
based on the idea of Bayesian Conditional Density FiI-statisticsé{? ands,.. Therefore, only the nonzero entries
tering (CDF) (Guhaniyogi et all, 2014), and can lead toin tensor need to be considered in the computations.
further speed-ups over the batch MCMC if the number
of nonzeros in the tensor is also massive. The CDR4.1.2 Tensor with Mode Network(s)
algorithm provides an efficient way to perform online
MCMC sampling using surrogate conditional sufficient In the presence of mode network(s), the update equations
statistics(Guhaniyogi et al., 2014). for the latent variablep,., A, 7;» andy;, that are asso-

) ciated solely with the binary tensdt, remain unchanged,
For bOth, batch MCMC and CDF basfed onllne. MCMC, a3nd can be sampled as described in Se€fion}4.1.1. We how-
we prc:cwde the updati equations, W'tl? and W'thﬁmfﬂ;eever need to sample the additional latent variables associ-
sde-in orma'tlon, €. the mpd?kr;etwor (s). Ifor what fo " ated with modek networkA®), and the latent factors!"
lows, we define four q~uantltle$.w = i Yir: 51 = of mode# that are shared by the binary tengbas well as
S i Vi = S0t XM andv, = S0 X the modek network,
which denote aggregates computed using the latent coun
¥sr and Xffj)kr These quantities will be used at various

places in the description of the inference algorithms that R
we present here. x*) 4% -Poiq(z Brugflu;-k)) (21)
r=1

%Sampling X,Ff}k: The latent counté(i(f;k are sampled as

kJk kJk KT

4.1 BATCH MCMC INFERENCE

This only needs to be done for the nonzero entries(ffi.
4.1.1 Tensor without Mode Network(s) - -
Sampling X;, ;.. The latent countsy;, ;. are sampled

Sampling y;: For each observatiob; in the tensor, the from a multinomial as equatiof (IL6). This also only needs
latent county; is sampled as to be done for the nonzero entriesAi”.



Sampling u®: The columns of each factor matrix have a needs to be done for the nonzeéis.

Dirichlet posterior, and are sampled as Sampling 7;,: For all© € I, sample the latent counts

u® ~ Dir(a® + Sgkr) vy, a® 4 S'Ez]i),r + Onp) ir(ic1,) using [I5), again only for the nonzebgs.

(22)  Updating the conditional sufficient statistics: Update the
Note that in the absence of the moki@etwork, the terms -y ditional sufficient statistics;.";) a53§k;t) _ s(.";:t’l) +
v_, go away and Eq.22 simply reduces to Eg. 18. i fir and update, ass!) — Sgt_l)JrZiEIt i
Sampling h,.: h, ~ Betada + v,.,d(1 — «) + f). These updates basically add to the old sufficient statjstics
the contributions from the data in the current minibatch. In
practice, we alsoeweight these sufficient statistics by the
ratio of the total number of ones i and the minibatch

size, so that they represent the average statistics over the

For the binary tensa, computing eaclj;, (Eq.[15) takes entire tensor. This reweighting is akin to the way average
O(K) time and therefore computing all thg;,} takes gradients are computed in stochastic variational infezenc
O(nnzB)RK) time. Likewise, for the binary mode- methods|(Hoffman et al., 2013).

network A", computing all the{“z(‘f;‘w} (Eq.[18) takes  ypdating u™, p,, \,: Using the following conditionals,
O(nnz A®))R) time. These are the most dominant com- graw A/ samples{u(F™) | plm) \(mya
putations in each iteration of our MCMC procedure; updat- B

Sampling 5, 8, ~ Gammaf, + v, h;).

4.1.3 Per-iteration time-complexity

ing eachu'™ takesO(n;) time and updatingp,., b, } 2, u®)  ~ Dir(a® + sgk;t), ca® g Sgi,tg) (23)
and{\,, 8, }*_, takesO(R) time each. Therefore, the per- ) ’

iteration time-complexity of our batch MCMC method is pr ~ Betdcets, ’ft()l —€) +gr) (24)
O(nnzB)RK + nnz(A®)R). The linear dependence on Ar ~ Gammdg, + s, pr) (25)

nnz B),nnz(A®)), R and K suggests that even massive,

sparse binary tensors and mode network(s) can be ha@nd either store the sample averages:fff, p,, and.\,,
dled easily even by our simple batch MCMC implemen-or their analytic means to use for the next CDF itera-
tation. Also note that our model scales linearly even w.r.ttion (Guhaniyogi et &ll, 2014).

R, unlike most other methods (Ermis and Bouchard, 2014;
[Rai et al.| 201/4) that hawguadratic dependence oR. 4.2.2  Tensor with Mode Network(s)

The above computations can be further accelerated us-or all the latent variables associated solely with the ten-
ing a distributed/multi-core setting; we leave this for fu- sorj3, the sampling equations for the CDF algorithm in the
ture work. In Sectiofi 4]2, however, we presentoafine  presence of mode network(s) remain unchanged as the pre-
MCMC method based on the idea of Bayesian Conditionalious case with no network. In the presence of the mode

Density Filtering [(Guhaniyogi et &l., 2014), which leads to network, the additional latent variables include the suffi-
further speed-ups, even in single-machine settings. cient statistice;, ,- andv,., and these need to be updated in

each CDF iteration.

4.2 ONLINE MCMC INFERENCE DenoteJ; as indices of entries selected from the made-

We develop an efficient online MCMC sampler for the networkA(k) in iterationt. Thekl)deate equations for the
model, leveraging ideas from the Conditional Density Fil- /atént variables that depend 8" are as follows:

tering (CDF) Guhaniyogi et al. (2014). The CDF algorithm Sampling X;, ;,: For (ix. jx) € J;, latent countX;, ;, is
for our model selects a minibatch of the tensor (and modgampled using EqL_(21).

network, if the side-information is available) entries atle

iteration, samples the model parameters from the poaterioﬁampl'nngékfjW: For (iﬁ,’ Jk) ,GIJt’,lateSE':ollgntSXim’“
and updates the sufficient statisticﬁ) Sp, Vi, @andu, are sampled from a multinomiat using (16).

7/’/.’

using the data from the current minibatch. Updating the conditional sufficient statistics: Update the
sufficient statistics associated with the mddeetwork as
4.2.1 Tensor without Mode Network(s) vf:)r = vi(i;l) 300 ik ey Xininr andol” = {1 4

We first provide the update equations for the case Wher‘zik ijv(ikvjk)EJt Xiyjir- Just like the way we update

there is no side-information (mode network). Denfitas  the tensor sufficient statisti@g? ands,, we reweight these
indices of entries of tensd? from the minibatch selected Mmode# sufficient statistics by the ratio of the total number

at iterationt. The CDF algorithm at iteratiohproceeds as:  of ones inA*) and the minibatch size, so that they repre-

. . . sent the average statistics over the entire modetwork.
Samplingy;: For allz € I, sampley; according to equa-

tion (I4); like in the batch MCMC case, the sampling only Updating u®, h., B Using the following condition-



als, drawM samples{uﬁk’m), R™ gl M_.|. Wedraw R is quadratic as opposed to our method which is also lin-
u® ~ Dir(a(® + Sgk;lt) +U§t2" a4 sy Ufjgm), ear inR. They also proposed variations based on piece-
andh, andj, as ' ' wise quadratic approximations; however, as reported in
their experiments (Ermis and Bouchard, 2014), these vari-
h, ~ Betdda+v®,d(1—a)+ f) ations were found to be about twice as slow than their ba-

B, ~ Gammdf, + o, h,) (26)  Sic Quad- Appr ox method [(Ermis and Bouchard, 2014).

Moreover, their methods (and the various other methods

and either store the sample averages&%?, h.., B, or their discussed in this section) have several other key differgnc

analytic means to use for the next CDF iteration. from our proposed model: (1) our model naturally imposes
non-negativity on the factor matrices; (R)can be inferred

from data; (3) our method provides a fully Bayesian treat-
ment; (4) in contrast to their method, which operates in

The per-iteration time-complexity of the CDF based online@ batch setting, the online MCMC inference allows our
MCMC is linear in the number of nonzeros in each mini- Model to scale to even bigger problems, where the number
batch (as opposed to the batch MCMC where it depends ofif nonzeros could also be massive; and (5) our model also
the number of nonzeros in tteatire tensor and network). allows incorporating (fully or partially observed) mode-
Therefore the online MCMC is attractive fdense binary ~ networks as a rich source of side-information.

data, where the number of nonzeros in the tensor/network, another recent work[ (Zhbd, 2015), a similar zero-
is also massive; using a big-enough minibatch size (that fitgncated Poisson construction, as ours, was proposed for
in_the_main memory and/or can bg processed _in each ite'édgepartioning based network clustering, allowing the
ation in a reasonable amount of time), the online MCMCp50sed model to scale in terms of the number of edges in
inference allows applying our model on such dense binarye network. Our model, on the other hand, is more general
data as well, yvhich may potentially have several billions of 3§ can be applied to multiway binary tensor data, with an
nonzero entries. optionally available binary network as a potential source o
side-information. Moreover, the Dirichlet prior on the fac
5 RELATED WORK tor matrices, its reparametrizations (Secfiod 3.2), amd th

With the increasing prevalence of structured databases, anI'E? MCMC w&ference lead to _ahh|%hl){ sfcalabl_e frame-
cial networks, and (multi)relational data, tensor decompoWor or tensor decomposition with side-information.

sition methods are becoming increasingly popular for ex-Another line of work on scaling up tensor factorization
tracting knowledge and doing predictive analytics on suchmethods involves developing distributed and parallel meth
data (Bordes et all, 2011; Nickel ef al., 2012; Kang et al.ods (Kang et dll, 2012; Inah et al., 2015; Papalexakis|et al.,
2012). As the size of these data sets continues to groig012:/Beutel et all, 2014). Most of these methods, how-
there has been a pressing need to design tensor factorizever, have one or more of the following limitations: (1)
tion methods that can scale to massive tensor data. these methods lack a proper generative model of the data,

For low-rank factorization ofbinary tensors, methods “Which is simply assumed to be real-valued and the opti-

based on logistic and probit likelihood for the binary dataM/Zation objective is based on minimizing the Frobenius
have been proposell (Jenatton étlal.. 2012; London et ahorm of the tensor reconstruction error, which may not be
2013;[Rai et dI.l 2014; Xu ethl. 2013). However theses’uitable for binary data; (2) these methods usually assume

methods are not suited for massive binary tensors wher@ parallel or distributed setting, and therefore are natifea

the number of observations (which mostly consist of zerosP!€ t0 run on a single machine; (3) missing data cannot be

if the tensor is also sparse) could easily be millions or everg@Sily handled/predicted; and (4) the rank of the decompo-

billions _ﬁ5 " As a heuristic. these method<Sition needs to be chosen via cross-validation.

rely on subsampl4) or partitioning the|_everaging sources of side-information for tensor factor-

tensor (Zhe et all, 201 5), to select a manageable numbegfation has also been gaining a lot of attention recently.

entries before performing the tensor decomposition, or alHowever, most of these methods cannot scale easily to mas-

ternatively going for a distributed settimmm sive tensors| (Acar et al., 2011; Rai et al., 2015), or have
—— to rely on parallel or distributed computing infrastruc-

In the context of tensor factorization, to the best of

our knowledge, the only method (and one that is clos;-tl,Jres wﬁlﬂ—ddt‘.—.zm‘l)' In contrast, our model, by the

est in spirit to our work) that scales linearly w.r.t. the virtue of its scalability that only depends on the number

number of ones in the tensor ils_(Er_mis_a_ad_B_QudhardOf nonzero entries in the tensor and/or the mode network,

m) Their work explored quadratic loss (and its Vari_’easily allows it to scale to massive binary tensors, with or

ations) as a surrogate to the logistic loss and proposed ithout mode-network based side-information.

method Quad- Appr ox) with a per-iteration complexity

O(nnzB)R + R? Zszl n). Note that its dependence on

4.2.3 Per-iteration time-complexity




6 EXPERIMENTS The set of experiments we perform includes: (1) binary

We report experimental results for our model on a wideteénsor completion (Secti¢n .1) using only the tensor data;
range of real-world binary tensors (with and without mode-(2) scalability behavior of our model (both batch as well
network based side-information), and compare it with sev-2s online MCMC) in terms of tensor completion accuracy
eral baselines for binary tensor factorization. We use the¢/S run-time (Sectio_62); we compare our model with
following data sets for our experiments: Bayesian CP based on logistic-likelihobd (Rai et al., 2014)
(3) a qualitative analysis of our results usingraltiway
e Kinship: This is a binary tensor of size)4 x 104 x topic modeling experiment (Sectign 6.3) on the Scholars

26, representing 26 types of relationships between 104lata, with the entities being authors, words, and publica-

members of a tribed_(Nickel ethl., 2011). The tensortion venues; and (4) leveraging the mode network for ten-
has about 3.8% Nonzeros. sor completion in the cold-start setting (Sectionl 6.4); for

this experiment, we also demonstrate how leveraging the
e UMLS: This is a binary tensor of size35 x 135 x 49  network leads to improved qualitative results in the multi-
representing 56 types of verb relations between 13vay topic modeling problem.

high-level concepts_(Nickel etial., 2011). The tensor

has about 0.8% nonzeros.

In the experiments, we refer to our model ZFP-
CP (Zero-Truncated Poisson based CP decomposition).
e Movielens: This is a binarymatrix (two-way tensor) We compareZTP-CP (using both batch MCMC as well
of size 943 x 1682 representing the binary ratings as online MCMC inference) with the following base-
(thumbs-up or thumbs-down) by 943 users on 1682ines: (1) the quadratic loss minimizatio®Q¢ad-App)
movied]. This data set has a total of 100,000 ones. proposed in [(Ermis and Bouchhrll, 2014); (2) the re-
e DBLP: This is a binary tensor of sizk), 000 x 200 x gnue;dxssemmwﬁ;?g:ég&;mn

Ila?t;gr?(s) E%}m ag)[h()Tr;ﬁgT;ir:grcﬁézemsrgégiﬁP decomposition based on logistic likelihood for binary
o atail-4.
0.001% nonzeros, and is an ideal example of a mas- )
sive but sparse binary tensor. Experimental settings: All experiments are done on a
o ) ) standard desktop computer with Intel i7 3.4GHz processor
e Scholars: This is a binary tensor of SiZ370x 8663 x and 24GB RAM. Unless specified otherwise, the MCMC
40606, constructed from a database of research pap&hserence was run for 1000 iterations with 500 burn-in it-
abstracts published by researchers at Duke Universityaations. The online MCMC algorithm was also run for
the three tensor modes correspond to authors, wordgne same number of iterations, with minibatch size equal to
and publication venues, respectively. Just like thegne tenth of the number of nonzeros in the training data.
DBLP data, this tensor is also massive but extremely=q || the data sets, except Scholars and Facebook, we use
sparse with only about 0.002% nonzeros. In addition,, _ 9 (also note that our model has the ability to prune
the co-authorship network (i.e., who has written pa-ihe ynnecessary factors by shrinking the corresponsiing
pers with whom) is also available, which we use asiq zer0). For Scholars and Facebook data, wekset 100.
a source of side-information, and use this network totpe hyperparameters, f, were set to 0.1, andanda are
experiment with thecold-start setting (i.e., when the gt tol /R, which worked well in our experiments.
main tensor has no information about some authors).

. _ 6.1 TENSOR COMPLETION
e Facebook: The Facebook data is a binary ten-

sor of size 63731 x 63730 x 1837 with the In Table[d, we report the results on the tensor completion
three_modes representing wall-owner, poster, andask (in terms of the AUC-ROC - the area under the ROC
days -' 13). This tensor has onlyurve). For this experiment, although available, we do not
737498 nonzeros. In addition to the binary tensor, theuse the mode network for the Scholars and the Facebook
social network (friendship-links) between users is alsodata; only the binary tensor is used (the results when also
given in form of a symmetric binary matrix of size using the network are reported in Section] 6.4). For each
63731 x 63731, which has 1634180 nonzeros. We usedata set, we randomly select 90% of the tensor observa-
the network to experiment with the cold-start setting. tions as the training data and evaluate each model on the
remaining 10% observations used as the held-out data.

We use all the 6 data sets for the tensor completion ex: ince the code foQuad-App and PW-QuadApp base-

periments (Sectioh 8.1). We also use the Scholars anﬁnes (both proposed if(Ermi i I 014)) is not

Faceboook data in the cold-start setting, where we exper- blicl ilabl v abl h |
iment on the tensor completion task, leveraging the modeb | PICY avaravie, we are only able to report the results

Do ) for the Kinship, UMLS, and MovielLens data set (using
network based side-information (Sectionl6.4). the results reported i (Ermis and B 1d. 2014)). For
Yntt p: /7 groupl ens. or g/ dat aset s/ movi el ens/ Bayesian CP 14), we use the code provided



http://grouplens.org/datasets/movielens/

Table 1:Tensor completion accuracies in terms of AUC-ROC scores. Resuliwaraged over 10 splits of training and test data. Note:
(1) Bayesian CP was infeasible to run on the Scholars and Facebook2jddae to the lack of publicly available code fQuad-App
andPQ-QuadApp, we only report its results on Kinship, UMLS, and MovieLens data (resaisn from|(Ermis and Bouchard, 2014)).

Kinship UMLS Movielens | DBLP Scholars | Facebook
Quad-App (Ermis and Bouchard, 2014) 0.8193 0.8205 0.8511 - - -
PW-QuadApp (Ermis and Bouchard, 2014) | 0.9213 0.9387 0.9490 -
Bayesian-Logistic-CP (Rai et al., 2014) 0.9865 0.9965 0.9799 0.9307 - -
ZTP-CP (Batch MCMC) 0.9674 0.9938 0.9895 0.9759 0.9959 0.9830
ZTP-CP (Online MCMC) 0.9628 0.9936 0.9841 0.9743 0.9958 0.9844

Kinship Data UMLS Data
1

by the authors. Moreover, the Bayesian CP baseline w
found infeasible to run on the Scholars and Facebook de
(both of which are massive tensors), so we are unable
report those results. For fairness, on Kinship, UMLS, an &
MovielLens data, we use the same experimental settings

all the methods as used Hy (Ermis and BoudHard.|2014).

As shown in Tablé]1, our model outperforr@aiad-App Scholar Data Facebook Data
and PW-QuadApp in terms of the tensor-completion ac-
curacies, and performs comparably or better tBapesian

0.6] — Bayesian-Logistic-CP
055} — ZTP-CP (Batch MCMC)

0.98|

CP, while being an order of magnitude faster (Secfion 6.8 .« Soss —
shows the results on running times). Goss S 0w yd
6.2 SCALABILITY w / ow

We next compare our model with Bayesian CP (Raikt al. o o 0
) in terms of the running times vs tensor comple-

tion accuracy on Kinship and UMLS data sets. As shownFigure 2:Running time (log-scale) comparison of various meth-
in Fig. 2 (top-row), our model (batch as well as online 0ds on Kinship (top left), UMLS (top right), Scholars (bottom
MCMC) runs/converges an order of magnitude faster thaift). and Facebook (bottom right) datasets.

Bayesian CP in terms of running time. On Scholars andtesponds to a “topic”. In Tabld 2, after examining the words
Facebook, since Bayesian CP was infeasible to run, we afgctor matrix, we show the top-10 words for four of the fac-
only able to show the results (Fig. 2, bottom-row) for our tors (topics) inferred by our model; these factors seem to
model, with batch MCMC and online MCMC inference. represent topics Evolutionary Biology, Medical Imaging,
On all the data sets, the online MCMC runs/convergesviachine Learning/Signal Processing, and Oncology. For
faster than the batch MCMC. the Machine Learning/Signal Processing topic, we also ex-

We would like to note that, although the model proposeoami”e the corresponding topic in the venues factor matrix

in (Ermis and Bouchard, 2014) also scales Iineﬂl'm and show the top-10 venues in that topic (based on their

the number of ones in the tensor, the per-iteration timefactor scores in that factor). In Figl 3, we also show the

complexity of our model, which is linear iboth nnz5) histograms_of authors’ department gﬁilig_tions for each of
as well as rankR, is better than the model proposed the four topics and the results make intuitive sense. The re-

in (Ermis and Bouchard, 2014) (which hgsadratic de- sults in TabléP and Fif] 3 demonstrate the usefulness of our
pendence orR). Moreover, the tensor completion results model for scalable topic modeling of such multiway data.

of our model (shown in Tabld 1) on these data sets are better
than the ones reported in (Ermis and Bouchlard, 2014). 6.4 LEVERAGING THE MODE NETWORK

Finally, to investigate the usefulness of leveraging theleno
6.3 MULTIWAY TOPIC MODELING network, we experiment with using both the tenaod the

mode network on Scholars and Facebook data sets. For
We also apply our model for enultiway topic modeling  each data set, we report the AUC-ROC (area under the ROC
task on the Scholars data. The binary tensor representsirve) and AUC-PR (area under the precision-recall curve)
AUTHORS x WORDS x VENUES relationships. We apply on the tensor completion task, with and without network.
our model (with batch MCMC) and examine the latent fac-For both data sets, we experiment with the more challeng-
tors of each of the three dimensions. Since each factor ifhg cold-start setting. In particular, for the Facebookaglat
drawn from a Dirichlet, itis non-negative and naturally-cor we hold out all the entries of the tensor slices after the first

Tough . . 14) reported run times On50,000 wall-owners and predict those entries(using only
Kinship and UMLS data sets, those number are not directly com-the rest of th.e tensc_)r' and using the rest of the ter_]sor as
parable with our run times reported here (due to possibly differentVell as the friendship network). We run the experiment

machine configuration, which they do not specify in the paper). with R = 20 and minibatch size of 50,000 for the online

10°

10" 10° 10 10" 10°
Time in seconds Time in seconds




Table 2: For the Scholars data, the most probable words in topics related to evalytibiology (Evo Bio), medical imaging (Med

Imag), machine learning/signal processing(ML/SP) and oncologyt@mranked venues in ML/SP

Evo Bio MED IMAG ML/SP ONCOLOGY TopVENUES INML/SP
SPECIES IMAGING BAYESIAN RADIATION ICASSP
SELECTION CONTRAST ALGORITHM RADIOTHERAPY | JASA
GENETIC COMPUTED SAMPLING STAGE ICML
EVOLUTION RESONANCE FEATURES TUMOR IEEE TRANS IMG PROC
POPULATIONS DOSE PROCESS SURVIVAL NIPS
EVOLUTIONARY  TOMOGRAPHY  SPARSE LUNG COMPU STAT DATA ANALY
GENE MAGNETIC NONPARAMETRIC ~ CHEMOTHERAPY | BIOMETRICS
VARIATION IMAGE GIBBS TREATED BAYESIAN ANALYSIS
PLANTS QUALITY PARAMETERS TOXICITY JMLR
NATURAL DIAGNOSTIC INFERENCE ONCOLOGY IEEE TRANS. INF. THEORY
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Figure 3: Histogram of the department-affiliations for the top “

20 authors in factors related to evolutionary biology (top left), _. o I
medical imaging (top right), machine learning/signal process--19Ure 4:Histogram of the department-affiliations of the top 15
ing(bottom left) and oncology (bottom right). held-out authors associated with the factors of_ medlc_al imaging

(top) and oncology (bottom). The left column is obtained using
MCMC. The results in Tablgl3 show that using the network"® co-authorship information, and the right column is obtained

. . using co-authorship information.
leads to better tensor completion accuracies. 9 P

We also perform a similar experiment on the Scholars data

where we hold out all the entries in tensor slices after the/. CONCLUSION
first 1000 authors and predict those entries (using only th e have presented a scalable Bavesian model for binar
rest of the tensor, and using the rest of the tensor as well ats f presen | g’ dels based y
the co-authorship network). We run the experiment with ensor factorization. In contrast to the models based on pro

R = 100 and minibatch size of 50,000 for the online bit or logistic likelihood for binary tensor decomposition

MCMC. The results shown in Tabl@ 3 again demonstrat the time-complexity of our model depends only in the num-
eber of ones in the tensor. This aspect of our model allows

the benefit of using the network. : . LT A
_ . it to easily scale up to massive binary tensors. The simplic-
Table 3:Cold-start setting ity of our model also leads to simple batch as well as on-

Facebook Scholars line MCMC inference; the latter allows our model to scale
AUC-ROC | AUC-PR | AUC-ROC | AUC-PR :
Without nework 08897 06076 5. 8051 55753 up even when the number of ones could be massive. Our
With network 0.9075 0.7255 0.8124 0.6450 experimental results demonstrate that the model leads to

In Fig.[4, we show another result demonstrating the benefifpeed'uDS of an ‘?fde_f of magnitude when compgre_d t9 bi-
of using the co-authorship network for the Scholars datal@"Y tensor factorization models based on the logistic like
Note that in the cold-start setting, there is no information!°0d: and also outperforms various other baselines. Our
in the tensor for thdweld-out authors. Therefore the top- Model also gives interpretable results which helps qualita
ics associated with such authors are expected to be roughlly® @nalysis of results. In addition, the ability to levgea
uniformly random. As shown in Figl¥ (left column), the set ode networks (fully or _partlglly observed) leads to im-
of held-out authors assigned to the topics medical imaging’roved tensor decomposition in cold-start problems.

and oncology seem very random aabitrary (we only

;how thg aggregate department—affiliat.ions). Using sidea cknowled
information (in form of the co-authorship network), how-

ever, the model sensibly assigns authors who are inde€the research reported here was supported in part by ARO,
related to these topics, as shown in right column of Big. 4. DARPA, DOE, NGA and ONR.
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