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Abstract

In many classification settings, mistakes incur
different application-dependent penalties based
on the predicted and actual class labels. Cost-
sensitive classifiers minimizing these penalties
are needed. We propose a robust minimax ap-
proach for producing classifiers that directly min-
imize the cost of mistakes as a convex opti-
mization problem. This is in contrast to previ-
ous methods that minimize the empirical risk us-
ing a convex surrogate for the cost of mistakes,
since minimizing the empirical risk of the ac-
tual cost-sensitive loss is generally intractable.
By treating properties of the training data as un-
certain, our approach avoids these computational
difficulties. We develop theory and algorithms
for our approach and demonstrate its benefits on
cost-sensitive classification tasks.

1 INTRODUCTION

In many applications of machine learning, the penalty or
cost for classification errors depends on both the predicted
label and the actual label. For example, an incorrect disease
diagnosis may lead to treatments that cause complications
of varying severity depending on the patient’s actual dis-
ease. These different incurred penalties for mistakes can
be represented as a confusion cost matrix that is indexed
by the predicted class (row) and actual class (column). As
shown in the following confusion cost matrix for a classifi-
cation task with four possible labels,

C =


0 1 2 0
3 0 1 3
4 2 0 1
1 1 2 0

 , (1)

the confusion costs need not be symmetric or possess any
other specific relationships. Here, correct predictions incur

zero cost (Ci,i = 0), but even this property is not required.
Additionally, other classification errors may incur zero cost
(C1,4 = 0) if, e.g., the same treatment cures two different
diseases. Note that the zero-one loss is a special case with
off-diagonal values of one and on-diagonal costs of zero.

A natural goal for machine learning is to obtain a clas-
sifier that minimizes the expected cost incurred when
classifying an example. Previous research primarily takes
existing classification methods based on empirical risk
minimization and tries to adapt them in various ways to
be sensitive to these misclassification costs. Reweighting
methods artificially augment the training data with copies
of “high cost” examples to make the classifier more cost-
sensitive to them [Chan and Stolfo, 1998, Elkan, 2001,
Zadrozny et al., 2003, Zhou and Liu, 2010]. Other meth-
ods modify the criteria used to obtain a classifier that
incorporates mistake-specific losses [Knoll et al., 1994,
Turney, 1995, Elkan, 2001, Brefeld et al., 2003,
Ling et al., 2004, Lomax and Vadera, 2013]. However, in
both cases the non-convexity of the cost-sensitive loss
function makes empirical risk minimization impractical
[Hoffgen et al., 1995]. Surrogate loss functions that are
convex (e.g., the hinge loss) are instead minimized, but
this can introduce significant suboptimality.

Rather than integrating cost-sensitivity into existing ma-
chine learning techniques, we formulate a new machine
learning approach from first principles to robustly min-
imize the expected cost. Our approach treats classifier
construction as a game against an adversarial evaluator
[Topsøe, 1979, Grünwald and Dawid, 2004]. This enables
us to directly minimize the cost-sensitive loss on an ap-
proximation of the training data instead of using a convex
approximation of the cost-sensitive loss, as is done with
empirical risk minimization. Inference reduces to solving a
zero-sum game in our approach. This is efficiently accom-
plished using linear programming. We obtain parameter es-
timates by constructing game payoff parameters using con-
vex optimization methods. The key benefit of our approach
is that the exact confusion cost matrix is employed rather
than a convex surrogate. We provide important bounds



on the generalization error and demonstrate the conceptual
and empirical benefits of our approach in practice.

2 PRELIMINARIES & RELATED WORK

2.1 EMPIRICAL RISK MINIMIZATION

A standard approach to parametric classification is to as-
sume some functional form for the classifier (e.g., a lin-
ear discriminant function, fθ(x) = argmaxy θ

Tφ(x, y),
where φ(x, y) ∈ Rk is a feature function) and then select
model parameters θ that minimize the empirical risk,

argmin
θ

EP̃ (x,y) [loss (Y, fθ(X))] + λ||θ||, (2)

with a regularization penalty λ||θ|| often added to avoid
overfitting to available training data1. Unfortunately, many
combinations of classification functions, fθ(x), and loss
functions, loss(·, ·), do not lend themselves to efficient pa-
rameter optimization under the empirical risk minimiza-
tion (ERM) formulation. For example, the zero-one loss
measuring the misclassification rate will generally lead to
a non-convex empirical risk minimization problem that is
NP-hard to solve [Hoffgen et al., 1995].

Figure 1: Convex surrogates
for the zero-one loss.

To avoid these in-
tractabilities, convex
surrogate loss functions
(Figure 1) that serve
as upper bounds on the
desired loss function
are often used to create
tractable optimization
problems. The popular
support vector ma-
chine (SVM) classifier
[Cortes and Vapnik, 1995], for example, employs the
hinge-loss—an upper bound on the zero-one loss—to
avoid the often intractable empirical risk minimization
problem. Adaboost [Freund and Schapire, 1997] incre-
mentally minimizes the exponential loss. The difference
between the actual loss and its convex surrogate can intro-
duce a substantial mismatch between optimal parameter
estimation under the surrogate loss function and optimal
parameter estimates for the original performance objective.

2.2 COST-SENSITIVE LEARNING

Cost-sensitive learning considers more general loss func-
tions than the zero-one loss in which the loss depends
on the actual and the predicted class. One approach
is to estimate the conditional label distribution, P̂ (y|x),
and employ the Bayesian optimal classifier: f̂(x) =

1Lowercase non-bold, x, and bold, x, denote scalar and vector
values, and capitals, X or X, denote random variables.

argminy′∈Y EP̂ (y|x)[Cy′,Y ], using, e.g., the cost matrix of
Eq. (1). However, accurately estimating the conditional la-
bel distribution will typically require much more data than
methods that directly learn the best class prediction for a
given loss function [Margineantu, 2002].

Early meta-learning methods for cost-sensitive learning at-
tempt to modify how a cost-insensitive learner is used
during training and/or prediction time so that the end re-
sult of its use is cost-sensitive. One approach for this
is to either stratify or reweight available training data
so that more costly mistakes will incur a larger overall
cost and therefore the resulting classifier will be more
sensitive to them [Chan and Stolfo, 1998, Elkan, 2001,
Zadrozny et al., 2003, Zhou and Liu, 2010]. However, the
validity of this approach is limited to a restricted class of
consistent cost matrices when applied to multi-class pre-
diction tasks [Domingos, 1999, Zhou and Liu, 2010]. A
method that reduces multi-class predictions to binary pre-
dictions using iterative reweighting, data space expan-
sion, and gradient boosting with stochastic ensembles
[Abe et al., 2004] has been proposed to overcome these
limitations. The Metacost algorithm [Domingos, 1999]
similarly wraps around any underlying classifier. It uses
bagging to produce label probability estimates, which it
then uses to modify training data labels to produce more
cost-sensitive predictions on the training set.

Direct cost-sensitive learning methods incorporate the
confusion costs directly into the formulation of the
classifier. Some classification methods are much more
amenable to cost-sensitive modifications than oth-
ers. In decision trees, for example, modified criteria
for greedily selecting decision nodes and/or pruning
the tree based on the confusion cost have been suc-
cessfully employed [Knoll et al., 1994, Turney, 1995,
Elkan, 2001, Ling et al., 2004, Davis et al., 2006,
Lomax and Vadera, 2013], while relatively little at-
tention has been given for developing cost-sensitive
nearest neighbor classifiers [Qin et al., 2013].

Boosting iteratively creates an ensemble of weak classi-
fiers that are then combined to create a much stronger
classifier [Freund and Schapire, 1997] that often performs
well in practice. Cost-sensitive boosting techniques em-
ploy cost-sensitive weak learners to produce a stronger
learner that is cost-sensitive as well [Fan et al., 1999,
Ting, 2000]. This is accomplished by minimizing the risk
over the training dataset, 1

n

∑n
i=1 loss′(C, yi, S(xi)), using

a generalized surrogate loss function, loss′(C, ỹ, Sm(x)),
for the cost matrix C, class label ỹ, and where Sy(x)
represents the classifier confidence in assigning class
y to data point x. Recently developed loss func-
tions are the Generalized Exponential Loss (GEL),∑
y′ Cy,y′e

Sy′ (x)−Sy(x) and the Generalized Logistic Loss
(GLL), log(1 +

∑
y′ Cy,y′e

Sy′ (x)−Sy(x)). These loss func-
tions are guess-averse and produce state-of-the-art perfor-



mance when used in boosting for cost-sensitive classifica-
tion [Beijbom et al., 2014].

Support vector machines [Cortes and Vapnik, 1995] have
been generalized in the binary classification setting by pe-
nalizing mistakes for one class more than for the other class
[Brefeld et al., 2003]. Multiclass problems are reduced to
binary classifiers using one-versus-all [Bottou et al., 1994]
and one-versus-one [Knerr et al., 1990] prediction tasks.
The Cost-Sensitive One-Versus-All (CSOVA) algorithm
[Lin, 2008] trains a separate binary SVM classifier for each
class. The Cost-Sensitive One-Versus-One (CSOVO) algo-
rithm [Lin, 2010] instead constructs a total of k(k − 1)/2
classifiers—one for each pair of classes (i, j). For both
CSOVA and CSOVO, binary classifiers are aggregated to
produce a multi-class prediction. Using structured SVM
methods [Tsochantaridis et al., 2005] to directly incorpo-
rate cost-sensitivity into the multiclass generalization of the
hinge loss [Lee et al., 2004],

min
θ, ε≥0

θ · θ + α
∑
i

εi such that: (3)

θ · φ(xi, yi)− θ · φ(xi, y
′) ≥ Cy′,yi − εi,∀i, y′ 6= yi,

creates a margin-based classifier that incorporates mistake
costs additively. We note that central to each of these SVM-
based methods is the hinge loss approximation of the cost-
sensitive loss function. Our approach avoids such approx-
imations of the loss function by instead approximating the
available training data.

2.3 ADVERSARIAL METHODS

The adversarial perspective that we leverage in our ap-
proach has played a formative role in statistical estima-
tion and decision making under uncertainty. These in-
clude Wald’s maximin model [Wald, 1949] of decision
making as a sequential adversarial game, Savage’s mini-
max optimization of the regret of decisions [Savage, 1951],
and statistical estimates under uncertainty that minimize
worst-case risk [Wolfowitz, 1950]. We follow a re-
laxation of this idea, which estimates complete prob-
ability distributions as solutions to a minimax game
[Topsøe, 1979, Grünwald and Dawid, 2004]. This formu-
lation is most commonly known as a means for deriving
the principle of maximum entropy using the logarithmic
loss. From this, many exponential family distributions
(e.g., Gaussian distribution, exponential) can be derived
[Wainwright and Jordan, 2008].

Our approach differs substantially from adversarial
machine learning formulations that are made robust
to adversarial shifts in the dataset [Dalvi et al., 2004,
Liu and Ziebart, 2014] or uncertainty in the loss function
[Wang and Tang, 2012]. We assume training and testing
data are IID and the cost-sensitive loss function is fully
known. We restrict our uncertainty to the conditional label

distribution P (y|x) and adversarially estimate it. In con-
trast with minimax approaches to classification that assume
parametric forms of the data [Lanckriet et al., 2003], our
approach allows the estimation of any conditional label dis-
tribution. Instead, only training data properties are incor-
porated in the form of constraints on the adversary’s condi-
tional label distribution [Grünwald and Dawid, 2004].

3 ADVERSARIAL COST-SENSITIVITY

3.1 FORMULATION

We begin to define our notation by considering an estima-
tor for the conditional label distribution, P̂ (y|x), the ac-
tual evaluation distribution P (y|x), and an adversarial dis-
tribtion P̌ (y|x). We compactly represent each as |Y|-sized
vectors p̂x = [P̂ (Ŷ = 1|x) P̂ (Ŷ = 2|x) . . .]T for each
input x ∈ X , and, similarly, px and p̌x. The expected loss
suffered from this estimator on input x for a confusion cost
matrix C is: p̂T

xCpx = EP̂ (ŷ|x)P (y|x)[CŶ ,Y ].

Only samples from the true conditional label distribu-
tion P (y|x) are available. We denote these by distri-
bution P̃ (y|x) (compactly represented as p̃x) and also
input sample distribution P̃ (x). Minimizing the em-
pirical risk under this distribution, EP̃ (x)[p̂

T
θ,XCp̃X] =

1
n

∑n
i=1

∑
ŷ∈Y P̂ (ŷ|xi)Cŷ,yi , for some parametric form

of the estimation distribution, e.g., P̂θ(y|x) ∝ eθ·φ(x,y),
leads to a non-convex and generally intractable optimiza-
tion problem, assuming P 6= NP, as discussed in §2.1.

To avoid these non-convex optimization concerns, we
employ a robust minimax formulation [Topsøe, 1979,
Grünwald and Dawid, 2004] to construct our cost-sensitive
classifier (Definition 1). This formulation views the esti-
mation task as a two-player game between estimator and
adversary. The adversary is constrained to choose distribu-
tions that match a vector of moment statistics of the distri-
bution, EP (x)P (y|x)[φ(X, Y )]. We denote the set of condi-
tional distributions P (y|x) satisfying these statistics as Ξ.

Definition 1. In the constrained cost-sensitive minimax
game, the estimator player first selects a predictive distri-
bution, p̂x , P̂ (ŷ|x) ∈ ∆, for each input x, from the con-
ditional probability simplex ∆, and then the adversarial
player selects an evaluation distribution, p̌x , P̌ (y̌|x) ∈
∆, for each input x from the set Ξ of distributions consis-
tent with known statistics:

min
{p̂x}∈∆

max
{p̌x}∈Ξ∩∆

EP (x)[p̂
T
XCp̌X] (4)

where: Ξ : EP (x)P̌ (y̌|x)[φ(X, Y̌ )] = φ̃.

We denote the set of conditional probabilities for each in-
put x as {p̂x} and {p̌x}. Here, φ̃ is a vector of provided
feature moments measured from sample training data, φ̃ =
EP̃ (x,y)[φ(X, Y )], for example.



Conceptually, the feature statistics φ(x, y) defining the set
Ξ should be chosen to restrict the adversary as much as
possible from maximizing the loss. However, defining the
set to be too restrictive leads to overfitting to the training
data. Indeed, the complexity of the estimator P̂ (ŷ|x) im-
plicitly grows with the dimensionality of the constraints in
Ξ. Thoughtfully specifying the feature function φ(·, ·) and
employing regularization can avoid this issue (§3.4).

3.2 INFERENCE AS ZERO-SUM GAME
EQUILIBRIA

We establish efficient inference algorithms for our ap-
proach in this section. Theorem 1 transforms the joint
adversary-constrained zero-sum games over many different
inputs x into a set of unconstrained zero-sum game that are
independent for each input x and connected by a parame-
terized cost matrix defining each player’s game outcomes.

Theorem 1. Determining the value of the constrained cost-
sensitive minimax game reduces to a minimization over the
expectation of many unconstrained minimax game:

min
{p̂x}∈∆

max
{p̌x}∈Ξ∩∆

EP (x)[p̂
T
XCp̌X] (5)

= max
{p̌x}∈Ξ∩∆

EP (x)

[
min

p̂X∈∆
p̂T

XCp̌X

]
(6)

= min
θ

EP (x)

[
max
p̌X∈∆

min
p̂X∈∆

p̂T
XC′X,θp̌X

]
, (7)

where θ parametrizes the new game characterized by ma-
trix C′x,θ : (C ′x,θ)ŷ,y̌ = Cŷ,y̌ + θT(φ(x, y̌)−φ(x, ỹ)), and
φ(·, ·) terms are from the definition of set Ξ.

Proof of Theorem 1.

min
{p̂x}∈∆

max
{p̌x}∈Ξ∩∆

EP (x)[p̂
T
XCp̌X]

(a)
= max
{p̌x}∈Ξ∩∆

min
{p̂x}∈∆

EP (x)[p̂
T
XCp̌X]

(b)
= max
{p̌x}∈Ξ∩∆

EP (x)

[
min

p̂X∈∆
p̂T

XCp̌X

]
(c)
= max
{p̌x}∈∆

min
θ

EP (x)

[
min

p̂X∈∆
p̂T

XCp̌X

]
+ θTEP (x)[ΦX (p̌X − p̃X)]

(d)
= min

θ
EP (x)

[
max
p̌X∈∆

min
p̂X∈∆

p̂T
XC′X,θp̌X

]
where Φ is the matrix defined by Φi,j = φi(x, yj) and C′x
is defined by elements:

(C ′x)ŷ,y̌ = Cŷ,y̌ + θT(φ(x, y̌)− φ(x, ỹ)). (8)

Step (a) follows from minimax duality in zero-sum
games [von Neumann and Morgenstern, 1947]. As an
affine function of terms each with individual p̌x term,

each minimization can be performed independently in
step (b). Step (c) expresses the primal Lagrangian.
For step (d), EP (x)[minp̂X∈∆ p̂T

XCp̌X + θTΦX(p̌X −
p̃X)]—a non-negative linear combination of minimums
of affine functions—is a concave function of p̌x terms.
Given a feasible solution on the relative interior of Ξ
[Boyd and Vandenberghe, 2004], strong Lagrangian dual-
ity holds. As in step (b), the maximizations can then be
independently applied.

Figure 2 shows the value of the game for a single x from
Eq. (6) as a function of the adversial distribution p̌x for
zero-one loss and a more general cost matrix. The adver-
sary is not free to independently maximize these functions
for each x, but must instead choose a structured prediction
that resides within the constraint set Ξ.

Figure 2: The portion of the adversary’s objective func-
tion (6) for a single example, minp̂x∈∆ p̂T

xCp̌x, in the
adversary-constrained game for zero-one loss (left) and a
more general cost-sensitive loss with cost matrix [0 2 3; 2
0 1; 1 3 0] (right) in a three-class prediction task.

After applying Theorem 1 and given model parameters, θ,
(obtaining these parameters is discussed in §3.3) the un-
constrained game, maxp̌x∈∆ minp̂x∈∆ p̂T

xC′x,θp̌x, can be
solved independently for each x. In this augmented game,
our original cost matrix from Eq. (1) is transformed into
the augmented cost matrix:

C′ =


0 + ψ1 1 + ψ2 2 + ψ3 0 + ψ4

3 + ψ1 0 + ψ2 1 + ψ3 3 + ψ4

4 + ψ1 2 + ψ2 0 + ψ3 1 + ψ4

1 + ψ1 1 + ψ2 2 + ψ3 0 + ψ4

 , (9)

where Lagrangian potentials are compactly denoted as
ψi = θT (φ(x, i)− φ(x, ỹ)) with ỹ representing the ex-
ample’s actual label. For parameter estimation, the second
feature function based on the actual label ỹ serves an im-
portant role. However, since it is constant with respect to y̌
and ŷ, and therefore does not influence the solution strate-
gies for the game, it can be ignored when making predic-
tions on data with unknown labels (or assigned an arbitrary
value from Y without affecting predictions).

Figure 3 shows the adversary’s objective function in the
unconstrained, cost-augmented game. Conceptually, the
adversary’s objective function from the constrained game



(Figure 2) is “placed” on top of a hyperplane shaped by the
Lagrangian potential terms, ψi. The difference in these po-
tential terms determines the adversary’s equilibrium strat-
egy. For the binary classification task, there are three pos-
sible equilibrium strategies for the adversary. With three
classes, there are seven possibilities: three pure strategies;
three strategies that are mixtures of two classes; and one
strategy that is a mixture of all three classes.

0

ψ1

ψ2ŷ = 2

ψ2

ψ1
1 10

ŷ = 2
ŷ = 1

ŷ = 1

P (y̌ = 2|x) P (y̌ = 2|x)

Figure 3: The adversary’s objective in the unconstrained
game for a binary classification task with a mixed (uncer-
tain) equilibrium solution (left) and a pure (certain) equilib-
rium solution (right). The third adversary strategy, P (y̌ =
2|x) = 0, is realized when ψ1 >> ψ2.

Unlike the logarithmic loss under this minimax formu-
lation, the cost-sensitive loss function does not provide
a closed-form parametric solution2. Instead, the in-
ner minimax game (inside the expectation of Eq. (7))
for each input x can be solved as a linear program
[von Neumann and Morgenstern, 1947]:

max
v,P̌ (y̌|x)

v (10)

subject to: v ≤
∑
y̌∈Y

P̌ (y̌|x)(C ′x,θ)ŷ,y̌ ∀ŷ ∈ Y∑
y̌∈Y

P̌ (y̌|x) = 1 and P̌ (y̌|x) ≥ 0, ∀y̌ ∈ Y.

The resulting distribution, P̌ (y̌|x), gives the adversary’s
strategy p̌∗x. The other strategy of the Nash equilibrium
strategy pair, (p̌∗x, p̂

∗
x) can be obtained by solving the same

linear program with the cost matrix transposed and negated.

3.3 LEARNING VIA CONVEX OPTIMIZATION

Our key remaining task for employing the proposed ap-
proach is to obtain model parameters (Lagrangian multi-
pliers) θ that enforce the adversarial distribution to reside
within the constraint set Ξ.
Theorem 2. The subdifferential of the outer minimization
problem (Eq. (7)) includes the expected feature difference
as a subgradient:

EP (x)P̌∗
θ̂
(y̌|x)

[
φ(X, Y̌ )

]
− EP (x)P (y|x) [φ(X, Y )] (11)

∈ ∂θEP (x)

[
min
p̂x∈∆

max
p̌x∈∆

p̂T
XC′X,θp̌X

] ∣∣∣∣∣
θ=θ̂

2Adversarial logarithmic loss minimization yields members of
the exponential family [Wainwright and Jordan, 2008].

where P̌ ∗(y̌|x) is the solution to Eq. (10).

Proof of Theorem 2. Taking the subdifferential, we have:

∂θkEP (x)

[
min
p̂x∈∆

max
p̌x∈∆

p̂T
XC′X,θp̌X

] ∣∣∣∣
θ=θ̂

(a)
= EP (x)

[
∂θk max

p̌x∈∆
min
p̂x∈∆

p̂T
XC′X,θp̌X

] ∣∣∣∣
θ=θ̂

(b)
3 EP (x)

[
∂θk (p̂∗X)

T
C′X,θp̌

∗
X

] ∣∣∣
θ=θ̂

(c)
= EP (x)

[
(p̂∗X)

T (
∂θkC

′
X,θ

)
p̌∗X

] ∣∣∣
θ=θ̂

(d)
3 EP (x)P̌∗

θ̂
(y̌|x)

[
φk(X, Y̌ )

]
− EP (x)P (y|x) [φk(X, Y )] .

Step (a) follows from the rule for non-negative combi-
nations of subdifferentials. Step (b) follows from the
subdifferential of the function evaluated at the maximiz-
ing/minimizing values being a subset of the subdifferential
of the maximum/minimum functions. Step (c), like step (a),
follows from the rule for non-negative combinations of sub-
differentials by noting that (p̂∗X)

T
C′X,θp̌

∗
X = p̂∗X (p̌∗X)

T •
C′X,θ, where • represents the “matrix dot product” (i.e.,
A • B ,

∑
i,j Ai,jBi,j). In step (d), the subdifferential

terms for C′x include φk(x, y̌) − φk(x, ỹ) ∈ (∂θkC
′
x)ŷ,y̌

and do not depend on p̂x.

Leveraging the convexity of the formulation’s objective
function (discussed in the Proof of Theorem 1), and us-
ing the common substitution of the sample training data
distribution, P̃ (x), in place of the distribution P (x), we
employ standard subgradient-based optimization methods
for convex optimization problems to obtain parameters for
our cost-sensitive classifier (Algorithm 1).

Algorithm 1 Parameter estimation for the robust cost-
sensitive classifier
Input: Cost matrix C, training dataset D with pairs

(x̃i, ỹi) ∈ D, feature function φ : X × Y → Rk, time-
varying learning rate {γt}

Output: Model parameter estimate θ
t← 1
while θ not converged do

for all (x̃i, ỹi) ∈ D do
Construct cost matrix C′x̃i,θ using Eq. (8)
Solve for P̌ (y̌|x̃i) using the LP of Eq. (10)
∇θ = EP̌ (y̌|x̃i)[φ(x̃i, Y̌ )]− φ(x̃i, ỹi)
θ = θ − γt∇θ
t← t+ 1

end for
end while

Though we describe a stochastic subgradient in our algo-
rithm, any convex optimization method for non-smooth ob-
jective functions can be employed.



3.4 PERFORMANCE GUARANTEES &
ILLUSTRATIVE EXAMPLES

We establish performance guarantees and illustrate the be-
havior of our approach in this portion of the paper. We fo-
cus specifically on the similarities to and differences from
support vector machines [Cortes and Vapnik, 1995] and
their structured extensions [Tsochantaridis et al., 2004].
Given ideal data (linearly separable), Theorem 3 estab-
lishes an equivalence to hard-margin SVMs.

Theorem 3. Given linearly separable training data, i.e.,

∃θ : ∀i, y′ 6= yi, θ · φ(xi, yi) > θ · φ(xi, y
′), (12)

and zero cost only for correct predictions Ci,i = 0, the
adversarial cost-sensitive learner with sufficiently smallL2

regularization is equivalent to a hard-margin cost-sensitive
support vector machine.

Proof. Eq. (12) implies ∃θ′ : ∀i, y′ 6= yi, θ
′ · φ(xi, yi) >

θ′ ·φ(xi, y
′) +Cy′,yi (the hard-margin cost-sensitive SVM

constraint set with ε = 0 in Eq. (3)) by multiplicatively
scaling θ. The Nash equilibrium is P̌ (y̌i|xi) = 1 and
P̂ (ŷi|xi) = 1 with a cost-sensitive loss of zero if and only
if this inequality is satisfied. Given this, the dual optimiza-
tion in Eq. (7) realizes its minima (zero loss) only when
these constraints are satisfied. The L2 regularization term
is a monotonic transformation of the objective of the hard-
margin SVM: θ · θ. Thus, having the same constraints and
objective functions with corresponding maxima, an equiv-
alent solution is produced.

As a result of this equivalence to hard-margin SVM, adver-
sarial classification inherits the convergence properties of
support vectors machines in the realizable case of Eq. (12).

The game strategies of each player are illustrated in Fig-
ure 4 for binary prediction using the zero-one loss in the
separable setting. Between perfectly classified datapoints,
our approach produces a region of uncertainty that is maxi-
mally uncertain for the adversary’s Nash equilibrium strat-
egy (P̌ (Y̌ = ‘o’|x) = 0.5), while the predictor’s Nash
equilibrium strategy smoothly transitions from one class to
the other in this region.

Given non-separable data, the adversarial approach sug-
gests choosing a set Ξ of constraints based on training sam-
ples P̃ (x, y) that will also contain the true label distribu-
tion, P (y|x). When this is accomplished, Theorem 4 pro-
vides performance guarantees for generalization.

Theorem 4. If P (y|x) ∈ Ξ, confusion costs from the ad-
versarial game upper bound the generalization error con-
fusion costs:

EP (x)P (y|x)P̂∗(ŷ|x)[CŶ ,Y ] ≤ EP (x)P̌∗(y̌|x)P̂∗(ŷ|x)[CŶ ,Y̌ ].

Figure 4: Adversary (left) and predictor (right) distribu-
tions for separable data under zero-one loss

Proof. By definition, the adversarial conditional label dis-
tribution, P̌ ∗(y̌|x), is a Nash equilibrium and it provides
the worst possible loss for the estimator of all conditional
label distributions from set Ξ. So long as the true label
distribution used for evaluation, P (y|x), is similar to train-
ing data properties (i.e, a member of Ξ), then costs that are
no worse than P̌ ∗(y̌|x) can result without P (y|x) being a
better choice from Ξ than P (y|x) for maximizing the pre-
dictor’s loss, a contradiction.

Slack can be added to the constraint set Ξ or regulariza-
tion to the dual optimization problem of Eq. (6) to ad-
dress finite sample approximation error when using sample
data, EP̃ (x,y)[φ(X, Y )], as an estimate of the distribution’s
statistics, EP (x,y)[φ(X, Y )].

Figure 5: Adversary (left) and predictor (right) distribu-
tions for nonseparable data under zero-one loss

Figure 5 shows the two equilibria strategies for data that
is not linearly separable in the zero-one loss binary clas-
sification setting. The uncertainty region of our approach
depends on summary statistics rather than the specific data-
point labels that define margin boundaries of SVMs (Figure
5). Increased non-separability of the data and greater regu-
larization amounts expand this uncertainty region.

The equilibria under cost-sensitive losses, shown in Fig-
ure 6 shifts the region of uncertainty to better minimize
the expected cost compared to Figure 5, which is based on
the same data sample. Additionally, the adversary’s pre-
dictions shift (P̌ (Y = ‘o’|x) = .25) within the region of
uncertainty.



Figure 6: Adversary (left) and predictor (right) distribu-
tions for nonseparable data under [0 1; 3 0] cost matrix.

From the perspective of Theorem 3 and Theorem 4, adver-
sarial cost-sensitive classification provides an alternative to
hinge-loss “softening” of the hard-margin SVM. By pos-
ing cost-sensitive prediction as an adversarial game (Def.
1), our approach approximates aspects of the training data
while being able to employ non-convex loss functions with-
out the intractability encountered by empirical risk mini-
mization. Prediction under this approach reduces to the
well-studied problem of solving a zero-sum game, which
is easily addressed using linear programming via Eq. (10).
This is only a little more complicated than predictions for
SVM based on the label that maximizes a linear potential
function. Like SVMs, estimating model parameters can be
posed as a convex optimization problem and solved using
subgradient optimization methods (Alg. 1) under our ap-
proach.

4 EXPERIMENTS

Our adversarial approach provides the advantage of operat-
ing efficiently on non-convex cost-sensitive loss functions,
but only through approximating the training data label in-
formation rather than minimizing loss on the actual labeled
training data. We experimentally investigate the trade-off
our approach provides in this section.

4.1 DATASETS

We employ publicly available datasets for multiclass clas-
sification to evaluate our approach. The number of classes
and the number of examples (size) of each dataset are listed
in Table 1. We rescale the attributes to [0,1] and enumerate
the class labels.

4.2 METHODOLOGY

We conduct 10 cost-sensitive classification tasks for each
dataset. We generate confusion cost matrices, C, for each
task by: (1) assigning all correct classifications a cost of
zero (Ci,i = 0, ∀i); and (2) sampling the remaining el-
ements of the cost matrix from the uniform distribution
(Ci,j ∼ U [0, 1],∀i 6= j). For each classification task, we

Table 1: Evaluation datasets and dataset characteristics.

Name Classes Attributes Training Testing

Iris 3 4 120 30
Optical Digits 10 64 3823 1797
Satellite Image 6 36 4435 2000
Shuttle 7 9 43500 14500
Vehicle 4 18 658 188
Wine 3 4 142 36
Breast Tissue 6 9 85 21
Ecoli 8 7 269 67
Glass 6 9 171 43
Image Segment 7 19 210 2100
Libras 15 90 288 72
Pen Digits 10 16 7494 3498
Vertebral 3 6 248 62

split the data into training and testing sets as described in
Table 1. We measure the expected cost of each method av-
eraged over each of the 10 tasks.

4.3 COMPARISON METHODS

Our primary points of comparison for investigating this pa-
per’s central hypothesis—that adversarial data approxima-
tion produces better cost-sensitive classifiers than convex
loss approximation—are support vector methods. How-
ever, we also compare with recently reported state-of-the-
art cost-sensitive boosting methods. We implement and
compare our proposed approach against the following spe-
cific methods for cost-sensitive learning. The methodolog-
ical details for each approach are:

• Our approach: We train our method via Algorithm 1
using a quadratic expansion of the original attributes
and a “one-hot” encoding of the class label, φ(x, y) =
[vector(xxT)I(y = 1); vector(xxT)I(y = 2); . . .].
To produce deterministic predictions, we “round” the
estimator’s Nash equilibrium strategy, P̂ ∗(ŷ|x) to the
most probable label. This avoids the ambiguity of
other methods for making deterministic predictions
from mixed strategies (e.g., two or more actions may
be the best response to the adversary’s Nash equilib-
rium strategy).

• Guess Averse Cost-Sensitive Boosting: We employ
the guess averse cost-sensitive boosting method and
implementation [Beijbom et al., 2014] with GLL loss
described in §2.1. (We also investigated GEL, but
found it to be consistently and significantly outper-
formed by GLL.) We use a linear regression model
as the weak learner.

• Cost-Sensitive One-Versus-One (CSOVO): We em-
ploy the LIBSVM [Chang and Lin, 2011] implemen-
tation of the CSOVO SVM approach [Lin, 2010] de-
scribed in §2.1.Our experiments use quadratic kernels



Table 2: CSOVO and CSOVA kernel parameters chosen
using five-fold cross validation on the training set from
γ1 ∈ {0.125, 1, 2, 5, 10, 1/number of features} and γ0 ∈
{1, 2, 5, 10, 50, 100, 200, 300, ..., 900}.

CSOVO CSOVA
Name γ1 γ0 γ1 γ0

Iris 5 2 1 700
Optical Digits 1 2 5 2
Satellite Image 10 50 1 1
Shuttle 0.125 900 0.125 900
Vehicle 10 5 10 10
Wine 1 500 1 5
Breast Tissue 0.125 900 10 400
Ecoli 5 500 0.125 800
Glass 5 400 10 700
Image Segment 0.125 300 0.125 600
Libras 1 5 1 2
Pen Digits 0.125 700 5 5
Vertebral 0.125 600 0.125 500

[Chang and Lin, 2011], K(u, v) = (γ1u
′v + γ0)2 to

match the expressiveness of our approach. We run
five-fold cross validation on the training set of every
dataset to choose quadratic kernel parameters (shown
in Table 2), and then we use these best parameters
to train from the training set and construct the final
classifier model3 Finally, we evaluate the CSOVO per-
formance by measuring the prediction cost on the test
data.

• Cost-Sensitive One-Versus-All (CSOVA): We sim-
ilarly employ the LIBSVM implementation of the
CSOVA SVM approach described in §2.1. Our
methodology matches that of CSOVO for cross-
validation (parameters shown in Table 2), training,
and testing.

• Structured SVM (SVM-Struct): We employ the
Large Scale Structured SVM (SVM LS) software
package [Branson et al., 2013] to obtain a multiclass
cost-sensitive predictor based on the additive cost-
sensitive hinge loss of Eq. (3). SVM LS applies online
subgradient methods [Ratliff et al., 2007] and sequen-
tial order optimization [Shalev-Shwartz et al., 2011]
to improve efficiency. We evaluate the Online
Dual Ascent (ODA) algorithm [Branson et al., 2013]
as well as the Stochastic Gradient Descent (SGD)
method for the purpose of our cost-sensitive experi-
ments. We employ a trade-off parameter α of 100.

3We use the default tolerance of termination criterion, 0.001,
for most of the datasets except image segmentation and shuttle,
which required a less sensitive criterion to converge.

4.4 RESULTS

Figure 7 shows the average loss incurred by each ap-
proach on the 13 different datasets. Our method gener-
ally performs well on all of the datasets except wine and
libras datasets and has a similar performance with boost-
ing. SVM methods except SVM-CSOVO are strong on
some of the datasets (optdigits, pendigits, wine and libras).
For many datasets, the performance of the reduction-based
SVM approaches is significantly worse than our approach
and boosting and the multi-class structured SVM ap-
proach. The multi-class structured SVM approach specifi-
cally is significantly worse than our method on many of the
datasets (satimage, shuttle, vehicle, breast tissue, pendig-
its, and vertebral), while only significantly better on the
optdigits dataset.
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Figure 7: The average loss of predictions for the datasets
of Table 1.

The differences between the results of our method and
those of boosting are not as extreme. Indeed, for many of
the datasets (iris, wine, shuttle, optdigits, vertebral, ecoli,
breast tissue, and libras), the differences in average perfor-
mance are not significant. For one dataset (imgseg), boost-
ing is significantly better, while our method is significantly
better for the remaining four (satimage, shuttle, vehicle,
and pendigits).
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Figure 8: Average loss of pre-
dictions across all datasets of
Table 1.

We compare the av-
erage loss of the
prediction methods
aggregated over all of
the datasets in Figure
8, showing that on
average our method
provides lower cost
predictions. It is im-
portant to note that as
an ensemble method,
boosting is able to
implicitly consider
a much richer fea-
ture space than our
approach. For classifi-
cation, SVMs are often
only comparable when
incorporating kernels
that can also implicitly
consider richer feature
spaces. Thus, exceeding the performance of the state-of-
the-art boosting method using only quadratic features is a
significant demonstration of our method. The comparisons
with the structured SVM method, which considers an
identical feature space, illustrates the general benefit our
approach provides by adversarially approximating the
training data rather than convexly approximating the loss
function.

5 CONCLUSIONS

In this paper, we have developed an approach for min-
imizing the exact cost-sensitive loss using an adversar-
ial formulation. In stark contrast with existing methods,
which typically minimize a convex approximation of the
cost-sensitive loss evaluated on available training data, our
approach directly minimizes the actual cost-sensitive loss
evaluated on an approximation of the training data. This
perspective of placing uncertainty around the training data
and resolving it by considering an adversarial evaluator
leads to a zero-sum game formulation for inference and
convex optimization for estimating model parameters.

We demonstrated the benefits of the approach on a total
of 130 prediction tasks. Our approach performs competi-
tively with a state-of-the-art boosting method across many
of these tasks and better on average. This is despite the
fact that boosting, as an ensemble method, is able to im-
plicitly consider a richer feature space for the classifiers
that it ultimately produces. The performance of our ap-
proach is much more significantly better than structured
multi-class SVM methods and reduction-based SVM meth-
ods, which are more directly comparable as they employ
the same quadratic feature space.

Our future work will investigate avenues for improving and
expanding this adversarial approach to cost-sensitive learn-
ing. Foremost, we plan investigate the feasibility of incor-
porating kernel methods with our approach so that much
larger or infinite feature spaces can be tractably incorpo-
rated into our cost-sensitive classifier. Additionally, we
plan to investigate settings with cost functions that depend
on the input attributes in addition to the predicted and ac-
tual labels.
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