
Finite-Sample Analysis of Proximal Gradient TD Algorithms

Bo Liu
UMass Amherst

boliu@cs.umass.edu

Ji Liu
University of Rochester
jliu@cs.rochester.edu

Mohammad Ghavamzadeh
Adobe & INRIA Lille

Mohammad.ghavamzadeh@inria.fr

Sridhar Mahadevan
UMass Amherst

mahadeva@cs.umass.edu

Marek Petrik
IBM Research

marekpetrik@gmail.com

Abstract

In this paper, we show for the first time how gra-
dient TD (GTD) reinforcement learning methods
can be formally derived as true stochastic gradi-
ent algorithms, not with respect to their original
objective functions as previously attempted, but
rather using derived primal-dual saddle-point ob-
jective functions. We then conduct a saddle-point
error analysis to obtain finite-sample bounds on
their performance. Previous analyses of this class
of algorithms use stochastic approximation tech-
niques to prove asymptotic convergence, and no
finite-sample analysis had been attempted. Two
novel GTD algorithms are also proposed, namely
projected GTD2 and GTD2-MP, which use prox-
imal “mirror maps” to yield improved conver-
gence guarantees and acceleration, respectively.
The results of our theoretical analysis imply that
the GTD family of algorithms are comparable
and may indeed be preferred over existing least
squares TD methods for off-policy learning, due
to their linear complexity. We provide exper-
imental results showing the improved perfor-
mance of our accelerated gradient TD methods.

1 INTRODUCTION

Obtaining a true stochastic gradient temporal difference
method has been a longstanding goal of reinforcement
learning (RL) [Bertsekas and Tsitsiklis, 1996; Sutton and
Barto, 1998], ever since it was discovered that the orig-
inal TD method was unstable in many off-policy scenar-
ios where the target behavior being learned and the ex-
ploratory behavior producing samples differ. Sutton et al.
[2008, 2009] proposed the family of gradient-based tem-
poral difference (GTD) algorithms which offer several in-
teresting properties. A key property of this class of GTD
algorithms is that they are asymptotically off-policy con-
vergent, which was shown using stochastic approximation

[Borkar, 2008]. This is quite important when we notice
that many RL algorithms, especially those that are based
on stochastic approximation, such as TD(�), do not have
convergence guarantees in the off-policy setting. Unfortu-
nately, this class of GTD algorithms are not true stochastic
gradient methods with respect to their original objective
functions, as pointed out in Szepesvári [2010]. The reason
is not surprising: the gradient of the objective functions
used involve products of terms, which cannot be sampled
directly, and was decomposed by a rather ad-hoc splitting
of terms. In this paper, we take a major step forward in
resolving this problem by showing a principled way of de-
signing true stochastic gradient TD algorithms by using a
primal-dual saddle point objective function, derived from
the original objective functions, coupled with the princi-
pled use of operator splitting [Bauschke and Combettes,
2011].

Since in real-world applications of RL, we have access to
only a finite amount of data, finite-sample analysis of gra-
dient TD algorithms is essential as it clearly shows the
effect of the number of samples (and the parameters that
play a role in the sampling budget of the algorithm) in
their final performance. However, most of the work on
finite-sample analysis in RL has been focused on batch
RL (or approximate dynamic programming) algorithms
(e.g., Kakade and Langford 2002; Munos and Szepesvári
2008; Antos et al. 2008; Lazaric et al. 2010a), especially
those that are least squares TD (LSTD)-based (e.g., Lazaric
et al. 2010b; Ghavamzadeh et al. 2010, 2011; Lazaric et
al. 2012), and more importantly restricted to the on-policy
setting. In this paper, we provide the finite-sample anal-
ysis of the GTD family of algorithms, a relatively novel
class of gradient-based TD methods that are guaranteed to
converge even in the off-policy setting, and for which, to
the best of our knowledge, no finite-sample analysis has
been reported. This analysis is challenging because 1) the
stochastic approximation methods that have been used to
prove the asymptotic convergence of these algorithms do
not address convergence rate analysis; 2) as we explain in
detail in Section 2.1, the techniques used for the analysis
of the stochastic gradient methods cannot be applied here;

3) finally, the difficulty of finite-sample analysis in the off-
policy setting.

The major contributions of this paper include the first finite-
sample analysis of the class of gradient TD algorithms, as
well as the design and analysis of several improved GTD
methods that result from our novel approach of formulating
gradient TD methods as true stochastic gradient algorithms
w.r.t. a saddle-point objective function. We then use the
techniques applied in the analysis of the stochastic gradi-
ent methods to propose a unified finite-sample analysis for
the previously proposed as well as our novel gradient TD
agorithms. Finally, given the results of our analysis, we
study the GTD class of algorithms from several different
perspectives, including acceleration in convergence, learn-
ing with biased importance sampling factors, etc.

2 PRELIMINARIES

Reinforcement Learning (RL) [Bertsekas and Tsitsiklis,
1996; Sutton and Barto, 1998] is a class of learning prob-
lems in which an agent interacts with an unfamiliar, dy-
namic and stochastic environment, where the agent’s goal
is to optimize some measure of its long-term performance.
This interaction is conventionally modeled as a Markov
decision process (MDP). A MDP is defined as the tuple
(S,A, P a

ss

0 , R, �), where S and A are the sets of states and
actions, the transition kernel P a

ss

0 specifying the probabil-
ity of transition from state s 2 S to state s0 2 S by taking
action a 2 A, R(s, a) : S ⇥A ! R is the reward function
bounded by R

max

., and 0  � < 1 is a discount factor.
A stationary policy ⇡ : S ⇥ A ! [0, 1] is a probabilistic
mapping from states to actions. The main objective of a RL
algorithm is to find an optimal policy. In order to achieve
this goal, a key step in many algorithms is to calculate the
value function of a given policy ⇡, i.e., V ⇡

: S ! R, a
process known as policy evaluation. It is known that V ⇡ is
the unique fixed-point of the Bellman operator T⇡ , i.e.,

V ⇡

= T⇡V ⇡

= R⇡

+ �P⇡V ⇡, (1)

where R⇡ and P⇡ are the reward function and transition
kernel of the Markov chain induced by policy ⇡. In Eq. 1,
we may imagine V ⇡ as a |S|-dimensional vector and write
everything in vector/matrix form. In the following, to sim-
plify the notation, we often drop the dependence of T⇡ ,
V ⇡ , R⇡ , and P⇡ to ⇡.

We denote by ⇡
b

, the behavior policy that generates the
data, and by ⇡, the target policy that we would like to eval-
uate. They are the same in the on-policy setting and dif-
ferent in the off-policy scenario. For each state-action pair
(s

i

, a
i

), such that ⇡
b

(a
i

|s
i

) > 0, we define the importance-
weighting factor ⇢

i

= ⇡(a
i

|s
i

)/⇡
b

(a
i

|s
i

) with ⇢
max

� 0

being its maximum value over the state-action pairs.

When S is large or infinite, we often use a linear ap-
proximation architecture for V ⇡ with parameters ✓ 2

Rd and L-bounded basis functions {'
i

}d
i=1

, i.e., '
i

:

S ! R and max

i

||'
i

||1  L. We denote by �(·) =�
'
1

(·), . . . ,'
d

(·)
�> the feature vector and by F the lin-

ear function space spanned by the basis functions {'
i

}d
i=1

,
i.e., F =

�
f
✓

| ✓ 2 Rd and f
✓

(·) = �(·)>✓

. We may
write the approximation of V in F in the vector form as
v̂ = �✓, where � is the |S| ⇥ d feature matrix. When
only n training samples of the form D =

��
s
i

, a
i

, r
i

=

r(s
i

, a
i

), s0
i

�
n

i=1

, s
i

⇠ ⇠, a
i

⇠ ⇡
b

(·|s
i

), s0
i

⇠
P (·|s

i

, a
i

), are available (⇠ is a distribution over the state
space S), we may write the empirical Bellman operator ˆT
for a function in F as

ˆT (ˆ�✓) = ˆR+ � ˆ�0✓, (2)

where ˆ

� (resp. ˆ

�

0) is the empirical feature matrix of
size n ⇥ d, whose i-th row is the feature vector �(s

i

)

>

(resp. �(s0
i

)

>), and ˆR 2 Rn is the reward vector, whose i-
th element is r

i

. We denote by �
i

(✓) = r
i

+ ��
0>
i

✓� �>
i

✓,
the TD error for the i-th sample (s

i

, r
i

, s0
i

) and define
��

i

= �
i

� ��0
i

. Finally, we define the matrices A and
C, and the vector b as

A := E
⇥
⇢i�i(��i)

>⇤, b := E [⇢i�iri] , C := E[�i�
>
i], (3)

where the expectations are w.r.t. ⇠ and P⇡b . We also denote
by ⌅, the diagonal matrix whose elements are ⇠(s), and
⇠
max

:= max

s

⇠(s). For each sample i in the training set
D, we can calculate an unbiased estimate of A, b, and C as
follows:

ˆA
i

:= ⇢
i

�
i

��>
i

, ˆb
i

:= ⇢
i

r
i

�
i

, ˆC
i

:= �
i

�>
i

. (4)

2.1 GRADIENT-BASED TD ALGORITHMS

The class of gradient-based TD (GTD) algorithms were
proposed by Sutton et al. [2008, 2009]. These algorithms
target two objective functions: the norm of the expected
TD update (NEU) and the mean-square projected Bellman
error (MSPBE), defined as (see e.g., Maei 2011)1

NEU(✓) = ||�>
⌅(T v̂ � v̂)||2 , (5)

MSPBE(✓) = ||v̂ �⇧T v̂||2⇠ = ||�>
⌅(T v̂ � v̂)||2C�1

, (6)

where C = E[�
i

�>
i

] = �

>
⌅� is the covariance matrix

defined in Eq. 3 and is assumed to be non-singular, and
⇧ = �(�

>
⌅�)

�1

�

>
⌅ is the orthogonal projection oper-

ator into the function space F , i.e., for any bounded func-
tion g, ⇧g = argmin

f2F ||g � f ||
⇠

. From (5) and (6), it
is clear that NEU and MSPBE are square unweighted and
weighted by C�1, `

2

-norms of the quantity �

>
⌅(T v̂� v̂),

respectively, and thus, the two objective functions can be
unified as

J(✓) = ||�>
⌅(T v̂� v̂)||2

M

�1

= ||E[⇢
i

�
i

(✓)�
i

]||2
M

�1

, (7)
1It is important to note that T in (5) and (6) is T⇡ , the Bellman

operator of the target policy ⇡.

with M equals to the identity matrix I for NEU and to
the covariance matrix C for MSPBE. The second equality
in (7) holds because of the following lemma from Section
4.2 in Maei [2011].
Lemma 1. Let D =

��
s
i

, a
i

, r
i

, s0
i

�
n

i=1

, s
i

⇠ ⇠, a
i

⇠
⇡
b

(·|s
i

), s0
i

⇠ P (·|s
i

, a
i

) be a training set generated by
the behavior policy ⇡

b

and T be the Bellman operator of
the target policy ⇡. Then, we have

�

>
⌅(T v̂ � v̂) = E

⇥
⇢
i

�
i

(✓)�
i

⇤
= b�A✓.

Motivated by minimizing the NEU and MSPBE objective
functions using the stochastic gradient methods, the GTD
and GTD2 algorithms were proposed with the following
update rules:

GTD: y
t+1

= y
t

+ ↵
t

�
⇢
t

�
t

(✓
t

)�
t

� y
t

�
, (8)

✓
t+1

= ✓
t

+ ↵
t

⇢
t

��
t

(y>
t

�
t

),

GTD2: y
t+1

= y
t

+ ↵
t

�
⇢
t

�
t

(✓
t

)� �>
t

y
t

�
�
t

, (9)

✓
t+1

= ✓
t

+ ↵
t

⇢
t

��
t

(y>
t

�
t

).

However, it has been shown that the above update rules do
not update the value function parameter ✓ in the gradient di-
rection of NEU and MSPBE, and thus, NEU and MSPBE
are not the true objective functions of the GTD and GTD2
algorithms [Szepesvári, 2010]. Consider the NEU objec-
tive function in (5). Taking its gradient w.r.t. ✓, we obtain

�1

2

rNEU(✓) = �
�
rE

⇥
⇢
i

�
i

(✓)�>
i

⇤�
E
⇥
⇢
i

�
i

(✓)�
i

⇤

= �
�
E
⇥
⇢
i

r�
i

(✓)�>
i

⇤�
E
⇥
⇢
i

�
i

(✓)�
i

⇤

= E
⇥
⇢
i

��
i

�>
i

⇤
E
⇥
⇢
i

�
i

(✓)�
i

⇤
. (10)

If the gradient can be written as a single expectation, then
it is straightforward to use a stochastic gradient method.
However, we have a product of two expectations in (10),
and unfortunately, due to the correlation between them, the
sample product (with a single sample) won’t be an unbiased
estimate of the gradient. To tackle this, the GTD algorithm
uses an auxiliary variable y

t

to estimate E
⇥
⇢
i

�
i

(✓)�
i

⇤
, and

thus, the overall algorithm is no longer a true stochastic
gradient method w.r.t. NEU. It can be easily shown that the
same problem exists for GTD2 w.r.t. the MSPBE objective
function. This prevents us from using the standard con-
vergence analysis techniques of stochastic gradient descent
methods to obtain a finite-sample performance bound for
the GTD and GTD2 algorithms.

It should be also noted that in the original publications of
GTD/GTD2 algorithms [Sutton et al., 2008, 2009], the au-
thors discussed handling the off-policy scenario using both
importance and rejected sampling. In rejected sampling
that was mainly used in Sutton et al. [2008, 2009], a sample
(s

i

, a
i

, r
i

, s0
i

) is rejected and the parameter ✓ does not up-
date for this sample, if ⇡(a

i

|s
i

) = 0. This sampling strat-
egy is not efficient since a lot of samples will be discarded
if ⇡

b

and ⇡ are very different.

2.2 RELATED WORK

Before we present a finite-sample performance bound for
GTD and GTD2, it would be helpful to give a brief
overview of the existing literature on finite-sample anal-
ysis of the TD algorithms. The convergence rate of the
TD algorithms mainly depends on (d, n, ⌫), where d is
the size of the approximation space (the dimension of the
feature vector), n is the number of samples, and ⌫ is the
smallest eigenvalue of the sample-based covariance matrix
ˆC =

ˆ

�

>
ˆ

�, i.e., ⌫ = �
min

(

ˆC).

Antos et al. [2008] proved an error bound of O(

d log d

n

1/4) for
LSTD in bounded spaces. Lazaric et al. [2010b] proposed
a LSTD analysis in leaner spaces and obtained a tighter

bound of O(

q
d log d

n⌫

) and later used it to derive a bound for
the least-squares policy iteration (LSPI) algorithm [Lazaric
et al., 2012]. Tagorti and Scherrer [2014] recently proposed
the first convergence analysis for LSTD(�) and derived a
bound of ˜O(d/⌫

p
n). The analysis is a bit different than

the one in Lazaric et al. [2010b] and the bound is weaker in
terms of d and ⌫. Another recent result is by Prashanth
et al. [2014] that use stochastic approximation to solve
LSTD(0), where the resulting algorithm is exactly TD(0)

with random sampling (samples are drawn i.i.d. and not
from a trajectory), and report a Markov design bound (the
bound is computed only at the states used by the algorithm)
of O(

q
d

n⌫

) for LSTD(0). All these results are for the on-
policy setting, except the one by Antos et al. [2008] that
also holds for the off-policy formulation. Another work
in the off-policy setting is by Ávila Pires and Szepesvári
[2012] that uses a bounding trick and improves the result
of Antos et al. [2008] by a log d factor.

The line of research reported here has much in common
with work on proximal reinforcement learning [Mahade-
van et al., 2014], which explores first-order reinforcement
learning algorithms using mirror maps [Bubeck, 2014; Ju-
ditsky et al., 2008] to construct primal-dual spaces. This
work began originally with a dual space formulation of
first-order sparse TD learning [Mahadevan and Liu, 2012].
A saddle point formulation for off-policy TD learning was
initially explored in Liu et al. [2012], where the objective
function is the norm of the approximation residual of a lin-
ear inverse problem [Ávila Pires and Szepesvári, 2012]. A
sparse off-policy GTD2 algorithm with regularized dual av-
eraging is introduced by Qin and Li [2014]. These studies
provide different approaches to formulating the problem,
first as a variational inequality problem [Juditsky et al.,
2008; Mahadevan et al., 2014] or as a linear inverse prob-
lem [Liu et al., 2012], or as a quadratic objective function
(MSPBE) using two-time-scale solvers [Qin and Li, 2014].
In this paper, we are going to explore the true nature of
the GTD algorithms as stochastic gradient algorithm w.r.t
the convex-concave saddle-point formulations of NEU and
MSPBE.

3 SADDLE-POINT FORMULATION OF
GTD ALGORITHMS

In this section, we show how the GTD and GTD2 algo-
rithms can be formulated as true stochastic gradient (SG)
algorithms by writing their respective objective functions,
NEU and MSPBE, in the form of a convex-concave saddle-
point. As discussed earlier, this new formulation of GTD
and GTD2 as true SG methods allows us to use the con-
vergence analysis techniques for SGs in order to derive
finite-sample performance bounds for these RL algorithms.
Moreover, it allows us to use more efficient algorithms that
have been recently developed to solve SG problems, such
as stochastic Mirror-Prox (SMP) [Juditsky et al., 2008], to
derive more efficient versions of GTD and GTD2.

A particular type of convex-concave saddle-point formula-
tion is formally defined as

min

✓

max

y

�
L(✓, y) = hb�A✓, yi+ F (✓)�K(y)

�
, (11)

where F (✓) is a convex function and K(y) is a smooth
convex function such that

K(y)�K(x)� hrK(x), y � xi  L
K

2

||x� y||2. (12)

Next we follow Juditsky et al. [2008]; Nemirovski et al.
[2009]; Chen et al. [2013] and define the following error
function for the saddle-point problem (11).
Definition 1. The error function of the saddle-point prob-
lem (11) at each point (✓0, y0) is defined as

Err(✓0, y0) = max

y

L(✓0, y)�min

✓

L(✓, y0). (13)

In this paper, we consider the saddle-point problem (11)
with F (✓) = 0 and K(y) = 1

2

||y||2
M

, i.e.,

min

✓

max

y

⇣
L(✓, y) = hb�A✓, yi � 1

2

||y||2
M

⌘
, (14)

where A and b were defined by Eq. 3, and M is a positive
definite matrix. It is easy to show that K(y) =

1

2

||y||2
M

satisfies the condition in Eq. 12.

We first show in Proposition 1 that if (✓⇤, y⇤) is the saddle-
point of problem (14), then ✓⇤ will be the optimum of NEU
and MSPBE defined in Eq. 7. We then prove in Proposi-
tion 2 that GTD and GTD2 in fact find this saddle-point.
Proposition 1. For any fixed ✓, we have 1

2

J(✓) =

max

y

L(✓, y), where J(✓) is defined by Eq. 7.

Proof. Since L(✓, y) is an unconstrained quadratic pro-
gram w.r.t. y, the optimal y⇤(✓) = argmax

y

L(✓, y) can
be analytically computed as

y⇤(✓) = M�1

(b�A✓). (15)

The result follows by plugging y⇤ into (14) and using the
definition of J(✓) in Eq. 7 and Lemma 1.

Proposition 2. GTD and GTD2 are true stochastic gradi-
ent algorithms w.r.t. the objective function L(✓, y) of the
saddle-point problem (14) with M = I and M = C =

�

>
⌅� (the covariance matrix), respectively.

Proof. It is easy to see that the gradient updates of the
saddle-point problem (14) (ascending in y and descending
in ✓) may be written as

y
t+1

= y
t

+ ↵
t

(b�A✓
t

�My
t

) , (16)
✓
t+1

= ✓
t

+ ↵
t

A>y
t

.

We denote ˆM := 1 (resp. ˆM :=

ˆC) for GTD (resp.
GTD2). We may obtain the update rules of GTD and
GTD2 by replacing A, b, and C in (16) with their unbi-
ased estimates ˆA, ˆb, and ˆC from Eq. 4, which completes
the proof.

4 FINITE-SAMPLE ANALYSIS

In this section, we provide a finite-sample analysis for a
revised version of the GTD/GTD2 algorithms. We first de-
scribe the revised GTD algorithms in Section 4.1 and then
dedicate the rest of Section 4 to their sample analysis. Note
that from now on we use the M matrix (and its unbiased
estimate ˆM

t

) to have a unified analysis for GTD and GTD2
algorithms. As described earlier, M is replaced by the iden-
tity matrix I in GTD and by the covariance matrix C (and
its unbiased estimate ˆC

t

) in GTD2.

4.1 THE REVISED GTD ALGORITHMS

The revised GTD algorithms that we analyze in this pa-
per (see Algorithm 1) have three differences with the stan-
dard GTD algorithms of Eqs. 8 and 9 (and Eq. 16). 1) We
guarantee that the parameters ✓ and y remain bounded by
projecting them onto bounded convex feasible sets ⇥ and
Y defined in Assumption 2. In Algorithm 1, we denote
by ⇧

⇥

and ⇧

Y

, the projection into sets ⇥ and Y , respec-
tively. This is standard in stochastic approximation algo-
rithms and has been used in off-policy TD(�) [Yu, 2012]
and actor-critic algorithms (e.g., Bhatnagar et al. 2009). 2)
after n iterations (n is the number of training samples in D),
the algorithms return the weighted (by the step size) aver-
age of the parameters at all the n iterations (see Eq. 18).
3) The step-size ↵

t

is selected as described in the proof
of Proposition 3 in the supplementary material. Note that
this fixed step size of O(1/

p
n) is required for the high-

probability bound in Proposition 3 (see Nemirovski et al.
2009 for more details).

4.2 ASSUMPTIONS

In this section, we make several assumptions on the MDP
and basis functions that are used in our finite-sample anal-
ysis of the revised GTD algorithms. These assumptions are

Algorithm 1 Revised GTD Algorithms
1: for t = 1, . . . , n do
2: Update parameters

yt+1

= ⇧Y

⇣
yt + ↵t(

ˆbt � ˆAt✓t � ˆMtyt)
⌘

✓t+1

= ⇧

⇥

⇣
✓t + ↵t

ˆA>
t yt

⌘
(17)

3: end for
4: OUTPUT

¯✓n :=

Pn
t=1

↵t✓tPn
t=1

↵t
, ȳn :=

Pn
t=1

↵tytPn
t=1

↵t
(18)

quite standard and are similar to those made in the prior
work on GTD algorithms [Sutton et al., 2008, 2009; Maei,
2011] and those made in the analysis of SG algorithms [Ne-
mirovski et al., 2009].
Assumption 2. (Feasibility Sets) We define the bounded
closed convex sets ⇥ ⇢ Rd and Y ⇢ Rd as the feasible sets
in Algorithm 1. We further assume that the saddle-point
(✓⇤, y⇤) of the optimization problem (14) belongs to ⇥⇥Y .
We also define D

✓

:=

⇥
max

✓2⇥

||✓||2
2

�min

✓2⇥

||✓||2
2

⇤
1/2,

D
y

:=

⇥
max

y2Y

||y||2
2

� min

y2Y

||y||2
2

⇤
1/2, and R =

max

�
max

✓2⇥

||✓||
2

,max

y2Y

||y||
2

.

Assumption 3. (Non-singularity) We assume that the
covariance matrix C = E[�

i

�>
i

] and matrix A =

E
⇥
⇢
i

�
i

(��
i

)

>⇤ are non-singular.
Assumption 4. (Boundedness) Assume the features
(�

i

,�
0

i

) have uniformly bounded second moments. This
together with the boundedness of features (by L) and im-
portance weights (by ⇢

max

) guarantees that the matrices A
and C, and vector b are uniformly bounded.

This assumption guarantees that for any (✓, y) 2 ⇥ ⇥ Y ,
the unbiased estimators of b�A✓ �My and A>y, i.e.,

E[ˆb
t

� ˆA
t

✓ � ˆM
t

y] = b�A✓ �My,

E[ˆA>
t

y] = A>y, (19)

all have bounded variance, i.e.,

E
⇥
||ˆb

t

� ˆA
t

✓ � ˆM
t

y � (b�A✓ �My)||2
⇤
 �2

1

,

E
⇥
|| ˆA>

t

y �A>y||2
⇤
 �2

2

, (20)

where �
1

and �
2

are non-negative constants. We further
define

�2

= �2

1

+ �2

2

. (21)

Assumption 4 also gives us the following “light-tail” as-
sumption. There exist constants M⇤,✓ and M⇤,y such that

E[exp{ ||
ˆbt � ˆAt✓ � ˆMty||2

M2

⇤,✓

}]  exp{1},

E[exp{ ||
ˆA>
t y||2

M2

⇤,y
}]  exp{1}. (22)

This “light-tail” assumption is equivalent to the assumption
in Eq. 3.16 in Nemirovski et al. [2009] and is necessary for
the high-probability bound of Proposition 3. We will show
how to compute M⇤,✓,M⇤,y in the Appendix.

4.3 FINITE-SAMPLE PERFORMANCE BOUNDS

The finite-sample performance bounds that we derive for
the GTD algorithms in this section are for the case that the
training set D has been generated as discussed in Section 2.
We further discriminate between the on-policy (⇡ = ⇡

b

)
and off-policy (⇡ 6= ⇡

b

) scenarios. The sampling scheme
used to generate D, in which the first state of each tuple,
s
i

, is an i.i.d. sample from a distribution ⇠, also considered
in the original GTD and and GTD2 papers, for the anal-
ysis of these algorithms, and not in the experiments [Sut-
ton et al., 2008, 2009]. Another scenario that can motivate
this sampling scheme is when we are given a set of high-
dimensional data generated either in an on-policy or off-
policy manner, and d is so large that the value function of
the target policy cannot be computed using a least-squares
method (that involves matrix inversion), and iterative tech-
niques similar to GTD/GTD2 are required.

We first derive a high-probability bound on the error func-
tion of the saddle-point problem (14) at the GTD solution
(

¯✓
n

, ȳ
n

). Before stating this result in Proposition 3, we re-
port the following lemma that is used in its proof.
Lemma 2. The induced `

2

-norm of matrix A and the `
2

-
norm of vector b are bounded by

||A||
2

 (1 + �)⇢
max

L2d, ||b||
2

 ⇢
max

LR
max

. (23)

Proof. See the supplementary material.

Proposition 3. Let (¯✓
n

, ȳ
n

) be the output of the GTD algo-
rithm after n iterations (see Eq. 18). Then, with probability
at least 1� �, we have

Err(

¯✓
n

, ȳ
n

) 
r

5

n
(8 + 2 log

2

�
)R2 (24)

⇥
✓
⇢
max

L
⇣
2(1 + �)Ld+

R
max

R

⌘
+ ⌧ +

�

R

◆
,

where Err(

¯✓
n

, ȳ
n

) is the error function of the saddle-point
problem (14) defined by Eq. 13, R defined in Assump-
tion 2, � is from Eq. 21, and ⌧ = �

max

(M) is the largest
singular value of M , which means ⌧ = 1 for GTD and
⌧ = �

max

(C) for GTD2.

Proof. See the supplementary material.

Theorem 1. Let ¯✓
n

be the output of the GTD algorithm
after n iterations (see Eq. 18). Then, with probability at
least 1� �, we have

1

2

||A¯✓
n

� b||2
⇠

 ⌧⇠
max

Err(

¯✓
n

, ȳ
n

). (25)

Proof. From Proposition 1, for any ✓, we have

max

y

L(✓, y) =
1

2

||A✓ � b||2
M

�1

.

Given Assumption 3, the system of linear equations A✓ = b
has a solution ✓⇤, i.e., the (off-policy) fixed-point ✓⇤ exists,
and thus, we may write

min

✓

max

y

L(✓, y) = min

✓

1

2

||A✓ � b||2
M

�1

=

1

2

||A✓⇤ � b||2
M

�1

= 0.

In this case, we also have2

min

✓

L(✓, y)  max

y

min

✓

L(✓, y)  min

✓

max

y

L(✓, y)

=

1

2

||A✓⇤ � b||2
M

�1

= 0. (26)

From Eq. 26, for any (✓, y) 2 ⇥ ⇥ Y including (

¯✓
n

, ȳ
n

),
we may write

Err(

¯✓
n

, ȳ
n

) = max

y

L(¯✓
n

, y)�min

✓

L(✓, ȳ
n

) (27)

� max

y

L(¯✓
n

, y) =
1

2

||A¯✓
n

� b||2
M

�1

.

Since ||A¯✓
n

�b||2
⇠

 ⌧⇠
max

||A¯✓
n

�b||2
M

�1

, where ⌧ is the
largest singular value of M , we have

1

2

||A¯✓
n

�b||2
⇠

 ⌧⇠
max

2

||A¯✓
n

�b||2
M

�1

 ⌧⇠
max

Err(

¯✓
n

, ȳ
n

).

(28)
The proof follows by combining Eqs. 28 and Proposition 3.
It completes the proof.

With the results of Proposition 3 and Theorem 1, we are
now ready to derive finite-sample bounds on the perfor-
mance of GTD/GTD2 in both on-policy and off-policy set-
tings.

4.3.1 On-Policy Performance Bound

In this section, we consider the on-policy setting in which
the behavior and target policies are equal, i.e., ⇡

b

= ⇡, and
the sampling distribution ⇠ is the stationary distribution of
the target policy ⇡ (and the behavior policy ⇡

b

). We use
Lemma 3 to derive our on-policy bound. The proof of this
lemma can be found in Geist et al. [2012].
Lemma 3. For any parameter vector ✓ and corresponding
v̂ = �✓, the following equality holds

V � v̂ = (I � �⇧P)

�1

⇥
(V �⇧V) + �C�1

(b�A✓)
⇤
. (29)

Using Lemma 3, we derive the following performance
bound for GTD/GTD2 in the on-policy setting.

2We may write the second inequality as an equality for our
saddle-point problem defined by Eq. 14.

Proposition 4. Let V be the value of the target policy and
v̄
n

= �

¯✓
n

, where ¯✓
n

defined by (18), be the value function
returned by on-policy GTD/GTD2. Then, with probability
at least 1� �, we have

||V�v̄n||⇠  1

1� �

✓
||V �⇧V ||⇠ +

L
⌫

q
2d⌧⇠

max

Err(

¯✓n, ȳn)

◆

(30)

where Err(

¯✓
n

, ȳ
n

) is upper-bounded by Eq. 24 in Proposi-
tion 3, with ⇢

max

= 1 (on-policy setting).

Proof. See the supplementary material.

Remark: It is important to note that Proposition 4 shows
that the error in the performance of the GTD/GTD2 algo-

rithm in the on-policy setting is of O
✓

L

2

d

p
⌧⇠

max

log

1

�

n

1/4
⌫

◆
.

Also note that the term ⌧

⌫

in the GTD2 bound is the condi-
tioning number of the covariance matrix C.

4.3.2 Off-Policy Performance Bound

In this section, we consider the off-policy setting in which
the behavior and target policies are different, i.e., ⇡

b

6= ⇡,
and the sampling distribution ⇠ is the stationary distribu-
tion of the behavior policy ⇡

b

. We assume that off-policy
fixed-point solution exists, i.e., there exists a ✓⇤ satisfying
A✓⇤ = b. Note that this is a direct consequence of As-
sumption 3 in which we assumed that the matrix A in the
off-policy setting is non-singular. We use Lemma 4 to de-
rive our off-policy bound. The proof of this lemma can be
found in Kolter [2011]. Note that (¯D) in his proof is equal
to p

⇢
max

in our paper.

Lemma 4. If ⌅ satisfies the following linear matrix in-
equality


�

>
⌅� �

>
⌅P�

�

>P>
⌅� �

>
⌅�

�
⌫ 0 (31)

and let ✓⇤ be the solution to A✓⇤ = b, then we have

||V � �✓⇤||
⇠


1 + �

p
⇢
max

1� �
||V �⇧V ||

⇠

. (32)

Note that the condition on ⌅ in Eq. 31 guarantees that the
behavior and target policies are not too far away from each
other. Using Lemma 4, we derive the following perfor-
mance bound for GTD/GTD2 in the off-policy setting.

Proposition 5. Let V be the value of the target policy and
v̄
n

= �

¯✓
n

, where ¯✓
n

is defined by (18), be the value func-
tion returned by off-policy GTD/GTD2. Also let the sam-
pling distribution ⌅ satisfies the condition in Eq. 31. Then,

with probability at least 1� �, we have

||V � v̄
n

||
⇠


1 + �

p
⇢
max

1� �
||V �⇧V ||

⇠

(33)

+

s
2⌧

C

⌧⇠
max

�
min

(A>M�1A)

Err(

¯✓
n

, ȳ
n

),

where ⌧
C

= �
max

(C).

Proof. See the supplementary material.

5 ACCELERATED ALGORITHM

As discussed at the beginning of Section 3, this saddle-
point formulation not only gives us the opportunity to use
the techniques for the analysis of SG methods to derive
finite-sample performance bounds for the GTD algorithms,
as we will show in Section 4, but also it allows us to use the
powerful algorithms that have been recently developed to
solve the SG problems and derive more efficient versions of
GTD and GTD2. Stochastic Mirror-Prox (SMP) [Juditsky
et al., 2008] is an “almost dimension-free” non-Euclidean
extra-gradient method that deals with both smooth and non-
smooth stochastic optimization problems (see Juditsky and
Nemirovski 2011 and Bubeck 2014 for more details). Us-
ing SMP, we propose a new version of GTD/GTD2, called
GTD-MP/GTD2-MP, with the following update formula:3

ym
t = yt + ↵t(

ˆbt � ˆAt✓t � ˆMtyt), ✓mt = ✓t + ↵t
ˆA>
t yt,

yt+1

= yt + ↵t(
ˆbt � ˆAt✓

m
t � ˆMty

m
t), ✓t+1

= ✓t + ↵t
ˆA>
t y

m
t .

After T iterations, these algorithms return ¯✓
T

:=

PT
t=1

↵t✓tPT
t=1

↵t

and ȳ
T

:=

PT
t=1

↵tytPT
t=1

↵t
. The details of the algorithm is shown

in Algorithm 2, and the experimental comparison study be-
tween GTD2 and GTD2-MP is reported in Section 7.

6 FURTHER ANALYSIS

6.1 ACCELERATION ANALYSIS

In this section, we are going to discuss the convergence
rate of the accelerated algorithms using off-the-shelf accel-
erated solvers for saddle-point problems. For simplicity,
we will discuss the error bound of 1

2

||A✓� b||2
M

�1

, and the
corresponding error bound of 1

2

||A✓� b||2
⇠

and kV � v̄
n

||
⇠

can be likewise derived as in above analysis. As can be
seen from the above analysis, the convergence rate of the
GTD algorithms family is

(GTD/GTD2) : O

✓
⌧ + ||A||

2

+ �p
n

◆
(35)

3For simplicity, we only describe mirror-prox GTD methods
where the mirror map is identity, which can also be viewed as
extragradient (EG) GTD methods. Mahadevan et al. [2014] gives
a more detailed discussion of a broad range of mirror maps in RL.

Algorithm 2 GTD2-MP
1: for t = 1, . . . , n do
2: Update parameters

�t = rt � ✓>t ��t

ym
t = yt + ↵t(⇢t�t � �>

t yt)�t

✓mt = ✓t + ↵t⇢t��t(�
>
t yt)

�mt = rt � (✓mt)

>
��t

yt+1

= yt + ↵t(⇢t�
m
t � �>

t y
m
t)�t

✓t+1

= ✓t + ↵t⇢t��t(�
>
t y

m
t)

3: end for
4: OUTPUT

¯✓n :=

Pn
t=1

↵t✓tPn
t=1

↵t
, ȳn :=

Pn
t=1

↵tytPn
t=1

↵t
(34)

In this section, we raise an interesting question: what is the
“optimal” GTD algorithm? To answer this question, we
review the convex-concave formulation of GTD2. Accord-
ing to convex programming complexity theory [Juditsky et
al., 2008], the un-improvable convergence rate of stochas-
tic saddle-point problem (14) is

(Optimal) : O

✓
⌧

n2

+

||A||
2

n
+

�p
n

◆
(36)

There are many readily available stochastic saddle-point
solvers, such as stochastic Mirror-Prox (SMP) [Juditsky et
al., 2008] algorithm, which leads to our proposed GTD2-
MP algorithm. SMP is able to accelerate the convergence
rate of our gradient TD method to:

(SMP) : O

✓
⌧ + ||A||

2

n
+

�p
n

◆
, (37)

and stochastic accelerated primal-dual (SAPD) method
[Chen et al., 2013] which can reach the optimal conver-
gence rate in (36). Due to space limitations, we are un-
able to present a more complete description, and refer in-
terested readers to Juditsky et al. [2008]; Chen et al. [2013]
for more details.

6.2 LEARNING WITH BIASED ⇢
t

The importance weight factor ⇢
t

is lower bounded by 0,
but yet may have an arbitrarily large upper bound. In real
applications, the importance weight factor ⇢

t

may not be
estimated exactly, i.e., the estimation ⇢̂

t

is a biased esti-
mation of the true ⇢

t

. To this end, the stochastic gradient
we obtained is not unbiased gradient of L(✓, y) anymore.
This falls into a broad category of learning with inexact
stochastic gradient, or termed as stochastic gradient meth-
ods with an inexact oracle [Devolder, 2011]. Given the
inexact stochastic gradient, the convergence rate and per-
formance bound become much worse than the results with

exact stochastic gradient. Based on the analysis by Juditsky
et al. [2008], we have the error bound for inexact estima-
tion of ⇢

t

.
Proposition 6. Let ¯✓

n

be defined as above. Assume at the
t-th iteration, ⇢̂

t

is the estimation of the importance weight
factor ⇢

t

with bounded bias such that E[⇢̂
t

� ⇢
t

]  ✏. The
convergence rates of GTD/GTD2 algorithms with iterative
averaging is as follows, i.e.,

||A¯✓
n

� b||2
M

�1

 O

✓
⌧ + ||A||

2

+ �p
n

◆
+O(✏) (38)

This implies that the inexact estimation of ⇢
t

may cause
disastrous estimation error, which implies that an exact es-
timation of ⇢

t

is very important.

6.3 FINITE-SAMPLE ANALYSIS OF ONLINE
LEARNING

Another more challenging scenario is online learning sce-
nario, where the samples are interactively generated by
the environment, or by an interactive agent. The diffi-
culty lies in that the sample distribution does not follow
i.i.d sampling condition anymore, but follows an underly-
ing Markov chain M. If the Markov chain M’s mixing
time is small enough, i.e., the sample distribution reduces
to the stationary distribution of ⇡

b

very fast, our analy-
sis still applies. However, it is usually the case that the
underlying Markov chain’s mixing time ⌧

mix

is not small
enough. The analysis result can be obtained by extending
the result of recent work [Duchi et al., 2012] from strongly
convex loss functions to saddle-point problems, which is
non-trivial and is thus left for future work.

6.4 DISCUSSION OF TDC ALGORITHM

Now we discuss the limitation of our analysis with regard
to the temporal difference with correction (TDC) algorithm
[Sutton et al., 2009]. Interestingly, the TDC algorithm
seems not to have an explicit saddle-point representation,
since it incorporates the information of the optimal y⇤

t

(✓
t

)

into the update of ✓
t

, a quasi-stationary condition which
is commonly used in two-time-scale stochastic approxima-
tion approaches. An intuitive answer to the advantage of
TDC over GTD2 is that the TDC update of ✓

t

can be con-
sidered as incorporating the prior knowledge into the up-
date rule: for a stationary ✓

t

, if the optimal y⇤
t

(✓
t

) has a
closed-form solution or is easy to compute, then incorpo-
rating this y⇤

t

(✓
t

) into the update law tends to accelerate
the algorithm’s convergence performance. For the GTD2
update, note that there is a sum of two terms where y

t

ap-
pears, which are ⇢

t

(�
t

� ��0
t

)(yT
t

�
t

) = ⇢
t

�
t

(yT
t

�
t

) �
�⇢

t

�0
t

(yT
t

�
t

). Replacing y
t

in the first term with y⇤
t

(✓
t

) =

E[�
t

�T

t
]

�1E[⇢
t

�
t

(✓
t

)�
t

], we have the TDC update rule.
Note that in contrast to GTD/GTD2, TDC is a two-time
scale algorithm; Also, note that TDC does not minimize

any objective functions and the convergence of TDC re-
quires more restrictions than GTD2 as shown by Sutton et
al. [2009].

7 EMPIRICAL EVALUATION

In this section, we compare the previous GTD2 method
with our proposed GTD2-MP method using various do-
mains with regard to their value function approximation
performance capability. It should be mentioned that since
the major focus of this paper is on policy evaluation, the
comparative study focuses on value function approxima-
tion and thus comparisons on control learning performance
is not reported in this paper.

7.1 BAIRD DOMAIN

The Baird example [Baird, 1995] is a well-known example
to test the performance of off-policy convergent algorithms.
Constant stepsize ↵ = 0.005 for GTD2 and ↵ = 0.004 for
GTD2-MP, which are chosen via comparison studies as in
[Dann et al., 2014]. Figure 1 shows the MSPBE curve of
GTD2, GTD2-MP of 8000 steps averaged over 200 runs.
We can see that GTD2-MP has a significant improvement
over the GTD2 algorithm wherein both the MSPBE and the
variance are substantially reduced.

Figure 1: Off-Policy Convergence Comparison

7.2 50-STATE CHAIN DOMAIN

The 50 state chain [Lagoudakis and Parr, 2003] is a stan-
dard MDP domain. There are 50 discrete states {s

i

}50
i=1

and two actions moving the agent left s
i

! s
max(i�1,1)

and
right s

i

! s
min(i+1,50)

. The actions succeed with proba-
bility 0.9; failed actions move the agent in the opposite di-
rection. The discount factor is � = 0.9. The agent receives
a reward of +1 when in states s

10

and s
41

. All other states
have a reward of 0. In this experiment, we compare the per-
formance of the value approximation w.r.t different set of
stepsizes ↵ = 0.0001, 0.001, 0.01, 0.1, 0.2, · · · , 0.9 using
the BEBF basis [Parr et al., 2007], and Figure 2 shows the
value function approximation result, where the cyan curve

Figure 2: Chain Domain

is the true value function, the red dashed curve is the GTD
result,and the black curve is the GTD2-MP result. From
the figure, one can see that GTD2-MP is much more robust
with stepsize choice than the GTD2 algorithm.

7.3 ENERGY MANAGEMENT DOMAIN

In this experiment we compare the performance of the al-
gorithms on an energy management domain. The decision
maker must decide how much energy to purchase or sell
subject to stochastic prices. This problem is relevant in the
context of utilities as well as in settings such as hybrid ve-
hicles. The prices are generated from a Markov chain pro-
cess. The amount of available storage is limited and it also
degrades with use. The degradation process is based on the
physical properties of lithium-ion batteries and discourages
fully charging or discharging the battery. The energy arbi-
trage problem is closely related to the broad class of in-
ventory management problems, with the storage level cor-
responding to the inventory. However, there are no known
results describing the structure of optimal threshold poli-
cies in energy storage.

Note that since for this off-policy evaluation problem, the
formulated A✓ = b does not have a solution, and thus the
optimal MSPBE(✓⇤) (resp. MSBE(✓⇤)) do not reduce to
0. The result is averaged over 200 runs, and ↵ = 0.001
for both GTD2 and GTD2-MP is chosen via comparison
studies for each algorithm. As can be seen from FIgure 3,
in the initial transit state, GTD2-MP performs much bet-
ter than GTD2 at the transient state. Then after reaching
the steady state, as can be seen from Table 1, we can see
that GTD2-MP reaches better steady state solution than the
GTD algorithm. Based on the above empirical results and
many other experiments we have conducted in other do-
mains, we can conclude that GTD2-MP usually performs
much better than the “vanilla” GTD2 algorithm.

Figure 3: Energy Management Example

Algorithm MSPBE MSBE
GTD2 176.4 228.7

GTD2-MP 138.6 191.4

Table 1: Steady State Performance Comparison

8 SUMMARY

In this paper, we showed how gradient TD methods can be
shown to be true stochastic gradient methods with respect
to a saddle-point primal-dual objective function, which
paved the way for the finite-sample analysis of off-policy
convergent gradient-based temporal difference learning al-
gorithms such as GTD and GTD2. Both error bound
and performance bound are provided, which shows that
the value function approximation bound of the GTD algo-
rithms family is O

�
d

n

1/4

�
. Further, two revised algorithms,

namely the projected GTD2 algorithm and the accelerated
GTD2-MP algorithm, are proposed. There are many inter-
esting directions for future research. Our framework can be
easily used to design regularized sparse gradient off-policy
TD methods. One interesting direction is to investigate the
convergence rate and performance bound for the TDC al-
gorithm, which lacks a saddle-point formulation. The other
is to explore tighter value function approximation bounds
for off-policy learning.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant Nos. IIS-1216467. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the NSF.

References
A. Antos, Cs. Szepesvári, and R. Munos. Learning near-optimal

policies with Bellman-residual minimization based fitted pol-
icy iteration and a single sample path. Machine Learning Jour-
nal, 71:89–129, 2008.

B. Ávila Pires and C. Szepesvári. Statistical linear estimation with
penalized estimators: an application to reinforcement learning.
In Proceedings of the 29th International Conference on Ma-
chine Learning, pages 1535–1542, 2012.

L. C. Baird. Residual algorithms: Reinforcement learning with
function approximation. In International Conference on Ma-
chine Learning, pages 30–37, 1995.

H. H Bauschke and P. L Combettes. Convex analysis and mono-
tone operator theory in Hilbert spaces. Springer, 2011.

D. Bertsekas and J. Tsitsiklis. Neuro-Dynamic Programming.
Athena Scientific, Belmont, Massachusetts, 1996.

S. Bhatnagar, R. Sutton, M. Ghavamzadeh, and M. Lee. Natural
actor-critic algorithms. Automatica, 45(11):2471–2482, 2009.

V. Borkar. Stochastic Approximation: A Dynamical Systems View-
point. Cambridge University Press, 2008.

S. Bubeck. Theory of convex optimization for machine learning.
arXiv:1405.4980, 2014.

Y. Chen, G. Lan, and Y. Ouyang. Optimal primal-dual methods
for a class of saddle point problems. arXiv:1309.5548, 2013.

C. Dann, G. Neumann, and J. Peters. Policy evaluation with tem-
poral differences: A survey and comparison. Journal of Ma-
chine Learning Research, 15:809–883, 2014.

O. Devolder. Stochastic first order methods in smooth convex op-
timization. Technical report, Université catholique de Louvain,
Center for Operations Research and Econometrics, 2011.

J. Duchi, A. Agarwal, M. Johansson, and M. Jordan. Ergodic
mirror descent. SIAM Journal on Optimization, 22(4):1549–
1578, 2012.

M. Geist, B. Scherrer, A. Lazaric, and M. Ghavamzadeh. A
Dantzig Selector approach to temporal difference learning. In
International Conference on Machine Learning, pages 1399–
1406, 2012.

M. Ghavamzadeh, A. Lazaric, O. Maillard, and R. Munos. LSTD
with Random Projections. In Proceedings of the International
Conference on Neural Information Processing Systems, pages
721–729, 2010.

M. Ghavamzadeh, A. Lazaric, R. Munos, and M. Hoffman.
Finite-sample analysis of Lasso-TD. In Proceedings of the 28th
International Conference on Machine Learning, pages 1177–
1184, 2011.

A. Juditsky and A. Nemirovski. Optimization for Machine Learn-
ing. MIT Press, 2011.

A. Juditsky, A. Nemirovskii, and C. Tauvel. Solving vari-
ational inequalities with stochastic mirror-prox algorithm.
arXiv:0809.0815, 2008.

S. Kakade and J. Langford. Approximately optimal approximate
reinforcement learning. In Proceedings of the Nineteenth In-
ternational Conference on Machine Learning, pages 267–274,
2002.

Z. Kolter. The fixed points of off-policy TD. In Advances in
Neural Information Processing Systems 24, pages 2169–2177,
2011.

M. Lagoudakis and R. Parr. Least-squares policy iteration. Jour-
nal of Machine Learning Research, 4:1107–1149, 2003.

A. Lazaric, M. Ghavamzadeh, and R. Munos. Analysis of a
classification-based policy iteration algorithm. In Proceedings
of the Twenty-Seventh International Conference on Machine
Learning, pages 607–614, 2010.

A. Lazaric, M. Ghavamzadeh, and R. Munos. Finite-sample anal-
ysis of LSTD. In Proceedings of 27th International Conference
on Machine Learning, pages 615–622, 2010.

A. Lazaric, M. Ghavamzadeh, and R. Munos. Finite-sample
analysis of least-squares policy iteration. Journal of Machine
Learning Research, 13:3041–3074, 2012.

B. Liu, S. Mahadevan, and J. Liu. Regularized off-policy TD-
learning. In Advances in Neural Information Processing Sys-
tems 25, pages 845–853, 2012.

H. Maei. Gradient temporal-difference learning algorithms. PhD
thesis, University of Alberta, 2011.

S. Mahadevan and B. Liu. Sparse Q-learning with Mirror Descent.
In Proceedings of the Conference on Uncertainty in AI, 2012.

S. Mahadevan, B. Liu, P. Thomas, W. Dabney, S. Giguere,
N. Jacek, I. Gemp, and J. Liu. Proximal reinforcement learn-
ing: A new theory of sequential decision making in primal-dual
spaces. arXiv:1405.6757, 2014.

R. Munos and Cs. Szepesvári. Finite time bounds for fitted value
iteration. Journal of Machine Learning Research, 9:815–857,
2008.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust
stochastic approximation approach to stochastic programming.
SIAM Journal on Optimization, 19:1574–1609, 2009.

R. Parr, C. Painter-Wakefield, L. Li, and M. Littman. Analyzing
feature generation for value function approximation. In Pro-
ceedings of the International Conference on Machine Learn-
ing, pages 737–744, 2007.

LA Prashanth, N. Korda, and R. Munos. Fast LSTD using
stochastic approximation: Finite time analysis and application
to traffic control. In Machine Learning and Knowledge Dis-
covery in Databases, pages 66–81. Springer, 2014.

Z. Qin and W. Li. Sparse Reinforcement Learning via Convex
Optimization. In Proceedings of the 31st International Confer-
ence on Machine Learning, 2014.

R. Sutton and A. G. Barto. Reinforcement Learning: An Intro-
duction. MIT Press, 1998.

R. Sutton, C. Szepesvári, and H. Maei. A convergent o(n) al-
gorithm for off-policy temporal-difference learning with lin-
ear function approximation. In Neural Information Processing
Systems, pages 1609–1616, 2008.

R. Sutton, H. Maei, D. Precup, S. Bhatnagar, D. Silver,
C. Szepesvári, and E. Wiewiora. Fast gradient-descent methods
for temporal-difference learning with linear function approx-
imation. In International Conference on Machine Learning,
pages 993–1000, 2009.

C. Szepesvári. Algorithms for reinforcement learning. Synthe-
sis Lectures on Artificial Intelligence and Machine Learning,
4(1):1–103, 2010.

M. Tagorti and B. Scherrer. Rate of convergence and error bounds
for LSTD (�). arXiv:1405.3229, 2014.

H. Yu. Least-squares temporal difference methods: An analysis
under general conditions. SIAM Journal on Control and Opti-
mization, 50(6):3310–3343, 2012.

