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Abstract

For undirected graphical models, belief propaga-
tion often performs remarkably well for approxi-
mate marginal inference, and may be viewed as a
heuristic to minimize the Bethe free energy. Fo-
cusing on binary pairwise models, we demon-
strate that several recent results on the Bethe ap-
proximation may be generalized to a broad fam-
ily of related pairwise free energy approxima-
tions with arbitrary counting numbers. We ex-
plore approximation error and shed light on the
empirical success of the Bethe approximation.

1 INTRODUCTION

Undirected graphical models, also called Markov random
fields (MRFs), have become a central tool in machine
learning, providing a powerful and compact way to de-
scribe relationships between variables. Fundamental prob-
lems are to compute the normalizing partition function, and
to solve for the marginal distribution of a subset of vari-
ables (marginal inference). Both tasks are computation-
ally intractable (Cooper, 1990), prompting great interest
in approximate algorithms that perform well. One popu-
lar approach isbelief propagation(BP, Pearl, 1988). When
the underlying model topology is acyclic, this returns ex-
act values in linear time. If the method is applied to models
with cycles, termedloopy belief propagation(LBP), results
are often strikingly good but not always, and it may not
converge at all (McEliece et al., 1998).

Yedidia et al. (2001) demonstrated that fixed points of
LBP correspond to stationary points of theBethe free en-
ergy FB (Bethe, 1935), see§2 for definitions. Further,
Heskes (2002) showed that stable fixed points correspond
to local minima of the Bethe free energy. In this pa-
per, we summarize recent results on the Bethe approxi-
mation (Welling and Teh, 2001; Weller and Jebara, 2013,
2014a,b; Weller et al., 2014), and in each case consider

how the result may be generalized by considering the broad
class of pairwise entropy approximations specified by ar-
bitrary counting numbers, which includes the Bethe and
tree-reweightedapproximations (TRW, Wainwright et al.,
2005) as special cases. We discuss consequences and re-
lated applications, including in§5 minimizing the approxi-
mate free energy, which Weller and Jebara (2014a) recently
showed, for the specific case of the Bethe approximation on
attractive models, can be approximated to anyǫ-accuracy
with a fully polynomial-time approximation scheme(FP-
TAS).

In §6, we compare this family of entropy approximations
to the true entropy, and consider how differences interact
with the other form of approximation typically employed:
the marginal polytope, which enforces global variable con-
sistency, is relaxed to the local polytope, which enforces
only local (pairwise) consistency. We also provide fresh
insights on balanced and frustrated cycles by considering
the loop series approach of Sudderth et al. (2007).

1.1 RELATED WORK

Related work is discussed throughout the text but here we
clarify the context and contributions of our results up to
§5 that build to show how to approximate the global opti-
mum of the approximate free energy to arbitrary accuracy
for general counting numbers.

Context. All for attractive binary pairwise models:
The problem of identifying a most probable configura-
tion (MAP inference) is solvable in polynomial-time via
graph cuts (Greig et al., 1989); this generalizes to multi-
label pairwise models with submodular cost functions
(Schlesinger and Flach, 2006). However, aside from re-
stricted cases (e.g. low treewidth or thefully polynomial-
time randomized approximation scheme(FPRAS) of
Jerrum and Sinclair (1993) for uniform external field),
there is no way to estimate the partition functionZ ac-
curately in polynomial-time. LBP is a heuristic to find
the Bethe partition function by minimizing the Bethe free
energy, with logZB = −minFB, and for these mod-



els we know thatZB is a lower bound and usually a
good estimate ofZ (Sudderth et al., 2007; Ruozzi, 2012;
Weller and Jebara, 2014b), but LBP may find only a lo-
cal optimum or not converge at all. Various methods (e.g.
CCCP, Yuille, 2002) were introduced which converge but
only to a local minimum ofFB with no time guarantee.
Shin (2012) introduced the first polynomial-time method
but this returns an approximately stationary point of the
BetheFB (i.e. a point where|derivative ofFB| < ǫ, which
is useful for loop series methods, but this point may have
FB value far from the global optimum; attractive not re-
quired) subject to a sparsity condition that max degree is
O(log n). Weller and Jebara (2013) derived a PTAS for
the global optimum ofFB with the same sparsity condi-
tion. Weller and Jebara (2014a) improved this, providing
the first FPTAS forlogZB for an attractive model with any
topology. These applied only for the Bethe approximation.

Contributions. Here we broaden analysis significantly to
consider any counting numbers, relying on our new Theo-
rems 2, 5, 6 and 7, and Lemmas 3 and 4. All these extend
previous results that applied only to the Bethe approxima-
tion. It is somewhat remarkable that it emerges that an at-
tractive model admits a FPTAS forlogZA for any count-
ing numbers. This is significant theoretically and will al-
low the benefits of non-convex free energy approximations
to be explored further in future work. Theorems 2, 5 and
6 importantly apply to general (non-attractive models), as
does Algorithm 1, allowinglogZA with any counting num-
bers to be computed to arbitrary accuracy, though with no
polynomial-time guarantee if not attractive - still this will
be useful to learn insights from small models and to bench-
mark accuracy of faster methods.

2 PRELIMINARIES

We adopt notation consistent with (Welling and Teh, 2001;
Weller and Jebara, 2013, 2014a,b). Consider a binary pair-
wise model withn variablesX1, . . . , Xn ∈ B = {0, 1}
and graph topology(V , E) with m = |E| edges; that is
V contains nodes{1, . . . , n} wherei corresponds toXi,
and E ⊆ V × V contains an edge for each pairwise
score relationship. LetN (i) be the neighbors ofi. Let
x = (x1, . . . , xn) be one particular configuration, and de-
fine itsenergyE(x) via the relationships

p(x) =
e−E(x)

Z
, E = −

∑

i∈V

θixi −
∑

(i,j)∈E

Wijxixj , (1)

where the partition functionZ =
∑

x e
−E(x) is the normal-

izing constant, and{θi,Wij} specify the potentials of the
model.1 If Wij ≥ 0, the edge(i, j) is attractive(tending to
pull its variables toward the same value); ifWij < 0 then it

1It is easily shown (Wainwright and Jordan, 2008) that any bi-
nary pairwise model may be reparameterized to the form in (1).

is repulsive(tending to push apart its variables to different
values). A model is attractive iff all its edges are attractive.

2.1 VARIATIONAL INFERENCE AND
COUNTING NUMBERS

Given any joint probability distributionp(X1, . . . , Xn)
over all variables, the Gibbs free energy is defined as
FG(p) = Ep(E) − S(p), whereS(p) is the (Shannon) en-
tropy of the distribution. By considering KL divergence, it
is easily shown (Wainwright and Jordan, 2008) that min-
imizing FG over the set of all globally valid marginals
(termed themarginal polytope) yields a value of exactly
− logZ at the true marginal distribution, given in (1).

Since this minimization is often computationally in-
tractable, two pairwise approximations are typically made:

1. The marginal polytope is relaxed to thelocal polytope
L, where onlylocal consistency is required - that is we deal
with a pseudomarginalvectorq, which in our context may
be considered{qi = q(Xi = 1) ∀i ∈ V , µij(xi, xj) =
q(xi, xj) ∀(i, j) ∈ E}, subject to constraintsqi =
∑

xj∈B
µij(1, xj), qj =

∑

xi∈B
µij(xi, 1) ∀(i, j) ∈ E .

The local polytope constraints imply that, givenqi andqj ,

µij =

(

1 + ξij − qi − qj qj − ξij
qi − ξij ξij

)

(2)

for someξij ∈ [max(0, qi + qj − 1),min(qi, qj)].

Thus we may adopt a minimal representation with pseu-
domarginals specified by{qi ∀i ∈ V} singleton and
{ξij ∀(i, j) ∈ E} pairwise terms.

2. The entropyS is replaced by an approximationSA

that incorporates singleton and pairwise entropy terms via
counting numbers{ci ∀i ∈ V , ρij ∀(i, j) ∈ E}:

SA(q) =
∑

i∈V

ciSi −
∑

(i,j)∈E

ρijIij . (3)

HereSi(qi) is the entropy of the singleton distribution of
Xi, andIij(µij) is the mutual information of edge(i, j)
given byIij = Si+Sj−Sij, whereSij(µij) is the entropy
of the pairwise distributionµij . Note that alwaysIij ≥ 0.2

In this paper, we shall consider the approximate partition
functionZA obtained by minimizing the corresponding ap-
proximate free energyFA, defined as follows,

− logZA = min
q∈L

FA(q), FA(q) = Eq(E)− SA(q). (4)

We shall also be interested in the approximate marginals
given by theargmin of (4).

Eaton and Ghahramani (2013) showed that any discrete model
may be arbitrarily well approximated by a binary pairwise model,
though the state space may be large.

2Some instead defineSA =
∑

i∈V c′iSi +
∑

(i,j)∈E c′ijSij ,
which is equivalent viac′ij = ρij , c

′
i = ci −

∑

j∈N (i) ρij .



2.2 CHOICE OF COUNTING NUMBERS

In the standard Bethe entropy approximationSB, all count-
ing numbersci andρij are set to 1. This often performs
very well, yet leads to a non-convex approximate free en-
ergyFB that can be hard to optimize.

Another choice yields the well-knowntree-reweightedap-
proximation (TRW, Wainwright et al., 2005)ST . Here
again allci = 1 but now the edge weightsρij are selected
from thespanning tree polytope, resulting in allρij ≤ 1.
SinceIij ≥ 0, this immediately implies thatST ≥ SB, and
henceZT ≥ ZB. It is also known that TRW values are
bounded by true values in thatST ≥ S, henceZT ≥ Z
(whereas for many counting numbers,SA may be above or
belowS, similarly ZA may be above or belowZ; indeed,
in some cases including Bethe,SA may even be negative).
We note also thatST is concave leading to the correspond-
ing free energy approximationFT being convex, allowing
easier optimization.

Other choices of counting numbers yield a rich fam-
ily of approximations, which has been studied previ-
ously. Yedidia et al. (2005) discuss counting numbers
for the broader concept ofregions which may contain
any number of variables (in particular more than two).
This naturally relates togeneralized belief propagation
(GBP) and associatedKikuchi free energy approximations.
Pakzad and Anantharam (2005) and Heskes (2006) derived
sufficient conditions for such free energy approximations to
be convex. In this paper, we consider only pairwise count-
ing numbers. In this context, Meshi et al. (2009) explored
a wide range of pairwise counting numbers to try to find a
convex free energy approximation with performance com-
petitive to Bethe. For a subrange of models, they observed
that this was possible yet still overall, Bethe performed very
well. This is one of the motivations for this work, to under-
stand better why Bethe performs so well.

Following Yedidia et al. (2005) and Meshi et al. (2009), we
say that an approximation isvariable validif ci = 1 ∀i ∈
V , and isedge validif ρij = 1 ∀(i, j) ∈ E . Their earlier
work showed that variable valid approximations typically
perform well compared to others, and we shall focus more
attention on these models, though many of our results apply
more generally to arbitrary counting numbers. Note that if
all variables are independent, then variable validity is re-
quired to return the true entropy. If variables are connected
in a tree, then edge validity is necessary to be exact. Bethe
is unique in always being both variable and edge valid.

On a related theme, Weller et al. (2014) teased apart the
two aspects of the Bethe approximation, i.e. the polytope
and entropy as described in§2.1. Their results indicate
that even if the optimization of (4) is performed over the
marginal polytope, still the Bethe entropy approximation
typically performs better than TRW. We consider polytope
effects in§6.2.

2.3 SUBMODULARITY

A (set) functionf : 2X → R is submodularif ∀S, T ⊆
X, f(S ∩ T ) + f(S ∪ T ) ≤ f(S) + f(T ). For finiteX ,
this is equivalent to diminishing returns, i.e.∀S ⊆ T, x ∈
X \ T, f(T ∪ {x})− f(T ) ≤ f(S ∪ {x})− f(S).

Submodular functions have been studied extensively
(Edmonds, 1970; Lovász, 1983; Bach, 2013). In some
ways, they are a discrete analogue of convex functions and
can be minimized efficiently. The concept can be gener-
alized to consider anylattice, i.e. a partially ordered set
(L,�) such that∀x, y ∈ L, ∃ a greatest lowest bound (glb
or meet) x ∧ y ∈ L and a least upper bound (lub orjoin)
x ∨ y ∈ L. A (lattice) functionf : L → R is submodular
if ∀x, y ∈ L, f(x ∧ y) + f(x ∨ y) ≤ f(x) + f(y).

For a pairwise functionf over binary variables,f is sub-
modular ifff(0, 0)+f(1, 1) ≤ f(0, 1)+f(1, 0). It is easily
shown that the energy (or cost) of an edge(i, j) is submod-
ular iff it is attractive, i.e. iffWij ≥ 0. Further, the set of
vectors inRn with x � y if xi ≤ yi for all componentsi,
is a lattice. Herex ∧ y hasith component ofmin(xi, yi)
andx ∨ y hasith component ofmax(xi, yi).

2.4 FLIPPING VARIABLES

The method offlipping (sometimes calledswitching) bi-
nary variables will be useful for our analysis in§3.3. Given
a model on variables{Xi}, consider a new model on{X ′

i}
where we flip a subsetR of the variables, i.e. X ′

i =
1 − Xi for variablesi ∈ R ⊆ V , andX ′

i = Xi for
i ∈ V \ R. We identify new model parameters{θ′i,W

′
ij}

as in (Weller and Jebara, 2013,§3) in order to preserve en-
ergies of all states up to a constant, hence the probability
distribution over states is unchanged. If all variables are
flipped (i.e.R = V), new parameters are given by

W ′
ij = Wij , θ

′
i = −θi −

∑

j∈N (i)

Wij . (5)

If the original model was attractive, so too is the new
model. In general, if a subsetR ⊆ V is flipped, let
Et = {edges with exactlyt ends inR} for t = 0, 1, 2,
then we obtain

W ′
ij =

{

Wij (i, j) ∈ E0 ∪ E2,

−Wij (i, j) ∈ E1,

θ′i =

{

θi +
∑

(i,j)∈E1
Wij i ∈ V \ R,

−θi −
∑

(i,j)∈E2
Wij i ∈ R.

(6)

The proof of the following result for general counting
numbers follows the argument used by Weller and Jebara
(2013) for the specific case of the Bethe approximation.

Lemma 1. Flipping variables changes affected pseudo-
marginal matrix entries’ locations but not values. For



any counting numbers,FA is unchanged up to a constant,
hence the locations of stationary points are unaffected.

2.5 ATTRACTIVE AND BALANCED MODELS

A model is attractive iff all its edges are attractive, i.e.
iff Wij ≥ 0 ∀(i, j) ∈ E . As suggested by§2.3, attrac-
tive models have desirable properties, e.g. a MAP assign-
ment may be found in polynomial time (Greig et al., 1989),
and as shown in§5, we can construct a FPTAS forZA for
any counting numbers. We remark that, as observed by
Harary (1953), a general model (which may contain repul-
sive edges) can be mapped to an attractive model by flip-
ping a subset of variables iff the initial model isbalanced,
that is iff it contains nofrustratedcycles, i.e. a cycle with
an odd number of repulsive edges. Hence, results that apply
to attractive models may readily be extended to the wider
class of balanced models.

3 FIRST DERIVATIVES OF FA

Combining (4) with (1), (2) and (3), yields

FA(q) = −
∑

i∈V

θiqi −
∑

(i,j)∈E

Wijξij

−
∑

i∈V

ciSi +
∑

(i,j)∈E

ρij(Si + Sj − Sij). (7)

3.1 OPTIMUM PAIRWISE PSEUDOMARGINALS

Differentiating (7) with respect toξij , we obtain

∂FA

∂ξij
= −Wij − ρij

∂Sij

∂ξij

= −Wij + ρij log

[

ξij(1 + ξij − qi − qj)

(qi − ξij)(qj − ξij)

]

.

Note that this is independent of the singleton counting num-
bers{ci}. Welling and Teh (2001) considered the specific
case of the Bethe approximation, whereρij = 1. Solving
the general case for∂FA

∂ξij
= 0 leads to a quadratic equation,

αijξ
2
ij − [1 + αij(qi + qj)]ξij + (1 + αij)qiqj = 0, (8)

where we defineαij = eWij/ρij − 1. Observe that here
Wij/ρij plays the ‘edge count modified’ role typically
performed byWij in the standard Bethe approximation.
It is easily shown that (8) has just one feasible solution
(Welling and Teh, 2001; Weller and Jebara, 2013), as given
in the following result.

Theorem 2. For general counting numbers, given single-
ton pseudomarginals, optimum pairwise terms (which min-
imize the approximate free energy) are given by

ξ∗ij(qi, qj) =
1

2αij

(

xij −
√

x2
ij − 4αij(1 + αij)qiqj

)

,

whereαij = eWij/ρij − 1, xij = 1 + αij(qi + qj).

Henceforth we shall often considerFA as a function of just
the singleton pseudomarginals{qi}, with all pairwiseξij
terms being implicitly specified by their optimum values as
given by Theorem 2.

As noted by Weller and Jebara (2013), (8) may be rewrit-
ten asξij − qiqj = αij(qi − ξij)(qj − ξij). The terms in
parentheses are elements of the pairwise marginal (2), con-
strained to be≥ 0. By its definition,αij takes the same
sign asWij/ρij , hence the following result holds.

Lemma 3. Wij

ρij
≥ 0 ⇒ ξij ≥ qiqj ,

Wij

ρij
≤ 0 ⇒ ξij ≤

qiqj .

We remark that, given singleton marginals{qi}, a lower
edge counting number|ρij | implies a more extreme pair-
wise marginal term in the sense of greater|ξij − qiqj |. This
is true, for example, of TRW compared to Bethe.

3.2 FIRST DERIVATIVES WRT qi, ASSUMING
OPTIMUM PAIRWISE PSEUDOMARGINALS

We follow the approach of Welling and Teh (2001), noting
that at the optimum pairwise pseudomarginals,∂FA

∂ξij
= 0

for all edges, hence, holdingqj fixed∀j 6= i,

dFA

dqi

∣

∣

∣

∣

{qj}

=
∂FA

∂qi

∣

∣

∣

∣

{qj ,ξij}

+
∑

j∈N (i)

∂FA

∂ξij

∂ξij
∂qi

= −θi − ci
∂Si

∂qi
+

∑

j∈N (i)

ρij
∂

∂qi
(Si − Sij)

= −θi + ci log
qi

1− qi

+
∑

j∈N (i)

ρij

(

− log
qi

1− qi
+ log

qi − ξij
1 + ξij − qi − qj

)

= −θi + ci log
qi

1− qi
+

∑

j∈N (i)

ρij logQij , (9)

where as in (Weller and Jebara, 2014b), we define3

Qij =

(

qi − ξij
1 + ξij − qi − qj

)(

1− qi
qi

)

. (10)

Considering (10) and Lemma 3 yields the following.

Lemma 4. If edge(i, j) is attractive, i.e.Wij ≥ 0, then
ρij logQij ≤ 0.

Gradient descent methods may be used to try to minimize
FA but note these may find only a local optimum.

3NoteQij = ∂
∂qi

(Si − Sij) =
p(Xj=0|Xi=1)

p(Xj=0|Xi=0)
by (2).



3.3 BOUNDS ON FIRST DERIVATIVES WRT qi

We generalize the approach of Weller and Jebara (2014a)
to bound the range of first derivatives (9) for free energy ap-
proximations with arbitrary counting numbers. An impor-
tant application is the construction of anǫ-sufficient mesh
to estimatelogZA, see§5.

Initially assume a model that is locally attractive around
Xi, i.e. Wij ≥ 0 ∀j ∈ N (i). From (9) and Lemma 4, we
obtain ∂FA

∂qi
≤ −θi + ci log

qi
1−qi

.

Now flip all variables, see§2.4, to consider a model with
{X ′

i = 1 −Xi ∀i ∈ V}, keeping the same counting num-
bers. We obtainW ′

ij = Wij and can apply the result above
to yield

∂FA

∂q′i
≤ −θ′i + ci log

q′i
1− q′i

⇔ −
∂FA

∂qi
≤ θi +W+

i − ci log
qi

1− qi
(see§2.4),

where we defineW+
i =

∑

j∈N (i):Wij≥0Wij . Combine
this with the earlier result to yield a sandwich inequality,

−θi+ ci log
qi

1− qi
−W+

i ≤
∂FA

∂qi
≤ −θi+ ci log

qi
1− qi

.

Now generalize to consider the case thatXi has some
neighborsXj ∈ R to which it is adjacent by repulsive
edges, i.e. whereWij < 0. First flip just the variables
in R, see§2.4, and then apply the above sandwich result to
yield the following Theorem, where we define the nonneg-
ative valueW−

i =
∑

j∈N (i):Wij≤0 −Wij .

Theorem 5. For arbitrary counting numbers, assuming
optimum pairwise pseudomarginals, first derivatives ofFA

are sandwiched in the range

−θi+ci log
qi

1− qi
−W+

i ≤
∂FA

∂qi
≤−θi+ci log

qi
1− qi

+W−
i .

Note that both upper and lower bounds are monotonic inqi
(increasing withqi if ci > 0, else nonincreasing), ranging
from −∞ to ∞, separated by the constant valueW−

i +
W+

i =
∑

j∈N (i) |Wij |. See Figure 1 for an example.

4 SECOND DERIVATIVES OF FA

We extend the analysis of Weller and Jebara (2013) to de-
rive all terms of the HessianH for free energy approxima-
tionsFA with arbitrary counting numbers.

Theorem 6 (Hij = ∂2FA

∂qi∂qj
second derivatives of

FA(q1, . . . , qn) at optimum pairwise marginalsξij ).

Hij =

{

qiqj−ξij
ρijTij

if i 6= j, (i, j) ∈ E

0 if i 6= j, (i, j) /∈ E
,

Hii =
ci

qi(1− qi)
+

∑

j∈N (i)

(

qj(1− qj)

ρijTij
−

ρij
qi(1− qi)

)

,

Pseudo-marginal q
i

0 0.2 0.4 0.6 0.8 1

P
a
r
ti
a
l
d
e
r
iv
a
ti
v
e

∂
F

A

∂
q
i

-15

-10

-5

0

5

10

15

f
i
U

f
i
L

q
i
 s.t.

f
i
U(q

i
)=0

q
i
 s.t.

f
i
L(q

i
)=0

W
i
- + W

i
+

Shaded area shows where
partial derivative can be 0,
wherein

∣

∣

∂FA

∂qi

∣

∣ ≤ W−

i +W+

i

Parameters used in this example:
c

i
=1,  θ

i
=1,  W

i
-=2,  W

i
+=1.9

Figure 1:An example of upper and lower bounds for∂FA

∂qi
. Blue

curves show monotonic upperfU
i (qi) and lowerfL

i (qi) bound
curves from Theorem 5, separated by constantW−

i + W+
i . In

preprocessing, the search space is shrunk to within the dashed red
lines, within which

∣

∣

∂FA

∂qi

∣

∣ ≤ W−
i +W+

i =
∑

j∈N (i) |Wij |.

whereξij takes its optimum value from Theorem 2, and
Tij = qiqj(1 − qi)(1 − qj) − (ξij − qiqj)

2 ≥ 0, with
equality iffqi or qj ∈ {0, 1}. Proof in Appendix.

These second derivatives may be combined with the earlier
gradients (9) for more efficient local minimization ofFA.

4.1 SUBMODULARITY OF FA

Considering the expression forHij from Theorem 6 to-
gether with Lemma 3, observe that providedρij 6= 0 and

qi, qj /∈ {0, 1}, Wij ≥ 0 ⇔ ∂2FA

∂qi∂qj
≤ 0 (whatever the sign

of ρij ). Since third derivatives exist and are finite in this
range, this yields the following result.

Theorem 7. For any counting numbers with
ρij 6= 0 ∀(i, j) ∈ E , and any discretization, an at-
tractive model yields a submodular discrete optimization
problem to estimatelogZA. Proof in Appendix.

This means that consideringFA(q1, . . . , qn) with pairwise
marginals given by Theorem 2, for any discrete meshM =
∏n

i=1 Mi, whereMi is a finite set of points forqi in [0, 1],
and for any counting numbers, then the discrete optimiza-
tion to find the point inM with lowestFA is submodular
for any attractive model (hence can be solved efficiently).

5 OPTIMIZING THE APPROXIMATE
FREE ENERGY FA

True marginal inference is NP-hard (Cooper, 1990), even
to approximate (Dagum and Luby, 1993). However,
Weller and Jebara (2014a) derived an algorithm to approxi-
mate the Bethe log-partition function,logZB, to within any



Figure 2:Stylized example for optimizing the approximate free
energy over two variables. The search space is first shrunk toex-
clude the outer red region, then the inner blue region is discretized
using anǫ-sufficient mesh. The red dot indicates the (continuous)
global minimum. On the mesh: the purple dot has the closest lo-
cation, guaranteed to have value withinǫ, while the green dot is
the lowest point, hence is the discretized optimum returned.

ǫ by constructing anǫ-sufficient meshM(ǫ), i.e. a discrete
mesh over the space of singleton marginals[0, 1]n such that
the mesh pointq∗ with minq∈M(ǫ) FB(q) is guaranteed to
haveFB(q

∗) within ǫ of the global optimum of− logZB.
In the case of an attractive model, the discrete optimization
problem was shown to be submodular, leading to a FPTAS
for logZB. Using Theorems 5 and 7, we extend their ap-
proach to obtain similar results for any counting numbers.

The overall mesh method is outlined in Algorithm 1 and
illustrated in Figure 2. Note that we need search only
over the space of singleton marginals[0, 1]n, since pair-
wise terms may be computed with Theorem 2. First the
search space is shrunk using the bounds of Theorem 5,
since we need check only where∂FA

∂qi
can be 0. Within

this range,
∣

∣

∂FA

∂qi

∣

∣ ≤ W−
i + W+

i =
∑

j∈N (i) |Wij |, see
Figure 1. Next, discrete mesh points for each variable’s
singleton marginalqi may be selected in its range such
that the step sizeδi satisfiesδi max

∣

∣

∂FA

∂qi

∣

∣ ≈ ǫ
n . This

ensures that, wherever the global minimum is within the
space,FA cannot rise by more thann ǫ

n = ǫ at the clos-
est mesh point. This leads to a number of mesh points in
dimensioni of Ni = O( 1

δi
) = O(nǫ

∑

j∈N (i) |Wij |). If
an upper boundW on edge strengths is known such that
|Wij | ≤ W ∀(i, j) ∈ E , then the sum of mesh points
in each dimension,N =

∑

i∈V Ni = O(nmW
ǫ ), where

m = |E|.

If the model is attractive, we obtain a FPTAS since by The-
orem 7, the resulting submodular multilabel optimization

problem may be solved in timeO(N3) = O
(

(

nmW
ǫ

)3
)

using earlier graph cut results (Schlesinger and Flach,
2006; Greig et al., 1989; Goldberg and Tarjan, 1988). If the
model is balanced, then a subset of variables may be effi-
ciently identified such that flipping them yields an attractive

Algorithm 1 Mesh method to returnǫ-approximate global
optimumlogZA for any counting numbers.

Input: ǫ, model parameters{θi,Wij} and counting num-
bers{ci, ρij}
Output: Estimate of global optimumlogZA guaranteed in
[logZA − ǫ, logZA], with corresponding pseudomarginals
asarg for the discrete optimum

1: For eachXi: Compute upper and lower bound curves
for ∂FA

∂qi
from Theorem 5, use these to shrink the search

space to a range wherein
∣

∣

∂FA

∂qi

∣

∣ ≤ W−
i + W+

i =
∑

j∈N (i) |Wij |, see Figure 1.
2: Construct anǫ-sufficient mesh as described in§5.
3: Solve the resulting discrete optimization problem (ef-

ficient by Theorem 7 if the model is attractive), see§5.

model (see§2.4), hence the FPTAS extends to balanced
models. If the model is not balanced, there is an exten-
sive range of methods available, see (Koller and Friedman,
2009,§13) or (Kappes et al., 2013) for recent surveys.

Various refinements to improve efficiency are discussed by
Weller and Jebara (2014a) for the Bethe case. All those
techniques may also be applied here, and can help signifi-
cantly in practice, though they do not improve the theoreti-
cal worst case.

Other approaches to attempt to minimize the Bethe free en-
ergy have been developed (Welling and Teh, 2001; Yuille,
2002; Heskes et al., 2003; Shin, 2012), and some general-
ize to other counting numbers, including the message pass-
ing methods of Hazan and Shashua (2008) (guaranteed to
converge for a convex free energy), Wiegerinck and Heskes
(2003) or Meshi et al. (2009), but unlessFA is convex,
none guarantees a solution close to the global optimum.

6 UNDERSTANDING APPROXIMATION
ERROR

We examine how the entropy approximationSA may lead
to error in the marginals, then consider other factors affect-
ing error in the estimate of the partition function.

6.1 EFFECT OF APPROXIMATE ENTROPY ON
MARGINALS

It has previously been observed that in cyclic graphs, there
are situations where the Bethe entropy tends to pull ap-
proximate singleton marginals toward extreme values near
0 or 1, and that this tends to occur as a ‘phase transition’
in behavior when edge weights rise above some threshold
(Heskes, 2004; Mooij and Kappen, 2005).4 One perspec-

4Note that we describe a transition in the accuracy of approx-
imate singleton marginals. A quite different symmetry-breaking
effect is the ‘ferromagnetic-paramagnetic’ transition that relates



tive on this is algorithmic stability (Wainwright and Jordan,
2008, §7.4). A different heuristic interpretation is that it
occurs as a result of LBP overcounting information when
going around cycles (Ihler, 2007). Here we extend the ex-
planatory approach of Weller et al. (2014) by considering
the entropy approximation and examining the effect of dif-
ferent counting numbers.

To illustrate the principles, we analyze a simple model with
n vertices connected such that each vertex has exactlyd
neighbors (such models are calledd-regular), with all edge
potentials symmetric of weightW and no singleton poten-
tials (we call these modelssymmetricandhomogeneous).
Using (9), it is easily shown that, for any counting num-
bers, there is a stationary point ofFA at a location with
qi = 1

2 ∀i ∈ V , which by symmetry clearly also give
the true singleton marginals. However, for certain count-
ing numbers, including the Bethe parameters, whenW is
above a critical threshold, this stationary point is no longer
a minimum, and new minima emerge that pull singleton
marginals away to extreme values. The following result
considers an approximation with uniform counting num-
bers (i.e. allci = c, ρij = ρ), and demonstrates conditions
for whenqi = 1

2 ∀i ∈ V is not a minimum, by explicitly
providing a direction showing that the HessianH is not
positive semidefinite.

Lemma 8. For a symmetric homogeneous d-regular model
on n vertices, letH be the Hessian of the approximate
free energy atqi = 1

2 ∀i ∈ V , using uniform counting
numbersci = c ∀i ∈ V , ρij = ρ ∀(i, j) ∈ E , then

1
TH1 = n

[

4(c− dρ) + d
ρξ

]

, whereξ = 1
2σ

(

W
2ρ

)

is the

uniform optimum edge marginal term, andσ(u) = 1
1+e−u

is the standard sigmoid function. Proof in Appendix.

Hence, qi = 1
2 ∀i is not a minimum if

ω = 4(c− dρ) + d
ρξ < 0. First, note that for the

Bethe approximationc = ρ = 1, and this condition
reduces toξ > 1

4
d

d−1 ⇔ W > 2 log d
d−2 . Indeed, whenW

rises above this critical threshold, singleton marginals will
move away from1

2 (Weller et al., 2014).

In general, higher singleton counting numbersc and lower
edge counting numbersρ raiseω, making it harder to sat-
isfy the condition. The effect of the density of connectivity
d is less clear, and depends on the other parameters. For
example, consider the TRW approximation withc = 1 and
uniform edge weightsρ = 2(n−1)

nd < 1, declining with
d, which are optimum in this setting (Weller et al., 2014,
Lemma 7), thenω is positive and increases rapidly with
d (whereas Bethe suffers in this regard by keepingρ = 1
fixed).

To understand this behavior, recall the definition ofSA

in (3). As singleton counting numbersci rise, we add
moreSi which are concave, thereby increasing convexity

to the true global distribution of states (mostly aligned ornot).
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Figure 3:Average over 20 runs of singleton marginal vs. uniform
symmetric edge weightW for: exact inference, Bethe approxima-
tion, Bethe+marginal polytope, and TRW (allρij = 2/3). Trian-
gle topology with random singleton potentialsθi ∼ [0, Tmax].
ForW > 0: Bethe and Bethe+marginal overlap, exact and TRW
almost overlap. ForW < 0 (frustrated cycle): Bethe and TRW
almost overlap, as do exact and Bethe+marginal.

of FA around1
2 and making it more likely to be a mini-

mum. On the other hand, increasing edge termsρij leads
to more mutual informationIij being subtracted, thereby
increasing concavity ofFA around1

2 and potentially push-
ing marginals away from1

2 . This perspective helps to un-
derstand why a convex free energy approximation leads to
algorithmic stability (Wainwright and Jordan, 2008,§7.4).

The severity of this problem for estimating singleton
marginals is high when true marginals are near1

2 , which
typically occurs for small singleton potentials, but it is less
problematic when true marginals are themselves near 0 or
1. The effect is illustrated in Figure 3. Note how, for pos-
itive W , the Bethe marginals are pulled toward 1 whereas
TRW is almost exactly correct. The effect forW < 0 is
dominated instead by a polytope effect, which we discuss
in the next Section.

We remark that although the entropy approximation may
have a dramatic effect on the accuracy of singleton
marginals, particularly for low singleton potentials (where
true marginals are near12 ), the effect on estimating pair-
wise marginals and the partition function is less clear. In-
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Figure 4: Illustration of the polytope effect on edge marginals.
A-B and A-C are strongly coupled, B-C is very weakly coupled
with all edges symmetric and attractive, and no singleton poten-
tials. Edge marginals are shown. For B-C, above the edge (red) is
the optimum in the marginal polytope (global consistency),below
the edge (blue) is the optimum for the local polytope. See§6.2.

deed, Bethe typically outperforms TRW on these measures
(Weller et al., 2014).

6.2 EFFECT OF LOCAL POLYTOPE

We revisit and expand on an example from Weller et al.
(2014) to show that the impact of each of the two aspects
(i.e. polytope and entropy, see§2.1) of an approximation
to the partition function can pull in opposite directions.
Hence, improving just the entropy approximation could
lead to aworseapproximation.

Consider the model in Figure 4, where 3 variables are con-
nected in a triangle. Two edges are strongly attractive, and
the third is very weakly attractive. The strong edgeA− B
ensures thatA andB take the same value, similarly for
B−C. Hence, in the globally consistent marginal polytope,
B andC must take the same value. The global states 000
and 111 each have probability of almost1

2 , and the pairwise
marginals are shown along the edges of Figure 4. Since the
model is almost a tree, we know thatZB ≈ Z. We shall
examine how this arises by starting with exact inference,
then switch to use the Bethe entropy approximation on the
marginal polytope, and then relax the constraint set to the
local polytope. We shall ignore the energy terms since they
are equal here for true or approximate inference.

As noted, there are 2 states that dominate the global prob-
ability distribution, hence trueS ≈ log 2. Computing
the Bethe entropy on the marginal polytope, we obtain
SB ≈ 3 log 2 − 3 log 2 = 0, which is too low bylog 2.
However, when the polytope is relaxed, a better optimum
is found by maximizing the edge entropy ofB − C as
shown under the edge in Figure 4. Since only local con-
sistency is required, there is no longer any need forB to be
equal toC and we gain the difference in edge entropy of
2 log 2 − log 2 = log 2, thus exactly offsetting the deficit
due to Bethe entropy on the marginal polytope.

This example demonstrates that focusing exclusively on
the entropy approximation, without also considering the

polytope approximation, may lead to difficulties. We high-
light another aspect of the polytope approximation, in that
it introduces half-integral vertices (Wainwright and Jordan,
2008). In a balanced cycle (even number of repulsive
edges), this is of little consequence since the optimum en-
ergy (MAP solution) is always at an integral vertex, but in a
frustrated cycle (odd number of repulsive edges, see§2.5),
the energy can cause singleton marginals to be pulled to-
wards 1

2 .5 Hence, although the Bethe entropy pulls these
marginals away from1

2 on balanced cycles, the polytope
effect pushes the other way on frustrated cycles, which in
some cases may provide a helpful ‘balance’. Since many
optimization techniques (including message passing meth-
ods) exploit the efficiencies possible with the local polytope
approximation, it may in fact be desirable overall to have
an entropy approximation such as Bethe, for this offsetting
effect. See Figure 3 in the regionW < 0 for an illustration,
where the Bethe+marginal optimization was performed us-
ing the Frank-Wolfe algorithm (Frank and Wolfe, 1956).

6.3 BOUNDS ON ZA

While the TRW approximation hasZT ≥ Z by construc-
tion, until recently there were no guarantees on the per-
formance of the Bethe approximation, though it typically
yields very good results. Sudderth et al. (2007) proved that
ZB ≤ Z for a range of attractive binary pairwise mod-
els, and conjectured that this bound holds for all attractive
models. This was proved true by Ruozzi (2012) using the
method of graph covers, and then also by Weller and Jebara
(2014b) by combining the idea of clamping variables with
analyzing properties of the derivatives ofFB.

In this Section, we use the loop series method
(Sudderth et al., 2007; Chertkov and Chernyak, 2006) to
show that for certain other models, we can prove that
ZB ≥ Z. For such models, this immediately implies that
the Bethe approximation is better for estimatingZ than any
approximation withci = 1 ∀i ∈ V (variable valid) and
ρij ≤ 1 ∀(i, j) ∈ E (from the definition ofSA, see§2.1-
2.2). In particular, for these models,Z ≤ ZB ≤ ZT .

Sudderth et al. (2007) showed thatZ/ZB = 1+ a series of
terms, one term for eachgeneralized loop, which is a sub-
graph such that no vertex has degree 1, and demonstrated
that each of the terms in the series is≥ 0 for certain mod-
els, and henceZB ≤ Z for these cases. See Appendix for
background on this approach. In particular, if there is ex-
actly one cycle in the model, then there is only one term in
the series and if the cycle is attractive, then this term is pos-
itive. We note that this immediately generalizes to a cycle
that is balanced (see§2.5 for definitions).

Here we apply similar analysis (Sudderth et al., 2007,§3-4,
or see Appendix), and observe that if there is exactly one

5This can lead the Bethe optimum of a strongly frustrated cy-
cle to occur at a location whereSB < 0.



cycle and it is frustrated, then the term is negative, thus
proving that for such models,ZB ≥ Z.

Interestingly, Weller and Jebara (2014b) have shown that
for the case of a model with one balanced cycle,1

2Z ≤
ZB ≤ Z, so althoughZB is lower thanZ, it cannot be by
much even for very strong edge weights; whereas for a sin-
gle frustrated cycle, there is no limit to how largeZB/Z can
rise. This suggests that for a general model, the accuracy of
ZB will depend on the blend of balanced and frustrated cy-
cles, where in a sense frustrated cycles cause greater trou-
ble than balanced cycles, though to understand how the ef-
fects combine in a model with multiple cycles will require
further analysis. SinceZB performs well even for attrac-
tive models (Sudderth et al., 2007), this indicates that, for
estimating the partition function, practitioners should use
approximations withρij < 1 (such as TRW) with caution.

The loop series method extends to models with more than
one cycle but the analysis becomes more complicated.
Again using the approach of Sudderth et al. (2007), we can
conclude more generally thatZB ≥ Z for any model such
that every generalized loop contains an odd number of re-
pulsive edges (this is a sort of generalized frustrated cycle),
and the Bethe optimum marginals for every variable that
has an odd degree≥ 3 in any generalized loop, are either
all ≤ 1

2 or all ≥ 1
2 (see Appendix).

6.4 DERIVATIVES WRT COUNTING NUMBERS

We are interested in exploring which counting numbers
lead to accurate inference as measured by errors in the esti-
mates of the partition function and marginals. Considering
(7) and using the envelope theorem (Milgrom, 1999, Theo-
rem 1), we have right derivatives:

∂ logZA

∂ci

+

= max
q∈X

Si(qi),

∂ logZA

∂ρij

+

= max
q∈X

[Sij(µij)− Si(qi)− Sj(qj)] , (11)

whereX is the set of allargminFA.6 The left derivatives
correspondingly take themin rather than themax of the
same expressions. If the minimum ofFA is unique, as is
the case for any convexFA, then the right and left deriva-
tives are equal.

For tractable models, where the exact partition function
Z may be computed, this will allow exploration over the
range of counting numbers that yield accurate partition
functions. It will be interesting to investigate robustness

6This generalizes an earlier result for convex free energies
(Meshi et al., 2009, Prop 5.2), which itself generalized a result of
Wainwright et al. (2005). The envelope theorem is similar toDan-
skin’s theorem (Bertsekas, 1995). RecalllogZA = −minFA.
Intuitively, for multiple argmin locations, each may vary at a
different rate, thus for the right derivative, we must take themax
of the derivative over all the locations.

of the quality of the partition function estimate to changes
in model potentials, and accuracy of marginals, though this
is outside the scope of the current work.

Others have investigated ways to optimize counting num-
bers. Wiegerinck and Heskes (2003) proposed a method
using linear response theory. They also discussed alpha-
divergence measures, an idea developed further by Minka
(2005), who fascinatingly frames (fractional) BP and
(power) EP under a general framework of iterative mini-
mization of alpha-divergence, yielding insight into which
measures may be expected to perform well for different ob-
jectives, though concluding that this is difficult to predict.

7 CONCLUSION

We have shown how recent results for the Bethe approxi-
mation may be extended to handle the broad range of pair-
wise approximations using any counting numbers. Our
analysis builds on earlier work (Welling and Teh, 2001;
Yedidia et al., 2005; Meshi et al., 2009; Sudderth et al.,
2007; Weller and Jebara, 2013, 2014a), providing new in-
sights and deepening our understanding of how best to per-
form inference in practice. This is important given the pop-
ularity of LBP and TRW approximations. Further, it pro-
vides a valuable toolbox for further exploration.

Areas for future investigation include trying to understand
better how to predict which approach will work well for
a given model, and analyzing the performance of message
passing algorithms with different counting numbers (where
ourǫ-accurate approach provides a valuable benchmark).
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