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Abstract how the result may be generalized by considering the broad
class of pairwise entropy approximations specified by ar-
bitrary counting numberswhich includes the Bethe and
tree-reweightedapproximations (TRW, Wainwright etfal.,
2005) as special cases. We discuss consequences and re-
lated applications, including i#f5l minimizing the approxi-

mate free energy, which Weller and Jebara (2014a) recently
showed, for the specific case of the Bethe approximation on
attractive models, can be approximated to amccuracy

with a fully polynomial-time approximation schen(ieP-

For undirected graphical models, belief propaga-
tion often performs remarkably well for approxi-
mate marginal inference, and may be viewed as a
heuristic to minimize the Bethe free energy. Fo-
cusing on binary pairwise models, we demon-
strate that several recent results on the Bethe ap-
proximation may be generalized to a broad fam-

ily of related pairwise free energy approxima-

. . . i TAS).

tions with arbitrary counting numbers. We ex-

plore approximation error and shed light on the In §6, we compare this family of entropy approximations
empirical success of the Bethe approximation. to thetrue entropy, and consider how differences interact

with the other form of approximation typically employed:

the marginal polytope, which enforces global variable con-
1 INTRODUCTION sistency, is relaxed to the local polytope, which enforces

only local (pairwise) consistency. We also provide fresh

. . insights on balanced and frustrated cycles by considering
Undirected graphical models, also called Markov rando - f hetal (0
fields (MRFs), have become a central tool in machinrg[he loop series approachiof Sudderth etal. (2007).

learning, providing a powerful and compact way to de-
scribe relationships between variables. FundamentaLprolc}"1 RELATED WORK

lems are to compute the normalizing partition function, ar.]dReIated work is discussed throughout the text but here we

to solve for _the r_nargmal distribution of a subset of vart- clarify the context and contributions of our results up to
ables (marginal inference). Both tasks are computatlong5 that build to show how to approximate the global opti-

glly mtrac_table (Cooper, 1990), prompting great interesty, , , of e approximate free energy to arbitrary accuracy
in approximate algorithms that perform well. One popu-¢ - general counting numbers

lar approach ibelief propagatior(BP, Pearl, 1988). When
the underlying model topology is acyclic, this returns ex-
act values in linear time. If the method is applied to model
with cycles, termed¢bopy belief propagatio(LBP), results
are often strikingly good but not always, and it may not
converge at all (McEliece et al., 1998).

Context. All for attractive binary pairwise models:
SThe problem of identifying a most probable configura-
tion (MAP inference) is solvable in polynomial-time via
graph cutsl(Greig et al., 1989); this generalizes to multi-
label pairwise models with submodular cost functions
Yedidia et al. |(2001) demonstrated that fixed points of(Schlesinger and Flach, 2006). However, aside from re-
LBP correspond to stationary points of tBethe free en- stricted cases (e.g. low treewidth or thaly polynomial-
ergy Fp (Bethe, 1935), se§2 for definitions. Further, time randomized approximation schenfEPRAS) of
Heskes|(2002) showed that stable fixed points corresponderrum and Sinclairl (1993) for uniform external field),
to local minima of the Bethe free energy. In this pa-there is no way to estimate the partition functighac-
per, we summarize recent results on the Bethe approxiurately in polynomial-time. LBP is a heuristic to find
mation (Welling and Teh, 2001; Weller and Jebara, 2013the Bethe partition function by minimizing the Bethe free
2014a,b; Weller et all, 2014), and in each case consideznergy, withlog Zg = — min Fp, and for these mod-



els we know thatZp is a lower bound and usually a is repulsive(tending to push apart its variables to different
good estimate o (Sudderth et all, 2007; Ruozzi, 2012; values). A model is attractive iff all its edges are attraeti
Weller and Jebara, 2014b), but LBP may find only a lo-

cal optimum or not converge at all. Various methods (e.g2.1 VARIATIONAL INFERENCE AND

CCCP, Yuille,| 2002) were introduced which converge but COUNTING NUMBERS

only to a local minimum ofFp with no time guarantee.

Shin (2012) introduced the first polynomial-time methodGiven any joint probability distributiorp(X;, ..., X,)

but this returns an approximately stationary point of theover all variables, the Gibbs free energy is defined as
BetheF3 (i.e. a point wheréderivative of F5| < ¢, which  Fg(p) = E,(E) — S(p), whereS(p) is the (Shannon) en-
is useful for loop series methods, but this point may havdropy of the distribution. By considering KL divergence, it
Fp value far from the global optimum; attractive not re- is easily shown|(Wainwright and Jordan, 2008) that min-
guired) subject to a sparsity condition that max degree ismizing F¢ over the set of all globally valid marginals
O(logn). Weller and Jebara (2013) derived a PTAS for (termed themarginal polytopg yields a value of exactly
the global optimum ofF with the same sparsity condi- —log Z at the true marginal distribution, given id (1).

tion.. Weller and Jebarg (2014a) impfo"ed this, prOVidingSince this minimization is often computationally in-
the first FPTAS foiog .ZB for an attractive model W't.h any tractable, two pairwise approximations are typically made
topology. These applied only for the Bethe approximation.
1. The marginal polytope is relaxed to theecal polytope
Contributions. Here we broaden analysis significantly to I, where onlylocal consistency is required - that is we deal
consider any counting numbers, relying on our new Theowith a pseudomarginalectorg, which in our context may
remd 2[5 b andl 7, and Lemnids 3 &nhd 4. All these extenlie consideredq; = ¢(X; = 1) Vi € V, pij(zs,25) =
previous results that applied only to the Bethe approximaq(z:,z;) V(i,7) € £}, subject to constraintg; =
tion. It is somewhat remarkable that it emerges that an at>_, g 1i; (1, 25), @ = >_,, e Hij (@i, 1) V(i j) € €.
tractive model admits a FPTAS fasg 74 for any count-
ing numbers. This is significant theoretically and will al-
low the benefits of non-convex free energy approximations 1+ & —q—q g — &
to be explored further in future work. Theorem$ 2, 5 and Hij = ¢ — &ij &ij
importantly apply to general (non-attractive models), a )
does Algorithnfll, allowindog Z 4 with any counting num- or someg;; € [max(0,¢; +¢; — 1), min(gi, ;)]
bers to be computed to arbitrary accuracy, though with narhus we may adopt a minimal representation with pseu-
polynomial-time guarantee if not attractive - still thislwi domarginals specified bygq; Vi € V} singleton and
be useful to learn insights from small models and to bench{¢;; (i, j) € £} pairwise terms.
mark accuracy of faster methods.

The local polytope constraints imply that, givgrnandg;,

)

2. The entropysS is replaced by an approximatia$is
that incorporates singleton and pairwise entropy terms via

2 PRELIMINARIES counting numbergc; Vi € V, p;; V(i,7) € E}:
We adopt notation consistent with (Welling and Tieh, 2001; Salq) = Z ¢iSi — Z pijlij. (3)
Weller and Jebara, 2013, 2014a,b). Consider a binary pair- i€V (i,5)€€
wise model withn variablesX;,..., X,, € B = {0,1} H . . .
L ) ere S;(q;) is the entropy of the singleton distribution of

and graph topologyV, £) with m = |£]| edges; that is

; ’ X;, and I;; (p; th tual inf ti f ed
V contains nodeg1,...,n} wherei corresponds toX;, andZ; (p;;) is the mutual information of edgg, j)

givenbyl;; = S;+5;—5;;, whereS;; (11;;) is the entroEy

and& C V x V contains an edge for each pairwise of the pairwise distributiom;;. Note that alwayd;; > 0

score relationship. Let(i) be the neighbors of. Let

x = (z1,...,,) be one particular configuration, and de- In this paper, we shall consider the approximate partition
fine itsenergyFE (z) via the relationships functionZ 4 obtained by minimizing the corresponding ap-
—E) proximate free energ¥ 4, defined as follows,
p(x) = 26‘ Ti — Z Wijziz;, (1) —log Z4 =min Fa(q), Fa(q) =E,(E)—Salq). (4)
% (i,5)€E q€L

We shall also be interested in the approximate marginals

where the partition functiog = 3 e is the normal given by thearg min of @).

izing constant, and#é,, W;; } specify the potentials of the

modeld If Wi, > 0, the edgedi, 5) is attractive(tending to Eaton and Ghahramari (2013) showed that any discrete model
pull its variables toward the same value)fiit; < 0 then it may be arbitrarily well approximated by a binary pairwised®lo
though the state space may be large.
Ut is easily shown (Wainwright and Jordan, 2008) that any bi-  -Some instead definga = =, ¢iSi + 32 ;e ¢iiSis
nary pairwise model may be reparameterized to the forrilin (1)which is equivalent via;; = pi;,c; = ¢i — ZjeNm Dij-



2.2 CHOICE OF COUNTING NUMBERS 2.3 SUBMODULARITY

In the standard Bethe entropy approximatios all count- A (set) functionf : 2¥ — R is submodulaiif VS, T C
ing numbers:; and p;; are set to 1. This often performs X, f(SNT) + f(SUT) < f(S) + f(T). For finite X,
very well, yet leads to a non-convex approximate free enthis is equivalent to diminishing returns, iS5 C T,z €
ergy Fp that can be hard to optimize. X\T, f(Tu{z})— f(T) < f(SU{x}) — f(9).

Another choice yields the well-knowree-reweightecp-  Submodular functions have been studied extensively
proximation (TRW,| Wainwright et al., 2005%;. Here (Edmonds, 1970; Lovasz, 1983; Bach, 2013). In some
again alle; = 1 but now the edge weights; are selected Wways, they are a discrete analogue of convex functions and
from thespanning tree polytopeesulting in allp;; < 1. can be minimized efficiently. The concept can be gener-
Sincel;; > 0, thisimmediately implies thaf; > Sz, and  alized to consider aniattice, i.e. a partially ordered set
henceZ; > Zg. Itis also known that TRW values are (L, <) such that'z,y € L, 3 a greatest lowest bound (glb
bounded by true values in thatr > S, henceZ; > Z ormee} x Ay € L and a least upper bound (lub join)
(whereas for many counting numbegs, may be above or =V y € L. A (lattice) functionf : L — R is submodular
below S, similarly Z4 may be above or below; indeed, ifVz,y e L, f(zxAy)+ flzVy) < flz)+ f(y).

in some cases including Beth&y, may even be negative).
We note also tha$r is concave leading to the correspond-
ing free energy approximatiafir being convex, allowing
easier optimization.

For a pairwise functiorf over binary variablesf is sub-
modulariff £(0,0)+ f(1,1) < f(0,1)4f(1,0). Itis easily
shown that the energy (or cost) of an edge) is submod-
ular iff it is attractive, i.e. iffW;; > 0. Further, the set of
Other choices of counting numbers yield a rich fam-vectors inR™ with z < y if 2; < y; for all components,
ily of approximations, which has been studied previ-is a lattice. Here: A y hasith component ofnin(z;, ;)
ously. |Yedidia et l.|(2005) discuss counting numbersandz V y hasith component ofnax(x;, y;).

for the broader concept afgions which may contain

any number of variables (in particular more than two).2.4 FLIPPING VARIABLES

This naturally relates taeneralized belief propagation

(GBP) and associatetikuchi free energy approximations The method offlipping (sometimes callegwitching bi-
Pakzad and Anantharam (2005) and Heskes (2006) derivetary variables will be useful for our analysis§B.3. Given
sufficient conditions for such free energy approximationst @ model on variable§X; }, consider a new model ojX; }
be convex. In this paper, we consider only pairwise countwhere we flip a subseR of the variables, i.e. X] =
ing numbers. In this context, Meshi el al. (2009) exploredl — X; for variablesi €¢ R C V, and X; = X; for
a wide range of pairwise counting numbers to try to find ai € V \ R. We identify new model paramete{s;, W/, }
convex free energy approximation with performance com-as in (Weller and Jebara, 20%3) in order to preserve en-
petitive to Bethe. For a subrange of models, they observeelrgies of all states up to a constant, hence the probability
that this was possible yet still overall, Bethe performenyve distribution over states is unchanged. If all variables are
well. This is one of the motivations for this work, to under- flipped (i.e.R = V), new parameters are given by

stand better why Bethe performs so well.

FollowinglYedidia et al. (2005) and Meshi ef al. (2009), we Wi, = Wi, 0, = —0; — Z Wij. (5)
say that an approximationigriable validif ¢; = 1Vi € JEN (i)

V, and isedge validif p;; = 1 V(i,j) € €. Their earlier |f the original model was attractive, so too is the new
work showed that variable valid approximations typically model. In general, if a subs&® C V is flipped, let
perform well compared to others, and we shall focus mores, — (edges with exactly ends inR} for ¢t = 0,1,2,
attention on these models, though many of our results apphhen we obtain

more generally to arbitrary counting numbers. Note that if

all variables are independent, then variable validity is re W {Wi’ (i,5) € Eo U &,

quired to return the true entropy. If variables are conrtecte v Wi (i,]) € &,

in a tree, then edge validity is necessary to be exact. Bethe )

is unique in always being both variable and edge valid. o — {91- + 2 jea Wi 1€EV\R, (©)

On a related theme, Weller etial. (2014) teased apart the —bi = Yijee, Wis 1€R.

two aspects of the Bethe approximation, i.e. the polytope ) )

and entropy as described §21. Their results indicate The proof of the following result for general counting
that even if the optimization of[4) is performed over the humbers follows the argument used by Weller and Jebara
marginal polytope, still the Bethe entropy approximation(zom) for the specific case of the Bethe approximation.
typically performs better than TRW. We consider polytopeLemma 1. Flipping variables changes affected pseudo-
effects ing6.2. marginal matrix entries’ locations but not values. For



any counting numbersF 4 is unchanged up to a constant, wherea,; = e"Vi/Pi — 1,z = 14 ayj(q; + q;).
hence the locations of stationary points are unaffected.
Henceforth we shall often considériy as a function of just
2.5 ATTRACTIVE AND BALANCED MODELS the singleton pseudomarginglg; }, with all pairwiseg;;
terms being implicitly specified by their optimum values as
A model is attractive iff all its edges are attractive, i.e. given by Theorerl2.

i > i -
'Tf Wij = 0 V(. ) < £. As sugggsted b§2.3, attrac . As noted by Weller and Jebara (2013}, (8) may be rewrit-
tive models have desirable properties, e.g. a MAP assign. Aty — qiq; = i (g — £43)(q; — &), The terms in

i — Qidj; = iz \gi — Gij j — Sij)-

ment may be found in polynomial time (Greig et al., 1989), LU
and as shown iff, we can construct a FPTAS fdf, for parentheses are elements of the pairwise mardihal (2), con-
' strained to be> 0. By its definition,«;; takes the same

any counting numbers. We remark that, as observed by. T .
Harary (19583), a general model (which may contain repul—glgn asli;/i;, hence the following result holds.

sive edges) can be mapped to an attractive model by fliptemma 3. i > 0 = ¢; > qigj, 22 <0 = &; <

ping a subset of variables iff the initial modelbalanced P P

that is iff it contains ndrustratedcycles, i.e. a cycle with

an odd number of repulsive edges. Hence, results that applye remark that, given singleton margindlg}, a lower

to attractive models may readily be extended to the wideedge counting numbép; ;| implies a more extreme pair-

class of balanced models. wise marginal term in the sense of gredtgf — ¢;q;|. This
is true, for example, of TRW compared to Bethe.

4qiq;-

3 FIRST DERIVATIVESOF F4
3.2 FIRST DERIVATIVESWRT g¢;, ASSUMING

Combining {#) with[(1),[(R) and {3), yields OPTIMUM PAIRWISE PSEUDOMARGINALS
Falg) = - Z&-qi - Z Wij&ij We follow the approach of Welling and Teh (2001), noting
i€V (h.5)es that at the optimum pairwise pseudomargin%ﬁ? =0
— Zcisi + Z pi; (S; +S; — Si;). (7)  forall edges, hence, holding fixedVj # i,
% (i,5)€€
dFa _ OFa OF 4 0&;;
31 OPTIMUM PAIRWISE PSEUDOMARGINALS dg; (0} q; e v 0ti; Oqi
Differentiating [T) with respect tg;;, we obtain b 0S; . Z ) 0 (Si — Sir)
= Vi T Gy ij o \Pi T Pij
OFa _ _puasij 9 JENG) 9qi
0% YT og = 0, + cilog T
i (I+& —ai— g T
— Wi+ g log S S 20 @ -5
(@i — fzg)(‘h - fu) + Z Pij <— log + log J )
NG 1—q 1+&j5—qi—qj
Note that this is independent of the singleton counting num- i
bers{c;}. \Welling and Teh[(2001) considered the specific =—bit+cilog ——+ > pilogQyj, 9)
case of the Bethe approximation, whexre = 1. Solving bJEN()

the general case f(%?— = 0 leads to a quadratic equation,
! where as inl(Weller and Jebara, 2014b), we dgfine

i€ — 1+ ij (6 + 45)16; + (1 + cij)giq; =0, (8)

where we definey;; = eWii/Pii — 1. Observe that here Qij = (1 n gq_l_ _5(;'_7_ q_) (1 q_ql> ‘ (10)
Wi, /pi; plays the ‘edge count modified’ role typically vl ’

performed bylW;; in the standard Bethe approximation.

It is easily shown thaf{8) has just one feasible solutionConsidering[(1l0) and Lemnia 3 yields the following.
(Welling and Teh, 2001; Weller and Jebara, 2013), as given
in the following result.

Theorem 2. For general counting numbers, given single-
ton pseudomarginals, optimum pairwise terms (which min-Gradient descent methods may be used to try to minimize
imize the approximate free energy) are given by F 4 but note these may find only a local optimum.

1

L oy 7 At een).  masg s o
20zij (SCU \/%w CYU( +Oéz])QzQJ ) 3NoteQij — %(Si—si'): ﬁ_ﬁ%by @.

emma 4. If edge(i, j) is attractive, i.e.W;; > 0, then
pijlog Qi < 0.




3.3 BOUNDSON FIRST DERIVATIVESWRT g¢;

151 | ‘
We generalize the approach|of Weller and Jebara (2014
to bound the range of first derivative$ (9) for free energy ap- . 101
proximations with arbitrary counting numbers. An impor- Q: 5
tant application is the construction of arsufficient mesh 2
to estimatdog Z 4, seef. g 0 |
Q
Initially assume a model that is locally attractive around = i
X, ie.W;; >0Vj € N(') From [9) and Lemmal4, we g 5 \
obtain 6FA < —0; + ¢; log T2 & |
-10°f Parameters used in thls example: \
Now flip aII variables, se@, to consider a model with =1, 0=1] W;=2, W'=1.9 }
{X!=1- X, Vi € V}, keeping the same counting num- -15 o : 1
bers. We obtairtV/; = W;; and can apply the result above 0 0.2 04 9-6 08 1
to yield Pseudo-marginal q;
OFa _ 4 ¢ilog 4 Figure 1:An example of upper and lower bounds %@A Blue
dg; — T T 1— q§ curves show monotonic uppét (¢;) and Iowerff(qis bound
8f curves from Theorel 5, separated by constéiit + W,". In
qf <O+ W~ 1og — (seef2.4), preprocessing, the srgrch sSace is sh)r/unk to within thedask
) lines, within which| 24| < W, + W," = 3. i) [Wisl.
where we defingV;" = = D jen(iywi,; >0 Wij- Combine '
this with the earller result to yleid a sandwich mequahty,

OF 4 where¢;; takes its optimum value from Theorém 2, and
—itcilog—E Wi <A < g4 ¢l0 2 i
iT G087 i = 1108 1 Tij = qiq;(1 — @)1 — ¢;) — (&5 — ;)" = 0, with
equality iffg; or ¢; € {0,1}. Proof in Appendix.

— i 0q; —qi
Now generalize to consider the case thét has some

neighborsX; € R to which it is adjacent by repulsive These second derivatives may be combined with the earlier

edges, i.e. wheréV;; < 0. First flip just the variables gradients[(p) for more efficient local minimization &t,.
in R, seej2.4, and then apply the above sandwich result to

yield the following Theorem, where we define the nonneg- 41 SUBMODULARITY OF T4

ative valueW;” = >\, <o —Wis-

Theorem 5. For arbitrary counting numbers, assuming Considering the expression fdf;; from Theorenlb to-
optimum pairwise pseudomarginals, first derivativegaf  gether with Lemmal3, observe that provided # 0 and

are sandwiched in the range ¢i,q; € {0,1}, W;; >0 3 fA < 0 (whatever the sign
o 4 o OFa_ _ of p;;). Since third derlvatlves exist and are finite in this
Oiteilog 1= ViS5 S Oitcilog 1 —2 Wi+ range, this yields the following result.

Theorem 7. For any counting numbers with
pi; # 0 V(i,j) € &, and any discretization, an at-
tractive model yields a submodular discrete optimization
problem to estimatég Z 4. Proof in Appendix.

Note that both upper and lower bounds are monotongg in
(increasing withy; if ¢; > 0, else nonincreasing), ranging
from —oo to co, separated by the constant valde™ +
W= > jenti) IWi;l. See Figurgll for an example.
This means that consideritia (¢1, . . ., ¢, ) with pairwise
4 SECOND DERIVATIVESOF F4 marginals given by Theorelnh 2, for any discrete mégh=
[T, M;, where); is a finite set of points fog; in [0, 1],
We extend the analysis of Weller and Jeoara (2013) to deand for any counting numbers, then the discrete optimiza-
rive all terms of the HessiaH for free energy approxima- tion to find the point inM with lowest. 74 is submodular

tions F 4 with arbitrary counting numbers. for any attractive model (hence can be solved efficiently).
Theorem 6 (H;; = g:ig% second derivatives of
]:A((ha . ’qn) at optimum pairwise marginaj;sj)_ 5 OPTIMIZING THE APPROXIMATE
FREE ENERGY

g R i) e a

Yoo ifi #j,(i,5) ¢ £ True marginal inference is NP-hard (Codper, 1990), even

q(1 . Dij to approximate [(Dagum and Luby, 1993).  However,

Hij = (1 — Qz) + Z < p”T Qi(l _ qz')> ) Weller and Jebara (2014a) derived an algorithm to approxi-

JEN (i) mate the Bethe log-partition functiolog Z 5, to within any
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Approximate free energy

A

0.5
Pseudo- -
marginal q,

0.6 Tos 1

0 0.2 0.4 .
Pseudomarginal q,

Figure 2:Stylized example for optimizing the approximate free
energy over two variables. The search space is first shruek-to

clude the outer red region, then the inner blue region igelised

using ane-sufficient meshThe red dot indicates the (continuous)

Algorithm 1 Mesh method to reture-approximate global
optimumlog Z 4 for any counting numbers.
Input: e, model parameter§;, W;;} and counting num-
berS{Ci, plj}
Output: Estimate of global optimurtvg Z 4 guaranteed in
[log Z4 — €,1og Z 4], with corresponding pseudomarginals
asarg for the discrete optimum
1: For eachX;: Compute upper and lower bound curves
for 8@% from Theorenib, use these to shrink the search
space to a range where[@4| < W, + W' =
> jenti) IWijl, see Figurell.
2: Construct are-sufficient mesh as describeddB.
3: Solve the resulting discrete optimization problem (ef-
ficient by Theorerhl7 if the model is attractive), $&k

global minimum. On the mesh: the purple dot has the closest lomodel (see§Z.4), hence the FPTAS extends to balanced

cation, guaranteed to have value withinwhile the green dot is
the lowest point, hence is the discretized optimum returned

e by constructing ar-sufficient mesbM(¢), i.e. a discrete
mesh over the space of singleton margifi@l¢]” such that
the mesh poing™ with min,e r¢() F5(q) is guaranteed to
haveFg(g¢*) within ¢ of the global optimum of- log Z 5.

models. If the model is not balanced, there is an exten-
sive range of methods available, see (Koller and Friedman,
2009,513) or (Kappes et al., 201 3) for recent surveys.

Various refinements to improve efficiency are discussed by
Weller and Jebara (2014a) for the Bethe case. All those
techniques may also be applied here, and can help signifi-
cantly in practice, though they do not improve the theoreti-

In the case of an attractive model, the discrete optiminatio cal worst case.

]EJOr:)iaolerg WalSJssirr]lov?hteoo?snjélgma?%u|7ar(/\|/§aed>l?e?nt(;) ti;rPZA%ther approaches to attempt to minimize the Bethe free en-
& 4B 9 ' P ergy have been developed (Welling and/Teh, 2001; Yuille,

proach to obtain similar results for any counting numbers.zooz; Heskes et AL, 2003: Shin, 2012), and some general-

The overall mesh method is outlined in Algoritith 1 and ize to other counting numbers, including the message pass-
illustrated in Figurd 2. Note that we need search onlying methods of Hazan and Shashua (2008) (guaranteed to
over the space of singleton marginéls1]”, since pair- converge for a convex free energy), Wiegerinck and Heskes
wise terms may be computed with TheorEm 2. First thg(2003) orl Meshi et al.[ (2009), but unlegs, is convex,
search space is shrunk using the bounds of Theglem Hone guarantees a solution close to the global optimum.
since we need check only wheé’grqj*‘ can be 0. Within

this range,| 24| < Wi~ + W = 35, v(;) [Wijl, see 6 UNDERSTANDING APPROXIMATION
Figure[1. Next, discrete mesh points for each variable’s ERROR
singleton marginal;; may be selected in its range such
that the step sizé; satisfiess; max]ai{*] ~ <. This ) L
94, ntoo We examine how the entropy approximatién may lead

ensures that, wherever the global minimum is within the : : :

. . to error in the marginals, then consider other factors &ffec
space.F4 cannot rise by more than- = ¢ at the clos-

est mesh point. This leads to a number of mesh points if'd errorin the estimate of the partition function.

dimensioni of N; = O(5) = O(2 X2, iy IWisl)- If
an upper bound?V on edge strengths is known such that 6.1 EFFECT OF APPROXIMATE ENTROPY ON

[Wi;| < W VY(i,5) € &, then the sum of mesh points MARGINALS
in each dimensionN = .., N; = O(22%), where
m = |&|.

It has previously been observed that in cyclic graphs, there
are situations where the Bethe entropy tends to pull ap-
If the model is attractive, we obtain a FPTAS since by Theproximate singleton marginals toward extreme values near
orem[Y, the resulting submodular multilabel optimization0 or 1, and that this tends to occur as a ‘phase transition’
problem may be solved in im@(N3) = O ((@)3) in behavior when edge weights rise above some threshold

using earlier graph cut resultS (Schlesinger and Flach{Heskesi 2004; Mooij and Kappen. 20810ne perspec-

2006} Greig et al., 1989; Goldberg and Tarjan, 1988). If the “Note that we describe a transition in the accuracy of approx-

model is balanced, then a subset of variables may be effimate singleton marginals. A quite different symmetryatkiag
ciently identified such that flipping them yields an attraeti  effect is the ‘ferromagnetic-paramagnetic’ transitionttrelates



tive on this is algorithmic stability (Wainwright and Jorja
2008, §7.4). A different heuristic interpretation is that it
occurs as a result of LBP overcounting information when

going around cycles (lhler, 2007). Here we extend the ex-

planatory approach of Weller etlal. (2014) by considering
the entropy approximation and examining the effect of dif-
ferent counting numbers.

To illustrate the principles, we analyze a simple model with
n vertices connected such that each vertex has exdctly
neighbors (such models are call@degular), with all edge
potentials symmetric of weigh¥” and no singleton poten-
tials (we call these modelsymmetricand homogeneoys

Using [9), it is easily shown that, for any counting num-

bers, there is a stationary point 8f4 at a location with
¢ = % Vi € V, which by symmetry clearly also give

the true singleton marginals. However, for certain count-

ing numbers, including the Bethe parameters, whéris
above a critical threshold, this stationary point is no keng

a minimum, and new minima emerge that pull singleton
marginals away to extreme values. The following result
considers an approximation with uniform counting num-

bers (i.e. alk; = ¢, p;; = p), and demonstrates conditions
for wheng; % Vi € V is not a minimum, by explicitly
providing a direction showing that the Hessiahis not
positive semidefinite.
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Lemma8. For a symmetric homogeneous d-regular mode|Figure 3:Average over 20 runs of singleton marginal vs. uniform

on n vertices, letH be the Hessian of the approximate
free energy ay; % Vi € V, using uniform counting
numberse; = ¢ Vi € V,p;; = p V(i,5) € &, then
1"H1 =n [4(c —dp) + p%}, where¢ = 1o (%) is the

uniform optimum edge marginal term, aadu) H%

is the standard sigmoid function. Proof in Appendix.

Hence, ¢ = 5 Vi is not a minimum if
w=4(c—dp)+% < 0. First, note that for the
Bethe approximatiorr = p = 1, and this condition
reducestq > 1 -4 < W > 2log 74 Indeed, whertV’
rises above this critical threshold, singleton marginalk w

move away from% (Weller et al.| 2014).

In general, higher singleton counting numbeend lower
edge counting numbeysraisew, making it harder to sat-
isfy the condition. The effect of the density of connectjvit

d is less clear, and depends on the other parameters. F

example, consider the TRW approximation witk- 1 and
uniform edge weighte = % < 1, declining with
d, which are optimum in this setting (Weller et al., 2014
Lemma 7), thenw is positive and increases rapidly with
d (whereas Bethe suffers in this regard by keeping 1

fixed).

To understand this behavior, recall the definition%f
in @). As singleton counting numbers rise, we add

more S; which are concave, thereby increasing convexity,

to the true global distribution of states (mostly aligneahot).

symmetric edge weigh¥ for: exact inference, Bethe approxima-
tion, Bethe+marginal polytope, and TRW (all; = 2/3). Trian-

gle topology with random singleton potentidls ~ [0, Trmax]-
ForW > 0: Bethe and Bethe+marginal overlap, exact and TRW
almost overlap. FolW < 0 (frustrated cycle): Bethe and TRW
almost overlap, as do exact and Bethe+marginal.

of Fu around% and making it more likely to be a mini-
mum. On the other hand, increasing edge tepmdeads

to more mutual informatior;; being subtracted, thereby
increasing concavity af 4 around% and potentially push-
ing marginals away fron%. This perspective helps to un-
derstand why a convex free energy approximation leads to
algorithmic stability (Wainwright and Jorden, 20G3.4).

The severity of this problem for estimating singleton
marginals is high when true marginals are néalwhich
glrpically occurs for small singleton potentials, but ités$
problematic when true marginals are themselves near 0 or
1. The effect is illustrated in Figuté 3. Note how, for pos-
itive 1/, the Bethe marginals are pulled toward 1 whereas

" TRW is almost exactly correct. The effect for < 0 is

dominated instead by a polytope effect, which we discuss
in the next Section.

We remark that although the entropy approximation may
have a dramatic effect on the accuracy of singleton
marginals, particularly for low singleton potentials (whe
true marginals are ne%), the effect on estimating pair-
wise marginals and the partition function is less clear. In-



polytope approximation, may lead to difficulties. We high-
light another aspect of the polytope approximation, in that
it introduces half-integral verticess (Wainwright and Jamd
2008). In a balanced cycle (even number of repulsive
edges), this is of little consequence since the optimum en-

RS
N
W= O

B) _________ 2/ C) ergy (MAP solution) is always at an integral vertex, butin a
11 frustrated cycle (odd number of repulsive edges,&e8),
3 %) the energy can cause singleton marginals to be pulled to-

Wards% Hence, although the Bethe entropy pulls these

Figure 4: lllustration of the polytope effect on edge marginals. Marginals away from; on balanced cycles, the polytope
A-B and A-C are strongly coupled, B-C is very weakly coupled effect pushes the other way on frustrated cycles, which in
with all edges symmetric and attractive, and no singletdleipo  some cases may provide a helpful ‘balance’. Since many

tials. Edge marginals are shown. For B-C, above the edggiged optimization techniques (including message passing meth-
the optimum in the marginal polytope (global consistenbglow 45y e ploit the efficiencies possible with the local pobgo
the edge (blue) is the optimum for the local polytope. §&8. N . . .
approximation, it may in fact be desirable overall to have
an entropy approximation such as Bethe, for this offsetting
deed, Bethe typically outperforms TRW on these measure§ffect. See Figulgl3in the regioli < 0 for anillustration,
(Weller etal.[ 2014). where the Bethe+marginal optimization was performed us-
ing the Frank-Wolfe algorithm (Frank and Wolfe, 1956).

6.2 EFFECT OF LOCAL POLYTOPE
6.3 BOUNDSON Z4

We revisit and expand on an example from Weller et al.
(2014) to show that the impact of each of the two aspect
(i.e. polytope and entropy, s€&.1) of an approximation

hile the TRW approximation ha8; > Z by construc-
tion, until recently there were no guarantees on the per-

to the partition function can pull in opposite directions. formance of the Bethe approximation, though it typically

Hence, improving just the entropy approximation Couldyields very good results. Sudderth et al. (2007) proved that
lead to,aNorseapproximation Zp < Z for a range of attractive binary pairwise mod-

els, and conjectured that this bound holds for all attractiv
Consider the model in Figuié 4, where 3 variables are conmodels. This was proved true by Ruozzi (2012) using the
nected in a triangle. Two edges are strongly attractive, an¢hethod of graph covers, and then also by Weller and Jebara
the third is very weakly attractive. The strong edfie- B (2014b) by combining the idea of clamping variables with
ensures thatl and B take the same value, similarly for analyzing properties of the derivativesBf;.

B—C. Hence, inthe globally consistent marginal polytope, _ . .
B andC must take the same value. The global states 00(?’| this Sec:uon, V\f,e use the loop series ?method
and 111 each have probability of almt%sland the pairwise Sudderth et al., 2007; Chertkov and Chernyak, 2006) to

marginals are shown along the edges of Fifllire 4. Since th%hOW that for certain other ”_‘09‘3'5' we can prove that
model is almost a tree, we know thai ~ Z. We shall Zp > Z. For such models, this immediately implies that

examine how this arises by starting with exact inferenceFhe Bethe approximationis better for estimatinighan any

then switch to use the Bethe entropy approximation on thé’@lppfxm;ayo'n W'tgcif =1 hw de f_V.(_varlafkngle valid) and

marginal polytope, and then relax the constraint set to th&? _Il (2’,3)|€ f(rcr)]mt e g'gt'gnzo S’Zseem'

local polytope. We shall ignore the energy terms since the ) In particular, for these models, < Zp < Zr.

are equal here for true or approximate inference. Sudderth et all (2007) showed tHatZ = 1 + a series of

As noted, there are 2 states that dominate the global prog_erms, one term for eaqieneralized loopwhich is a sub-

ability distribution, hence trues ~ log2. Computing graph such that no vertex has degree 1, and demonstrated
that each of the terms in the series9) for certain mod-

the Bethe entropy on the marginal polytope, we obtain ,
Sp ~ 3log2 — ;{ng -0 wh?ch isﬁoglo& bylog 2 els, and henc&p < Z for these cases. See Appendix for

However, when the polytope is relaxed, a better OptimurTpackground on this approach. In particular, if there is ex-
is found ,by maximizing the edge entr<’)py & — C as actly one cycle in the model, then there is only one term in

shown under the edge in Figure 4. Since only local Con-.ﬂ.1e sevr\lles and |fhthe ﬁ_yc_le IS a(';t_ractllve, then t|h|s term xspol
sistency is required, there is no longer any needdo be itive. We note that this immediately generalizes to a cycle

equal toC and we gain the difference in edge entropy ofthat is balanced (sef2.3 for definitions).
2log2 — log2 = log2, thus exactly offsetting the deficit Here we apply similar analysis (Sudderth €t al., 20374,
due to Bethe entropy on the marginal polytope. or see Appendix), and observe that if there is exactly one

This example demonstrates that focusing exclusively on  5Thjs can lead the Bethe optimum of a strongly frustrated cy-
the entropy approximation, without also considering thecle to occur at a location whergs < 0.



cycle and it is frustrated, then the term is negative, thuof the quality of the partition function estimate to changes
proving that for such model%g > Z. in model potentials, and accuracy of marginals, though this

Interestingly, Weller and Jebara (2014b) have shown thaf outside the scope of the current work.

for the case of a model with one balanced cy@é?, < Others have investigated ways to optimize counting num-
Zp < Z, so althoughZ g is lower thanZ, it cannot be by  bers. | Wiegerinck and Heskes (2003) proposed a method
much even for very strong edge weights; whereas for a sindsing linear response theory. They also discussed alpha-
gle frustrated cycle, there is no limitto how largg /Z can  divergence measures, an idea developed further by Minka
rise. This suggests that for a general model, the accuracy ¢200%), who fascinatingly frames (fractional) BP and
Zp will depend on the blend of balanced and frustrated cy{power) EP under a general framework of iterative mini-
cles, where in a sense frustrated cycles cause greater tromtization of alpha-divergence, yielding insight into which
ble than balanced cycles, though to understand how the efneasures may be expected to perform well for different ob-
fects combine in a model with multiple cycles will require jectives, though concluding that this is difficult to predic
further analysis. Sinc&p performs well even for attrac-

tive models|(Sudderth etlal., 2007), this indicates that, fo7 CONCLUSION

estimating the partition function, practitioners shouggu

approximations witlp;; < 1 (such as TRW) with caution. We have shown how recent results for the Bethe approxi-

The loop series method extends to models with more thamation may be extended to handle the broad range of pair-
one cycle but the analysis becomes more complicatedyvise approximations using any counting numbers. Our
Again using the approach of Sudderth €tlal. (2007), we caanalysis builds on earlier work (Welling and Teh, 2001;
conclude more generally thatz > Z for any model such Yedidia et al.,| 2005; Meshi et al., 2009; Sudderth et al.,
that every generalized loop contains an odd number of re2007;/Weller and Jebara, 2013, 2014a), providing new in-
pulsive edges (this is a sort of generalized frustratedsdycl sights and deepening our understanding of how best to per-
and the Bethe optimum marginals for every variable thaform inference in practice. This is important given the pop-
has an odd degree 3 in any generalized loop, are either ularity of LBP and TRW approximations. Further, it pro-
all < 1 orall > 1 (see Appendix). vides a valuable toolbox for further exploration.

Areas for future investigation include trying to understan
6.4 DERIVATIVESWRT COUNTING NUMBERS better how to predict which approach will work well for
a given model, and analyzing the performance of message

We are interested in exploring which counting numbers . . L )
. . assing algorithms with different counting numbers (where
lead to accurate inference as measured by errors in the esﬁ—

" ; . . _.~~oure-accurate approach provides a valuable benchmark).
mates of the partition function and marginals. Considering ¢ PP P )

(7) and using the _envelop_e th_eorffm (Milgrom, 1999, TheoAcknowIedgements
rem 1), we have right derivatives:
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