Improved Asymmetric Locality Sensitive Hashing (ALSH) for Maximum Inner
Product Search (MIPS)
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Abstract
Recently we showed that the problem of Max-

imum Inner Product Search (MIPS) is efficient
and it admits provably sub-linear hashing al-
gorithms. In [23], we used asymmetric trans-
formations to convert the problem of approxi-
mate MIPS into the problem of approximate near
neighbor search which can be efficiently solved
using L2-LSH. In this paper, we revisit the prob-
lem of MIPS and argue that the quantizations
used in L2-LSH is suboptimal for MIPS com-
pared to signed random projections (SRP) which
is another popular hashing scheme for cosine
similarity (or correlations). Based on this obser-
vation, we provide different asymmetric transfor-
mations which convert the problem of approxi-
mate MIPS into the problem amenable to SRP
instead of L2-LSH. An additional advantage of
our scheme is that we also obtain LSH type space
partitioning which is not possible with the exist-
ing scheme. Our theoretical analysis shows that
the new scheme is significantly better than the
original scheme for MIPS. Experimental evalu-
ations strongly support the theoretical findings.
In addition, we also provide the first empirical
comparison that shows the superiority of hashing
over tree based methods [21] for MIPS.

Introduction

In this paper, we revisit the problem daximum Inner

Product Search (MIPS)which was studied in our recent tjye hashing do not come with provable runtime guarantees.
work [23]. In this work we present the first provably fast gxpiicitly constructing asymmetric transformation tagd

algorithm for MIPS, which was considered hard [21, 15].for 4 particular similarity, given an existing LSH, was the
Given an input query point € R?, the task of MIPS is to

find p € S, whereS is a giant collection of sizé&V, which
maximizes (approximately) thaner product ¢” p:

p=argmax g¢'w 1)

The MIPS problemis related to the problemméar neigh-
bor search (NNS)For example, L2-NNS

p = argmin [l - 2[|3 = argmin([l[3 - 2¢"z)  (2)
zesS zeS
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or, correlation-NNS
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These three problems are equivalent if the norm of ev-
ery elementz € S is constant. Clearly, the value of the
norm||¢||2 has no effect for the argmax. In many scenarios,
MIPS arises naturally at places where the norms of the el-
ements inS have significant variations [15]. As reviewed
in our prior work [23], examples of applications of MIPS
include recommender system [16, 5, 15], large-scale object
detection with DPM [9, 7, 14, 14], structural SVM [7], and
multi-class label prediction [21, 15, 25].

Asymmetric LSH (ALSH): Locality Sensitive Hashing
(LSH) [13] is popular in practice for efficiently solving
NNS. In our prior work [23], the concept of “asymmet-
ric LSH” (ALSH) was formalized and one can transform
the input queryQ(p) and data in the collectio®(x) in-
dependently, where the transformatigpsand P are dif-
ferent. In [23] we developed a particular set of transfor-
mations to convert MIPS into L2-NNS and then solved the
problem by standard hashing i.e. L2-LSH [6]. In this pa-
per, we name the scheme in [23] l6B3-ALSH . Later we
showed in [24] the flexibility and the power of the asym-
metric framework developed in [23] by constructing a prov-
ably superior scheme for binary data. Prior to our work,
asymmetry was applied for hashing higher order similar-
ity [22], sketching [8], hashing different subspaces [8lda
data dependent hashing [20] which unlike locality sensi-

first observation made in [23] due to which MIPS, a sought
after problem, became provably fast and practical.

It was argued in [17] that the quantizations used in tradi-
tional L2-LSH is suboptimal and it hurts the variance of the
hashes. This raises a natural question that L2-ALSH which
uses L2-LSH as a subroutine for solving MIPS could be
suboptimal and there may be a better hashing scheme. We
provide such a scheme in this work.



Our contribution : Based on the observation that the quan-Fact 1. Given a family of(Sy, ¢Sy, p1,p2) -sensitive hash
tizations used in traditional L2-LSH is suboptimal, in this functions, one can construct a data structure fdN
study, we propose another scheme for ALSH, by develwith O(n”logn) query time and spac®(n'**), where
oping a new set of asymmetric transformations to converp = }ggg; <1.

MIPS into a problem of correlation-NNS, which is solved

by "signed rando_m projections” (SRP) [11, 4] The.new | SH is a generic framework and an implementation of LSH
scheme thus avoids the use of L2-LSH. We name this new_ . :
scheme aSign-ALSH. Our theoretical analysis and exper- fequires a concrete hash function.
imental study show that Sign-ALSH is more advantageous, 1 | gy for L2 distance

than L2-ALSH for MIPS.

6] presented an LSH family foL, distances. Formally,

For inner products asymmetry is unavoidable. In case oéiven a fixed window size, we sample a random vector
L2-ALSH, due to asymmetry, we loose the capability 10 it each component from i.i.d. normal, i.e;,~ N (0, 1),

generate LSH like random data partitions for efficient clus-, 4 5 scalab generated uniformly at random frof, 7]
tering [12]. We show that for inner products with Sign- t1,a hash function is defined as: T

ALSH there is a novel formulation that allows us to gen-
erate such partitions for inner products. With existing L2- hE2 () = x+b @)
ALSH such formulation does not work. abA®/ = r

T

Apartfrom providing a better hashing scheme, we also proyhere| | is the floor operation. The collision probability
vide comparisons of the Sign-ALSH with cone trees [21]. hder this scheme can be shown to be

Our empirical evaluations on three real datasets show that

hashing based methods are superior over the tree basedr(h2? (z) = 2% (1)) (5)
space partitioning methods. Since there is no existing com- 9 /a2
parison of hashing based methods with tree based methods= 1 - 2®(-r/d) - o) (1 —e /) ) = F(d)

for the problem of MIPS, we believe that the results shown
in this work will be very valuable for practitioners. whered(z) = [* ﬁe‘%d:v andd = ||z - yll» is the

V2

2 Review: Locality Sensitive Hashing (LSH) Euclidean distance between the vectoendy.

The problem of efficiently.finding nearest neighbors haszl2 LSH for correlation

been an active research since the very early days of com-

puter science [10]. Approximate versions of the near neighAnother popular LSH family is the so-called “sign random
bor search problem [13] were proposed to break the lineaprojections” [11, 4]. Again, we choose a random veetor
query time bottleneck. The following formulation for ap- With a; ~ N (0,1). The hash function is defined as:
proximate near neighbor search is often adopted. B (1) = sign(a’ ) ©)

Definition:  (c-Approximate Near Neighbor or-NN)
Given a set of points in @-dimensional spac&”, and  And collision probability is

parametersS, > 0, 6 > 0, construct a data structure which, T

given any query poing, does the following with probabil-  p;.(p5i97 (1) = 997 (y)) =1 - 1 cos ™ ( Ty ) (7)
ity 1 — &: if there exists anSy-near neighbor of; in S, it [ v
reports some.Sy-near neighbor of in S.

This scheme is known a&igned random projections (SRP)

Locality Sensitive Hashin@SH) [13] is a family of func- .
tions, with the property that more similar items have a3 Review of ALSH for MIPS and L2-ALSH

higher collision probability. LSH trades off query time tvit |5 [23], it was shown that the framework of locality sen-
extra (one time) preprocessing cost and space. EXistenGgive hashing is restrictive for solving MIPS. The inherren
of an LSH family translates into provably sublinear query agssumption of the same hash function for both the transfor-
time algorithm for c-NN problems. mation as well as the query was unnecessary in the classi-

Definition: (Locality Sensitive Hashing (LSH)\ family cal LSH framework and it was the main hurdle in finding

# is called(So, ¢S, p1, p2)-sensitive if, for any two points provable sub-linear algorithms for MIPS with LSH. For the
,y € RP, h chosen uniformly frorfi satisfies: theoretical guarantees of LSH to work there was no require-

ment of symmetry. Incorporating asymmetry in the hashing

* it Sim(z,y) > So thenPry (h(z) = h(y)) 2 p1 schemes was the key in solving MIPS efficiently.

* if Sim(z,y) < eSo thenPry (h(z) = h(y)) < ps Definition [23]: (AsymmetricLocality Sensitive Hashing
For efficient approximate nearest neighbor seaighy p (ALSH)) A family %, along with the two vector func-
andc < 1 is needed. tions@ : R” —» RP (Query Transformation) and P :



RD R (Preprocessing Transformatior), is called too small (e.g.mn > 3 would suffice), we have
(So, ¢So, p1, p2)-sensitive if for a giverr-NN instance with
gueryq, and the hash functiola chosen uniformly front{
satisfies the following: This scheme is the first connection between solving un-
o if Sim(q,x) > So thenPry (h(Q(q))) = h(P(x))) > p1 normalized MIPS and approximate near neighbor search.
) Transformation$® and@, when norms are less than 1, pro-
* if Sim(g,z) < cSo thenPra(h(Q(q)) = h(P(2))) <2 vide correction to the L2 distandié)(q) - P(z;)||» making
Herez is any point in the collectioss. it rank correlate with the (un-normalized) inner product.

argmaxg’ z ~ argmin |Q(¢) - P(z)ll2  (12)
zeS zeS

Note that the query transformatiap is only applied on 3.1 Intuition for the Better Scheme : Why Signed
the query and the pre-processing transformatfiois ap- Random Projections (SRP)?

plied to x ¢ S while creating hash tables. By letting ) . .
Q(z) = P(z) = «, we can recover the vanilla LSH. Us- Recently in [17, 18], it was observed that the quantization
ing different trans,formations (i.eQ + P), it is possible of random projections used by traditional L2-LSH scheme

to counter the fact that self similarity is not highest with is not desirable when the data is normalized and in fact the

inner products which is the main argument of failure ofs_hiﬂb in Eq. (4) hurts the \{aria_nce leading to I(.ESS informa-
LSH. We just need the probability of the new collision tive hashes. The sub-optimality of L2-LSH hints towards

event{h(Q(q)) = h(P(y))} to satisfy the conditions of existence of better hashing functions for MIPS.

definition of ALSH for Sim(q,y) = ¢"y. As previously argued, when the data are normalized then
both L2-NNS and correlation-NNS are equivalent to MIPS.
Theorem 1 [23] Given a family of hash functioft and  Therefore, for normalized data we can use either L2-LSH
the associated query and preprocessing transformations hich is popular LSH for L2 distance or SRP which is pop-
and @, which is (S0, cSo, p1, p2) -sensitive, one can con- yjar LSH for correlation to solve MIPS directly. This raises

struct a data structure for-NN with O(n”logn) query g patural question "Which will perform better ?”.

time and spacé(n'*”), wherep = 2£2L, " bett
B If we assume that the data are normalized, i.e., all the norms

[23] provided an explicit construction of ALSH, which we are equal to 1, then both SRP and L2-LSH are monotonic

call L2-ALSH . Without loss of generality, one can assumein the inner product and their correspondingalues for
retrieving max inner product can be computed as

||xi||QSU<1, Va; €S (8) IOg(l—lCOS_l(SQ))
. = T 13
for someU < 1. If this is not the case, then we can always PSRP log (1 _ %cos—l(cso)) (13)
scale down the norms without altering thig max. Since 5o
the norm of the query does not affect the max in MIPS, N = log (FT( 2 250)) 14
OTTITOT IS i = PL2-LSH (14)
for simplicity it was assumedjg|l, = 1. This condition log (F(v/2=2¢50))

can be removed easily (see Section 5 for details). In L2yhere the functionF,(.) is given by Eq. (5). The
ALSH, two vector transformation® : R” —» R”*™ and  \5jues of psrp and pro_rsm for different Sy =

.mD D+m H . . . . .
Q@:RY »R7"™ are defined as follows: {0.1,0.2,..,0.9,0.95} with respect to approximation ratio

P(@) = [ )2 2l s 122 ] @ is shown in Figure 1. We use standard recommendation of
oL T2 T2 e T2 r = 2.5 for L2-LSH. We can clearly see that r p is consis-
Q) = [x;1/2;1/2;....;1/2], (10)  tently better thapro_r.sm given anyS, ande. Thus, for

MIPS with normalized data L2-LSH type of quantization
given by equation 5 seems suboptimal. It is clear that when
the data is normalized then SRP is always a better choice
for MIPS as compared to L2-LSH. This motivates us to ex-

where [;] is the concatenatio®?(z) appendsn scalers of

the form||z||2" at the end of the vectar, while Q(x) simply
appendsn “1/2” to the end of the vectar. By observing

N2 112 m e 2 plore the possibility of better hashing algorithm for geaier
1P @a)llz = llwillz + llwillz + -+ llilla ™ + [l (unnormalized) instance of MIPS using SRP, which will
QDI = l|gl + m/4=1+m/4 have impact in many applications as pointed out in [23].
Q)T P(x;) = ¢ w; + 1(||a:1-||§ +lasld + o ]2 Asymmetric transformations give us enough flexibility to

2 modify norms without changing inner products. The trans-
one can obtain the following key equality: formations provided in [23] used this flexibility to convert

MIPS to standard near neighbor searchlisn space for
1Q(q) = P(x:)|2 = (1+m/4) = 2¢7z; +||z:|3" (11)  which we have standard hash functions. For binary data,
[24] showed a strictly superior construction, the asymmet-
Since||z;|l2 < U < 1, we have||az:1-||2m+1 — 0 at the tower ric minwise hashing, which outperforms all ALSHs made
rate (exponential to exponential). Thus, as longw@is not  for general MIPS.



1 | | | | Using||Q(9)I3 = llgll3 = 1, Q(¢)" P(;) = ¢" x;, and

-------- ' 1P ()3

4
=llillz + 174+ llallz = llaills + 1/4 + sz = llallz + ..

P

0.8}

2m+l

m
Al = 2

+1
= m/d+ il

Normalized Data.
we obtain the following key equality:

0.6 |---L2-LSH
—SRP - -
: : Q(q)” P(z;) q"z;

1 08 06 04 02 0O = (17)
‘ RWIETPCE: ~ Joras el

The term||z;||2""" — 0, again vanishes at the tower rate.
This means we have approximately

Q(Q)TP(%)

T ~
T @ PG
0.41 This provides another solution for solving MIPS using
oo : known methods for approximate correlation-NNS. Asym-
0.2t L2-LSH . . . .
—SRP metric transformation® and( provide a lot of flexibility.
‘ ‘ ‘ ‘ Note that transformation® and@ are not unique for this
1 08 06 04 02 0 task and there are other possibilities [2, 19]. It should be
¢ further noted that even scaling data and query differestly i
Figure 1: Values opsrp andpro-rsm (Lower is better) asymmetry in a strict sense because it changes the distribu-
for normalized data. It is clear that SRP is more suited fortion of the hashes. Flexibility in choosing the transforma-
retrieving inner products when the data is normalized tions P and (@ allow us to use signed random projections
and thereby making possible to avoid suboptimal L2-LSH.

0.87

0.6}

Q

Signed random projections are popular hash functiond.2 Fast MIPS Using Sign Random Projections

widely adopted for correlation or cosine similarity. We use

: i . SEq. (18) shows that MIPS reduces to the standard approxi-
asymmetric transformations to convert approximate MIP ; . ot
mate near neighbor search problem which can be efficiently

into approximate maximum correlation search and thus We ved by sign random projections, i.5" (defined by
avoid the use of sub-optimal L2-LSH. The collision prob- Eq. (6)). Formally, we can state the: fé)ll.é)win theorem
ability of the hash functions is one of the key constituents g i _ Y. i ] 9 N
which determine the efficiency of the obtained ALSH al- Theorem 2 Gg/en ac-approximate instance of MIPS, i.e.,
gorithm. We show that our proposed transformation with%#7(¢; %) = ¢z, and a query; such that|q|» = 1 along
SRP is better suited for ALSH compared to the existing™Vith @ collectionS having|[z[]; < U < 1 Vz € S. Let P and

L2-ALSH for solving general MIPS instance. (@ be the vector transformations defined in Eq. (15) and Eq.
(16), respectively. We have the following two conditions fo
4 The New Proposal: Sign-ALSH hash functiorh¥*9" (defined by Eq. (6))

o if ¢Tx > Sy then

Prin®(Q(q)) = B (P(x))]

4.1 From MIPS to Correlation-NNS

We assume for simplicity thdly||> = 1 as the norm of the

qguery does not change the ordering, we show in the next Y So
section how to get rid of this assumption. Without loss of 21- - oos Jma o

generality lef|z;||s < U < 1, Vz; € S as it can always be

. : o if ¢"x < ¢Sy then
achieved by scaling the data by large enough number. We

define two vector transformation? : R” ~ RP*™ and Prin®9™(Q(q)) = K39 (P(z))]
Q : RP — RP*™ as follows:
) ) » <1- 1 cos”] min{eSp, z* }
P(a) = [a:1/2 - el 1/2 - [l i 1/2 - lal3" w7\t Guinteso, )7

(15)
Q(x) = [2:0:0;....;0], (16) where:* - ( 522 )2%

om+1_9

-1



Proof: Wheng”z > Sy, we have, according to Eq. (7)

Pr{n*"(Q(q)) = h*" (P(x))]

1 T
:1——cos_1(—q * )
m+1
i Vm/4+ =3
1 T
>1-— (30871 L
7 N\ Vo

WhengTz < ¢Sy, by noting thag "z < |z, we have

Pr{n*"(Q(q)) = h*" (P(x))]

1 T
ol de
i Vm/a+llall3

T
<1- l cos ™! 4%
T \/m/4 + (qTx)Qm-H

For this one-dimensional functiofi(z) \/% where
a+z

z=q"z,a=m/4andb=2""">2 we know

, a-2"(b/2-1)
f (Z)ZW

One can also check thgt’(z) <0for0 <z < 1,i.e., f(z)
is a concave function. The maximumyfd@t) is attained at

o= ( )1/b _ ( m/2 )2

om+1_9

-m-1
2a
b-2

If z* > ¢Sy, then we need

to usef(cSp) as the bound. O
Therefore, we have obtained, in LSH terminology,
pr=1- 1 cos ! S (29)
7 \Umfar oz
py=1- 1 cosL min{cSp, z*} _|.
T \/m/4+ (min{cSy, z*})*""
(20)
g-m-1
N m/2
z :(2m+1_2) (22)

Theorem 1 allows us to construct data structures with worst

caseO(n” logn) query time guarantees forapproximate
MIPS, wherep = }Zg—”; For any givere < 1, there always
existU < 1 andm such thatp < 1. This way, we obtain
a sublinear query time algorithm for MIPS. Becayses

a function of 2 parameters, the best query time chobses

andm, which minimizes the value gf. For convenience,

we define
lo 1—1C0‘71 . So
o =i Al
U,

min{cSy,z*}

" log(l - %cos‘1 (

)

(22)

\/771/4-*—(mi1f1{cSo,z’*})zmH

See Figure 2 for the plots @f, which also compares the
optimal p values for L2-ALSH in the prior work [23]. The
results show that Sign-ALSH is noticeably better.
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Figure 2: Optimal values gf* (lower is better) with re-
spect to approximation ratiofor different.Sy, obtained by

a grid search over parametdrsandm, given Sy andec.
The curves show that Sign-ALSH (solid curves) is notice-
ably better than L2-ALSH (dashed curves) in terms of their
optimalp* values. The results for L2-ALSH were from the
prior work [23]. For clarity, the results are in two figures.

4.3 Parameter Selection

1
0.97
0.87
0.77

Q 0.67
0.57
0.47

0.3r m=2,U=0.75
2 0
0 1 08 06 04 02 0

C

Figure 3: The solid curves are the optimalalues of Sign-
ALSH from Figure 2. The dashed curves representgthe
values for fixed parametersn = 2 andU = 0.75 (left
panel). Even with fixed parameters, {hdoes not degrade.

Figure 3 presents thg values for(m, U) = (2, 0.75)
We can see that even if we use fixed parameters, the per-



formance would only degrade little. This essentially freeswith the inner products. We can apply sign random projec-
practitioners from the burden of choosing parameters.  tions to hashP(Q(7'(¢))) andQ(P(T(q))).

2m+1

5 Removing Dependency on Norm of Query As 0 < [[T(¢)[3" < U and0 < [[T(2)|3"" < U, itis
not difficult to getp; andp, for Sign-ALSH, without con-

Changing nTorms of the query does not affect theditions on any norms. Simplifying the expression, we get

arg maxzec ¢° «, and hence, in practice for retrieving top- y,q following value of optimap,, (u for unrestricted).
k, normalizing the query should not affect the performance.

But for theoretical purposes, we want the runtime guaran- SoX(U—2)
tee to be independent ¢§||.. Note, both LSH and ALSH log (1 - Lcos! (Wﬁffﬂ))
schemes solve theapproximate instance of the problem, pr = min ! ~ (28)
which requires a thresholsh = ¢* = and an approximation vym, log (1 S R | (CSOX(%) ))
ratio c. These quantities change if we change the norms. " m
We can use the same idea used in [23] to get rid of the norm om+1 m(l-c)

sit. U <——2 meN' and0< U < 1.

of q. Transformation$®> and(@ were precisely meant to re-
move the dependency of correlation on the norms btit
at the same time keeping the inner products same.M.et With this value ofp;;, we can state our main theorem.

be the upper bound on all the norms i = mazec||z)2.

In other words)/ is the radius of the space. Theorem 3 For the problem of-approximate MIPS in a

. _ IS D bounded space, one can construct a data structure having
LetU < 1, define the transformation®,: R~ - R* as O(n”" logn) query time and spac®(n'* ), wherep? <

U 1 is the solution to constraint optimization (28).
T(x)= == (23)

C

Note, for allc < 1, we always havey;, < 1 because the
and transformation®, @ : R? - RP*™ are the same for constraint/2"™" < ™9 js always true for big enough.

. . . 4c
the Sign-ALSH scheme as defined in Eq (15) and (16).  The only assumption for efficiently solving MIPS that we

Given the query; and any data point, observe that the need is that the space is bounded, which is always satisfied

: : for any finite datasetp, depends on/, the radius of the
inner products betweeR(Q(T'(¢))) andQ(P(T(z))) is space. which is expected.

2
P(Q(T(9))"Q(P(T(2))) = ¢" = (%) (24) 6 Random Space Partitioning for Inner

Product
P(Q(T(q))) appends firsin zeros components td(q) In this section, we show that due to the nature of the new
and then m components of the forml/2 — ||¢||*’. transformations® and(@ there is one subtle but surprising

Q(P(T(q))) does the same thing but in a different or- advantage of Sign-ALSH over L2-ALSH.
der. Now we are working inD + 2m dimensions. It is
not difficult to see that the norms dP(Q(T'(¢))) and

Q(P(T(q)))is given by

One popular application of LSH (Locality Sensitive Hash-
ing) is random partitioning of the data for large scale clus-
tering, where similar points map to the same partition (or
) — bucket). Such partitions are very useful in many applica-
1P(Q(T(2)))ll2 = il 17(a)l5 (25)  tions [12]. With classical LSH, we simply us€z) to gen-
- erate partition fore. SincePry (h(x) = h(y)) is high if
1Q(P(T(x)))|l2 = Tt T ()3 (26)  sim(x,y) is high, similar points are likely to go into the
same partition under the usual LSH mapping. For general
The transformations are very asymmetric but we know thaiALSH, this property is lost because of asymmetry.

Itis necessary. In case of ALSH, we only know thaPr(h(P(z)) =
Therefore the correlation or the cosine similarity betweem(Q(y)) is high if sim(x,y) is high. Therefore, given

P(Q(T(q)))andQ(P(T(x)))is x we cannot determine whether to assign partition using
, h(P(.))orh(Q(.)). NeitherPr(h(P(z)) = h(P(y)) nor
q'w % (%) Pry(h(Q(z)) = h(Q(y)) strictly indicates high value of
Corr = — — (27 sim(x,y) in general. Therefore, partitioning property of
\/% +[IT(a)ll3 \/% +[|T(2)|3 classical LSH does not hold anymore with general ALSHSs.
. . However for the case of inner products using Sign-ALSH,
Note [T(q)ll3 ,lIT ()5 < U < 1, therefore both  there is a subtle observation which allows us to construct

||T(q)||§m+1 <';1nd||T(:c)||§m+1 converge to zero at a tower the required assignment function, where pairs of points
rate and we get approximate monotonicity of correlationwith high inner products are more likely to get mapped in



the same partition while pairs with low inner products are7.1 Datasets

more likely to map into different partitions. We use three publicly available dataset MNIST, WEB-
In case of Sign-ALSH for MIPS, we have the transforma-spaM and RCV1 for evaluations. For each of the three
tions P(Q(T'(x))) andQ(P(T'(x))) given by dataset we generate two independent partitions, the query
P(Q(T(2))) = [2:1/2 — |[T(2)| % ..: 1/2 — |T(2) 2" ,0,...,0] Setand the train set. Each_e]ement in the query set is used
9 ,m. for querying, while the training set serves as the collec-
QP(T(2))) = [;0,-..,0,1/2 = IT(@)ll2; s 1/2 = IT®)ll2 ). tion ¢ that will be searched for MIPS. The statistics of the
After this transformation, we multiply the generatéd+ dataset and the partitions are summarized in Table 1
2m dimensional vector by a random vectore RP+2m

whose entries are i.i.d. Gaussian followed by taking the[™ Dataset | Dimension| Query size| Train size
w € RP b; ande¢; are numbers. All components ofare ’ ’

i.i.d. from N(0,1). With this notation, we can write the WEBSPAM | 16,609,143 = 5,000 100,000
final Sign-ALSH as RCV1 47,236 5,000 100,000

Table 1: Datasets used for evaluations.

si(1/2 - |T(2)[2))

Mz

Sign x = Sign(w  T(z) +
W39 (P(Q(T(x)))) = Sign(w" T(x) 7.2 Evaluations

7

I
e

In this section, we show how the ranking of the two ALSH
schemes, L2-ALSH and Sign-ALSH, correlates with inner
products. Given a query vectgr we compute the topo

gold standard elements based on the actual inner products
q'x, Yz € C, here our collection is the train set. We then
generates different hash codes of the quepyand all the
elements: € C and then compute

R"(Q(P(T(2)))) = Sign(w' T () + ;ti(1/2 - |T@)IE))

The key observation here is that’s” (P(Q(T'(x)))) does
not depend ont; and A5 (Q(P(T(z)))) does not de-
pend ons;. If we define

hu () = Sign(w' T(x) + ). i (1/2= [T @) ) (29)
i=1
whereq; are sampled i.i.d. froniV(0,1) for everyz in-

dependently of everything else. Themder the random-
ization of w, it is not difficult to show that

K
Matches, = ; 1(h(Q(q)) = he(P(2))), (30)

where 1 is the indicator function and the subscripis

_ _ Sign _ pSign used to distinguish independent draws/of Based on
Pry(hw(z) = hw(y)) = Pr(h"(P(x)) = h>*"(Q(y))) Matches, we rank all the elements. Ideally, for a better
for anyz, y. The termPr(h%%"(P(x)) = k9" (Q(y)))  hashing scheme\latches, should be higher for element
satisfies the LSH like property and therefore, in any parti-;: having higher inner products with the given queryrhis
tions usingh.,,, points with high inner products are more procedure generates a sorted list of all the items for a given
likely to be together. Thus,, (z) is the required assign- query vector; corresponding to the each of the two asym-
ment. Note},, is not technically an LSH because we are metric hash functions under consideration.

randomly samplingy; for all « independently. The con-
struction ofh,, using independent randomizations could beFOr L2-ALSH, we used the same parameters used and rec-

of separate interest. To the best of our knowledge, this igmmended n [23]. For_ Slgn-ALSH, we u.sed the recom-
the first example of LSH like partition using hash function mended choice shown in Section 4.3, whicfiis= 0.75,
with independent randomization for every data point. m = 2. Note that Sign-ALSH does not have parameter

We compute precision and recall of the tbp-gold stan-
dard elements, obtained from the sorted list based on
Matches,. To compute this precision and recall, we start
at the top of the ranked item list and walk down in order.
fSuppose we are at thé" ranked item, we check if this ele-
ment belongs to the gold standard topkist. If it is one of

H’le top40 gold standard elements, then we increment the
count ofrelevant seemy 1, else we move té + 1. By k"
step, we have already seérelements, so theotal items
seenis k. The precision and recall at that point are

The functionh,, is little subtle here, we samplei.i.d from
Gaussian and use the saméor all 2, but while computing
h., We useq; independent of everything for evesy The
probability is under the randomization af and indepen-
dence of allo; ensures the asymmetry. We are not sure i
such construction is possible with L2-ALSH. For LSH par-
titions with binary data, the idea used here can be applie
on asymmetric minwise hashing [24].

7 Ranking Evaluations

In [23], the L2-ALSH scheme was shown to outperform o
other reasonable heuristics in retrieving maximum inner £’recision =
products. Since our proposal is an improvement over L2-

ALSH, in this section we first present comparisons with\We show performance fak" e {64,128,256,512}. Note
L2-ALSH, in particular on ranking experiments. that it is important to balance both precision and recalk Th

relevant seen
I{: b)

relevant seen
Recall = 0
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Figure 4: Precision-Recall curves (higher is better). Wajgare L2-ALSH (using parameters recommended in [23]) with
our proposed Sign-ALSH usingn = 2,U = 0.75) for retrieving top10 elements. Sign-ALSH is noticeably better.

method which obtains higher precision at a given recall isnner product. Our aim is to estimate the computational
superior. Higher precision indicates higher ranking of thesaving, in finding the maximum inner product, with Sign-
top-10 inner products which is desirable. We report aver-ALSH compared to the existing scheme L2-ALSH. In ad-
aged precisions and recalls. dition to L2-ALSH which is a hashing scheme, there is an
The plots for all the three datasets are shown in Figure 4§1nother tree based space part|t!op|ng method [21] for solv
. Ing MIPS. Although, in theory, it is know that tree based
We can clearly see, that our proposed Sign-ALSH scheme : )
. L : .y methods perform poorly [25] due to their exponential de-
gives significantly higher precision recall curves than the endence on the dimensionality. it is still imoortant to un-
L2-ALSH scheme, indicating better correlation of top in- P Y, P

ner products with Sign-ALSH compared to L2-ALSH. The derstand the Impact of such dependency In practice. un-
. fortunately no empirical comparison between hashing and
results are consistent across datasets.

tree based methods exists for the problem of MIPS in the
literature. To provide such a comparison, we also consider
tree based space partitioning method [21] for evaluations.
We use the same three datasets as described in Section 7.1.

8 Comparisons of Hashing Based and Tree
Based Methods for MIPS

We have shown in the previous Section that Sign-ALSHTree based and hashing based methodologies are very dif-

outperforms L2-ALSH in ranking evaluations. In this Sec- ferent in nature. The major difference is in the stopping
tion, we consider the actual task of finding the maximum



criteria. Hashing based methods create buckets and stqp Sign-ALSH | L2-ALSH | Cone Trees
the search once they find a good enough point, they may MNIST 7,944 9,971 11,202
not succeed with some probability. On the other hand, tree WEBSPAM 2,866 3,813 22,467
based methods use branch and bound criteria to stop ex- RCV1 9,951 11,883 38,162

ploring further. So it is possible that a tree based algo-'I'able 2: Average number of inner products evaluated per
ithm finds th timal point but conti t lore fur- i . ;
ritm fincs e optimal point BUR SOMINUES 1o explore ur.query by different MIPS algorithms. Both Sign-ALSH and

ther requiring more computations. The usual stopping cri- . :
teria thus makes tree based methods unnecessarily expeﬁ'ALSH [23] outperform cone trees [21]. Sign-ALSH is

sive compared to hashing based methods where the criter ways superior compared to L2-ALSH for MIPS.
is to stop after finding a good point. Therefore, to ensure
fair comparisons, we allow the tree based method to sto . .
the evaluations immediately once the algorithm finds the=XcePt on MNIST dataset, hashing based methods are sig-
maximum inner product and prevent it from exploring fur- nificantly superior, which is also not surprising because

ther. Also, in case when hashing based algorithm fails tMNIST is an image dataset having low intrinsic dimen-
find the best inner product we resort to the full linear scarSionality. Among the two hashing schemes Sign-ALSH is

and penalize the hashing based algorithm for not succee@Ways better than L2-ALSH, which verifies our theoreti-

ing. All this is required to ensure that tree based algorithnf@! findings and supports our arguments in favor of Sign-
is not at any disadvantage compare to hashing methods. ALSH over L2-ALSH for MIPS.

We implemented the bucketing scheme with Sign-ALSH9 Conclusion

and Li—Al;lsr.brhedchke';ir:lg scheme re_quirets creatgwg].he MIPS (maximum inner product search) problem has
many has ha €s during the preprocessn:g sage.h huﬁumerous important applications in machine learning,
INg query phase, given a query, we compute many has %satabases, and information retrieval. [23] developed the

of the query and probe appropriate buckets in each tableI\‘ramework of Asymmetric LSH and provided an explicit

Please refer [1] for more details on the process. We use th§cheme (L2-ALSH) for approximate MIPS in sublinear
same fixed parameters for all the evaluations, i.e., (m=

. A _ Zime. L2-ALSH uses L2-LSH as a subroutine which uses

2[255) for S|gn-ALinapd g_gl"hu_to'tsls, r'265) fofr.L2- suboptimal quantizations. In this study, we present amothe

d as reccljmmgr:) € r']n [h']. i ota r]:um ero Innerasymmetric transformation scheme (Sign-ALSH) which

pro ucts evaluated by a hashing sc €mME, Tor a given qUery, yerts the problem of maximum inner products into the
is the total number of hash computation for the query plu

the total ber of points retrieved f the hash tables. | roblem of maximum correlation search, which is subse-

€ fotalnumber ot points TErieved from the Nasn tab'es. uently solved by sign random projections, thereby avoid-
rare cases, with very small probability, if the hash tabtes a -

. . . ing the use of L2-LSH.

unable to retrieve the gold standard maximum inner prod-
uct, we resort to linear scan and also include the total numTheoretical analysis and experimental study demonstrate
ber of inner products computed during the linear scan. WeahatSign-ALSH can be noticeably more advantageous than
stop as soon as we reach the gold standard point. L2-ALSH . The new transformations with Sign-ALSH can

. . _ be adapted to generate LSH like random data partitions
We implemented Algorithm 5 from [21], which is the best which is very useful for large scale clustering. Such an

performing algorithm as shown in the evaluations. Fo.radaptation is not possible with existing L2-ALSH. This

this al_g_onthm, we need to select one parameter Wh'Ch 'Wvas a rather unexpected advantage of the proposed Sign-
the minimum number of elements in the node required forALSH over L2-ALSH. We also establish by experiments

splitting. We found that on all the three datasets the Valu?hat hashing based algorithms are superior to tree based
of 100 for this parameter works the best amgs§0, 200, space partitioning methods for MIPS

100, 5G. Therefore, we use 100 in all our experiments.
The total number of inner products evaluated by tree basetl should be noted that for MIPS over binary data our recent
algorithm is the total number of points reported plus the to-work asymmetric minwise hashing [24] should be used.
tal number of nodes visited, where we compute the branchVe showed that for binary domain asymmetric minwise
and bound constraint. Again we stop the search process &@shing is both empirically and provably superior, please
soon as we reach the point with gold standard maximunsee [24] for more details.

inner product. As argued, we need this common stoppin

condition to compare with hashing based methods, wheravO Acknowledgement
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