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Abstract
Recently we showed that the problem of Max-
imum Inner Product Search (MIPS) is efficient
and it admits provably sub-linear hashing al-
gorithms. In [23], we used asymmetric trans-
formations to convert the problem of approxi-
mate MIPS into the problem of approximate near
neighbor search which can be efficiently solved
using L2-LSH. In this paper, we revisit the prob-
lem of MIPS and argue that the quantizations
used in L2-LSH is suboptimal for MIPS com-
pared to signed random projections (SRP) which
is another popular hashing scheme for cosine
similarity (or correlations). Based on this obser-
vation, we provide different asymmetric transfor-
mations which convert the problem of approxi-
mate MIPS into the problem amenable to SRP
instead of L2-LSH. An additional advantage of
our scheme is that we also obtain LSH type space
partitioning which is not possible with the exist-
ing scheme. Our theoretical analysis shows that
the new scheme is significantly better than the
original scheme for MIPS. Experimental evalu-
ations strongly support the theoretical findings.
In addition, we also provide the first empirical
comparison that shows the superiority of hashing
over tree based methods [21] for MIPS.

1 Introduction
In this paper, we revisit the problem ofMaximum Inner
Product Search (MIPS), which was studied in our recent
work [23]. In this work we present the first provably fast
algorithm for MIPS, which was considered hard [21, 15].
Given an input query pointq ∈ RD, the task of MIPS is to
find p ∈ S, whereS is a giant collection of sizeN , which
maximizes (approximately) theinner product qT p:

p = argmax
x∈S qTx (1)

The MIPS problem is related to the problem ofnear neigh-
bor search (NNS). For example, L2-NNS

p = argmin
x∈S ∣∣q − x∣∣22 = argmin

x∈S (∣∣x∣∣22 − 2qTx) (2)

or, correlation-NNS

p = argmax
x∈S

qTx∥q∥∥x∥ = argmax
x∈S

qTx∥x∥ (3)

These three problems are equivalent if the norm of ev-
ery elementx ∈ S is constant. Clearly, the value of the
norm∣∣q∣∣2 has no effect for the argmax. In many scenarios,
MIPS arises naturally at places where the norms of the el-
ements inS have significant variations [15]. As reviewed
in our prior work [23], examples of applications of MIPS
include recommender system [16, 5, 15], large-scale object
detection with DPM [9, 7, 14, 14], structural SVM [7], and
multi-class label prediction [21, 15, 25].

Asymmetric LSH (ALSH) : Locality Sensitive Hashing
(LSH) [13] is popular in practice for efficiently solving
NNS. In our prior work [23], the concept of “asymmet-
ric LSH” (ALSH) was formalized and one can transform
the input queryQ(p) and data in the collectionP (x) in-
dependently, where the transformationsQ andP are dif-
ferent. In [23] we developed a particular set of transfor-
mations to convert MIPS into L2-NNS and then solved the
problem by standard hashing i.e. L2-LSH [6]. In this pa-
per, we name the scheme in [23] asL2-ALSH . Later we
showed in [24] the flexibility and the power of the asym-
metric framework developed in [23] by constructing a prov-
ably superior scheme for binary data. Prior to our work,
asymmetry was applied for hashing higher order similar-
ity [22], sketching [8], hashing different subspaces [3], and
data dependent hashing [20] which unlike locality sensi-
tive hashing do not come with provable runtime guarantees.
Explicitly constructing asymmetric transformation tailored
for a particular similarity, given an existing LSH, was the
first observation made in [23] due to which MIPS, a sought
after problem, became provably fast and practical.

It was argued in [17] that the quantizations used in tradi-
tional L2-LSH is suboptimal and it hurts the variance of the
hashes. This raises a natural question that L2-ALSH which
uses L2-LSH as a subroutine for solving MIPS could be
suboptimal and there may be a better hashing scheme. We
provide such a scheme in this work.



Our contribution : Based on the observation that the quan-
tizations used in traditional L2-LSH is suboptimal, in this
study, we propose another scheme for ALSH, by devel-
oping a new set of asymmetric transformations to convert
MIPS into a problem of correlation-NNS, which is solved
by “signed random projections” (SRP) [11, 4]. The new
scheme thus avoids the use of L2-LSH. We name this new
scheme asSign-ALSH. Our theoretical analysis and exper-
imental study show that Sign-ALSH is more advantageous
than L2-ALSH for MIPS.

For inner products asymmetry is unavoidable. In case of
L2-ALSH, due to asymmetry, we loose the capability to
generate LSH like random data partitions for efficient clus-
tering [12]. We show that for inner products with Sign-
ALSH there is a novel formulation that allows us to gen-
erate such partitions for inner products. With existing L2-
ALSH such formulation does not work.

Apart from providing a better hashing scheme, we also pro-
vide comparisons of the Sign-ALSH with cone trees [21].
Our empirical evaluations on three real datasets show that
hashing based methods are superior over the tree based
space partitioning methods. Since there is no existing com-
parison of hashing based methods with tree based methods
for the problem of MIPS, we believe that the results shown
in this work will be very valuable for practitioners.

2 Review: Locality Sensitive Hashing (LSH)
The problem of efficiently finding nearest neighbors has
been an active research since the very early days of com-
puter science [10]. Approximate versions of the near neigh-
bor search problem [13] were proposed to break the linear
query time bottleneck. The following formulation for ap-
proximate near neighbor search is often adopted.

Definition: (c-Approximate Near Neighbor orc-NN)
Given a set of points in aD-dimensional spaceRD, and
parametersS0 > 0, δ > 0, construct a data structure which,
given any query pointq, does the following with probabil-
ity 1 − δ: if there exists anS0-near neighbor ofq in S, it
reports somecS0-near neighbor ofq in S.

Locality Sensitive Hashing(LSH) [13] is a family of func-
tions, with the property that more similar items have a
higher collision probability. LSH trades off query time with
extra (one time) preprocessing cost and space. Existence
of an LSH family translates into provably sublinear query
time algorithm for c-NN problems.

Definition: (Locality Sensitive Hashing (LSH))A family
H is called(S0, cS0, p1, p2)-sensitive if, for any two points
x, y ∈ RD, h chosen uniformly fromH satisfies:

• if Sim(x, y) ≥ S0 thenPrH(h(x) = h(y)) ≥ p1
• if Sim(x, y) ≤ cS0 thenPrH(h(x) = h(y)) ≤ p2

For efficient approximate nearest neighbor search,p1 > p2
andc < 1 is needed.

Fact 1: Given a family of(S0, cS0, p1, p2) -sensitive hash
functions, one can construct a data structure forc-NN
with O(nρ logn) query time and spaceO(n1+ρ), where
ρ = log p1

log p2

< 1.

LSH is a generic framework and an implementation of LSH
requires a concrete hash function.

2.1 LSH for L2 distance

[6] presented an LSH family forL2 distances. Formally,
given a fixed window sizer, we sample a random vectora
with each component from i.i.d. normal, i.e.,ai ∼N(0,1),
and a scalarb generated uniformly at random from[0, r].
The hash function is defined as:

hL2
a,b(x) = ⌊aTx + br

⌋ (4)

where⌊⌋ is the floor operation. The collision probability
under this scheme can be shown to be

Pr(hL2
a,b(x) = hL2

a,b(y)) (5)

= 1 − 2Φ(−r/d) − 2√
2π(r/d) (1 − e−(r/d)

2/2) = Fr(d)
whereΦ(x) = ∫ x

−∞ 1√
2π

e−x
2

2 dx andd = ∣∣x − y∣∣2 is the
Euclidean distance between the vectorsx andy.

2.2 LSH for correlation

Another popular LSH family is the so-called “sign random
projections” [11, 4]. Again, we choose a random vectora

with ai ∼ N(0,1). The hash function is defined as:

hSign(x) = sign(aTx) (6)

And collision probability is

Pr(hSign(x) = hSign(y)) = 1 − 1

π
cos−1 ( xT y∥x∥∥y∥) (7)

This scheme is known assigned random projections (SRP).

3 Review of ALSH for MIPS and L2-ALSH

In [23], it was shown that the framework of locality sen-
sitive hashing is restrictive for solving MIPS. The inherent
assumption of the same hash function for both the transfor-
mation as well as the query was unnecessary in the classi-
cal LSH framework and it was the main hurdle in finding
provable sub-linear algorithms for MIPS with LSH. For the
theoretical guarantees of LSH to work there was no require-
ment of symmetry. Incorporating asymmetry in the hashing
schemes was the key in solving MIPS efficiently.

Definition [23]: (AsymmetricLocality Sensitive Hashing
(ALSH)) A family H, along with the two vector func-
tionsQ ∶ RD ↦ R

D′ (Query Transformation ) andP ∶



R
D ↦ R

D′ (Preprocessing Transformation), is called(S0, cS0, p1, p2)-sensitive if for a givenc-NN instance with
queryq, and the hash functionh chosen uniformly fromH
satisfies the following:

• if Sim(q, x) ≥ S0 thenPrH(h(Q(q))) = h(P (x))) ≥ p1

• if Sim(q, x) ≤ cS0 thenPrH(h(Q(q)) = h(P (x))) ≤ p2

Herex is any point in the collectionS.

Note that the query transformationQ is only applied on
the query and the pre-processing transformationP is ap-
plied to x ∈ S while creating hash tables. By letting
Q(x) = P (x) = x, we can recover the vanilla LSH. Us-
ing different transformations (i.e.,Q ≠ P ), it is possible
to counter the fact that self similarity is not highest with
inner products which is the main argument of failure of
LSH. We just need the probability of the new collision
event{h(Q(q)) = h(P (y))} to satisfy the conditions of
definition of ALSH forSim(q, y) = qT y.

Theorem 1 [23] Given a family of hash functionH and
the associated query and preprocessing transformationsP

andQ, which is(S0, cS0, p1, p2) -sensitive, one can con-
struct a data structure forc-NN with O(nρ logn) query
time and spaceO(n1+ρ), whereρ = logp1

logp2

.

[23] provided an explicit construction of ALSH, which we
call L2-ALSH . Without loss of generality, one can assume

∣∣xi∣∣2 ≤ U < 1, ∀xi ∈ S (8)

for someU < 1. If this is not the case, then we can always
scale down the norms without altering theargmax. Since
the norm of the query does not affect theargmax in MIPS,
for simplicity it was assumed∣∣q∣∣2 = 1. This condition
can be removed easily (see Section 5 for details). In L2-
ALSH, two vector transformationsP ∶ RD ↦ R

D+m and
Q ∶ RD ↦ R

D+m are defined as follows:

P (x) = [x; ∣∣x∣∣22 ; ∣∣x∣∣42 ; ....; ∣∣x∣∣2m2 ] (9)

Q(x) = [x; 1/2; 1/2; ....; 1/2], (10)

where [;] is the concatenation.P (x) appendsm scalers of
the form∣∣x∣∣2i2 at the end of the vectorx, while Q(x) simply
appendsm “1/2” to the end of the vectorx. By observing

∣∣P (xi)∣∣22 = ∣∣xi∣∣22 + ∣∣xi∣∣42 + ... + ∣∣xi∣∣2m2 + ∣∣xi∣∣2m+12∣∣Q(q)∣∣22 = ∣∣q∣∣22 +m/4 = 1 +m/4
Q(q)TP (xi) = qTxi + 1

2
(∣∣xi∣∣22 + ∣∣xi∣∣42 + ... + ∣∣xi∣∣2m2 )

one can obtain the following key equality:

∣∣Q(q) − P (xi)∣∣22 = (1 +m/4) − 2qTxi + ∣∣xi∣∣2m+12 (11)

Since∣∣xi∣∣2 ≤ U < 1, we have∣∣xi∣∣2m+1 → 0 at the tower
rate (exponential to exponential). Thus, as long asm is not

too small (e.g.,m ≥ 3 would suffice), we have

argmax
x∈S qTx ≃ argmin

x∈S ∣∣Q(q) −P (x)∣∣2 (12)

This scheme is the first connection between solving un-
normalized MIPS and approximate near neighbor search.
TransformationsP andQ, when norms are less than 1, pro-
vide correction to the L2 distance∣∣Q(q)−P (xi)∣∣2 making
it rank correlate with the (un-normalized) inner product.

3.1 Intuition for the Better Scheme : Why Signed
Random Projections (SRP)?

Recently in [17, 18], it was observed that the quantization
of random projections used by traditional L2-LSH scheme
is not desirable when the data is normalized and in fact the
shift b in Eq. (4) hurts the variance leading to less informa-
tive hashes. The sub-optimality of L2-LSH hints towards
existence of better hashing functions for MIPS.

As previously argued, when the data are normalized then
both L2-NNS and correlation-NNS are equivalent to MIPS.
Therefore, for normalized data we can use either L2-LSH
which is popular LSH for L2 distance or SRP which is pop-
ular LSH for correlation to solve MIPS directly. This raises
a natural question ”Which will perform better ?”.

If we assume that the data are normalized, i.e., all the norms
are equal to 1, then both SRP and L2-LSH are monotonic
in the inner product and their correspondingρ values for
retrieving max inner product can be computed as

ρSRP =
log (1 − 1

π
cos−1(S0))

log (1 − 1
π
cos−1(cS0)) (13)

ρL2−LSH =
log (Fr(√2 − 2S0))
log (Fr(√2 − 2cS0)) (14)

where the functionFr(.) is given by Eq. (5). The
values of ρSRP and ρL2−LSH for different S0 ={0.1,0.2, ..,0.9,0.95} with respect to approximation ratio
c is shown in Figure 1. We use standard recommendation of
r = 2.5 for L2-LSH. We can clearly see thatρSRP is consis-
tently better thanρL2−LSH given anyS0 andc. Thus, for
MIPS with normalized data L2-LSH type of quantization
given by equation 5 seems suboptimal. It is clear that when
the data is normalized then SRP is always a better choice
for MIPS as compared to L2-LSH. This motivates us to ex-
plore the possibility of better hashing algorithm for general
(unnormalized) instance of MIPS using SRP, which will
have impact in many applications as pointed out in [23].

Asymmetric transformations give us enough flexibility to
modify norms without changing inner products. The trans-
formations provided in [23] used this flexibility to convert
MIPS to standard near neighbor search inL2 space for
which we have standard hash functions. For binary data,
[24] showed a strictly superior construction, the asymmet-
ric minwise hashing, which outperforms all ALSHs made
for general MIPS.
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Figure 1: Values ofρSRP andρL2−LSH (Lower is better)
for normalized data. It is clear that SRP is more suited for
retrieving inner products when the data is normalized

Signed random projections are popular hash functions
widely adopted for correlation or cosine similarity. We use
asymmetric transformations to convert approximate MIPS
into approximate maximum correlation search and thus we
avoid the use of sub-optimal L2-LSH. The collision prob-
ability of the hash functions is one of the key constituents
which determine the efficiency of the obtained ALSH al-
gorithm. We show that our proposed transformation with
SRP is better suited for ALSH compared to the existing
L2-ALSH for solving general MIPS instance.

4 The New Proposal: Sign-ALSH

4.1 From MIPS to Correlation-NNS

We assume for simplicity that∣∣q∣∣2 = 1 as the norm of the
query does not change the ordering, we show in the next
section how to get rid of this assumption. Without loss of
generality let∣∣xi∣∣2 ≤ U < 1, ∀xi ∈ S as it can always be
achieved by scaling the data by large enough number. We
define two vector transformationsP ∶ RD

↦ R
D+m and

Q ∶ RD
↦ R

D+m as follows:

P (x) = [x; 1/2 − ∣∣x∣∣22 ; 1/2 − ∣∣x∣∣42 ; ....; 1/2 − ∣∣x∣∣2m2 ]
(15)

Q(x) = [x; 0; 0; ....; 0], (16)

Using ∣∣Q(q)∣∣22 = ∣∣q∣∣22 = 1, Q(q)TP (xi) = qTxi, and

∣∣P (xi)∣∣22
= ∣∣xi∣∣22 + 1/4 + ∣∣xi∣∣42 − ∣∣xi∣∣22 + 1/4 + ∣∣xi∣∣82 − ∣∣xi∣∣42 + ...
+ 1/4 + ∣∣xi∣∣2m+12 − ∣∣xi∣∣2m2
=m/4 + ∣∣xi∣∣2m+12

we obtain the following key equality:

Q(q)TP (xi)∥Q(q)∥2∥P (xi)∥2 = qTxi√
m/4 + ∣∣xi∣∣2m+12

(17)

The term∣∣xi∣∣2m+1 → 0, again vanishes at the tower rate.
This means we have approximately

argmax
x∈S qTx ≃ argmax

x∈S
Q(q)TP (xi)∥Q(q)∥2∥P (xi)∥2 (18)

This provides another solution for solving MIPS using
known methods for approximate correlation-NNS. Asym-
metric transformationsP andQ provide a lot of flexibility.
Note that transformationsP andQ are not unique for this
task and there are other possibilities [2, 19]. It should be
further noted that even scaling data and query differently is
asymmetry in a strict sense because it changes the distribu-
tion of the hashes. Flexibility in choosing the transforma-
tionsP andQ allow us to use signed random projections
and thereby making possible to avoid suboptimal L2-LSH.

4.2 Fast MIPS Using Sign Random Projections

Eq. (18) shows that MIPS reduces to the standard approxi-
mate near neighbor search problem which can be efficiently
solved by sign random projections, i.e.,hSign (defined by
Eq. (6)). Formally, we can state the following theorem.

Theorem 2 Given ac-approximate instance of MIPS, i.e.,
Sim(q, x) = qTx, and a queryq such that∣∣q∣∣2 = 1 along
with a collectionS having∣∣x∣∣2 ≤ U < 1 ∀x ∈ S. LetP and
Q be the vector transformations defined in Eq. (15) and Eq.
(16), respectively. We have the following two conditions for
hash functionhSign (defined by Eq. (6))

• if qTx ≥ S0 then

Pr[hSign(Q(q)) = hSign(P (x))]
≥ 1 − 1

π
cos−1 ⎛⎝ S0√

m/4 +U2m+1

⎞⎠
• if qTx ≤ cS0 then

Pr[hSign(Q(q)) = hSign(P (x))]
≤ 1 − 1

π
cos−1

⎛⎜⎝
min{cS0, z

∗}√
m/4 + (min{cS0, z∗})2m+1

⎞⎟⎠
wherez∗ = ( m/2

2m+1−2)2−m−1 .



Proof: WhenqTx ≥ S0, we have, according to Eq. (7)

Pr[hSign(Q(q)) = hSign(P (x))]
= 1 − 1

π
cos−1

⎛⎜⎝
qTx√

m/4 + ∣∣x∣∣2m+12

⎞⎟⎠
≥ 1 − 1

π
cos−1 ⎛⎝ qTx√

m/4 +U2m+1

⎞⎠
WhenqTx ≤ cS0, by noting thatqTx ≤ ∥x∥2, we have

Pr[hSign(Q(q)) = hSign(P (x))]
= 1 − 1

π
cos−1

⎛⎜⎝
qTx√

m/4 + ∣∣x∣∣2m+12

⎞⎟⎠
≤ 1 − 1

π
cos−1 ⎛⎝ qTx√

m/4 + (qTx)2m+1
⎞⎠

For this one-dimensional functionf(z) = z√
a+zb

, where

z = qTx, a =m/4 andb = 2m+1 ≥ 2, we know

f ′(z) = a − zb (b/2 − 1)(a + zb)3/2
One can also check thatf ′′(z) ≤ 0 for 0 < z < 1, i.e.,f(z)
is a concave function. The maximum off(z) is attained at

z∗ = ( 2a
b−2)1/b = ( m/2

2m+1−2)2−m−1 If z∗ ≥ cS0, then we need

to usef(cS0) as the bound. ◻
Therefore, we have obtained, in LSH terminology,

p1 = 1 − 1

π
cos−1 ⎛⎝ S0√

m/4 +U2m+1

⎞⎠ (19)

p2 = 1 − 1

π
cos−1

⎛⎜⎝
min{cS0, z

∗}√
m/4 + (min{cS0, z∗})2m+1

⎞⎟⎠ ,
(20)

z∗ = ( m/2
2m+1 − 2)

2
−m−1

(21)

Theorem 1 allows us to construct data structures with worst
caseO(nρ logn) query time guarantees forc-approximate
MIPS, whereρ = log p1

log p2

. For any givenc < 1, there always
existU < 1 andm such thatρ < 1. This way, we obtain
a sublinear query time algorithm for MIPS. Becauseρ is
a function of 2 parameters, the best query time choosesU

andm, which minimizes the value ofρ. For convenience,
we define

ρ∗ =min
U,m

log(1 − 1
π
cos−1 ( S0√

m/4+U2m+1
))

log(1 − 1
π
cos−1 ( min{cS0,z∗}√

m/4+(min{cS0,z∗})2m+1
))
(22)

See Figure 2 for the plots ofρ∗, which also compares the
optimalρ values for L2-ALSH in the prior work [23]. The
results show that Sign-ALSH is noticeably better.
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Figure 2: Optimal values ofρ∗ (lower is better) with re-
spect to approximation ratioc for differentS0, obtained by
a grid search over parametersU andm, givenS0 and c.
The curves show that Sign-ALSH (solid curves) is notice-
ably better than L2-ALSH (dashed curves) in terms of their
optimalρ∗ values. The results for L2-ALSH were from the
prior work [23]. For clarity, the results are in two figures.

4.3 Parameter Selection
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Figure 3: The solid curves are the optimalρ values of Sign-
ALSH from Figure 2. The dashed curves represent theρ

values for fixed parameters:m = 2 andU = 0.75 (left
panel). Even with fixed parameters, theρ does not degrade.

Figure 3 presents theρ values for(m, U) = (2, 0.75)
We can see that even if we use fixed parameters, the per-



formance would only degrade little. This essentially frees
practitioners from the burden of choosing parameters.

5 Removing Dependency on Norm of Query

Changing norms of the query does not affect the
argmaxx∈C qTx, and hence, in practice for retrieving top-
k, normalizing the query should not affect the performance.
But for theoretical purposes, we want the runtime guaran-
tee to be independent of∣∣q∣∣2. Note, both LSH and ALSH
schemes solve thec-approximate instance of the problem,
which requires a thresholdS0 = q

Tx and an approximation
ratio c. These quantities change if we change the norms.
We can use the same idea used in [23] to get rid of the norm
of q. TransformationsP andQ were precisely meant to re-
move the dependency of correlation on the norms ofx but
at the same time keeping the inner products same. LetM

be the upper bound on all the norms i.e.M =maxx∈C ∣∣x∣∣2.
In other wordsM is the radius of the space.

LetU < 1, define the transformations,T ∶ RD
→ R

D as

T (x) = Ux

M
(23)

and transformationsP,Q ∶ RD
→ R

D+m are the same for
the Sign-ALSH scheme as defined in Eq (15) and (16).

Given the queryq and any data pointx, observe that the
inner products betweenP (Q(T (q))) andQ(P (T (x))) is

P (Q(T (q)))TQ(P (T (x))) = qTx × ( U2

M2
) (24)

P (Q(T (q))) appends firstm zeros components toT (q)
and then m components of the form1/2 − ∣∣q∣∣2i .
Q(P (T (q))) does the same thing but in a different or-
der. Now we are working inD + 2m dimensions. It is
not difficult to see that the norms ofP (Q(T (q))) and
Q(P (T (q))) is given by

∣∣P (Q(T (q)))∣∣2 =√m

4
+ ∣∣T (q)∣∣2m+12 (25)

∣∣Q(P (T (x)))∣∣2 =√m

4
+ ∣∣T (x)∣∣2m+12 (26)

The transformations are very asymmetric but we know that
it is necessary.

Therefore the correlation or the cosine similarity between
P (Q(T (q))) andQ(P (T (x))) is

Corr =
qTx × ( U2

M2 )√
m
4
+ ∣∣T (q)∣∣2m+12

√
m
4
+ ∣∣T (x)∣∣2m+12

(27)

Note ∣∣T (q)∣∣2m+12 , ∣∣T (x)∣∣2m+12 ≤ U < 1, therefore both∣∣T (q)∣∣2m+12 and ∣∣T (x)∣∣2m+12 converge to zero at a tower
rate and we get approximate monotonicity of correlation

with the inner products. We can apply sign random projec-
tions to hashP (Q(T (q))) andQ(P (T (q))).
As 0 ≤ ∣∣T (q)∣∣2m+12 ≤ U and0 ≤ ∣∣T (x)∣∣2m+12 ≤ U , it is
not difficult to getp1 andp2 for Sign-ALSH, without con-
ditions on any norms. Simplifying the expression, we get
the following value of optimalρu (u for unrestricted).

ρ∗u = min
U,m,

log(1 − 1
π
cos−1 ( S0×( U

2

M2
)

m

4
+U2m+1

))
log(1 − 1

π
cos−1 ( cS0×( 4U2

M2
)

m
)) (28)

s.t. U2
m+1

<
m(1 − c)

4c
, m ∈ N+, and0 < U < 1.

With this value ofρ∗u, we can state our main theorem.

Theorem 3 For the problem ofc-approximate MIPS in a
bounded space, one can construct a data structure having
O(nρ∗

u logn) query time and spaceO(n1+ρ∗
u), whereρ∗u <

1 is the solution to constraint optimization (28).

Note, for all c < 1, we always haveρ∗u < 1 because the
constraintU2

m+1

<
m(1−c)

4c
is always true for big enoughm.

The only assumption for efficiently solving MIPS that we
need is that the space is bounded, which is always satisfied
for any finite dataset.ρ∗u depends onM , the radius of the
space, which is expected.

6 Random Space Partitioning for Inner
Product

In this section, we show that due to the nature of the new
transformationsP andQ there is one subtle but surprising
advantage of Sign-ALSH over L2-ALSH.

One popular application of LSH (Locality Sensitive Hash-
ing) is random partitioning of the data for large scale clus-
tering, where similar points map to the same partition (or
bucket). Such partitions are very useful in many applica-
tions [12]. With classical LSH, we simply useh(x) to gen-
erate partition forx. SincePrH(h(x) = h(y)) is high if
sim(x, y) is high, similar points are likely to go into the
same partition under the usual LSH mapping. For general
ALSH, this property is lost because of asymmetry.

In case of ALSH, we only know thatPr(h(P (x)) =
h(Q(y)) is high if sim(x, y) is high. Therefore, given
x we cannot determine whether to assign partition using
h(P (.)) orh(Q(.)). NeitherPr(h(P (x)) = h(P (y)) nor
PrH(h(Q(x)) = h(Q(y)) strictly indicates high value of
sim(x, y) in general. Therefore, partitioning property of
classical LSH does not hold anymore with general ALSHs.
However for the case of inner products using Sign-ALSH,
there is a subtle observation which allows us to construct
the required assignment function, where pairs of points
with high inner products are more likely to get mapped in



the same partition while pairs with low inner products are
more likely to map into different partitions.

In case of Sign-ALSH for MIPS, we have the transforma-
tionsP (Q(T (x))) andQ(P (T (x))) given by

P (Q(T (x))) = [x; 1/2 − ∣∣T (x)∣∣22; ....; 1/2 − ∣∣T (x)∣∣
2
m

2 ,0, ...,0]

Q(P (T (x))) = [x; 0, ...,0,1/2 − ∣∣T (x)∣∣22; ....; 1/2 − ∣∣T (x)∣∣
2
m

2 ].

After this transformation, we multiply the generatedD +
2m dimensional vector by a random vectora ∈ R

D+2m
whose entries are i.i.d. Gaussian followed by taking the
sign. For illustration leta = [w; s1, ...sm, t1, ...tm] where
w ∈ RD bi andci are numbers. All components ofa are
i.i.d. from N(0,1). With this notation, we can write the
final Sign-ALSH as

h
Sign(P (Q(T (x)))) = Sign(wT

T (x) +
m

∑
i=1

si(1/2 − ∣∣T (x)∣∣
2
i

2 ))

h
Sign(Q(P (T (x)))) = Sign(wT

T (x) +
m

∑
i=1

ti(1/2 − ∣∣T (x)∣∣
2
i

2 ))

The key observation here is thathSign(P (Q(T (x)))) does
not depend onti andhSign(Q(P (T (x)))) does not de-
pend onsi. If we define

hw(x) = Sign(wTT (x) + m∑
i=1

αi(1/2 − ∣∣T (x)∣∣2i2 )) (29)

whereαi are sampled i.i.d. fromN(0,1) for everyx in-
dependently of everything else. Then,under the random-
ization of w, it is not difficult to show that

Prw(hw(x) = hw(y)) = Pr(hSign(P (x)) = hSign(Q(y)))
for anyx, y. The termPr(hSign(P (x)) = hSign(Q(y)))
satisfies the LSH like property and therefore, in any parti-
tions usinghw, points with high inner products are more
likely to be together. Thus,hw(x) is the required assign-
ment. Note,hw is not technically an LSH because we are
randomly samplingαi for all x independently. The con-
struction ofhw using independent randomizations could be
of separate interest. To the best of our knowledge, this is
the first example of LSH like partition using hash function
with independent randomization for every data point.

The functionhw is little subtle here, we samplew i.i.d from
Gaussian and use the samew for all x, but while computing
hw we useαi independent of everything for everyx. The
probability is under the randomization ofw and indepen-
dence of allαi ensures the asymmetry. We are not sure if
such construction is possible with L2-ALSH. For LSH par-
titions with binary data, the idea used here can be applied
on asymmetric minwise hashing [24].

7 Ranking Evaluations
In [23], the L2-ALSH scheme was shown to outperform
other reasonable heuristics in retrieving maximum inner
products. Since our proposal is an improvement over L2-
ALSH, in this section we first present comparisons with
L2-ALSH, in particular on ranking experiments.

7.1 Datasets

We use three publicly available dataset MNIST, WEB-
SPAM and RCV1 for evaluations. For each of the three
dataset we generate two independent partitions, the query
set and the train set. Each element in the query set is used
for querying, while the training set serves as the collec-
tion C that will be searched for MIPS. The statistics of the
dataset and the partitions are summarized in Table 1

Dataset Dimension Query size Train size
MNIST 784 10,000 60,000

WEBSPAM 16,609,143 5,000 100,000
RCV1 47,236 5,000 100,000

Table 1: Datasets used for evaluations.

7.2 Evaluations

In this section, we show how the ranking of the two ALSH
schemes, L2-ALSH and Sign-ALSH, correlates with inner
products. Given a query vectorq, we compute the top-10
gold standard elements based on the actual inner products
qTx, ∀x ∈ C, here our collection is the train set. We then
generateK different hash codes of the queryq and all the
elementsx ∈ C and then compute

Matchesx =
K∑
t=1

1(ht(Q(q)) = ht(P (x))), (30)

where1 is the indicator function and the subscriptt is
used to distinguish independent draws ofh. Based on
Matchesx we rank all the elementsx. Ideally, for a better
hashing scheme,Matchesx should be higher for element
x having higher inner products with the given queryq. This
procedure generates a sorted list of all the items for a given
query vectorq corresponding to the each of the two asym-
metric hash functions under consideration.

For L2-ALSH, we used the same parameters used and rec-
ommended in [23]. For Sign-ALSH, we used the recom-
mended choice shown in Section 4.3, which isU = 0.75,
m = 2. Note that Sign-ALSH does not have parameterr.

We compute precision and recall of the top-10 gold stan-
dard elements, obtained from the sorted list based on
Matchesx. To compute this precision and recall, we start
at the top of the ranked item list and walk down in order.
Suppose we are at thekth ranked item, we check if this ele-
ment belongs to the gold standard top-10 list. If it is one of
the top-10 gold standard elements, then we increment the
count ofrelevant seenby 1, else we move tok + 1. By kth

step, we have already seenk elements, so thetotal items
seenis k. The precision and recall at that point are

Precision =
relevant seen

k
, Recall =

relevant seen
10

We show performance forK ∈ {64,128,256,512}. Note
that it is important to balance both precision and recall. The
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Figure 4: Precision-Recall curves (higher is better). We compare L2-ALSH (using parameters recommended in [23]) with
our proposed Sign-ALSH using(m = 2, U = 0.75) for retrieving top-10 elements. Sign-ALSH is noticeably better.

method which obtains higher precision at a given recall is
superior. Higher precision indicates higher ranking of the
top-10 inner products which is desirable. We report aver-
aged precisions and recalls.

The plots for all the three datasets are shown in Figure 4.
We can clearly see, that our proposed Sign-ALSH scheme
gives significantly higher precision recall curves than the
L2-ALSH scheme, indicating better correlation of top in-
ner products with Sign-ALSH compared to L2-ALSH. The
results are consistent across datasets.

8 Comparisons of Hashing Based and Tree
Based Methods for MIPS

We have shown in the previous Section that Sign-ALSH
outperforms L2-ALSH in ranking evaluations. In this Sec-
tion, we consider the actual task of finding the maximum

inner product. Our aim is to estimate the computational
saving, in finding the maximum inner product, with Sign-
ALSH compared to the existing scheme L2-ALSH. In ad-
dition to L2-ALSH which is a hashing scheme, there is an
another tree based space partitioning method [21] for solv-
ing MIPS. Although, in theory, it is know that tree based
methods perform poorly [25] due to their exponential de-
pendence on the dimensionality, it is still important to un-
derstand the impact of such dependency in practice. Un-
fortunately no empirical comparison between hashing and
tree based methods exists for the problem of MIPS in the
literature. To provide such a comparison, we also consider
tree based space partitioning method [21] for evaluations.
We use the same three datasets as described in Section 7.1.

Tree based and hashing based methodologies are very dif-
ferent in nature. The major difference is in the stopping



criteria. Hashing based methods create buckets and stop
the search once they find a good enough point, they may
not succeed with some probability. On the other hand, tree
based methods use branch and bound criteria to stop ex-
ploring further. So it is possible that a tree based algo-
rithm finds the optimal point but continues to explore fur-
ther requiring more computations. The usual stopping cri-
teria thus makes tree based methods unnecessarily expen-
sive compared to hashing based methods where the criteria
is to stop after finding a good point. Therefore, to ensure
fair comparisons, we allow the tree based method to stop
the evaluations immediately once the algorithm finds the
maximum inner product and prevent it from exploring fur-
ther. Also, in case when hashing based algorithm fails to
find the best inner product we resort to the full linear scan
and penalize the hashing based algorithm for not succeed-
ing. All this is required to ensure that tree based algorithm
is not at any disadvantage compare to hashing methods.

We implemented the bucketing scheme with Sign-ALSH
and L2-ALSH. The bucketing scheme requires creating
many hash tables during the preprocessing stage. Dur-
ing query phase, given a query, we compute many hashes
of the query and probe appropriate buckets in each table.
Please refer [1] for more details on the process. We use the
same fixed parameters for all the evaluations, i.e., (m=2,
U=0.75) for Sign-ALSH and (m=3, U=0.83, r=2.5) for L2-
ALSH as recommended in [23]. The total number of inner
products evaluated by a hashing scheme, for a given query,
is the total number of hash computation for the query plus
the total number of points retrieved from the hash tables. In
rare cases, with very small probability, if the hash tables are
unable to retrieve the gold standard maximum inner prod-
uct, we resort to linear scan and also include the total num-
ber of inner products computed during the linear scan. We
stop as soon as we reach the gold standard point.

We implemented Algorithm 5 from [21], which is the best
performing algorithm as shown in the evaluations. For
this algorithm, we need to select one parameter which is
the minimum number of elements in the node required for
splitting. We found that on all the three datasets the value
of 100 for this parameter works the best among{500, 200,
100, 50}. Therefore, we use 100 in all our experiments.
The total number of inner products evaluated by tree based
algorithm is the total number of points reported plus the to-
tal number of nodes visited, where we compute the branch
and bound constraint. Again we stop the search process as
soon as we reach the point with gold standard maximum
inner product. As argued, we need this common stopping
condition to compare with hashing based methods, where
we do not have any other stopping criteria [13].

For every query we compute the number of inner products
evaluated by different methods for MIPS. We report the
mean of the total number of inner products evaluated per
query in Table 2. We can clearly see that hashing based

Sign-ALSH L2-ALSH Cone Trees
MNIST 7,944 9,971 11,202

WEBSPAM 2,866 3,813 22,467
RCV1 9,951 11,883 38,162

Table 2: Average number of inner products evaluated per
query by different MIPS algorithms. Both Sign-ALSH and
L2-ALSH [23] outperform cone trees [21]. Sign-ALSH is
always superior compared to L2-ALSH for MIPS.

methods are always better than the tree based algorithm.
Except on MNIST dataset, hashing based methods are sig-
nificantly superior, which is also not surprising because
MNIST is an image dataset having low intrinsic dimen-
sionality. Among the two hashing schemes Sign-ALSH is
always better than L2-ALSH, which verifies our theoreti-
cal findings and supports our arguments in favor of Sign-
ALSH over L2-ALSH for MIPS.

9 Conclusion

The MIPS (maximum inner product search) problem has
numerous important applications in machine learning,
databases, and information retrieval. [23] developed the
framework of Asymmetric LSH and provided an explicit
scheme (L2-ALSH) for approximate MIPS in sublinear
time. L2-ALSH uses L2-LSH as a subroutine which uses
suboptimal quantizations. In this study, we present another
asymmetric transformation scheme (Sign-ALSH) which
converts the problem of maximum inner products into the
problem of maximum correlation search, which is subse-
quently solved by sign random projections, thereby avoid-
ing the use of L2-LSH.

Theoretical analysis and experimental study demonstrate
thatSign-ALSH can be noticeably more advantageous than
L2-ALSH . The new transformations with Sign-ALSH can
be adapted to generate LSH like random data partitions
which is very useful for large scale clustering. Such an
adaptation is not possible with existing L2-ALSH. This
was a rather unexpected advantage of the proposed Sign-
ALSH over L2-ALSH. We also establish by experiments
that hashing based algorithms are superior to tree based
space partitioning methods for MIPS.

It should be noted that for MIPS over binary data our recent
work asymmetric minwise hashing [24] should be used.
We showed that for binary domain asymmetric minwise
hashing is both empirically and provably superior, please
see [24] for more details.
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