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Abstract

Probabilistic mixture models are among the
most important clustering methods.  These
models assume that the feature vectors of the
samples can be described by a mixture of several
components. Each of these components follows
a distribution of a certain form. In recent years,
there has been an increasing amount of interest
and work in similarity-matrix-based methods.
Rather than considering the feature vectors,
these methods learn patterns by observing the
similarity matrix that describes the pairwise
relative similarity between each pair of samples.
However, there are limited works in probabilistic
mixture model for clustering with input data in
the form of a similarity matrix. Observing this,
we propose a generative model for clustering
that finds the block-diagonal structure of the
similarity matrix to ensure that the samples
within the same cluster (diagonal block) are
similar while the samples from different clusters
(off-diagonal block) are less similar. In
this model, we assume the elements in the
similarity matrix follow one of beta distributions,
depending on whether the element belongs to
one of the diagonal blocks or to off-diagonal
blocks. The assignment of the element to a block
is determined by the cluster indicators that follow
categorical distributions. Experiments on both
synthetic and real data show that the performance
of the proposed method is comparable to the
state-of-the-art methods.

1 INTRODUCTION

In many applications, we want to divide the data into a
few groups. Clustering is a task of finding the structure
and interesting patterns in data, by grouping objects in
such a way that objects in the same group are similar to
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each other, but objects in different groups are different.
Recently, much research has been focused on developing
clustering techniques and on applying these techniques to
different fields such as image segmentation and text mining
[26]].

Probabilistic mixture models [3, |8] are among the most
important clustering methods. These models assume
that the feature vectors of data can be described by a
mixture of several components. Each of these components
follows a distribution of a certain form.  Although
different probabilistic mixture models differ in the detailed
assumptions, most of them try to fit the feature vectors with
a mixture of distributions.

In recent years, there has been an increasing amount of
interest and work in similarity-matrix-based methods.
Rather than observing the feature vectors of the
data, as existing probabilistic mixture models do,
similarity-matrix-based methods learn patterns by
observing the similarity matrix that describes the pairwise
relative similarity between each pair of data samples.
One example of these methods is spectral clustering
[14, 20]. Similarity-matrix-based methods have been very
successful in different applications, because it could be
applied to data of any form, as long as we can compare
the similarity between samples. However, there are limited
works in generative models for clustering where the input
is a similarity matrix.

In clustering problems, we want to ensure that the samples
within the same cluster are similar while the samples from
different clusters are less similar. Therefore, given a
similarity matrix, if we sort the indices of the similarity
matrix according to the cluster indicators, the elements
in diagonal blocks usually have larger values, because
these elements measure the similarity between samples in
the same cluster; while the elements in the off-diagonal
blocks usually have smaller values, because these elements
measure the similarity between samples from different
clusters. The block structure in a similarity matrix is
illustrated in Figure [l ~ Observing this, we propose
to cluster by finding the block-diagonal structure in the
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Figure 1: The block-diagonal structure in the similarity
matrix.  After we sort the indices of the similarity
matrix according to the cluster indicators, elements in
diagonal blocks have larger values, while elements in the
off-diagonal blocks have smaller values.

similarity matrix.

Observing this, we propose a similarity-matrix-based
probabilistic model for clustering, called Block Mixture
Model (BMM). It is a generative model that discovers
clusters by finding the block-diagonal structure in the
similarity matrix. In BMM, we assume that the elements
in the similarity matrix are drawn from a mixture of beta
distributions, where the elements in the diagonal blocks
are drawn from a beta distribution that is skewed towards
one, and the elements in the off-diagonal blocks are drawn
from a background beta distribution that is skewed towards
zero. The assignment of each element to the blocks is
determined by the cluster indicators for samples that follow
categorical distributions. As a Bayesian method, BMM
takes model uncertainty into consideration, allows us to
provide an informative prior to the model, and safeguards
against over-fitting [6]].

Related Work Gaussian Mixture Model (GMM)
[3] is the most well known generative model for
clustering. GMM assumes data can be divided into
several components and each component follows a
Gaussian distribution. GMM usually has difficulty to
cluster data with non-elliptical shape. To overcome
this limitation, proposes to warp a latent mixture of
Gaussian distributions using Gaussian processes. This
model can be applied when the clusters have more complex
shapes. Although these generatives model methods differ
in detailed assumptions, they all fit the real-valued feature
vectors with a mixture of distributions. On the other
hand, as a similarity-matrix-based method, BMM takes
the similarity matrix as input. Therefore, it can be used to
analyse any data types as long as the similarity between
samples can be measured.

Spectral clustering [14, 20, 25 21} is a
similarity-matrix-based clustering method. = With this
method, we first compute the eigenvectors of the
Laplacian matrix that is derived from the similarity matrix.
Then the clustering results are obtained by applying
k-means [[14] 20], or a probabilistic model [25] 211, to
analyse these eigenvectors. Unlike these methods, BMM
is a generative model for the similarity matrix, which does
not make use of the eigenvectors.

Stochastic blockmodels [24] 1l are also generative
models that find clusters. In these models, each sample
belongs to a cluster and the connections between samples
are determined by the corresponding pair of clusters. These
methods are usually applied to an observed network, rather
than similarity measures.

A generative clustering model for similarity matrices
is proposed in [19]]. It is assumed that the observed
network is a noisy version of a latent network, where
the latent network can be divided into several connected
sub-networks.  In contrast, BMM adopts a different
strategy, where we try to find a block-diagonal structure
in the similarity matrix. BMM tends to lead to better
clustering results as demonstrated in the experiments (see
Section [d).

The model proposed in finds a block structure in
Gaussian Graphical Models. Another related model is
the orthogonal nonnegative matrix tri-factorization [4] that
factorizes an observed matrix into 3 factors, which is
equivalent to completing a non-negative matrix using a
block structure. Both methods differ from BMM in that
they are not probabilistic models and they are applied to the
feature vectors directly but not on the similarity matrices.

Contributions of this work The contributions of this
work can be summarized as follows:

1. We propose a new generative model for
similarity-matrix-based clustering, we call Block
Mixture Model (BMM), that searches for the
diagonal-block structure in a similarity matrix.

2. We derive variational inference for BMM.

3. We test BMM on both synthetic and real data, and
observe that the performance of BMM is comparable
to the state-of-the-art methods.

2 MODEL FORMULATION

We propose a generative clustering model for the similarity
matrix with a block-diagonal structure, we call Block
Mixture Model (BMM), to solve a clustering problem. To
begin with, we construct a similarity matrix. Given a set
of N data samples with C' dimension {x1,xs,..., N},
where x,, € R® forn = 1,..., N. One possible way to
construct a similarity matrix is to use the Gaussian kernel
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Figure 2: Beta distributions with different parameters

W € RNV*¥ is defined as
2
Wy = exp( =il
where o is a positive real bandwidth parameter. In this
paper, we focus our discussion on Gaussian kernel; but
BMM can be applied to other similarity measures whose
values range from O to 1 (e.g., cosine similarity).

)’ fori7j:]‘7""N7 (1)

In BMM, we assume that the data can be divided into K
clusters, where K is a pre-defined integer. BMM can be
easily extended to a nonparametric version, with Dirichlet
process mixtures [7]], such that the model can automatically
find K. Since this is not the major focus of this paper,
we introduce a simpler, more accessible version where K
is pre-defined. We assign each sample x,, a K-element
cluster indicator z,, = {zn; }4_, such that z,; = 1 if and
only if x,, belongs to the k-th cluster, and otherwise 2, =
0. We let z,, follow a categorical distribution such that

zn ~ Categorical (), 2)

where 7 is a K -element vector, representing the probability
that each cluster is assigned. We let @ be a sample
from a symmetric Dirichlet distribution, with concentration
parameter ), i.e.

7 ~ Dirichlet()). 3)

Note that in Gaussian kernel W, all elements satisfying
0 < W;; < 1, where a large W;; indicates that the
i-th and j-th samples are similar. Because of the range
of W,;, we model it using beta distributions, which are
distributions defined on the interval (0, 1), parameterized
by two positive shape parameters « and . We choose beta
distribution because it is a simple and flexible distribution
that describes random variables between 0 and 1. We
plot some probability density function (PDF) of beta
distributions with different parameters in Figure 2]

If a random variable ¢ follows a beta distribution such that
t ~ Beta(a, ), then its expected value and variance are
given by [9]

Efz] = @)

_ of _ E[z](1 — Efz])
Vet = Rt ) - atprl O

Now we assume that the similarity matrix W can be
separated into K clusters. Then if we sort the indices of the
similarity matrix according to the cluster indicators, we can
observe a block-diagonal structure as shown in Figure|[T] If
W ;; is in one of the diagonal blocks, then it tends to have
a large value. In this case, we let W;; be a sample from a
beta distribution that is parameterized by ®; = (ax, 8k),
such that it is skewed towards one. We assign a different
parameter ®;, for each diagonal block, because in some
clusters, the within cluster similarity might be larger than
others. If W,; is in off-diagonal blocks, then we let
®) = (a, Bo) be the parameters for the beta distribution,
such that it is close to zero. Since whether the ¢-th and
j-th elements are in the diagonal or off-diagonal blocks can
be derived by observing the cluster indicators z; and z;
respectively, the probability density function of W ;; can
be expressed as

Wi l[{O®k}1—1,©0, Z) =Beta(W 1= zikzjn
p(Wii|{®k}r=1,©0, Z) eta(W ij|ao, Bo)

K
[ Beta(W ij|cu, Br) i+
k=1

(6)

Note that if both samples x; and x; belong to the same
cluster k, then z;;2;, = 1 and W;; belongs to the k-th
diagonal block. Therefore, in the equation, the term z;, 2,
is an indicator that W;; is in the k-th diagonal block and
the term 1 — Zf ZikZjk 1s an indicator that the W, is in
the off-diagonal blocks. With the equation, we let elements
in the diagonal blocks and off-diagonal blocks follow the
corresponding beta distributions, respectively. Note that,
we do not care about the diagonal elements in the similarity
matrix {W;;}I¥,, because these elements do not contain
clustering information. Because W is a symmetric matrix;
in the generative process, we only need to generate the
upper triangle of this matrix.

If the data contain clustering structure, the elements

in the diagonal blocks should have larger values
than the off-diagonal blocks. Therefore, we
assign different prior distributions to the beta

distribution parameters {@x}X ~and ©,. We let

(e
p(O1]¢) o Beta(— = |ac, Bc) Lognormal(ay, + Biluc, o2), (7)
ay + B
«
p(®|n) o Beta(———|ay,, B,) Lognormal(ao + Boluy, o2), (8)
ag + Bo

where ¢ = {u¢, 07, a¢, B} and g = {py, 07, ay, By} are
the hyper-parameters for {©} | and O respectively.
The expected value of a beta distribution, as described in
Equation (@), has a value between 0 and 1. Therefore,
we use another beta distribution to model this expected
value, which is represented by the first factor in Equations
and (). As shown in Equation (3) that given its
expected value, the variance of the beta distribution is
inversely proportional to the value of o 4 3 + 1; therefore,
we let o + ( follow a log-normal distribution, which is



Algorithm 1 Generative Process
for k< 1to K do
Generate ®, according to Equation
end for
Generate © according to Equation (8]
Generate 7 according to Equation
for n< 1to N do
Generate z,, according to Equation (2)
end for
for i < 1to N do
for j < 1toi—1do
Generate W ;; according to Equation @
Wji — Wij
end for
end for

represented by the second factor in Equations and
(8). Since we multiply two distributions to form the prior
distributions in Equations and @ we need to introduce
a normalization constant to make sure the integral of the
new pdf over the entire space is equal to one. With the
prior distributions in Equations and , we can control
the expected value and the variance of a beta distribution
by adjusting the hyper-parameters ¢ and 7).

We assign the hyper-parameters ¢ and 7 to make sure
that the similarity matrix demonstrates a diagonal-block
structure as shown in Figure We want the diagonal
blocks to be relatively dense and distributed with smaller
variance. Therefore, we let the value p¢ to be relatively
large, and o larger than 8. In practice, we let ¢ = 15,
o =1, a¢ = 80,000 and B¢ = 20,000. We also want
to make sure the off-diagonal blocks are relatively sparse
and distributed with larger variance. Therefore, we let the
value i, to be relatively small and «,, smaller than 3,,. In
practice, we let p,, = 0, 0% =1, oy = 1,000 and 3, =
9,000. The prior seems relatively strong. However, note
that the number of observations for each beta distribution
is proportional to N2. Therefore, the posterior distributions
may still be very different from the prior distributions
because of the large number of observations. We analyse
the sensitivity of these hyper-parameters in Section §.3]

The model is described using a directed graphical model in
Figure[3] The generative process of BMM is summarized in
Algorithm[I] In the generative process, due to symmetry of
the similarity matrix, we only generate the upper triangular
elements, W;;,i€1,..., Nandj€1,...,i— 1.

3 INFERENCE

In this section, we introduce how the latent variables in
BMM model can be learned via variational inference.
The joint probability of the model is given by
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Figure 3: The graphical model. The dots represent
the hyper-parameters. The regular circle represent latent
random variables. The shaded circles represent observed
random variables. The arrows represent the dependency
between hyper-parameters and random variables. Each
plate denotes that the structure inside the plate is repeated.
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We want to cali:ulate the posterior distribution for the latent
variables given the observed similarity matrix and the
hyper-parameters, i.e. p(m, Z, {O}X |, ©o|W,¢,m, \).
It is computationally intractable to directly calculate this
posterior distribution. Therefore, we use a variational
distribution ¢(m, Z,{©;}X_|,©) to approximate the
posterior distribution by minimizing the KL divergence
KL(qg|lp) [2I. As proven in [2], this is equivalent
to maximizing a lower-bound L(q) that is defined as

L(q) = Eqllog p(W, 7, Z,{®x}i1, ©0)[C, 1, Al + H(q)
(10)
where [E, denotes that the expected value is taken with
respect to the variational distribution ¢, and H(q) denotes
the entropy of this variational distribution.

It is still impossible to directly calculate the variational
distribution q. Therefore, we further assume that
this distribution ¢ can be factorized such that

N K
a(m, Z, {®k}i=1,00) = an () [] a2, (20) [] 0, (Or)a00 (©0)
n=1 =
k=1 (11)
Because we do not use the conjugate prior distributions
as the prior for the latent variables {©y}%_ | and ©, we
cannot estimate the distributions ¢e, (@) and ge, ()
in closed form. However, note that given the expected
values Ez(Z), the distributions ge, (@) and ge,(®0)
are independent in the lower-bound L(g) described in



Equation (I0). Therefore, we can find point estimators for
{©;}£ | and © that maximizes L(q), such that

O, =argmax L(q) (12)
(k. Br)
O, =argmax L(q) (13)
(0,B0)
We find these point estimators using the
Broyden-Fletcher-Goldfarb-Shanno  (BFGS) algorithm
[17].
Given these point estimators, we calculate the optimal
variational distributions ¢% and {¢; }2_,. According

to [2], with the factorization assumption introduced
in Equation (I1), the optimal factorized variational
distribution g3, (Y';) is given by

log gy, (Y;) = Eiz;[logp(X, Y)] + const  (14)

where X represents the observed data, Y = {Y,;}M,
represents all M factorized latent variables and IE;.;
represents that the expected value is taken with respect to
{av: }izj-

By applying Equation (14), the optimal variational
distribution {¢; }7_, is given by

n=1

K
logql (zn) =Y Znk{Ex[logms]
k=1

+ D Ez, [zik][log B(éo, Bo) — log B(éu, Bk)
i#n

+(éx — @o) log Win + (B — Bo) log(1 — Win)]} + const
(15)

where B represents the beta function. By observing this
equation, we conclude that

(16)

gz, (zn) = Categorical(wn)
where w,, is a K -element vector such that

wnk o exp(Exllogmi] + > Ez, [2ik]{log B(é0, Bo) — log B(éx, Br)
i%n
+ (&r — éo) log Win + (B — Bo) log(1 — Win)})
a7)

and w,, is normalized such that Zszl wnk = 1.

By applying Equation (14), the optimal variational
distribution g}, is given by

K N
log gr (m) = Z </\ + Z E.., [#nk] — 1) log 7y, + const

k=1 n=1
(18)
By observing this equation, we note that
qr(m) = Dirichlet(¢) (19)

where ¢ is a K-element vector, whose k-th element is
given by

N
bp =X+ > Ea, [znk] (20)

n=1

Algorithm 2 Variational Inference

N
n=1

Initialize {q}
Initialize ¢}
repeat
for k< 1to K do
Calculate ®, according to Equation
end for
Calculate ® according to Equation
for n< 1to N do
Update q; according to Equation
end for
Update ¢~ according to Equation (T9)
until Convergence

We iteratively update {©:} ., ©0, {g=,(zn)"})_, and
¢ () until convergence. The expected values involved in
the updates are obtained by

2D

E., [2nk] = Wik
K
Ex[log 7] = ¥(¢r) — ¥ (Z @-)
=1

where 1 is the digamma function that is defined as
the logarithmic derivative of the gamma function. The
algorithm is summarized in Algorithm 2]

(22)

4 EXPERIMENTS

In this section, we test BMM using both synthetic and
real data. We choose the bandwidth parameter of the
Gaussian kernel o in Equation (IJ) to be the median of the
pairwise Euclidean distances. If not specified otherwise,
the parameters for BMM are given as pu¢ = 15, 0’? =
1, a¢c = 80,000, B = 20,000, p, = O, a% =1,
a, = 1,000, 8, = 9,000 and A = 1. We discuss the
choice of the parameters in more details in Section
Because variational inference can only guarantee finding
local minima, we run the algorithm with 10 different
initial values, and select the solution with the maximum
lower-bound value. We generate 5 of the initial values
using random initialization, and generate the other 5 of the
initial values using spectral clustering. Note that spectral
clustering might give different results, because k-means
is applied after embedding, and k-means only guarantees
local optima.

4.1 SYNTHETIC 2D DATA

To demonstrate that BMM works when the clusters have
complex shape , we test BMM using some 2-dimensional
synthetic data. The clustering results of BMM , with each
cluster shown in different color, are illustrated in Figure 4]
We can observe that BMM is able to separate all of these
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Figure 4: Clustering results for 2d synthetic data.

data perfectly. GMM fails to give similar results, because
the cluster structure is complex shaped.

4.2 SYNTHETIC SIMILARITY MATRICES

In some applications, we are not directly given the feature
vectors, but a similarity matrix. Similar to spectral
clustering, BMM can also directly take a similarity matrix
as an input. In this section, we test BMM using synthetic
similarity matrices.

4.2.1 SIMILARITY MATRICES WITH A
BLOCK-DIAGONAL STRUCTURE

To begin with, we test BMM using similarity matrices with
different strength of block-diagonal structure. To generate
a similarity matrix W with a block-diagonal structure, we
let

W =XTX, (23)

where X is a 100 x 3 matrix. Each row of X is a
sample from a 3-element symmetric Dirichlet distribution
with a positive concentration parameter . We control the
strength of the block-diagonal structure in the similarity
matrix W by adjusting . When « has a small value, the
mass of the Dirichlet distribution tends to be concentrated
in one of the three elements, and the similarly matrix has
a strong block-diagonal structure, and vise versa. The
ground-truth clustering label for each sample X, is given
by L, = argmax;_; 5 3 Xn;. To illustrate how « affects
the block-diagonal structure, we plot W with different o
in Figure 5] where indices of samples are sorted according
to the ground-truth label L = {L,}'% . In the figure,
we observe that when « is small (e.g., a = 0.25), the
block-diagonal structure is clear such that we can easily
distinguish diagonal blocks from the off-diagonal blocks.
However, when « is larger (e.g., o = 2), the block structure
is less clear.

We test BMM on W generated with different o between
0.06 to 4. For each «, we test BMM on 10 different
random generated W. We compare the clustering results of
BMM against the results given by state-of-the-art methods
that takes similarity matrices as input, including spectral

0 40 60 80
(b) a=2

fe=—
|

20 40 60 80

ooocoo00o0o00O0oH
oRNwhUNDLO
OCO00CO0O000O0OH
oRNwhUONDLO

(a) a=0.25

Figure 5: W with different o. The indices of samples are
sorted according to the ground-truth labels L,,.
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Figure 6: NMI on synthetic data W generated with
different ov. The line represents the mean value of the NMI,
and the error bar demonstrates the standard deviation. The
ticks on the horizontal axis are plotted with log scales.

clustering [14], Non-negative Matrix Factorization (NMF)
[L1] and Latent Network Model (LNM) [19]. We estimate
the performance of the algorithms using Normalized
Mutual Information (NMI) between the clustering results
with respect to the labels L. The NMI between two random
variables X and Y is defined as [22]

>orex 2yey P(@:y)[log p(z,y) — log p(z)p(y)]
H(X)H(Y)

where H(X) and H(Y) are the entropy for random

variables X and Y respectively. The NMI ranges from 0

to 1, where a higher value indicates X and Y agree stronger
with each other. We plot the mean values and standard

(24)



deviations of NMI for the clustering results with respect
to the ground-truth label L in Figure [6] In this figure the
lines represent the mean values of NMI, and the error bars
denote the standard deviations.

We can observe from the figure that NMF and spectral
clustering outperform all other methods in this test. This
is expected because W is generated based on non-negative
matrix multiplication, which is consistent with the NMF
assumption; and it is proved in [5] that there spectral
clustering can be regarded as a relaxed version of NMF. We
also observe from the figure that when @ < 1, the BMM
results are comparable to the spectral clustering results.
However, if o > 1, the performance of BMM is worse.
This is also expected since BMM gives clustering results
based on the block-diagonal structure. When the similarity
matrix contains a stronger block-diagonal structure, the
performance of BMM is better. Note that in practice, we
generate similarity matrices using Gaussian kernels that is
described in Equation (I), with a bandwidth parameter o
set as the median value of the pairwise Euclidean distances.
Therefore, the similarity matrix will be more similar to
Figure [5(a)] rather than Figure [5(b)] because the pairwise
similarity measures computed in this way usually differ
significantly. LNM usually performs worse, because it only
ensures samples in each cluster are well connected to their
nearest neighbors respectively. LNM is more sensitive to
the non-zero elements in the off-diagonal blocks.

4.2.2 SIMILARITY MATRICES WITH
STRUCTURED NOISE

Now we consider the case when the similarity matrices
contain structured noise. We generate two similarity
matrices W) and W® in the same way as described
in Equation (23), with o = 0.25 such that they contains
clear block-diagonal structure. We denote the ground-truth
labels samples represented by W and W® using L")
and L®) | respectively.

Then we generate a similarity matrix T = p W® + (1 —
p) W where p is a real-value parameter between 0 and 1.
By taking the weighted sum of matrices WL and W@,
we introduce structured noise to the similarity matrix. After
summation, 7T" simultaneously have two block-diagonal
structures, this is illustrated in Figures [7(a)] and [7(b)
Note that both figures show the same matrix 7', but we
sort it according to the block-diagonal structure of W)
and W® respectively. Multiple possible block-diagonal
structures indicate that there are more than one meaningful
way to separate the data into clusters, which are common
in real applications, because objects might be divided into
groups by different criteria, or they can be interpreted in
different ways [16} [15].

We vary the values of p between 0.4 to 0.6. For each
p we generate 10 different matrices W and test BMM,

oooocoo0oo0oor
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(a) Plot of T', with indices
sorted according to the

labels L,

(b) Plot of T', with indices
sorted according to the
labels L.

Figure 7: T is constructed such that T' = pW(l) +(1-
p)W ) with p = 0.45. Both W) and W contain a
block-diagonal structure.
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Figure 8: NMI on synthetic data. The line represents the
mean value of the NMI, and the error bar demonstrates the
standard deviation.

spectral clustering, NMF and LNM using these matrices.
The results are summarized in Figure|[8]

In Figure [8] we observe that when 0.4 < p < 0.45,
the block-diagonal structure of W dominates the matrix
T, and we can consider L as the ground truth. As
shown in Figure[8(b)] BMM outperforms all other methods,
since its results have a higher NMI with respect to L(2).
When 0.45 < p < 0.55, the contribution of W) or
W® becomes similar. We observed that BMM usually
has a higher mean NMI value with respect to both L(!)
and L(® compared to other methods. In addition, BMM
has a higher standard deviation. This indicates that BMM
tends to reveal the block-diagonal structure of either W)
and W _ but other methods usually find neither of them.
When p > 0.55, the block-diagonal structure of W)
dominates the matrix W, and we can consider L1) as the
ground truth. As shown in BMM also outperforms
spectral clustering, since its results have a higher mean
NMI with respect to L(1).

From the observation above, we conclude that BMM
outperforms other methods if such structured noise is
present. This is because spectral clustering finds the
clusters by observing the eigenvectors of the Laplacian
matrix that is derived from the similarity matrix. Spectral



clustering can find the correct clusters for W) and W (®
individually according to these eigenvectors respectively.
However, when we take the weighted sum of W
and W®, the eigenvectors will change in general, and
therefore, the clustering results given by spectral clustering
are different from either L) or L(®. Due to the
equivalence between NMF and spectral clustering [5],
NMF performs similarly compared to spectral clustering.
BMM avoids making use of the eigenvectors and looks for
the strongest block-diagonal structure. It is more robust
against the structured noise and is able to find the clusters
similar to either L) or L(?).

In summary, in this section, we test BMM on synthetic
similarity matrices. We observe that when the similarity
matrix contains clear diagonal structure, BMM is
comparable to spectral clustering. BMM is more robust to
structured noise compared to spectral clustering and NMF.

4.3 HYPER-PARAMETER SENSITIVITY
ANALYSIS

In this section, we discuss how the hyper-parameters
ug,ag,ag, B¢, un,cf%, oy, and 3, affect the performance
of BMM. We generate 10 synthetic random similarity
matrices according to Equation (23) with v = 1. We test
BMM on each of the similarity matrices. In each test, we
change one pair of the hyper-parameters at a time and keep
all other hyper-parameters using the default values. We
summarize the means of the NMI between the clustering
results and the ground-truth label across the 10 similarity
matrices, with each of the hyper-parameter settings, in

Figure 9]

In Figures and we observe that the choices
of pe, 0’?, iy and 0727 influence the clustering results less

significantly. The mean NMI values are above 0.85, no
matter what values are chosen. We set p¢ = 15,0? =
1,4y = 0 and 0,27 = 1, since these values are consistent
with the heuristic that the variance of the similarity
measures in the diagonal blocks is smaller than that in the
off-diagonal blocks. Note that they also provide high mean
NMI.

From Figures[0(c)land[0(d)] we can conclude that the values
of a¢, B¢, o, and B¢ have more effect on the clustering
results. As mentioned in Section [2} we need to make sure
the diagonal blocks are more dense than the off-diagonal
blocks, ie., ac/(ac + B¢) > ayp/(aw + By). Therefore,
we choose o = 80,000, 8: = 20,000, o, = 1,000 and
By = 9,000. We set hyper-parameters to these values in all
other experiments in Section

4.4 REAL DATA

In this section, we test BMM on several real dataset,
and compare it with the state-of-the-art methods. Similar

to spectral clustering, instead of just starting from the
Gaussian kernel W defined in Equation (IJ), we also utilize
the normalized similarly matrix that is defined as

W =D Y*wD /2, (25)

where D is a diagonal matrix such that D;; = Zjvzl Wj.
In this , we present the results using both un-normalized
W and normalized W. In addition to the three
similarity-matrix-based methods that are introduced in
@21l we also compare BMM against k-means [13] and
GMM [3].

First we introduce the experimental results on the Semeion
handwritten digit dataset [[12]. This dataset contains 1593
handwritten digits from 0 to 9 from 80 persons. The digits
are stretched in a rectangular box 16x16 with 0/1 values.
We test the methods using different subsets of the dataset
as different clustering tasks. In each task, we divide the
dataset into 5 sets. We repeat the test 5 times, each time
with one set taken out. The results are summarized in
Table [T} The values in the table represent the means of
the NMI. The values in the brackets represent the standard
deviations. The values in bold is the largest mean NMI for
each task.

We observe from Table [Tl that BMM with the normalized
similarity matrix W is one of the best methods. In
some tasks, this method outperforms all other methods
by a relatively large margin. For example in the task of
distinguishing 6 from 8, this outperforms the second best
method by more than 0.1 in terms of mean NMI.

We also observe that making use of the normalized
similarity matrix W usually leads to better results, but in
some tasks, such as the {0,8} and {4, 9} tasks, utilizing
the un-normalized similarity matrix W gives better results.
However, in the {2,3} task, BMM with un-normalized
similarity matrix W obtains a worse result compared
to other methods. Although making the un-normalized
similarity matrix might get better results in some of the
tasks, we still recommend to use the normalized similarity
matrix because its performance is better in general. In the
{1, 7} task, we observe that the performance of GMM is
much better than all other methods. This might be due to
that in the methods we compared, GMM is the only method
that can scale the features. LNM usually performs worse,
because it only ensures samples in each cluster are well
connected to their nearest neighbors respectively, but do not
guarantee that they are pairwise well connected. Note that
BMM with normalized similarity matrix either performs
comparably or outperforms spectral clustering and NMF in
almost all tasks.

In addition to the Semeion data, we also compare BMM
with the state-of-the-art methods using following UCI
datasets [12]: iris dataset contains 150 samples from 3
classes of iris plants that are described using 4 features;



-20-15-10 -5 0 5 10 15 20

081 -20-15-10-5 0 5 10 1520 [Myg
Hn 080

090 090
0.89 0.89
0.88 0.88
0.87 ) 0.87
0.86 0.86
085 ) 085
084 084
0.83 0.83
0.82 082

(a) pe vs. 04 (b) finy vs. O'n

.

10
09
0.8
0.7
0.6
05
04
03
0.2
0.1
0.0

0.10.20.30.40.50.60.70.80.9
ac/(ac+8)

0.102030405060.70.80.9 M0
/(e +3,)

(c) ¢ vs. B¢ (d) an vs. By

Figure 9: Means NMI between the clustering results and the ground-truth label, with each hyper-parameter settings. We

change a pair of hyper-parameters at a time.

Table 1: NMI on Semeion handwritten digit data

BMM (W) BMM (W) Spectral K-means GMM NMF LNM
0,8 0.901(0.016) | 0.916(0.020) | 0.816(0.017) | 0.899(0.014) | 0.820(0.028) | 0.835(0.015) | 0.191(0.025)
1,7 0.177(0.015) | 0.258(0.038) | 0.176(0.012) | 0.210(0.049) | 0.588(0.073) | 0.183(0.041) | 0.118(0.013)
2,3 0.823(0.057) | 0.159(0.027) | 0.531(0.033) | 0.765(0.039) | 0.708(0.042) | 0.516(0.059) | 0.095(0.031)
1,9 0.734(0.053) | 0.792(0.058) | 0.728(0.054) | 0.774(0.054) | 0.719(0.050) | 0.740(0.058) | 0.104(0.020)
6,8 0.879(0.040) | 0.543(0.342) | 0.617(0.019) | 0.755(0.100) | 0.688(0.033) | 0.588(0.060) | 0.155(0.018)
{01234 0.740(0.005) | 0.610(0.009) | 0.693(0.031) | 0.690(0.018) | 0.693(0.016) | 0.606(0.047) | 0.263(0.022)
{5.6,7.8.9 0.553(0.015) | 0415(0.021) | 0.542(0.018) | 0.451(0.036) | 0.419(0.022) | 0.470(0.021) | 0.195(0.047)
{0,12,3,45,6,789} | 0.522(0.037) | 0.501(0.032) | 0.502(0.019) | 0.497(0.051) | 0.507(0.009) | 0.512(0.046) | 0.259(0.028)
Table 2: NMI on UCI data
BMM (W) BMM(W) Spectral K-means GMM NMF LNM
Tris 0.631(0.035) | 0.650(0.035) | 0.624(0.020) | 0.664(0.051) | 0.810(0.046) | 0.648(0.024) | 0.350(0.025)
Synthetic Control | 0.781(0.012) | 0.739(0.013) | 0.747(0.029) | 0.696(0.012) | 0.773(0.003) | 0.686(0.030) | 0.547(0.013)
Faults 0.566(0.021) | 0.494(0.068) | 0.493(0.070) | 0.461(0.040) | 0.494(0.081) | 0.490(0.034) | 0.336(0.035)
Wine 0.723(0.021) | 0.776(0.017) | 0.589(0.063) | 0.707(0.032) | 0.720(0.037) | 0.690(0.043) | 0.359(0.025)
CMU faces 0.834(0.083) | 0.674(0.036) | 0.867(0.027) | 0.743(0.027) | 0.852(0.019) | 0.684(0.045) | 0.462(0.077)
0 = 1.0
Lol | 0. [[0] We observe the elements in the off-diagonal blocks
i 0.8 differ significantly in values. Note that, BMM uses only
200f - . . . .
¢ 0.7 one background beta distribution to model all elements in
300 s 0.6 off-diagonal blocks. The CMU faces dataset violates this
400( % 0.5 assumptions of BMM, making BMM perform worse.
500k 0.4
0.3
600
5 CONCLUSION

0 100 200 300 400 500 600

Figure 10: Similarity matrix for the CMU faces dataset.

synthetic control dataset contains 600 control charts that
are synthetically generated from 6 classes; faults dataset
contains 1,941 samples from 7 types of steel plates faults;
wine dataset contains chemical analysis results of 178
samples of wines that are derived from 3 different cultivars;
CMU faces dataset consists of 640 face images of 20 people
taken at varying poses.

The results are summarized in Table 2] In this table, we
observe GMM performs well in the iris dataset because
the iris clusters are elliptically shaped. BMM with
normalized similarity W is one of the best methods in
most of the tasks. It outperforms all other methods in
the synthetic control and faults datasets, while it has a
comparable performance with most of the methods in iris
and wine datasets. However, we observe that in the CMU
faces dataset, BMM performs slightly worse than spectral
clustering. To illustrate why BMM perform worse, we
plot the similarity matrix for this dataset, with indices
sorted using the ground-truth identity labels in Figure

In this paper, we propose Block Mixture Model (BMM),
a generative model for the similarity matrix with
block-diagonal structure, to solve the clustering problem.
In this model, we assume the elements in the similarity
matrix follow one of beta distributions, depending on
whether the element belongs to either one of the diagonal
blocks or to the off-diagonal blocks. We derive
variational inference to learn the latent variables in BMM.
Experiments on synthetic data demonstrate that BMM
performs at least comparably to spectral clustering if the
similarity matrix contains a clear block-diagonal structure,
and it is more robust to structured noise. We test BMM
on real data and observe that the performance of BMM is
comparable to the state-of-the-art methods.
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