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Abstract

We consider the sensitivity of causal identification
to small perturbations in the input. A long line of
work culminating in papers by Shpitser and Pearl
(2006) and Huang and Valtorta (2008) led to a
complete procedure for the causal identification
problem. In our main result in this paper, we
show that the identification function computed
by these procedures is in some cases extremely
unstable numerically. Specifically, the “condition
number” of causal identification can be of the
order of Q(exp(n®*”)) on an identifiable semi-
Markovian model with n visible nodes. That is,
in order to give an output accurate to d bits, the
empirical probabilities of the observable events
need to be obtained to accuracy d + Q(n%*°) bits.

1 INTRODUCTION

The gold standard for estimating the causal effect of one
part of a system on another is the controlled experiment:
the experimenter controls, or intervenes with, the stimulus
variables in a way such that they are not affected by any
non-measurable confounding factors, and then observes
the distribution of the response variables as the stimuli are
varied. Unfortunately, in a variety of important applications,
the controlled experiment is not available as a method for
reasons of ethics or practicality: a popular example of such
a scenario is the question of whether a lifestyle choice such
as smoking causes lung cancer. It can be argued (and in
this particular case, has been argued! (Ohlemeyer, 1999))
that the strong observed correlations may be due to hidden
confounding factors (here environmental or genetic).

In a series of seminal papers starting with (Pearl, 1995),
Judea Pearl and others proposed and analyzed a framework
for computing causal effects of hypothetical interventions
solely from passively observed (i.e., non-experimental) data.
The starting point of this framework is a model of the system
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as a directed graphical model with hidden nodes represent-
ing the non-measurable confounding variables. The goal is
to take as input the joint distribution of the observed nodes
in the model, and to deduce from them the intervention dis-
tributions that would result if an hypothetical controlled ex-
periment were to be performed. A long line of work (Pearl,
1995; Pearl and Robins, 1995; Kuroki and Miyakawa, 1999;
Halpern, 2000; Tian, 2002) on this framework culminated in
papers by Shpitser and Pearl (2006) and Huang and Valtorta
(2008) which gave a complete characterization of models
in which this is achievable: in particular, they provided an
algorithm which on input a directed graphical model and the
set of stimulus and response variables outputs either a pro-
cedure that will compute the intervention distribution given
the joint distributions of the observed nodes, or a certificate
that the intervention distribution is not determined uniquely
by the observed joint distribution. In the former case, the
causal effect of the stimuli upon the response variables is
said to be identifiable in the model.

This paper is concerned with the numerical properties of
the identification problem. Note that an inference process
such as causal identification as described above will always
run on empirical inputs. We therefore ask: when the causal
effect is identifiable, how sensitive is it to small inaccuracies
either in the knowledge of the model, or of the observed
distribution? Our main result (Theorem 1.2) in fact shows
that causal inference can in fact be extremely sensitive to
small errors: we give example of models on n nodes where
any numerical algorithm for computing the intervention
distribution from the observed distribution will lose roughly
®(+/n) bits of precision. This sets an extraordinary demand
on the accuracy of the input data of such a system.

As we discuss in more detail in Section 1.2, there are several
natural sources of errors in the input to a causal identification
problem: these include errors incurred in measurements of
the observed distribution; round-off; and as we observe in
Section 1.2.1, inexact descriptions of models. Our results
therefore point to a new line of investigation concerning the
classification of graphical models based on the sensitivity
of causal identification to such perturbations in the input.



We begin in the next subsection by formalizing first the iden-
tification question, then the appropriate notion of stability
for causal identification.

1.1 PEARL’S NOTION OF CAUSAL
IDENTIFIABILITY

In Pearl’s framework, the system being studied is mod-
eled as a semi-Markovian graphical model. A semi-
Markovian graphical model is a directed acyclic graph
G = (V,E,U, H), which has observed nodes and edges
V and E, and hidden nodes and edges U and H, and is
constrained so that the observed edges E lie between the
observed vertices V, while the hidden edges in H go from a
hidden vertex in U to an observed vertex in V.

The observed nodes V of the model are identified with the
measurable components of the system, while the hidden
nodes in G represent confounding variables that are not ac-
cessible to measurement. The edges model dependencies
between these random variables: every variable is inde-
pendent of its ancestors in G conditioned on its immediate
predecessors. A probability distribution that satisfies this
constraint is said to respect G. Equivalently, a probability
distribution P respects G if it factorizes as

PWVi=v,...,Vh=vp, U=u)
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where pa(S) is the set of parents of the node S.

However, since the hidden nodes in U are not measurable,
any measurement can only estimate the observed marginal
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where Q(U) denotes the range of the set U of hidden vari-
ables.

Pearl (1995) proposed that a natural representation of an
experimental intervention on some subset X of observed
variables is to remove from them any effect of their an-
cestors. Formally, the intervention distribution, denoted
P(V-X | do(X = x)), of the nodes in V — X under the
intervention X = x can therefore be defined as follows:

P(V—X = Vv_x|d0(X = .X))
= Z PU =u) 1_[ ]P(V, =v; | pa(V;) :Vpa(Vi))'

ueQ(U) Viev-X
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The marginals of the above distribution define the distribu-
tion P (- | do(X = x)) on all subsets of V — X.

Directly computing the intervention distribution using
eq. (1) requires knowledge of the distributions of the hid-
den variables, as well as their effect on the observed nodes.
These are, of course, not measurable in practice. This leads
to the question: when is the intervention distribution in
eq. (1) efficiently computable (or identifiable) from a knowl-
edge of only the observed statistics? More formally, given
a semi-Markovian graph G = (V, E, U, H) and disjoint sub-
sets X, Y of V,P (Y | do X) is said to be identifiable in G if
and only if there exists a function

ID(G, X,Y) : P(V) = P(Y | doX)

which maps observed distributions P(V) to intervention
distributions P(Y | do X). The question then is to decide,
given G, X, and Y, whether such a map exists, and if yes, to
compute it.

As expected, the answer to the question is not always pos-
itive. For example, in the graph in fig. la (where u is a
hidden node), it is not possible to express P (y|do(x)) in
terms of the marginal distribution P (x, y). This is intuitive,
since any observed correlation between X and Y is equally
well attributable as being due to the hidden variable U as
due to a causal effect of X of Y. However, in the similar

(b) A Simple Identifiable Case

Figure 1: Simple Graphical Models

model in fig. 1b, which has just one more observed node,
the distribution P (y| do(x)) is identifiable.

The algorithms of Shpitser and Pearl (2006) and Huang and
Valtorta (2008), on input G, X, and Y as in the above dis-
cussion, either output a description of the map ID(G, X,Y),
or give a certificate that the causal effect of X on Y is not
identifiable in G. Here we study the stability of the map
ID(G, X, Y) when it exists; we also show how identification
can be applied when the map “almost” exists.

1.2 RESULTS

Before embarking on our study of the sensitivity of the map
ID(G, X, Y) to errors in the input, we make a few comments



about the sources of such errors. Conventionally, two such
sources are considered: errors introduced due to limitations
in measuring the input, and errors introduced due to round-
ing off the input to a fixed finite floating point precision.
These sources of errors are fairly generic and apply to al-
most any function, hence we defer their discussion in the
context of the ID map to Remark 1.1. Here, we discuss
another kind of error in the input specific to the problem
of causal inference: error arising from inaccuracies in the
knowledge of the graphical model of the system under study.
We start by analyzing such errors in Section 1.2.1. Finally, in
Section 1.2.2, we formalize the notion of the condition num-
ber which captures all the three forms of errors described
above and then state our results in terms of this notion.

1.2.1 Errors in the Model Description

We now consider the effect of ignoring some edges in the
input graphical model. Let G = (V,E,U, H) be a semi-
Markovian graph with observed nodes and edges V and
E, and hidden nodes and edges U and H respectively. Let
X, Y be disjoint subsets of V, and suppose that P (Y | do X)
is not identifiable in G, but identifiable in the subgraph
G’ = (V,E,U, H — {e}) in which a certain edge e has been
removed. Another way to frame the situation is that we
start with the model G’ in which the requisite intervention is
identifiable, and then consider the effect of adding the edge
e to the model which destroys identifiability.

In particular, we wish to quantify the non-identifiability in-
duced by the addition of the edge e to G’, as a function of
some measure of the “strength” of the edge e. A natural
measure of the strength of an edge (A, B) is the amount by
which it can affect the conditional probability at its child ver-
tex B, when all the other parents of B are held fixed. More
formally, we propose the following measure of strength:
Definition 1.1 (e-weak edge). Let ¢ = (A, B) be any edge
in a semi-Markovian graph G = (V, E, U, H) and let P be a
model respecting G. Let Z(B) denote the set of parents of
Bin (VUU)\ {A}. We say that e is e-weak with respect to
G and P if for every setting b of B and ¢ of Z(B), and any
two values a and a’ in the range of A, we have

P(B=b|E(B)=¢A=a) <
PB=b|EB)=¢&(A=a) —

—€ <log

Now suppose that e = (A, B) € EU H is an e-weak edge in
G = (V,E,U, H). We ask: given an observed distribution
P, what is the error incurred if we perform causal inference
in G’ instead of G? We answer this in:

Proposition 1.1. Consider a semi-Markovian graph G =
(V,E,U, H) and a distribution P(V,U) respecting it. Let
R={e;=(A;,V;) |1 <i<q}beasetofkedgesin EUH
such that e; is €;-weak, with € := Zle €;. Suppose that
X, Y are disjoint subsets of V for which P (Y | do X) is not
identifiable in G, but identifiable in G’ = (V, E\R,U, H\R).

Then there exists a distribution P(V,U) respecting G’ such
that

P PY | doX
( )<E and —6<10g—PEY: ng; <e€.

—e <log PV = © <

Note that P(Y | do X) is computable (by the algorithms of
Shpitser and Pearl (2006) and Huang and Valtorta (2008))
given P(V), but P(Y | do X) is not even uniquely deter-
mined given only the observed marginal P(V).

The proof of this proposition can be found in the attached
supplementary text.!

1.2.2 Uncertainty in the Input Distribution

Proposition 1.1 shows that there exists a distribution P on
the subgraph G’ for which the intervention distribution is
both close to that of P, and also computable only from the
projection of P to the observed nodes. On the other hand,
the proposition does not provide a method to produce such
a P given the projection of P to the observed variables in
G (or G’). However, it does guarantee that the observed
marginals of P and P are e-close in the following sense:

Definition 1.2 (e-close distributions). Two probability dis-
tributions P and Q on the same domain Q are said to be
e-close, denoted P < 0, to each other if for every w € Q,

P(w) <
Ow)

—€ < log

We therefore want to study the effect of doing causal infer-
ence with observed marginals that are only e-close to the
actual observed marginal. Our statistical stability question
then is the following:

Question 1. Suppose G,X,Y are such that the map
ID(G, X, Y) exists. How sensitive is the map ID(G, X,Y) to
uncertainties in the input P?

The standard solution concept for studying such a question
is the notion of the condition number of the map (see, e.g.,
(Biirgisser and Cucker, 2013, Overture)). We specialize
here to the so-called “componentwise condition number”.

Definition 1.3 (Condition number). Let f : R¥ — R’ be
an arbitrary vector valued function. The condition number
of fata e R¥, denoted Ky (a), is defined as

Rel(f(a), f(a"))

=i
kr(a) ;m Sup Rel(a, a’)

a’ eRF
Rel(a,a’)<é
where for real vectors a, a’ in the Euclidean space R?, the

. . a;—a,

relative error Rel(a, a’) is defined as max|<;<; % The
4

condition number of f over a domain D, denoted as kg

when D is clear from the context, is sup,cp k7 (a).

1A version of this paper including the supplementary text is also
available from http://www.caltech.edu/~piyushs/
docs/condition.pdf.


http://www.caltech.edu/~piyushs/docs/condition.pdf
http://www.caltech.edu/~piyushs/docs/condition.pdf

Note that the condition number is a property of the function
f, and not of a particular algorithm for numerically com-
puting f. In particular, «¢(a) can informally be construed
as a derivative of the coordinate-wise logarithm of f as a
function of the coordinate-wise logarithm of a.

Armed with the definition of the condition number, we can
now further refine our earlier Question 1.

Question 2. What is the condition number of the map
ID(G, X,Y) for a given G and subsets X,Y, provided in
the first place that this map exists?

Remark 1.1. A few remarks about the sources of errors are
in order. First, note that Proposition 1.1 already provides a
natural setting in which the “error model” used in the defini-
tion of the condition number is the right one: in the notation
of that proposition, if we computed the intervention distribu-
tions in G’ by applying the map ID(G’, X,Y) to P instead
of P, the worst case relative error in the output will be lower
bounded by roughly € - (G’ x.v)(P), independent of the
algorithm used for computation. However, we point out that
there is another—arguably even more natural—source of
errors that is best captured in terms of relative errors: errors
introduced due to rounding in fixed precision floating point
systems. We refer the reader to, e.g., the textbook by Biir-
gisser and Cucker (2013, Section O.3) for a formalization
of such systems.

The final type of errors that we discuss here are sampling er-
rors arising due to the finiteness of the sampling procedures
used to estimate the observed marginals that are fed as input
to the map ID. These sampling errors are more likely to be
additive (as opposed to relative) in nature. When the input
coordinates are elements of the interval [0, 1] (as is the case
in our application) an additive error of a given magnitude
€ always corresponds to a relative error that is at least as
large as € in magnitude. Hence, upper bounds imposed on
the relative error in the output using an upper bound on the
condition number can only worsen if the error guarantees on
the input are only additive. In particular, if we show that the
condition number defined with respect to relative errors is
large, the instability of the problem with respect to additive
errors in the input also follows.

Our first result regarding statistical stability demonstrates
that the condition number can in fact be sub-exponentially
large in the size of the model.

Theorem 1.2. For every 0 < a < 1/2, there exists
an infinite sequence of semi-Markovian graphs Gy =
(Vn, En, Un, Hy) with |Vn| = N, and disjoint subsets Sy
and Ty of Vyn such that

KID(G . T, Sn) = Q(exp (N)).

The proof of this theorem appears in Section 2. We now iso-
late one important class of special cases where the condition
number is not so bad.

Proposition 1.3. Let G = (V,E,U,H) be a semi-
Markovian graph, and let X be a node in V such that it
is not possible to reach a child of X from X using only the
edges in H (with their directions ignored). Then, for any
subset S of V not containing X.

KID(G,x,5) = O(|V]).

The hypothesis of the above proposition has appeared
earlier as a sufficient condition for the identifiability of
P(S | doX) in the early work of Tian and Pearl (2002).
While this condition is not necessary for identifiability, we
show that it carries a distinct advantage: when it holds, the
condition number of the identification function is relatively
small. The proof of Proposition 1.3 appears in Section 3.

2 ILL-CONDITIONED EXAMPLES

In this section, we prove Theorem 1.2. We begin with a
brief outline of our general strategy.

Our main object of study will be semi-Markovian models
G indexed by positive integers n and k, such that G* has
®(nk) visible nodes, and ®(n + k) hidden nodes. The
maximum degree of g,’; will be @ (k) for the observed nodes,
and ®(n) for the hidden nodes.

Let U and V denote the hidden nodes and the observed
nodes, respectively, of g,’; In our construction, the variables
in both U and V will be binary valued. The crux of our proof
is a construction of two probability distributions: the first
of these, Q, will be a distribution on the states of the nodes
in U U V which respects g,’; The second, Q will be a
distribution only on the states of V, such that it is e-close
to the marginal of Q on V. Q and Q will be designed to
ensure that when k is chosen to be an appropriate function
of n, the values of a certain intervention distribution on G
computed according to Q differ from the correct answer
(i.e., the one computed according to Q) by a factor of 1 + €’
where €’ is larger then € by a factor Q(exp (N%)) (for any
a < 1/2), for N = nk + n — 1, the size of G*.

2.1 THE GADGET

We now define the semi-Markovian graph G¥ formally. The
visible nodes V' of the graph partition into three classes: the
“X” nodes, of which there are k — 1, the S nodes, of which
there are n, and the “Y” nodes, of which there are (n — 1)k,
arranged in n — 1 “towers” of k each (see fig. 2). Formally,
we have

V= {X; |2<i<klU[S; |1<i<n)
U{Yjl1<i<n—11<j<k}.

We now describe the visible edges. First, each S node is a
child of each of the Y nodes in the tower immediately to



its left. Each Y node is a child of the Y node immediately
below it in its tower, of the S node immediately to the left
of its tower, and, if it is in the leftmost tower, of the X node
at the same “level” as itself (see fig. 2). Formally,

E:={(XpY,) |2 <i<k}
U{Sntip I 1<i<n-11<]<k}
U{(Yi,j,Sm)l1Sl'§n—1,l§jsk}
U{(Yi,jaYi,j+1)|1Si§n—1,1§j§k—1}.

Our final task is to describe the hidden nodes and variables:
the structure of these defines the C-components of the model,
and hence they will dictate the sequence of operations in the
Shpitser-Pearl algorithm for causal identification applied to
GX 2 In order to make sure that the S nodes are always in the
same C-component, we stipulate an unnamed hidden vari-
able for each adjacent pair of the S;, which has both of the
elements of the pair in question as its children. In addition,
we have further (named) hidden variables {U; | 2 < i < k},
such that U; has as children all the S nodes, the nodes X;,
and all the X and Y nodes at “levels”strictly below i. For-
mally, the hidden edges incident on these named hidden
nodes are:

H:={U.X)|22i<k2<j<i}
u{Wnsp12<i<kl<j<n
U{UnYe) |2<i<kl<s<n-11<t<i}.

See fig. 2 for a depiction of the gadget gg . In the figure, the
named hidden variables U; and their edges are not included
for clarity. Instead, the hyperedges depicting the hidden
variables U; are depicted by the different shaded regions: the
lowest region includes all the visible nodes that are children
of U,, the next higher region includes all the visible nodes
that are children of U; and the topmost region includes all
the visible nodes that are children of Uy.

e ® ® ® @
m A

X3 Y13 Y23 Y33 Ya3 Ys3

X2 Y12 Y22 Y32 Ya2 Ys2

Y11 Y21 Y31 Ya1

Figure 2: The Graph gg .

2A C-component is a maximal set of visible vertices which are
reachable from each other through paths consisting only of hidden
edges (the directions of the hidden edges are ignored). See, e.g.,
Shpitser and Pearl (2006) for a discussion of the importance of
C-components to causal identification.

2.2 IDENTIFICATION ON G*: THE PEEL-OFF
OPERATOR

Notation. For any set S of indices, and a symbol A, we
denote by Ag the set {A; | i € S} of indexed symbols. Simi-
larly, for sets S and T of indices, we denote by Ag r the set
{A[,j lies,je T}. For integers a < b, [a, b] denotes the
set of integers between a and b, inclusive. For a positive
integer a, we use [a] as a shorthand for the set [1, a]. We
also denote vectors of values by boldface fonts; in particular,
1) denotes a vector of length [ all whose entries are 1.

Consider now the computation of the following intervention
distribution in GX:

P (S = Ly | do (Xi2k1 = Lik-13 Yin-13, 161 = Lin-1yx1)) -
)

The gadget is defined so as to make the Shpitser-Pearl algo-
rithm iterate a sequence of “multiplication” and “marginal-
ization” steps alternately in the computation of this distribu-
tion: our goal ultimately is to amplify errors in the multipli-
cation step, and to attempt to preserve the amplification in
the marginalization step. However, before seeing how this
can be done, we first abstract the operation of the Shpitser-
Pearl algorithm on g,’; in terms of a peel-off operator which
clubs the alternating “multiplication” and “marginalization”
steps.

We begin by noting that the gadget G5~ can be viewed as a
subgraph of the gadget g,’; in a canonical manner by iden-
tifying the vertices present in the both the gadgets. These
“identified” vertices include all the hidden and visible ver-
tices of GX except X, Uy and {Yix | 1 <i<n-1}. Let
Pk denote the set of probability distributions on states of
the observed variables of GX. We define an operator 7 that
acts on a distribution in P,]f by “peeling off” the top layer
of variables and produces an object in P*~! as the output.
Although the action of the operator depends upon the values
of n and k, we drop its dependence upon these parameters
for ease of notation.

Definition 2.1 (Operator 7). Given a probability distribu-
tion P € PX the probability distribution 7(P) € PX ! is
defined as

7 (P) (X(2,k=11> Sinp> Yin-11,[k=17)
= Z P (X = x, Xpo.k-17)
X

n-1
. HP(Si, Y- | X = x, Yicph = 129,

i=1
X2,k=11> Sti=11 Yii—11,[k=17)
“P(Sy | X = x, Y-k = 10y,
X2, k-11> Stn=11» Yn-11, (k=11

where x ranges over all possible values of the Xi, and 1 is
assumed to be in the range of ¥; ; for alli € [n — 1].



Remark 2.1. Note that the above definition is valid only
for k > 2. However, we can extend it to the case k =
1 by “ignoring” the summation over x when k = 1 (or
equivalently, by assuming that there exists a variable X
with no incident edges).

The algorithm of Shpitser and Pearl (2006) for computing
the intervention distribution in eq. (2) then amounts to it-
erating the operator  k times on the observed distribution
P:

P (Stm) = 1, | do (X267 = 1i—1, Yn-11,16) = Lkn—-1)))
= 75(P) (Spny = 1) .

Our high level strategy is to take advantage of the multipli-
cation in the definition of 7 to amplify errors in each step.
Intuitively, if each factor in the product in the definition of
7 (P) has an error factor of (1 + €), then we might expect
the error in 7 (P) to be of the order of (1 + O(n)e). We
might then expect such an effect to propagate through the &
levels so that the final error is of the order of (1 + ®(n¥)e).
However, the marginalization over x can destroy this propa-
gation effect, and we will need to be careful to get around
this. This will be done by biasing the distribution Q away
from being a uniform distribution, using the bias function
defined below (see also Remark 2.2).

2.3 THE ADVERSARIAL MODEL

Our goal now is to define a model Q on G and a “perturbed”
version Q of the observed marginal Q, such that for every
observation £, Q and Q are e-close to each other.To show
lower bounds on the condition number of causality, we will
need to show that even when Q and Q are e-close, it is
possible to arrange matters so that (in the limit € | 0)

Q) (S = 1)\ _ n
(@) et ool ) o

for some positive constant ¢ independent of »n and k.

For ease of exposition, we work directly with some
marginals of the distributions Q and Q. We defer the con-
struction of Q and Q achieving these marginals to a later
section. For further ease of notation, we denote the set of
vertices Sp;1 U Y11 as A;;: in terms of fig. 2, this is the set
of vertices of height up to j in the first i “towers” (if we
also consider each of the S vertices to be part of the “tower”
of Y vertices immediately to their right; see fig. 3 for an
illustration of the set A35). We further use A;; = 1 as a
shorthand for the conditioning S; = 1;, -1,k = Li-1)k-
We now describe the marginals of Q required in our proof, in
terms of a bias function as defined below. Only conditional
expectations of the form described below will be required
in the recursive computation of nk (Q) (Spny = 14).

Figure 3: The Set A3 >

Definition 2.2 (Bias function). The bias function b :
{0,1} — [0, 1] is defined as

_J2 X

[[N)

1,
0.

1
00Xk =)= T

1 :
OSi=11A1k =1 X)) = 3 b(Xy), fori € [n],

O =LY 1=1; | Aicik = 1, Xpo17)
_ 1
T o)+l

O(Si = LY (k-1 = L1 | Aici e = 1, X20))

b (Xj12), fori e [n— 11, j € [k-2],

1
= 7 fori € [n—1].

After one application of , we have the following expres-
sions for conditional expectations of the above form:

1
7(Q)Xpk-11=") = 2

Q) Si =11 Ai—1 k-1 = L, X k-17)
= % -b(X»), fori € [n],

7Q)(Si =LY, ;1 =1; | Aici k-1 = 1, Xppk-17)
_ 1
2j+1
m(Q)(S; = LY k2= L2 | Aimi k-1 = L, Xpo 1)
1 b0)+b(1)
2k-1 2 ’

b (Xj12) forie[n—11j € [k-3],

fori € [n—1].

This process can be continued, and we finally obtain

O (Si =1 Sp-ny = Lict, Yimig1 = 1im1)
1 bO)+b(1) 5 .
= —t—= - f
> > g’ ori € [n],
so that



We will now list our requirements for the conditionals of
the perturbed distribution Q. The construction of a Q that
achieves these marginals and that is e-close to Q can be
found in Section 2.3.1. Here, we only note that the con-
struction will be such that O will differ from Q only in the
probabilities of those observations in which all the X; are
simultaneously equal to 1.

- 1

OXpky =)= T

- 1 .
OSi=11Ai-1k =1, Xpx) = 3 b(Xy), fori € [n],

OSi =LY ;1 =1, | Aimix = L, Xpoky)
_ 1
=

OSi = LY k-1 = Li—1 | Aimix = 1, Xp247)

_ L ja+ €/2) Xpi = Llia1

2k 11 X6 # 1kt

b (Xjs2) . fori € [n—1],j € [k -2,

,fori e [n—-1].

We now compute the relevant iterated applications of 7 on
Q using the above marginals.To simplify notation, define:

v:i=(1+¢€/2).

We now compute the corresponding expressions for 7(Q).
It will also be convenient to use the following ‘“‘error-
propagator” function.

Definition 2.3 (Error propagator). Given a bias func-
tion b as defined above, the error propagator function 7,

(abbreviated to n when b is clear from the context) is
b(0)+xb
n(x)_n ()C):_ ()]x(l)

We are now ready to describe 7(0):

- 1
m(Q)Xpk-11=") = Yy

7(0)(Si =11 Aisik-1 = 1, Xp2k-17)
1
= 3 -b(Xp), fori € [n],

m(O)(Si = LYij1 =1 | Aicix—1 = 1, Xjok-1))
_ 1
= o

m(O)(Si = LY k-1 = Lz | A k-1 = 1, Xpok—1))

1 {n (vi‘l) Xpk-17 = 1r—2

S 2k g (1) Xpk-17 # 12

b (Xjs2) fori € [n—11,j € [k -3,

,fori e [n—-1].

Note that only the last of these expressions differs from the
case of O, and it differs only for those observations in which
all the remaining X; nodes are set to 1. This pattern persists
for further iterates of .

Remark 2.2. We can now make precise how the bias func-
tion allows propagation of errors through 7 in spite of the
marginalization step. Note that if we had no bias, i.e.,

b (x) = 1, then the discrepancy from 7 (Q) in the last line in
the definition of 7(Q) will not arise at all.

In order to describe the evolution of this discrepancy, we
define the quantities v;; as ratios between the intermediate
marginals computed from O and Q respectively after / ap-
plications of v; the formal definition of v;; appears in fig. 4.
From the base case of O and the definition of operator 7,
we then have

vo,; = v =(1+€/2), fori e [n—1]

Vin=1 forO0<I<k-1

n ( ;;11 Vl—l,j)
n
Note that we have

Vii = forl<l<k-1lie[n-1].

OV S =1
Q) (S = 1) 1_1[ e

so that we only need to upper bound the v;; appropriately.
In order to do this, we will use the following lemma:

Lemma 2.1. There exists a 6 > 0 such that for x € [1,1+9),

ZE—T; > x'/1' The parameter & can be chosen to be at least
L.

4)

Proof. The claim of the lemma is equivalent to the existence
of a positive ¢ such that

f(x) = S5x! 5/ _6x —4 < Oforx € [1,1+6).

To prove the latter fact, we observe that f(1) = 0, and that

£ = [Qx/1+ Fxm 0 6] =~ < 0. Indeed,
a direct computation shows that ¢ can be chosen to be 1,
since f(2) < 0 and f is convex in [1,2). m]

We will now use the above lemma to prove by induction the
following lower bound on the v; ;.

Lemma 2.2. Suppose that for 1 <i <n—-1and0 <1 <

k=1, we have v;; > 1 and Hﬁ(l?) logv < log?2. Then,

for such l and i, logv;; > # (‘71) log v.

Proof. The base case [ = 0 is true by the definition of the
vy,i. For the induction, / > 1, and we start with the recursive
definition of v;; (fori < n — 1) in terms of v;_y ;:

1 i) 1 (j-1
ol p(n“(l—l)k’gy)) ®
j=
1 1 -1
:m.n(exp(lll_1 (ll )logv)) (6)
> exp (L(Z - 1) log v), (7
111\



7 (O)(Si = LYijkoi—1) = Li—io1 | Aicrk—t = 1, X2kt = Li—i-1)

Vii

C QS = LYoy = Lot | Akt = 1, Xpken) = Lieie1) |

Figure 4: The Quantities v ;

where eq. (5) uses the induction hypothesis and the fact that
n is an increasing function, eq. (6) employs the elementary
combinatorial identity ;;11 (;:}) = (’;1), and eq. (7) uses

the hypotheses of the lemma to apply Lemma 2.1. m}
We are now ready to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Substituting the bounds on the v;;
from Lemma 2.2 in eq. (4), we get

(D) (Sm =11) T
R e L 14 8
7(0) (St = 1) L_l[”‘ b ®

logv "4 (i—1
ZeXp(llk‘l . (k—l)) ©)

(10)
—1\*
Zexp(lllogv(nllk) ),

where eq. (9) uses Lemma 2.2, eq. (10) is again based on
the elementary identity used in eq. (6), and eq. (11) is an

(1)

a

b
application of the standard inequality (Z) > (5) . Now, let
k=(n-1)/11fora’ €[0,1),and set M := 11(n — 1)k.
Note that M = O(N) where N is the number of visible
nodes in GX. We then have

ﬂk(Q)(S[n] =1,)
7k (Q)(Siny = 1)

7 ' [(a’+1) _
Zexp(lllogvexp((1 )M 1 log(n 1))).

Choosing @ = a’/(a’ + 1) completes the proof. ]

2.3.1 Definitions of O and O

We now supply the promised definitions of Q and Q. We
first define Q by providing the appropriate conditional dis-
tributions of the bits at different nodes in the graph. For the
sake of brevity, we only specify the conditional distributions
which are not uniform: all the unspecified distributions are
assumed to be uniform over {0, 1}. We recall the definition
of the bias function used earlier:

Definition 2.4 (Bias function). The bias function b :
{0,1} — [0, 1] is defined as

3 -1
bxy=42 "7
) {1 x=0.

w

Q is now defined as follows:

OX;=U; | Up) =1,for2<i <k,

(S =1 1Yk = 1, Upiy)
1
= 3 -b(Uy) fori € [n],

LY i1 =LUj1e1)
{b (Up2) Ui =0,

o =11S;

N =

1 _
D B

fori e [n—-1],j € [k —2].
Oix-1=11S8=1Yx2=10U)
1 1
2 b’
The above construction of Q leads, in particular, to the
following observed conditional distributions for Q:

fori € [n—1].

1
O(Xpppg =) = 2T

O@Si =11Ai—1k =1, Xp27)

= % -b(Xp), fori € [n],
O j=118=1LY-11=1-1,Ai-1x = 1, Xp26)
1 {b (Xj+2) Xjs1 =0,
- m Xjm =1,
forie[n—-1],j € [k —-2].

OWik—1 =118 =LY k2 = Lx2, Aicik = 1, Xp2.k))
1 1
2 b(Xp)

| —

,forie[n-1].

The Perturbed Distribution The perturbation Q of Q
used in our proof is defined in fig. 5. We only specify those
entries of O which are different from those of Q.

3 A WELL-CONDITIONED CLASS

In this section we provide a counterpoint to our main re-
sult: we exhibit a useful class of well-conditioned causal



OXppky = Li—1,Si = LAi—1x = LY k2] = L2, Yi k=167 = 00, %)

= (1 —6/2), fori € [n_ 1]9

OXppk) = k-1, Si = L A1k = LY (k21 = 12, ¥ (k1,41 = 00, %)

OXppky = Li—1,Si = LAi—1x = LY k-2) = Lo, Yik—1,67 = 10, %)

=({+e€),forie[n-1].

OXp k) = 1k-1, Si = LAk = LY k21 = 1x—2, Y k-1, = 10, %)

Figure 5: The Perturbed Distribution Q

identification problems, by proving Proposition 1.3. The
proof follows almost immediately from an earlier causal
identification result of Tian and Pearl (2002).

Proof of Proposition 1.3. We restrict our attention to the
condition number of ID(G, V — {X}, X): since P(S | do X)
can be obtained from P(V — {X} | do X) by a marginaliza-
tion operation, an upper bound on the condition number for
P(V —{X} | doX) is also an upper bound on the condition
number of P(S | do X).

For a sufficiently small €, let P be a probability distribu-
tion that is e-close to the actual empirical distribution P.
This implies, in particular, that all conditional probabilities
computed according to P are 2e-close to the true condi-
tional probabilities computed according to P. Formally, for
any disjoint subsets S and T of V, P(S = s | T = t) and
P(S =5 | T =1t) are 2e-close: this follows from the fact
that P(S=5|T=1t)=P(S=5T=1)/P(T =1).

Let Z be the set of nodes (except X) in the same C-
component as X. Using the identifiability result of Tian
and Pearl (2002), we have
s H(x")
P(V=(X) = il do(X = x)) = P 2D | (1)
H(x)
where x’ ranges over the domain of X, and H(x") is defined
as

H(x') = P(X = x" | An(X) = van(x))

[T PG =, 1 ARV = vanw)s
VieZ

where vy = x’. (Here, for a vertex V;, An(V;) is the set of
ancestors of V; among the observed nodes V). Since each
H is a product of at most |V| conditional probabilities, and
since conditional probabilities computed according to P and
P are 2e-close, the values of H(x") computed according to
P and P are 2|V |e-close. Eq. (12) then gives

6‘_(4|V|+1)E < ﬁ(V— (X} = Vv-{X} | do(X = x))
POV =X} = w_px) | do(X = 1))
< e(4|V|+])6.

for every v and x. We therefore have

 eWIVIEDe _ g
KID(G,V-(x}.x) < lim =4V|+1. O
€l0 €

4 CONCLUSION

In this paper, we gave an example of a class of semi-
Markovian models in which the causal inference problem
is highly ill-conditioned. However, Proposition 1.3 shows
that at least some causal identification problems are not too
badly conditioned.

An immediate open question therefore is to find an algorithm
which can compute tight bounds for the condition number of
a causal identification problem in a given semi-Markovian
model. Since such an algorithm would operate only on the
model (and not on the observed data), it can serve a guide
for selecting between competing models which differ, e.g.,
in terms of which covariates are measured, before any data is
collected: all else being equal, a model in which the causal
inference problem to be solved is better conditioned and
hence less susceptible to noise should be preferable.

The roots of causal identification in graphical models can be
traced back to the setting of linear structural equation mod-
els, which were first studied in the seminal papers of Wright
(1921, 1934) (see, e.g., Drton et al. (2011), Foygel et al.
(2012) and Chen and Pearl (2014) for more recent results
on identification in linear structural equation models). Not
surprisingly, in contrast to the purely combinatorial identi-
fication procedures in the discrete case, the identification
procedures for linear structural equation models are able
to exploit the linear algebraic structure of the problem and
often use, in addition to combinatorial considerations, al-
gorithmic primitives from linear algebra and algebraic ge-
ometry as well (see e.g. Foygel et al. (2012) for an exam-
ple). Condition numbers of the primitives themselves have
been studied have been quite extensively, but exploring the
condition number of causal identification in the setting of
linear structural equation models remains open. However,
in this context, we should point out the work of Cornia and
Mooij (2014), who show that when causal effects in a linear
structural equation model are not exactly identifiable, the
uncertainty in estimating them may be unbounded, even in
models with a fixed number of nodes.
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