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Abstract

Bayesian inference has great promise for the
privacy-preserving analysis of sensitive data, as
posterior sampling automatically preserves dif-
ferential privacy, an algorithmic notion of data
privacy, under certain conditions (Dimitrakakis
et al., 2014; Wang et al., 2015b). While this
one posterior sample (OPS) approach elegantly
provides privacy “for free,” it is data inefficient
in the sense of asymptotic relative efficiency
(ARE). We show that a simple alternative based
on the Laplace mechanism, the workhorse of dif-
ferential privacy, is as asymptotically efficient as
non-private posterior inference, under general as-
sumptions. This technique also has practical ad-
vantages including efficient use of the privacy
budget for MCMC. We demonstrate the practi-
cality of our approach on a time-series analysis of
sensitive military records from the Afghanistan
and Iraq wars disclosed by the Wikileaks organi-
zation.

1 INTRODUCTION

Probabilistic models trained via Bayesian inference are
widely and successfully used in application domains where
privacy is invaluable, from text analysis (Blei et al.,
2003; Goldwater and Griffiths, 2007), to personalization
(Salakhutdinov and Mnih, 2008), to medical informatics
(Husmeier et al., 2006), to MOOCs (Piech et al., 2013).
In these applications, data scientists must carefully bal-
ance the benefits and potential insights from data analysis
against the privacy concerns of the individuals whose data
are being studied (Daries et al., 2014).

Dwork et al. (2006) placed the notion of privacy-preserving
data analysis on a solid foundation by introducing differen-
tial privacy (Dwork and Roth, 2013), an algorithmic for-
mulation of privacy which is a gold standard for privacy-
preserving data-driven algorithms. Differential privacy

measures the privacy “cost” of an algorithm. When de-
signing privacy-preserving methods, the goal is to achieve
a good trade-off between privacy and utility, which ideally
improves with the amount of available data.

As observed by Dimitrakakis et al. (2014) and Wang et al.
(2015b), Bayesian posterior sampling behaves synergisti-
cally with differential privacy because it automatically pro-
vides a degree of differential privacy under certain condi-
tions. However, there are substantial gaps between this ele-
gant theory and the practical reality of Bayesian data analy-
sis. Privacy-preserving posterior sampling is hampered by
data inefficiency, as measured by asymptotic relative effi-
ciency (ARE). In practice, it generally requires artificially
selected constraints on the spaces of parameters as well as
data points. Its privacy properties are also not typically
guaranteed for approximate inference.

This paper identifies these gaps between theory and prac-
tice, and begins to mend them via an extremely simple
alternative technique based on the workhorse of differen-
tial privacy, the Laplace mechanism (Dwork et al., 2006).
Our approach is equivalent to a generalization of Zhang
et al. (2016)’s recently and independently proposed algo-
rithm for beta-Bernoulli systems. We provide a theoretical
analysis and empirical validation of the advantages of the
proposed method. We extend both our method and Dimi-
trakakis et al. (2014); Wang et al. (2015b)’s one posterior
sample (OPS) method to the case of approximate inference
with privacy-preserving MCMC. Finally, we demonstrate
the practical applicability of this technique by showing how
to use a privacy-preserving HMM model to analyze sensi-
tive military records from the Iraq and Afghanistan wars
leaked by the Wikileaks organization. Our primary contri-
butions are as follows:

• We analyze the privacy cost of posterior sampling for
exponential family posteriors via OPS.

• We explore a simple Laplace mechanism alternative
to OPS for exponential families.



• Under weak conditions we establish the consistency
of the Laplace mechanism approach and its data effi-
ciency advantages over OPS.

• We extend the OPS and Laplace mechanism methods
to approximate inference via MCMC.

• We demonstrate the practical implications with a case
study on sensitive military records.

2 BACKGROUND

We begin by discussing preliminaries on differential pri-
vacy and its application to Bayesian inference. Our novel
contributions will begin in Section 3.1.

2.1 DIFFERENTIAL PRIVACY

Differential privacy is a formal notion of the privacy of
data-driven algorithms. For an algorithm to be differen-
tially private the probabilities of the outputs of the algo-
rithms may not change much when one individual’s data
point is modified, thereby revealing little information about
any one individual’s data. More precisely, a randomized al-
gorithmM(X) is said to be (ε, δ)-differentially private if

Pr(M(X) ∈ S) ≤ exp(ε)Pr(M(X′) ∈ S) + δ (1)

for all measurable subsets S of the range ofM and for all
datasets X, X′ differing by a single entry (Dwork and Roth,
2013). If δ = 0, the algorithm is said to be ε-differentially
private.

2.1.1 The Laplace Mechanism

One straightforward method for obtaining ε-differential
privacy, known as the Laplace mechanism (Dwork et al.,
2006), adds Laplace noise to the revealed information,
where the amount of noise depends on ε, and a quantifiable
notion of the sensitivity to changes in the database. Specif-
ically, the L1 sensitivity4h for function h is defined as

4h = max
X,X′

‖h(X)− h(X′)‖1 (2)

for all datasets X, X′ differing in at most one element. The
Laplace mechanism adds noise via

ML(X, h, ε) = h(X) + (Y1, Y2, . . . , Yd) , (3)
Yj ∼ Laplace(4h/ε),∀j ∈ {1, 2, . . . , d} ,

where d is the dimensionality of the range of h. The
ML(X, h, ε) mechanism is ε-differentially private.

2.1.2 The Exponential Mechanism

The exponential mechanism (McSherry and Talwar, 2007)
aims to output responses of high utility while maintain-
ing privacy. Given a utility function u(X, r) that maps

database X/output r pairs to a real-valued score, the expo-
nential mechanismME(X, u, ε) produces random outputs
via

Pr(ME(X, u, ε) = r) ∝ exp
(εu(X, r)

24u

)
, (4)

where the sensitivity of the utility function is

4u , max
r,(X(1),X(2))

‖u(X(1), r)− u(X(2), r)‖1 , (5)

in which (X(1),X(2)) are pairs of databases that differ in
only one element.

2.1.3 Composition Theorems

A key property of differential privacy is that it holds under
composition, via an additive accumulation.

Theorem 1. If M1 is (ε1, δ1)-differentially private, and
M2 is (ε2, δ2)-differentially private, then M1,2(X) =
(M1(X),M2(X)) is (ε1 + ε2, δ1 + δ2)-differentially pri-
vate.

This allows us to view the total ε and δ of our procedure as
a privacy “budget” that we spend across the operations of
our analysis. There also exists an “advanced composition”
theorem which provides privacy guarantees in an adversar-
ial adaptive scenario called k-fold composition, and also
allows an analyst to trade an increased δ for a smaller ε in
this scenario (Dwork et al., 2010). Differential privacy is
also immune to data-independent post-processing.

2.2 PRIVACY AND BAYESIAN INFERENCE

Suppose we would like a differentially private draw of pa-
rameters and latent variables of interest θ from the posterior
Pr(θ|X), where X = {x1, . . . ,xN} is the private dataset.
We can accomplish this by interpreting posterior sampling
as an instance of the exponential mechanism with utility
function u(X, θ) = logPr(θ,X), i.e. the log joint proba-
bility of the chosen θ assignment and the dataset X (Wang
et al., 2015b). We then draw θ via

f(θ;X, ε) ∝ exp
( ε logPr(θ,X)

24 logPr(θ,X)

)
= Pr(θ,X)

ε
24 logPr(θ,X)

(6)
where the sensitivity is4 logPr(θ,X) ,

max
θ,(X(1),X(2))

‖ logPr(θ,X(1))− logPr(θ,X(2))‖1 (7)

in which X(1) and X(2) differ in one element. If the data
points are conditionally independent given θ,

logPr(θ,X) = logPr(θ) +

N∑
i=1

logPr(xi|θ) , (8)

where Pr(θ) is the prior and Pr(xi|θ) is the likelihood
term for data point xi. Since the prior does not depend



on the data, and each data point is associated with a single
log-likelihood term logPr(xi|θ) in logPr(θ,X), from the
above two equations we have

4 logPr(θ,X) = max
x,x′,θ

| logPr(x′|θ)− logPr(x|θ)| .

(9)

This gives us the privacy cost of posterior sampling:

Theorem 2. If maxx,x′∈χ,θ∈Θ | logPr(x′|θ) −
logPr(x|θ)| ≤ C, releasing one sample from the posterior
distribution Pr(θ|X) with any prior is 2C-differentially
private.

Wang et al. (2015b) derived this form of the result from
first principles, while noting that the exponential mecha-
nism can be used, as we do here. Although they do not
explicitly state the theorem, they implicitly use it to show
two noteworthy special cases, referred to as the One Pos-
terior Sample (OPS) procedure. We state the first of these
cases:

Theorem 3. If maxx∈χ,θ∈Θ | logPr(x|θ)| ≤ B, releasing
one sample from the posterior distribution Pr(θ|X) with
any prior is 4B-differentially private.

This follows directly from Theorem 2, since if
| logPr(x|θ)| ≤ B, C = 4 logPr(θ,X) = 2B.

Under the exponential mechanism, ε provides an ad-
justable knob trading between privacy and fidelity. When
ε = 0, the procedure samples from a uniform distribu-
tion, giving away no information about X. When ε =
24 logPr(θ,X), the procedure reduces to sampling θ
from the posterior Pr(θ|X) ∝ Pr(θ,X). As ε approaches
infinity the procedure becomes increasingly likely to sam-
ple the θ assignment with the highest posterior probabil-
ity. Assuming that our goal is to sample rather than to
find a mode, we would cap ε at 24 logPr(θ,X) in the
above procedure in order to correctly sample from the true
posterior. More generally, if our privacy budget is ε′, and
ε′ ≥ 2q4 logPr(θ,X), for integer q, we can draw q pos-
terior samples within our budget.

As observed by Huang and Kannan (2012), the exponen-
tial mechanism can be understood via statistical mechanics.
We can write it as a Boltzmann distribution (a.k.a. a Gibbs
measure)

f(θ;x, ε) ∝ exp
(−E(θ)

T

)
, T =

24u(X, θ)

ε
, (10)

where E(θ) = −u(X, θ) = − logPr(θ,X) is the energy
of state θ in a physical system, and T is the temperature
of the system (in units such that Boltzmann’s constant is
one). Reducing ε corresponds to increasing the tempera-
ture, which can be understood as altering the distribution
such that a Markov chain moves through the state space
more rapidly.

3 PRIVACY FOR EXPONENTIAL
FAMILIES: EXPONENTIAL VS
LAPLACE

By analyzing the privacy cost of sampling from exponential
family posteriors in the general case we can recover the pri-
vacy properties of many standard distributions. These re-
sults can be applied to full posterior sampling, when feasi-
ble, or to Gibbs sampling updates, as we discuss in Section
4. In this section we analyze the privacy cost of sampling
from exponential family posterior distributions exactly (or
at an appropriate temperature) via the exponential mecha-
nism, following Dimitrakakis et al. (2014) and Wang et al.
(2015b), and via a method based on the Laplace mecha-
nism, which is a generalization of Zhang et al. (2016). The
properties of the two methods are compared in Table 1.

3.1 THE EXPONENTIAL MECHANISM

Consider exponential family models with likelihood

Pr(x|θ) = h(x)g(θ) exp
(
θᵀS(x)

)
,

where S(x) is a vector of sufficient statistics for data point
x, and θ is a vector of natural parameters. For N i.i.d. data
points, we have

Pr(X|θ) =
( N∏
i=1

h(x(i))
)
g(θ)N exp

(
θᵀ

N∑
i=1

S(x(i))
)

.

Further suppose that we have a conjugate prior which is
also an exponential family distribution,

Pr(θ|χ, α) = f(χ, α)g(θ)α exp
(
αθᵀχ

)
,

where α is a scalar, the number of prior “pseudo-counts,”
and χ is a parameter vector. The posterior is proportional
to the prior times the likelihood,

Pr(θ|X, χ, α) ∝ g(θ)N+α exp
(
θᵀ
( N∑
i=1

S(x(i)) + αχ
))

.

(11)
To compute the sensitivity of the posterior, we have

| logPr(x′|θ)− logPr(x|θ)| (12)

= |θᵀ
(
S(x′)− S(x)

)
+ log h(x′)− log h(x)| .

From Equation 9, we obtain4 logPr(θ,X) =

sup
x,x′∈χ,θ∈Θ

|θᵀ
(
S(x′)− S(x)

)
+ log h(x′)− log h(x)| .

(13)

A posterior sample at temperature T ,

PrT (θ|X, χ, α) ∝ g(θ)
N+α
T exp

(
θᵀ
∑N
i=1 S(x(i)) + αχ

T

)
,

T =
24 log p(θ,X)

ε
, (14)



Mechanism Sensitivity S(X) is Release ARE Pay Gibbs cost

Laplace supX,X′ ‖
∑N
i=1 S(x′(i))−

∑N
i=1 S(x(i))‖1 Noised Statistics 1 Once

Exponential supx,x′∈χ,θ∈Θ |θᵀ
(
S(x′)− S(x)

)
Rescaled One 1 + T Per update

(OPS) + log h(x′)− log h(x)| Sample (unless converged)

Table 1: Comparison of the properties of the two methods for private Bayesian inference.

has privacy cost ε, by the exponential mechanism. As an
example, consider a beta-Bernoulli model,

Pr(p|α, β) =
1

B(α, β)
pα−1(1− p)β−1

=
1

B(α, β)
exp((α− 1

)
log p+ (β − 1

)
log(1− p))

Pr(x|p) = px(1− p)1−x = exp(x log p+ (1− x) log(1− p))

whereB(α, β) is the beta function. GivenN binary-valued
data points X = x(1), . . . , x(N) from the Bernoulli distri-
bution, the posterior is

Pr(p|X, α, β) ∝

exp
((
n+ + α− 1

)
log p+

(
n− + β − 1

)
log(1− p)

)
n+ =

N∑
i=1

x(i), n− =

N∑
i=1

(1− x(i)) .

The sufficient statistics for each data point are S(x) =
[x, 1 − x]ᵀ. The natural parameters for the posterior are
θ = [log p, log(1 − p)]ᵀ, and h(x) = 0. The exponen-
tial mechanism sensitivity for a truncated version of this
model, where a0 ≤ p ≤ 1 − a0, can be computed from
Equation 13,4 logPr(θ,X) =

sup
x,x′∈{0,1},p∈[a0,1−a0]

|x log p+ (1− x) log(1− p)

−
(
x′ log p+ (1− x′) log(1− p)

)
|

= − log a0 + log(1− a0) . (15)

Note that if a0 = 0, corresponding to a standard untrun-
cated beta distribution, the sensitivity is unbounded. This
makes intuitive sense because some datasets are impossible
if p = 0 or p = 1, which violates differential privacy.

3.2 THE LAPLACE MECHANISM

One limitation of the exponential mechanism / OPS ap-
proach to private Bayesian inference is that the temperature
T of the approximate posterior is fixed for any ε that we are
willing to pay, regardless of the number of data points N
(Equation 10). While the posterior becomes more accurate
as N increases, and the OPS approximation becomes more
accurate by proxy, the OPS approximation remains a fac-
tor of T flatter than the posterior at N data points. This
is not simply a limitation of the analysis. An adversary
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Figure 1: Privacy-preserving approximate posteriors for a
beta-Bernoulli model (ε = 1, the true parameter p = 0.3,
OPS truncation point a0 = 0.2, and number of observa-
tions N = 20). For the Laplace mechanism, 30 privatizing
draws are rendered.

can choose data such that the dataset-specific privacy cost
of posterior sampling approaches the worst case given by
the exponential mechanism as N increases, by causing the
posterior to concentrate on the worst-case θ (see the sup-
plement for an example).

Here, we provide a simple Laplace mechanism alternative
for exponential family posteriors, which becomes increas-
ingly faithful to the true posterior with N data points, as
N increases, for any fixed privacy cost ε, under general as-
sumptions. The approach is based on the observation that
for exponential family posteriors, as in Equation 11, the
data interacts with the distribution only through the aggre-
gate sufficient statistics, S(X) =

∑N
i=1 S(x(i)). If we re-

lease privatized versions of these statistics we can use them
to perform any further operations that we’d like, including
drawing samples, computing moments and quantiles, and
so on. This can straightforwardly be accomplished via the
Laplace mechanism:

Ŝ(X) = proj(S(X) + (Y1, Y2, . . . , Yd)) , (16)
Yj ∼ Laplace(4S(X)/ε),∀j ∈ {1, 2, . . . , d} ,

where proj(·) is a projection onto the space of sufficient
statistics, if the Laplace noise takes it out of this region.
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Figure 2: L1 error for private approximate samples from
a beta posterior over a Bernoulli success parameter p, as a
function of the number of Bernoulli(p) observations, aver-
aged over 1000 repeats. The true parameter was p = 0.1,
the exponential mechanism posterior was truncated at a0 =
0.05, and ε = 0.1.

For example, if the statistics are counts, the projection en-
sures that they are non-negative. The L1 sensitivity of the
aggregate statistics is

4S(X) = sup
X,X′

‖
N∑
i=1

S(x′(i))−
N∑
i=1

S(x(i))‖1 (17)

= sup
x,x′
‖S(x′)− S(x)‖1 ,

where X, X′ differ in at most one element. Note that per-
turbing the sufficient statistics is equivalent to perturbing
the parameters, which was recently and independently pro-
posed by Zhang et al. (2016) for beta-Bernoulli models
such as Bernoulli naive Bayes.

A comparison of Equations 17 and 13 reveals that the
L1 sensitivity and exponential mechanism sensitivities are
closely related. The L1 sensitivity is generally easier to
control as it does not involve θ or h(x) but otherwise in-
volves similar terms to the exponential mechanism sen-
sitivity. For example, in the beta posterior case, where
S(x) = [x, 1 − x] is a binary indicator vector, the L1
sensitivity is 2. This should be contrasted to the expo-
nential mechanism sensitivity of Equation 15, which de-
pends heavily on the truncation point, and is unbounded
for a standard untruncated beta distribution. The L1 sen-
sitivity is fixed regardless of the number of data points N ,
and so the amount of Laplace noise to add becomes smaller
relative to the total S(X) as N increases.

Figure 1 illustrates the differences in behavior between the
two privacy-preserving Bayesian inference algorithms for a

beta distribution posterior with Bernoulli observations. The
OPS estimator requires the distribution be truncated, here
at a0 = 0.2. This controls the exponential mechanism sen-
sitivity, which determines the temperature T of the distri-
bution, i.e. the extent to which the distribution is flattened,
for a given ε. Here, T = 2.7. In contrast, the Laplace
mechanism achieves privacy by adding noise to the suffi-
cient statistics, which in this case are the pseudo-counts of
successes and failures for the posterior distribution. In Fig-
ure 2 we illustrate the fidelity benefits of posterior sampling
based on the Laplace mechanism instead of the exponential
mechanism as the amount of data increases. In this case the
exponential mechanism performs better than the Laplace
mechanism only when the number of data points is very
small (approximately N = 10), and is quickly overtaken
by the Laplace mechanism sampling procedure. As N in-
creases the accuracy of sampling from the Laplace mecha-
nism’s approximate posterior converges to the performance
of samples from the true posterior at the current number of
observations N , while the exponential mechanism behaves
similarly to the posterior with fewer than N observations.
We show this formally in the next subsection.

3.3 THEORETICAL RESULTS

First, we show that the Laplace mechanism approximation
of exponential family posteriors approaches the true pos-
terior distribution evaluated at N data points. Proofs are
given in the supplementary.

Lemma 1. For a minimal exponential family given a
conjugate prior, where the posterior takes the form
Pr(θ|X, χ, α) ∝ g(θ)n+α exp

(
θᵀ
(∑n

i=1 S(x(i)) +

αχ
))

, where p(θ|η) denotes this posterior with a natural
parameter vector η, if there exists a δ > 0 such that these
assumptions are met:

1. The data X comes i.i.d. from a minimal exponential
family distribution with natural parameter θ0 ∈ Θ

2. θ0 is in the interior of Θ

3. The function A(θ) has all derivatives for θ in the inte-
rior of Θ

4. covPr(x|θ)(S(x))) is finite for θ ∈ B(θ0, δ)

5. ∃w > 0 s.t. det(covPr(x|θ)(S(x)))) > w for θ ∈
B(θ0, δ)

6. The prior Pr(θ|χ, α) is integrable and has support on
a neighborhood of θ∗

then for any mechanism generating a perturbed posterior
p̃N = p(θ|ηN + γ) against a noiseless posterior pN =
p(θ|ηN ) where γ comes from a distribution that does not



depend on the number of data observations N and has fi-
nite covariance, this limit holds:

limN→∞E[KL(p̃N ||pN )] = 0 .

Corollary 2. The Laplace mechanism on an exponen-
tial family satisfies the noise distribution requirements of
Lemma 1 when the sensitivity of the sufficient statistics is
finite and either the exponential family is minimal, or if the
exponential family parameters θ are identifiable.

These assumptions correspond to the data coming from a
distribution where the Laplace regularity assumptions hold
and the posterior satisfies the asymptotic normality given
by the Bernstein-von Mises theorem. For example, in the
beta-Bernoulli setting, these assumptions hold as long as
the success parameter p is in the open interval (0, 1). For
p = 0 or 1, the relevant parameter is not in the interior of
Θ, and the result does not apply. In the setting of learning
a normal distribution’s mean µ where the variance σ2 > 0
is known, the assumptions of Lemma 1 always hold, as the
natural parameter space is an open set. However, Corol-
lary 2 does not apply in this setting because the sensitivity
is infinite (unless bounds are placed on the data). Our ef-
ficiency result, in Theorem 4, follows from Lemma 1 and
the Bernstein-von Mises theorem.

Theorem 4. Under the assumptions of Lemma 1, the
Laplace mechanism has an asymptotic posterior of
N (θ0, 2I−1/N) from which drawing a single sample has
an asymptotic relative efficiency of 2 in estimating θ0,
where I is the Fisher information at θ0.

Above, the asymptotic posterior refers to the normal dis-
tribution, whose variance depends on N , that the posterior
distribution approaches as N increases. This ARE result
should be contrasted to that of the exponential mechanism
(Wang et al., 2015b).

Theorem 5. The exponential mechanism applied to the ex-
ponential family with temperature parameter T ≥ 1 has an
asymptotic posterior ofN (θ∗, (1+T )I−1/N) and a single
sample has an asymptotic relative efficiency of (1 + T ) in
estimating θ∗, where I is the Fisher information at θ∗.

Here, the ARE represents the ratio between the variance of
the estimator and the optimal variance I−1/N achieved by
the posterior mean in the limit. Sampling from the posterior
itself has an ARE of 2, due to the stochasticity of sampling,
which the Laplace mechanism approach matches. These
theoretical results provide an explanation for the difference
in the behavior of these two methods asN increases seen in
Figure 2. The Laplace mechanism will eventually approach
the true posterior and the impact of privacy on accuracy will
diminish when the data size increases. However, for the
exponential mechanism with T > 1, the ratio of variances
between the sampled posterior and the true posterior given
N data points approaches (1 + T )/2, making the sampled

posterior more spread out than the true posterior even as N
grows large.

So far we have compared the ARE values for sampling,
as an apples-to-apples comparison. In reality, the Laplace
mechanism has a further advantage as it releases a full
posterior with privatized parameters, while the exponen-
tial mechanism can only release a finite number of samples
with a finite ε, which we discuss in Remark 1.

Remark 1. Under the the assumptions of Lemma 1, by
using the full privatized posterior instead of just a sam-
ple from it, the Laplace mechanism can release the priva-
tized posterior’s mean, which has an asymptotic relative
efficiency of 1 in estimating θ∗.

4 PRIVATE GIBBS SAMPLING

We now shift our discussion to the case of approximate
Bayesian inference. While the analysis of Dimitrakakis
et al. (2014) and Wang et al. (2015b) shows that posterior
sampling is differentially private under certain conditions,
exact sampling is not in general tractable. It does not di-
rectly follow that approximate sampling algorithms such
as MCMC are also differentially private, or private at the
same privacy level. Wang et al. (2015b) give two results to-
wards understanding the privacy properties of approximate
sampling algorithms. First, they show that if the approxi-
mate sampler is “close” to the true distribution in a certain
sense, then the privacy cost will be close to that of a true
posterior sample:

Proposition 3. If procedure A which produces samples
from distribution PX is ε-differentially private, then any
approximate sampling procedures A′ that produces a sam-
ple from P ′X such that ‖PX − P ′X‖1 ≤ δ for any X is
(ε, (1 + exp(ε)δ)-differentially private.

Unfortunately, it is not in general feasible to verify the con-
vergence of an MCMC algorithm, and so this criterion is
not generally verifiable in practice. In their second re-
sult, Wang et al. study the privacy properties of stochastic
gradient MCMC algorithms, including stochastic gradient
Langevin dynamics (SGLD) (Welling and Teh, 2011) and
its extensions. SGLD is a stochastic gradient method with
noise injected in the gradient updates which converges in
distribution to the target posterior.

In this section we study the privacy cost of MCMC, al-
lowing us to quantify the privacy of many real-world
MCMC-based Bayesian analyses. We focus on the case
of Gibbs sampling, under exponential mechanism and
Laplace mechanism approaches. By reinterpreting Gibbs
sampling as an instance of the exponential mechanism,
we obtain the “privacy for free” cost of Gibbs sampling.
Metropolis-Hastings and annealed importance sampling
also have privacy guarantees, which we show in the sup-
plementary materials.



4.1 EXPONENTIAL MECHANISM

We consider the privacy cost of a Gibbs sampler, where
data X are behind the privacy wall, current sampled val-
ues of parameters and latent variables θ = [θ1, . . . , θD] are
publicly known, and a Gibbs update is a randomized algo-
rithm which queries our private data in order to randomly
select a new value θ′l for the current variable θl. The transi-
tion kernel for a Gibbs update of θl is

T (Gibbs,l)(θ, θ′) = Pr(θ′l
∣∣θ¬l,X) , (18)

where θ¬l refers to all entries of θ except l, which are held
fixed, i.e. θ′¬l = θ¬l. This update can be understood via the
exponential mechanism:

T (Gibbs,l,ε)(θ, θ′) ∝ Pr(θ′l, θ¬l,X)
ε

24 logPr(θ′
l
,θ¬l,X) ,

(19)
with utility function u(X, θ′l; θ¬l) = logPr(θ′l, θ¬l,X),
over the space of possible assignments to θl, holding θ¬l
fixed. A Gibbs update is therefore ε-differentially private,
with ε = 24 logPr(θ′l, θ¬l,X). This update corresponds
to Equation 6 except that the set of responses for the expo-
nential mechanism is restricted to those where θ′¬l = θ¬l.
Note that

4 logPr(θ′l, θ¬l,X) ≤ 4 logPr(θ,X) (20)

as the worst case is computed over a strictly smaller set of
outcomes. In many cases each parameter and latent vari-
able θl is associated with only the lth data point xl, in
which case the privacy cost of a Gibbs scan can be im-
proved over simple additive composition. In this case a
random sequence scan Gibbs pass, which updates all N
θl’s exactly once, is 24 logPr(θ,X)-differentially private
by parallel composition (Song et al., 2013). Alternatively,
a random scan Gibbs sampler, which updates a random Q
out of N θl’s, is 44 logPr(θ,X)QN -differentially private
from the privacy amplification benefit of subsampling data
(Li et al., 2012).

4.2 LAPLACE MECHANISM

Suppose that the conditional posterior distribution for a
Gibbs update is in the exponential family. Having pri-
vatized the sufficient statistics arising from the data for
the likelihoods involved in each update, via Equation 16,
and publicly released them with privacy cost ε, we may
now perform the update by drawing a sample from the ap-
proximate conditional posterior, i.e. Equation 11 but with
S(X) =

∑N
i=1(x(i)) replaced by Ŝ(X). Since the pri-

vatized statistics can be made public, we can also sub-
sequently draw from an approximate posterior based on
Ŝ(X) with any other prior (selected based on public infor-
mation only), without paying any further privacy cost. This
is especially valuable in a Gibbs sampling context, where
the “prior” for a Gibbs update often consists of factors from
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Figure 3: State assignments of privacy-preserving HMM
on Iraq (Laplace mechanism, ε = 5).

other variables and parameters to be sampled, which are
updated during the course of the algorithm.

In particular, consider a Bayesian model where a Gibbs
sampler interacts with data only via conditional posteri-
ors and their corresponding likelihoods that are exponen-
tial family distributions. We can privatize the sufficient
statistics of the likelihood just once at the beginning of the
MCMC algorithm via the Laplace mechanism with privacy
cost ε, and then approximately sample from the posterior
by running the entire MCMC algorithm based on these pri-
vatized statistics without paying any further privacy cost.
This is typically much cheaper in the privacy budget than
exponential mechanism MCMC which pays a privacy cost
for every Gibbs update, as we shall see in our case study
in Section 5. The MCMC algorithm does not need to con-
verge to obtain privacy guarantees, unlike the OPS method.
This approach applies to a very broad class of models,
including Bayesian parameter learning for fully-observed
MRF and Bayesian network models. Of course, for this
technique to be useful in practice, the aggregate sufficient
statistics for each Gibbs update must be large relative to
the Laplace noise. For latent variable models, this typically
corresponds to a setting with many data points per latent
variable, such as the HMM model with multiple emissions
per timestep which we study in the next section.

5 CASE STUDY: WIKILEAKS IRAQ &
AFGHANISTAN WAR LOGS

A primary goal of this work is to establish the practical fea-
sibility of privacy-preserving Bayesian data analysis using
complex models on real-world datasets. In this section we
investigate the performance of the methods studied in this
paper for the analysis of sensitive military data. In July and
October 2010, the Wikileaks organization disclosed collec-
tions of internal U.S. military field reports from the wars in
Afghanistan and Iraq, respectively. Both disclosures con-
tained data from between January 2004 to December 2009,
with ∼75,000 entries from the war in Afghanistan, and
∼390,000 entries from Iraq. Hillary Clinton, at that time
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Figure 4: State 1 for Iraq (type, category, casualties).
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Figure 5: State 2 for Iraq (type, category, casualties).

the U.S. Secretary of State, criticized the disclosure, stat-
ing that it “puts the lives of United States and its partners’
service members and civilians at risk.”1 These risks, and
the motivations for the leak, could potentially have been
mitigated by releasing a differentially private analysis of
the data, which protects the contents of each individual log
entry while revealing high-level trends. Note that since the
data are publicly available, although our models were dif-
ferentially private, other aspects of this manuscript such as
the evaluation may reveal certain information, as in other
works such as Wang et al. (2015a,b).

The disclosed war logs each correspond to an individual
event, and contain textual reports, as well as fields such
as coarse-grained types (friendly action, explosive hazard,
. . . ), fine-grained categories (mine found/cleared, show of
force, . . . ), and casualty counts (wounded/killed/detained)
for the different factions (Friendly, HostNation (i.e. Iraqi
and Afghani forces), Civilian, and Enemy, where the names
are relative to the U.S. military’s perspective). We use the
techniques discussed in this paper to privately infer a hid-
den Markov model on the log entries. The HMM was fit
to the non-textual fields listed above, with one timestep
per month, and one HMM chain per region code. A naive
Bayes conditional independence assumption was used in
the emission probabilities for simplicity and parameter-
count parsimony. Each field was modeled via a discrete
distribution per latent state, with casualty counts bina-

1Fallon, Amy (2010). “Iraq war logs: disclosure condemned
by Hillary Clinton and Nato.” The Guardian. Retrieved on
2/22/2016.

rized (0 versus > 0), and with wounded/killed/detained
and Friendly/HostNation features combined, respectively,
via disjunction of the binary values. This decreased the
number of features to privatize, while slightly increasing
the size of the counts per field to protect and simplifying
the model for visualization purposes. After preprocessing
to remove empty timesteps and near-empty region codes
(see the supplementary), the median number of log en-
tries per region/timestep pair was 972 for Iraq, and 58 for
Afghanistan. The number of log entries per timestep was
highly skewed for Afghanistan, due to an increase in den-
sity over time.

The models were trained via Gibbs sampling, with the tran-
sition probabilities collapsed out, following Goldwater and
Griffiths (2007). We did not collapse out the naive Bayes
parameters in order to keep the conditional likelihood in
the exponential family. The details of the model and infer-
ence algorithm are given in the supplementary material. We
trained the models for 200 Gibbs iterations, with the first
100 used for burn-in. Both privatization methods have the
same overall computational complexity as the non-private
sampler. The Laplace mechanism’s computational over-
head is paid once up-front, and did not greatly affect the
runtime, while OPS roughly doubled the runtime. For vi-
sualization purposes we recovered parameter estimates via
the posterior mean based on the latent variable assignments
of the final iteration, and we reported the most frequent la-
tent variable assignments over the non-burn-in iterations.
We trained a 2-state model on the Iraq data, and a 3-state
model for the Afghanistan data, using the Laplace approach
with total ε = 5 (ε = 1 for each of 5 features).

Interestingly, when given 10 states, the privacy-preserving
model only assigned substantial numbers of data points to
these 2-3 states, while a non-private HMM happily fit a
10-state model to the data. The Laplace noise therefore ap-
pears to play the role of a regularizer, consistent with the
noise being interpreted as a “random prior,” and along the
lines of noise-based regularization techniques such as (Sri-
vastava et al., 2014; van der Maaten et al., 2013), although
of course it may correspond to more regularization than we
would typically like. This phenomenon potentially merits
further study, beyond the scope of this paper.

We visualized the output of the Laplace HMM for Iraq
in Figures 3–5. State 1 shows the U.S. military perform-
ing well, with the most frequent outcomes for each fea-
ture being friendly action, cache found/cleared, and en-
emy casualties, while the U.S. military performed poorly
in State 2 (explosive hazard, IED explosion, civilian ca-
sualties). State 2 was prevalent in most regions until the
situation improved to State 1 after the troop surge strat-
egy of 2007. This transition typically occurred after troops
peaked in Sept.–Nov. 2007. The results for Afghanistan,
in the supplementary, provide a critical lens on the US mil-
itary’s performance, with enemy casualty rates (including
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Figure 6: Log-likelihood results. Left: Naive Bayes (Afghanistan). Middle: Afghanistan. Right: Iraq. For OPS, Dirichlets
were truncated at a0 = 1

MKd
, M = 10 or 100, where Kd = feature d’s dimensionality.
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Figure 7: State assignments for OPS privacy-preserving
HMM on Afghanistan. (ε = 5, truncation point a0 =

1
100Kd

). Top: Estimate from last 100 samples. Bottom:
Estimate from last one sample.

detainments) lower than friendly/host casualties for all la-
tent states, and lower than civilian casualties in 2 of 3 states.

We also evaluated the methods at prediction. A uniform
random 10% of the timestep/region pairs were held out for
10 train/test splits, and we reported average test likelihoods
over the splits. We estimated test log-likelihood for each
split by averaging the test likelihood over the burned-in
samples (Laplace mechanism), or using the final sample
(OPS). All methods were given 10 latent states, and ε was
varied between 0.1 and 10. We also considered a naive
Bayes model, equivalent to a 1-state HMM. The Laplace
mechanism was superior to OPS for the naive Bayes model,
for which the statistics are corpus-wide counts, corre-
sponding to a high-data regime in which our asymptotic

analysis was applicable. OPS was competitive with the
Laplace mechanism for the HMM on Afghanistan, where
the amount of data was relatively low. For the Iraq dataset,
where there was more data per timestep, the Laplace mech-
anism outperformed OPS, particularly in the high-privacy
regime. For OPS, privacy at ε is only guaranteed if MCMC
has converged. Otherwise, from Section 4.1, the worst case
is an impractical ε(Gibbs) ≤ 400ε (200 iterations of la-
tent variable and parameter updates with worst-case cost
ε). OPS only releases one sample, which harmed the co-
herency of the visualization for Afghanistan, as latent states
of the final sample were noisy relative to an estimate based
on all 100 post burn-in samples (Figure 7). Privatizing the
Gibbs chain at a privacy cost of ε(Gibbs) would avoid this.

6 CONCLUSION

This paper studied the practical limitations of using poste-
rior sampling to obtain privacy “for free.” We explored an
alternative based on the Laplace mechanism, and analyzed
it both theoretically and empirically. We illustrated the
benefits of the Laplace mechanism for privacy-preserving
Bayesian inference to analyze sensitive war records. The
study of privacy-preserving Bayesian inference is only just
beginning. We envision extensions of these techniques to
other approximate inference algorithms, as well as their
practical application to sensitive real-world data sets. Fi-
nally, we have argued that asymptotic efficiency is impor-
tant in a privacy context, leading to an open question: how
large is the class of private methods that are asymptotically
efficient?
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