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Abstract

In many applications, it may be better to compute
a good interpretable policy instead of a complex
optimal one. For example, a recommendation en-
gine might perform better when accounting for
user profiles, but in the absence of such loyalty
data, assumptions would have to be made that
increase the complexity of the recommendation
policy. A simple greedy recommendation could
be implemented based on aggregated user data,
but another simple policy can improve on this
by accounting for the fact that users come from
different segments of a population. In this pa-
per, we study the problem of computing an opti-
mal policy that is interpretable. In particular, we
consider a policy to be interpretable if the deci-
sions (e.g., recommendations) depend only on a
small number of simple state attributes (e.g., the
currently viewed product). This novel model is
a general Markov decision problem with action
constraints over states. We show that this prob-
lem is NP hard and develop a Mixed Integer Lin-
ear Programming formulation that gives an exact
solution when policies are restricted to being de-
terministic. We demonstrate the effectiveness of
the approach on a real-world business case for
a European tour operator’s recommendation en-
gine.

1 Introduction

Interpretability in data mining and machine learning means
that the computed models and solutions can be relatively
easily understood by humans. Examples of algorithms
that produce interpretable solutions include classical algo-
rithms, such as decision trees [ 8], and newer sparse learn-
ing methods [18]. Recently, there has been a lot of interest
in interpretable machine learning, but few works have ex-
plicitly focused on interpretability in decision making.
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Lack of interpretable solutions can be an important road-
block in many critical domains, such as medicine [12, 11,

]. If decision makers can understand a computed solu-
tion they are more likely to trust and implement it. Addi-
tionally, having an interpretable policy makes it easier to
discover flaws resulting from incorrect models or unrea-
sonable model assumptions, and without implementing a
policy. Furthermore, it is possible to discover why the pol-
icy does not perform well. Finally, a simple policy can be
easily implemented [29] and, as we show, sometimes as-
suming that the policy is simple circumvents the need to
build complex models.

In this paper, we view the task of recommending products
as one of decision making in a dynamic environment, rather
than ranking products in a static setting (which is more
common). With the rise in accessible customer information
and product availability, the importance of matching cus-
tomers to products has quickly risen. This problem arises
in many domains such as recommender systems [21, 6] and
personalized online advertising [8, 16, 7]; similar methods
for matching customers to products are even used for email
classification and spam detection [20]. Most methods for
these systems use both the descriptions of the items and the
historical behavior of the users.

Recommender systems fall into two basic categories [24]:
collaborative filtering and content-based filtering. Collabo-
rative filtering relates one user’s preferences to other users’
preferences without taking into account specific user or
item properties [24]. Content-based filtering rather makes
use of user profiles and the item properties. Most rec-
ommender systems combine these ideas and are a hybrid
of both collaborative and content-based filtering methods.
Successful recommender systems have been developed for
recommending movies (e.g., Netflix), music (e.g., Pan-
dora), personalized advertising [32], and even for recom-
mending social-network followers [15, 5].

We focus in this paper on a single, and admittedly sim-
ple, model of policy interpretability (i.e., recommendation
rules that are easily understood). Since we consider a dy-
namic setting, we look for recommendations based on the
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state of a user (e.g., whether or not interested in a currently
viewed product), and these recommendations based on the
state are what we refer to as a policy. We consider the stan-
dard Markov decision process (MDP) with discrete states
and actions. Typically, an MDP will have thousands or mil-
lions of states. Therefore, even though a policy can be ex-
amined in principle, it cannot be understood in practice.
To make the policy interpretable, we simply require that it
does not prescribe more than, for example, 50 different ac-
tions. This means that the policy must prescribe the same
action for a number of states and also that such a subset of
states must be well defined.

Computing optimal recommendations under our inter-
pretability constraints constitutes solving a so-called par-
tially observable Markov decision process (POMDP),
which can be cast as a Markov decision process. Policies
for such MDPs tend to be extraordinarily complex and hard
not only to interpret but also to implement. Instead, as in
our case, one may want to compute a best possible policy
that depends only on the currently viewed product. This
would entail computing item to item recommendations that
consider the customer dynamics, a policy which falls into a
class of POMDPs that are not complex.

To motivate the need for interpretable policies, consider
optimizing dynamic online product recommendations. As
a user interacts with a website, their preferences become
clear over time. However, the interactions themselves in-
fluence user behavior [33, 30, 27, 23]. Consider a scenario
with two customer types A and B and two products X and
Y where the percentages of customer types A and B in-
terested in products X and Y are 90%/10% and 40%/60%,
respectively. If a customer of type A is recommended and
clicks on product Y, the distribution of the types of cus-
tomers looking at the two products will change, and our
model accounts for such dynamics.

Our main contribution in this paper is a novel model for
computing interpretable policies as described above, or
stated differently, a model for computing policies for MDPs
which are constrained to take the same action in subsets
of states. We show connections with several other mod-
els considered in the context of reinforcement learning and
POMDPs and use the relationship to show that the optimal
interpretable policies may be stochastic and are NP hard to
compute. We then propose a new and simpler nonlinear
Mixed Integer Linear Program (MILP) formulation. While
these models can also be hard to compute, we show that we
can learn optimal interpretable deterministic policies.

We also contribute to the area of recommendation engines
with a framework for making recommendations that ac-
count for the changing dynamics of the system. While
we do not model these dynamics directly, our framework
does account for more general dynamics by introducing
unobservable dynamics into the model. In other words,

our model assumes that customers are changing states but
also assumes that we cannot directly observe the manner in
which they are changing.

Furthermore, we establish a connection between several
apparently unrelated areas of optimization. The underly-
ing model is a Markov decision process with constraints
on actions, and is related to several other streams of work.
Similar models are studied using aggregation in reinforce-
ment learning, where the motivation is somewhat different.
Aggregation is used because the models are too large to be
solved or even enumerated. As we discuss in more detail
later, the interpretable MDP model is also related to finite
state controller optimization on POMDPs (e.g. [2]). Fi-
nally, policy search methods from reinforcement learning
have been used to compute interpretable policies.

The remainder of the paper proceeds as follows. Section
2 next discusses more related work to our notion of inter-
pretability. Section 3 then formalizes the concept of inter-
pretability and discusses the application to recommender
systems, followed by mathematical programming formula-
tions used to learn interpretable policies in Section 4, and
corresponding complexity results in Section 5. Our frame-
work is evaluated on data from a major European tour op-
erator in Section 6, where a significant improvement over
several practical benchmarks is demonstrated. A final dis-
cussion of our findings is given in Section 7.

2 Related Work

In this section, we summarize the existing related work and
draw new connections. While there has been little work di-
rectly on interpretable policies, it turns out that our model
of policy interpretability is closely related to previous re-
sults in other fields.

Recent work on interpretable policies in reinforcement
learning [17] proposes to use policy search methods. Pol-
icy search is a general method that can be leveraged to find
policies that are parameterized in ways that make them in-
terpretable. While this is a very natural approach and is
demonstrated to work well, it does not study any new meth-
ods for computing these interpretable policy. In compari-
son, our focus is on a simpler model that allows us to more
deeply study the computational problems.

The most closely related method to our formulation (dis-
cussed in Section 4.1) is state aggregation in reinforcement
learning, which is a very simple and classic method (e.g.,
[25, 19,28, 3, 10]). The motivation in our work is quite dif-
ferent from that in state aggregation. The main reason for
state aggregation is to address a problem that is very large
and often cannot be enumerated, and therefore, very little
focus has been put on how to compute good policies for
an aggregation. Indeed, most work has rather focused on
methods for choosing which states should be aggregated.



Since we deal with a smaller number of states, we can de-
velop better methods for computing interpretable policies,
and will adapt methods used for state aggregation to this
setting.

Our model of interpretability can be also seen as a special
case of Partially Observable Markov Decision Processes
(POMDPs). POMDPs generalize MDPs to the case where
observations do not contain exact information about the
current state, and in general, the optimal policy to POMDPs
are complex. There do exist certain classes of POMDPs
that result in simpler optimal policies, and this space is
where our model lies. In the other direction, it can also
be shown that our interpretable policy problem generalizes
one of these simpler classes of POMDPs, termed optimal
finite state controllers in the MDP literature. Hence, we
proceed as with general POMDPs, and constrain polices by
introducing a concept of observations in the next section.

Another closely related area of work to interpretability is
that of implementability of policies. The goal is not to
have the policy be understood by humans, but instead re-
quires that. The term implementable policy in the context
of MDPs was introduced in [29]. However, the problem is
a special case of finding memoryless policies (i.e., policies
that depend only on the current state and not on any history)
for POMDPs.

Finally, the analysis of policy optimality in some special-
ized domains, such as inventory management, queueing,
and energy storage is tangentially related to our setting.
One can show that the optimal policies in these domains
are interpretable; indeed, for example, the optimal policy
in inventory optimization domains will be independent of
the current inventory. This leads to policies that are easy to
interpret and also typically easy to solve. Unlike these set-
tings, we deal with cases in which the optimal policy may
not be interpretable, which introduces an additional layer
of computational difficulties.

3 Interpretable Policies in MDPs

In this section, we formally define the model and illustrate
its application to the dynamic recommendation problem
described in the introduction. For the remainder of the pa-
per, we define the following notations. Denote by A? the
non-negative simplex in d dimensions, i.e., the set of valid
distributions defined by {z € R? : ", 2; = 1,2 > 0}. For
a matrix X, we define X (s, -) as row s of X.

The interpretable model is based on a Markov decision pro-
cess (MDP) (e.g., [22]). An interpretable MDP is a tu-
ple (S, A, P,r,po, O, 0). Here, S is a finite set of states,
po € AlSlis the initial distribution, A is a finite set of
actions, each of which can be taken in all states. The tran-
sition probability matrix for each a € A is denoted P, €
RISI*IS| and each row lies in the simplex: P, (s,-) € AlSI

for all s € S. The rewards vector for each action a € A is
denoted r, € RIS,

As discussed in the introduction, we assume that inter-
pretability of a policy depends on a small number of simple
state properties. To capture this property, we augment the
model by a set of observations O and an observation func-
tion § : S — O that defines a partitioning of states to
observations.

A solution to an MDP is a randomized stationary policy
from g : {S — A“} or deterministic stationary policy
from Il : {S — A}. The set of interpretable policies II;
is defined as:

II; = {ﬂ' ellg : 6‘(81) = 9(32) = 7T(81) = 71'(82)} .
In other words, if two states share the same observation

then an interpretable policy must take actions with identical
probabilities in these states.

Our objective is to compute a policy that maximizes the
infinite-horizon ~y-discounted return p(7) by solving

max p(r), 3.1

mellr

where p(7) can be expressed as
oo
p(m) = _~'p) Plrs.
t=0

It is important to note that the constraints imposed by in-
terpretable policies are quite different from the constraints
in constrained MDPs [1]. The optimal solution to Eq. (3.1)
can be obtained through other formulations. In particular,
we offer a Mixed Integer Linear Programming formulation
in Section 4.2, and equivalence is given there by Propo-
sition 4.1. Eq. (3.1) offers an easy interpretation for our
objective when designing a policy.

To illustrate the concept of interpretability, the following
example describes how our model can be used to repre-
sent the recommender system formulation from the intro-
duction. This is a simplified version of the model that we
use later in the paper for empirical evaluation.

Example 3.1 (Dynamic Product Recommendations). Con-
sider the online product recommendation setting described
in the introduction. Let M be a set of available prod-
ucts and let VW be a set of customer segments. Assum-
ing that customer segments are known in advance, their
browsing behavior and response can be modeled as the
following MDP. States S = W x M represent the cus-
tomer type and current product displayed. Actions repre-
sent the product sets to recommend during a page view:
A= {a € 2M : |a| < k). Here, k is the maximum num-
ber of products to recommend. Transition probabilities are
based on whether a customer chooses to follow a product



recommendation, purchases the currently displayed prod-
uct, or abandons the purchase. Rewards are accrued by
customers purchasing items.

This recommendation MDP can be solved rather easily,
however the policy is likely to be hard to implement. This
is because the customer type is not observable, particularly
if only a short history of customer interactions is avail-
able. Another direction, solving this problem as a POMDP,
would yield a complex policy that is hard to interpret and
implement in a real-time system. This leads to applying
our model of interpretability.

The simplest and most interpretable online product recom-
mendation policy are item-to-item recommendations, and
capturing the desire for such a policy in our setting is sim-
ple. Let the set of observations be equal to the available
products (O = M) and define the observation mapping
function as f(w,m) = m for w € W,m € M so that
observations are independent of the customer type. Typ-
ically, item-to-item recommendations are computed based
on the customers that typically visit the given product page,
1.e, the distribution of customers. However, the recommen-
dations themselves influence this distribution. The MDP
implementation with interpretable policies accounts for the
change in the distribution, and we formulate and analyze
this approach in more detail below.

4 Interpretable MDP Formulations

In this section, we formulate the mathematical programs
for learning the MDPs of interest, beginning with a clas-
sical MDP formulation, adding interpretability constraints,
and then relaxing nonlinearities to obtain a mixed integer
linear programming (MILP) formulation that approximates
the exact problem.

4.1 Basic Formulation

While it is possible to adapt nonlinear optimization formu-
lations from the POMDP literature, for example [2], we
derive a simpler nonlinear formulation first. We first adapt
the standard linear program formulation for a Markov de-
cision process. The classic MDP linear program learns a
policy that maximizes the expected reward of the system
subject to constraints that model the transitions allowed in
the system.

First define the following variables. Let u € RISI*IAl rep-
resent the policy we are trying to learn, which is defined in
every state as u(s,-)/ >, u(s,a) € Al Note that, for
variable u, we denote u(s, a) as the (s, a) entry of matrix u
in the following formulations, along with similar notation
for other variables. Summations over s or a are meant as
shorthand for s € S and @ € A. Then, in formal terms,
a deterministic policy means that u(s,a) = 1 for a single

a € Aforeach s € S, whereas a randomized policy simply
means that ) u(s,a) = 1foreach s € S.

Given our notation, the linear programming formulation for
the classic MDP is

max Zu(&a)r(s,a)
s.t. Zu(&a)

a

=po(s) + Z’yPu(s, shu(s',a) VseS8

u(s,a) >0 Vs € S,a € A.
4.1

The summation in the objective is the expected reward for
a policy given by u. Note that u can also be interpreted
as a state-action occupancy measure (e.g. [4]) which is the
cumulative visitation probability over all state-action pairs
when the discount (for computing the current value of fu-
ture rewards) is interpreted as a probability of leaving the
system. Then the first set of constraints can be seen as a
form of the Bellman equations in terms of a state-action
occupancy measure rather than state value. It is known that
an optimal policy must satisfy these equations. The final
inequalities are needed since measures must be nonnega-
tive. For the optimal solution, these values represent the
optimal policy.

We next want to adapt Problem 4.1 in order to enforce in-
terpretability. Interpretability constraints can be directly
added by introducing a new optimization variable, ¢ €
RICI¥IAl - which defines the interpretable policy for each
observation as (0, -) € A, The new formulation is

u(s,a)r(s,a)
U7w S,a

st u(s,a) =1(0(s),a) Zu(s, a) VseS,ae A

> uls,a)
=po(s) + Z’yPa(sl7 s)u(s',a) VseS

u(s,a) >0 VseS,ace A
Zw(o,a)zl Yo € O.

a

(4.2)

In this formulation, we interpret u as a state-action occu-
pancy measure (as defined above). The first set of con-
straints dictates that the interpretable policy is equivalent
to a normalized state-action occupancy measure (as is the
policy in the classic MDP above) and furthermore that the
policy at states in the same observation is the same. The
second and third set of constraints remains the same. The



last set of constraints puts the interpretable policy at each
observation in the simplex (since nonnegative is already
implied by nonnegativity of u).

The optimal policy is directly constructed from the optimal
1 for (4.2). The following proposition shows its correct-
ness.

Proposition 4.1. The optimal solution to (4.2) is also opti-
mal in (3.1).

Proof. Follows from the equivalence in Theorem 6.9.1 in
[22], the optimality in Theorem 6.9.4 in [22], and the equiv-
alence of return in terms of the occupancy frequency. The
constraint on u from 1 is correct due to the construction of
the policy from wu. O

Note that formulation (4.2) is no longer linear or convex
because of the terms ¥ (6(s), a)u(s,a’) in the first set of
constraints. It could be solved using a non-linear solver,
such as IPOPT. We take a different approach, which can
guarantee solution optimality, in the next subsection.

4.2 Mixed Integer Linear Program

This section describes a new mixed integer linear program-
ming (MILP) formulation for learning an interpretable pol-
icy within the MDP framework. A recent paper describes
a MILP formulation for finite state controllers [9], how-
ever, our formulation is simpler and our derivation is more
straightforward.

As we have defined a state-action occupancy frequency
u(s,a) above, we can similarly define a state occupancy
frequency d € RIS by d(s) = 3, u(s, a) for each state
s € S. From a modeling viewpoint, including d gives a
new interpretation of state-action occupancy frequency as
the fraction of state occupancy frequency determined by the
optimal interpretable policy. From an optimization view-
point, including d greatly reduces the number of nonlinear
functions in the first set of constraints in a trade-off for |S|
additional equality constraints. This trade-off is important
regarding the relaxation below that we use to get an MILP
formulation. Introducing the state occupancy frequency to
the formulation results in the problem

11}71(%5; u(s,a)r(s,a)
s.t. uks,a) =(0(s),a)d(s) VseS,ae A

d(s) = po(s) + Z'yPa(s’, s)u(s';a) VseS

d(s) = u(s, a) VseS
u(s,a) >0 VseS,aeA
D W(o,a)=1 YoeO.
! 43)

Note that the third set of constraints are the |S| new equality
constraints, and that the number of nonlinear terms in the
first set of constraints has been reduced from |S| - |A|? to
|S| - |A| nonlinear terms.

While we can try to solve the nonlinear optimization prob-
lem (4.3), any solution we get will have no guarantee of op-
timality. We now develop a mixed integer linear program
formulation based on the so-called McCormick inequali-
ties. This approach relaxes the constraints in (4.3). The
idea is to bound the terms ¥(0(s), a)d(s) forall s € S,a €
A by making use of upper and lower bounds on ¢ (6(s), a)
and d(s). McCormick inequalities are defined in the lemma
below.

Lemma 4.2 (McCormick Inequalities, e.g., [
thatap, < a < ay and by, < b < by. Then:

D. Assume

abr, —ap b +arb<ab<aby —arby +arb
aby —ayby +apb<ab<abp—ayby+ayb

It is important to note that the equalities are attained for
the extreme points of the intervals (for either one of the two
variables).

The McCormick inequalities are easy to derive; for exam-
ple, the first lower bound on ab is attained by multiplying
the bounds a —ay, > 0 and b— by, > 0. The MILP can then
be constructed as follows. The constraints on ) are box
constraints of the form 0 < ¢(6(s),a) < 1 and the bounds
on state occupancy frequencies are 0 < d(s) < d(s) where
d(s) must be estimated. Therefore, we can relax the non-
linear equality u(s,a) = 1(0(s), a)d(s) in problem 4.3 by
the following inequalities

d(s) (¥(0(s), < d(s) (b5, a)

Note that all four McCormick inequalities are implied by
these two constraints.

a) — 1) +d(s) < u(s,a)

The relaxed optimization problem becomes:

max u(s,a)r(s,a)

d7u”‘/) S,a

st. d(s) (¥(0(s),a) — 1) +d(s)
<u(s,a) Vs€S,ac A
( a) <d

d(s)¥(0(s),a) VseS,ae A
po(s) +Z')/Ps a,s)u(s’,a) VseS

d(s) = > uls, a) VseS

a

P(o,a) =1 Yoe O

=M

,a) >0 VseS,ace A

¥(0,a) € {0,1} Vo€ O,ac A
4.4



We next note that the last statement of Lemma 4.2 implies
that we can compute an optimal deterministic policy (under
interpretability constraints) as well as an optimality gap for
suboptimal policies, which is summarized in the following
proposition.

Proposition 4.3. Optimal solution to (4.4) is also an opti-
mal solution to (3.1).

Proof. Since the McCormick inequalities are tight for
¥(0,a) € {0,1}, the optimal solution to this MILP prob-
lem will be the optimal deterministic implementable policy
for the problem. O

It may be also possible to solve (4.4) without the integral-
ity constraints, which means optimizing over randomized
policies. In that case, this is simply a linear program which
can be easily solved, however, the solution may not be very
good due to the relaxation given by the McCormick in-
equalities.

Remark 4.4. As we hinted, there is a connection between
finite state controllers and the interpretability constraints.
Consider a POMDP with m states, a actions, o observa-
tions, and computing a finite state controller with n nodes.
[9] shows that their MILP formulation has n - a + n%6 in-
tegral variables. It can be readily seen that applying our
formulation would have n2 - a - 0. This is more than [9].
The number of variables can reduced in a setting such as
the finite state controller in which the action set can be de-
composed as follows. Assume that A = A; x As. Then
introduce additional variables ¢; : O x A; — {0,1} for
i = 1,2. We add constraints ), 4 ¥(0,a;) = 1 and
1/)(0’ (ala a2)) < min{% (07 al)v 1/)(0, U'Q)}'

5 Properties of Optimal
Interpretable Policies

In this section, we prove basic properties of optimal inter-
pretable policies. Recall that an interpretable policy takes
the same action for all states within a single observation
and is computed by solving problem (3.1).

We first address the computational complexity of comput-
ing an optimal interpretable policy.

Proposition 5.1. Solving (3.1) for either randomized or de-
terministic policies is NP hard, and is in NP as well for
deterministic policies.

Proof. Hardness is proven by a reduction from computing
a memoryless policy for a POMDP [14] (which is known to
be NP-hard to compute). The construction is simple and we
only outline it here. Consider a POMDP with states S and
observations O. Then construct a cross-product MDP (e.g.
[2]) for a finite node controller with O nodes. The state

space of the cross-product MDP will have S = S x O.
The set of actions in the cross-product MDP is the same
as the actions in the POMDP. The transitions in the cross-
product MDP are a product of the POMDP state transition
according to the action taken and the observation observed.
Consider an interpretable policy for this problem in which
the observations depend on O and the observation mapping
is 6((s,0)) = o. It can be now readily seen that computing
such an interpretable policy will correspond to a memo-
ryless policy in the POMDP and vice versa. An optimal
interpretable policy for this problem will therefore be also
an optimal memoryless policy in the POMDP. The hard-
ness for stochastic policies follows similarly from [34]. Tt
follows that solving (3.1) for deterministic policies also in
NP since the set of deterministic policies can be enumer-
ated. O

The problem of solving (3.1) over randomized policies is
not known to be in NP and there is evidence that the prob-
lem may in fact be harder [34].

We next study the structure of optimal policies. It can be
readily seen that the optimal policy to an MDP with inter-
pretability constraints may be history dependent. See, for
example, the MDP in Fig. 1 in which the optimal policy
will be as, a1, asq,.... No deterministic interpretable pol-
icy can achieve such a return. However, we are interested
in finding a stationary policy. The following proposition
shows that the optimal policy may need to be randomized.

Proposition 5.2. There may be no optimal deterministic
interpretable policy.

We prove Proposition 5.2 by an example in which a ran-
domized policy can be arbitrarily better than the best deter-
ministic policy.

Example 5.3. Consider an example MDP depicted in
Fig. 2 in which the optimal policy will be randomized. One
possible interpretation in the context of product recommen-
dations is as follows. States of the MDP represent a cus-
tomer state. In particular, s1 means that the customer is not
vet interested in a product, and action aq represents a good
recommendation. Taking this action moves the customer
to state ss which means considering a product they are in-
terested in. Taking action as will cause the customer to
consider another interesting product. Action ao represents
suggesting an irrelevant product. In state s, the customer
remains uninterested, but in so the customer is already con-
sidering an interesting product and since the recommenda-
tion is not useful, they will simply purchase the product and
a reward is received. Since we do not observe the internal
customer state, s1 and so share the same observation and
the interpretable policy will have to take the same action in
both states. Clearly, any deterministic policy will receive
return 0 (since the system starts in state s1), while a policy
that randomizes ay and as with equal probability will re-
ceive return of at least 0.5 for discount factor ~y. Looking
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Figure 1: Markov decision process in Example 5.3. Shaded
areas show states that share the same observation. Edge
labels denote action name and the reward.
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Figure 2: Markov decision process in Example 5.3. Shaded
areas show states that share the same observation. Edge
labels denote action name and the reward.

back at Fig. 1, we have an even simpler example in which
the optimal policy will be randomized.

Note that our MILP formulation (4.4) only learns deter-
ministic policies, and that the binary constraints need to
be relaxed in order to learn randomized policies. Initial ex-
periments showed poor performance with this relaxation,
likely due to the McCormick inequalities being too loose
an approximation to the other nonlinearities.

6 Case Study: Interpretable Product
Recommendations

In this section, we describe the experimental evaluation of
our interpretable MDP model in an online product recom-
mendation setting. As mentioned above, most research on
recommender systems has focused on developing methods
for fitting a customer preference model to data. We, in
contrast, study optimization methods that use the customer
preference model to make better recommendations.

The motivating business case for this application was to
improve customer experience and promote conversions for
a major European tour operator. For the purposes of this
experimental study, we apply the tools of this paper to de-
sign arecommendation engine that targets conversions, i.e.,
customer purchases.

6.1 Customer Model

To evaluate the quality of recommendations, we simulate
customer purchase behavior and interactions with an on-

line catalog. Our focus is on simulating online sessions in
which customers browses different products and at some
point either make a purchase or abandon the session.

Customer behavior is modeled using a mixed logit cus-
tomer choice model [31] with 10 discrete segments. The
logit model is used to predict customer behavior during a
product purchase session. In particular, the model decides
whether a customer purchases the currently viewed prod-
uct, takes a recommendation, or abandons the search.

The logit model assumes that customers from any segment
c assign some value, denoted 7)(c, p), to product p. This
represents the value gained by purchasing the product and
is used to determine the probability of purchasing the given
product. As a baseline, we denote by 1y (c) the value of
no purchase, which is the standard approach. We describe
how the values 7(c, p), for each segment and product, and
nn (c), for each segment, translate to probabilities below.

We fit the parameters of the logit model to data which
comes from an adventure travel brand of a major Euro-
pean tour operator that specializes on sailboat rentals. Our
dataset, which is a subset of the entire clickstream, consists
of 22803 individual website visits, 1100 individual cus-
tomers, and 75 products. Customer segments are identified
using a standard low-rank matrix decomposition method
and logit parameters are fit to maximize likelihood.

The MDP that models the interaction of customers with
the online system is defined as follows. The state set is
S = C x P, where C is the set of customer segments, and
P is the set of products. In other words, the state repre-
sents a customer and a product currently being considered.
Assume that the goal is to recommend n products. Action
set A = {(p1,...,pn) : p; € P} determines the set of
recommended products in a given state.

The transition probabilities in the MDP for some state
(¢,p) and products (pi,...,p,) are given according to
the mixed logit choice model as follows. In particu-
lar, let @ = exp (1(c,p)) + - 27—  exp (kg - 1(c,p;)) +
> pepexp (k- n(c,p')) + exp (nn(c)) be a normaliza-
tion constant. Here, kg < 1 represents the propensity
for taking a recommendation and kK < 1 represents the
propensity of choosing another product directly from the
catalog.

Given the normalization constant «, the probability of
a customer purchasing a product is exp (n(c,p)) /«,
the probability of taking recommendation p; is
exp (kg - 1(c,pj)) /o, the probability of using the menu
to choose another product p’ is exp (ky - n(c,p')) /a,
and finally the probability of abandoning the session is
exp (nn(c)) /a. The rewards in the MDP model are 1
when a purchase is made and O otherwise. This essentially
assumes that the margins are constant, but the model could
be easily extended to weighted margins.



Note that the states in the MDP above describe both the
product and customer segment. While such an MDP can be
solved the policy cannot be implemented because the cus-
tomer segment is not observed. This problem could also be
solved using POMDP techniques; however, as suggested in
the Introduction, the final solution would be hard to inter-
pret and also difficult to implement in a real-time setting.
Instead, we seek to find good interpretable policies.

Perhaps the simplest interpretable policy in the product rec-
ommendation setting is the so-called product-to-product
recommendation. In this setting, recommendations are
static and are solely a function of the currently viewed
product. The simplicity of this method makes it popular
in practice and is a good fit with our model of interpretable
policies. It can be readily seen that the set of policies can
be constrained to product-to-product policies by defining
observations as @ = P and G(C’p) = p, i.e., the action is
independent of the customer.

6.2 Simulation Results

The goal of the empirical evaluation is to determine the
possible benefit from using interpretable policies in mak-
ing product recommendation as compared with more tradi-
tional product-to-product recommendations.

We compare three methods: Static, Iterated, IMDP. The
static method is the simplest one and entails simply making
the recommendation that is most likely to be appreciated by
types of people looking at the current product. These stan-
dard methods—as described in the introduction—reflect
how recommendations for other products can impact the
distribution of customers considering the current prod-
uct. The iterated method expands on this idea by re-
optimizing the recommendations three times (i.e., imple-
menting static recommendations using simulation, recom-
puting customer distributions, and repeating three times).
The IMDP method uses the MILP formulation to compute
an interpretable policy for the MDP described above. As
solvers for MILP can be quite computationally expensive,
we apply two versions of IMDP: Methods IMDP(3) and
IMDP(50) represent results after 3 and 50 minutes of com-
putation using CPLEX on an AMD Phenom II X6 machine.

To determine the improvement, we compare these product
recommendation methods on several randomly generated
scenarios, each of which is restricted to 25 randomly se-
lected products and a single product recommendation. To
make the results comparable across scenarios, we normal-
ize them using lower (baseline) and upper bounds on the
conversion rate. Our baseline is a policy that makes no rec-
ommendations, and the upper bound is a clairvoyant policy.
The clairvoyant assumes that the precise customer types are
known, solves the MDP, and implements that policy.

Table 1 depicts the normalized experimental results. The

| # | Static | Iterated | IMDP(3) | IMDP(50) |
1| 568% | 56.8% | 72.9% 72.9%
2| 198% | 10.0% 43.9% 45.9%
3| 242% | 162% 54.3% 55.2%
4| 31.6% | 250% 65.9% 66.2%
50 17.0% | 17.8% 54.0% 54.2%
6| 445% | 445% | 75.2% 75.2%
7| 327% | 39.7% 73.1% 73.2%
8 |66.7% | 66.7% 55.8% 57.3%
9| 25.0% | 25.0% 62.9% 63.0%
10 | 194% | 16.0% 53.2% 53.6%

Table 1: Percentage of improvement in conversion rate over
no recommendation compared with clairvoyant policy for
10 problem instances.

=
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o (=] (=) o o

—
o

Static Iterative
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Figure 3: Average percentage improvement in conversion
rate with 95% confidence interval.

percentages are computed as follows. Let [ be the conver-
sion rate of the baseline policy, u be the conversion rate
of the clairvoyant policy, and g be the conversion rate of
the tested policy. Then the improvement is computed as:
(¢ —1)/(u —1). Fig. 3 depicts the average improvement
over 50 runs of the three methods.

There are several interesting observations that can be in-
ferred from our results. First, IMDP significantly outper-
forms the standard recommendation techniques. At least in
our scenario, considering the affected distribution of cus-
tomers appears to be very important. Second, surprisingly,
iterating the recommendations often not only does not in-
crease the conversion rates, but actually decreases them
(i.e., the Static method sometimes outperforms the Iterated
method). Finally, while 3 minutes are not enough to com-
pute an optimal MILP solution, our results indicate that the
interpretable policy achieves over 50% of the benefit of a
clairvoyant policy while being much simpler.

We also investigated recommending more than a single
product. Unfortunately, the number of integer variables in
our formulation scales exponentially with the number of



products. It can be readily seen, however, that the action
constraints can be decomposed in a manner that is similar
to the discussion in Remark 4.4. This reduces the num-
ber of variables to be linear in the number of products, but
our empirical results indicate that this approach does not
significantly reduce the computation time. Regardless, our
experiments with a single recommendation already demon-
strate the usefulness of our notion of interpretability.

7 Concluding Remarks

In this paper, we have derived and implemented a novel
framework for making dynamic product recommendations.
The key insight is that modeling customer states is often
quite challenging due to lack of knowledge about the cus-
tomer, but that underlying dynamics (i.e., customers chang-
ing their state) can still be accounted for by using a concept
of interpretability. Namely, recommendations are restricted
to being identical for customers that are in the same ob-
servation, where each observation is a union of customer
states that are not observable. Restricting the recommen-
dations in this manner makes the recommendation policy
interpretable (i.e., not complex and easily understandable).
We use tools from Mixed Integer Nonlinear Programming
in conjunction with a relaxation using McCormick inequal-
ities to learn interpretable policies, but there are other di-
rections not pursued in this work, such as combining a
semidefinite programming (SDP) relaxation with Reformu-
lation Linearization Technique (RLT) inequalities (which
generalize McCormick inequalities) used to tighten (rather
than relax) the SDP relaxation.

As noted above, regarding scalability, there is much room
for improvement since the number of binary variables in
our MILP formulation grows exponentially with the num-
ber of products recommended (i.e., the dimension of the
actions). Aside from the decomposition described above,
a different direction is a heuristic that fixes all but one of
the recommendation action dimensions and iteratively op-
timizes over individual recommendations. This alternat-
ing minimization scheme has efficient iterations (which we
have already demonstrated with our single product recom-
mendations above), so performance depends on the number
of iterations required for a good solution.

Note also that uncertainty in the model parameters, rewards
and transition matrices, have an important impact on pol-
icy performance. While we have not addressed such uncer-
tainty here, it is an important topic for future work. Finally,
there are several dynamics to the model that we have not yet
addressed. For example, reviews written by customers and
product ratings affect the distribution of customers looking
at products.
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