
Training Deep Neural Nets to Aggregate Crowdsourced Responses

Alex Gaunt
Microsoft Research

Cambridge, UK

Diana Borsa
University College London,

London, UK

Yoram Bachrach
Microsoft Research

Cambridge, UK

Abstract

We propose a new method for aggregating
crowdsourced responses, based on a deep neural
network. Once trained, the aggregator network
gets as input the responses of multiple partici-
pants to the same set of questions, and outputs its
prediction for the correct response to each ques-
tion. We empirically evaluate our approach on a
dataset of responses to a standard IQ question-
naire, and show it outperforms existing state-of-
the-art methods.

1 INTRODUCTION

Crowdsourcing platforms such as Amazon’s Mechanical
Turk are marketplaces which bring together participants
who wish to take part in small micro-tasks in return for a fee
and businesses or individuals who want to employ people
for such tasks. A common use-case is data annotation and
labelling, such as determining whether a caption correctly
describes an image, or deciding whether the sentiment ex-
pressed in a text is positive, neutral or negative. Annotators
may not always produce the correct responses to the ques-
tions posed to them. This might happen for several rea-
sons: they may lack the sufficient knowledge to accurately
answer every question or they might not be exerting the re-
quired effort to do well on a task. As annotators are not
completely reliable in producing the correct responses to
the posed questions, the resulting set of annotations would
include errors, which results in an inherent uncertainty re-
garding which answers are correct. One instrument that
can reduce the number of such errors is using redundancy:
rather than asking a single participant to answer a ques-
tion, the same question is posed to multiple participants;
the multiple responses to the same question can then be ag-
gregated into a single response to the question.

A commonly used aggregator is “majority vote”, in which
the chosen answer to each question is the one given most

frequently by the participants. 1 This form of collective de-
cision making has been heavily investigated. A result from
the 18th century by the Marquis de Condorcet [5] states that
the probability of majority vote to reach the correct conclu-
sion to a question with two possible answers approaches
1 as the number of aggregated participants approaches in-
finity, assuming that participants are independent and each
has a probability p > 1

2 to provide the correct answer. 2

Using crowdsourcing marketplaces it is possible to gather
the responses of many participants to many questions in a
very short time frame. Thus, such services make it easy
to harness the collective intelligence of many participants.
Given a set of responses of multiple participants to the same
questions, one can use majority vote to get the aggregate re-
sponses to all the questions. However, this simple aggrega-
tor may be suboptimal, as some annotators produce higher
quality results than others. For instance, if we know that the
annotator Alice is more reliable than Bob, we might give
her responses more weight when computing the aggregate
solution. One way to determine the ability of annotators to
provide correct responses is to evaluate each participant on
a “gold-set” of questions, for which the correct answer is
known. Given information about the ability of annotators
evaluated on the gold-set, one can better aggregate the re-
sponses to a set of questions for which the correct answer is
not known. However, what can be done to better aggregate
responses in the absence of such a gold-set?

Earlier work has uncovered aggregation algorithms that
outperform the majority vote aggregator, and that do not
use external information such as a gold-set. Many such
techniques are based on Bayesian models, that jointly infer
information about the relative abilities and biases of par-
ticipants, the difficulty levels of questions and the correct
answer to each question [23, 2, 21]. As these techniques
are Bayesian, they rely on a statistical model of the process
through which the data was generated, reflecting model-

1The field of social choice refers to this aggregator as “plural-
ity voting”.

2The majority aggregator has also been shown to perform well
in practice in multiple domains [22, 1, 10].

ing assumptions regarding the domain. Such assumptions
are captured as random variables and the relation between
them, consisting of the observed data and a set of assumed
latent (unobserved) variables, along with a joint probabil-
ity model tying the variables. While such techniques have
been shown to be powerful tools for aggregating crowd-
sourced responses, their performance can be hindered when
the modeling assumptions are incorrect or inaccurate – es-
pecially in the absence of large amounts of data.

Our contribution:

We propose a novel approach for aggregating crowd-
sourced responses. As opposed to existing Bayesian algo-
rithms, at the heart of our approach lies a deep neural net-
work, rather than a carefully engineered statistical model
encoding an assumed relation between observed variables
and possible latent factors. The network is trained by tak-
ing a small seed dataset of responses of participants to
questions to which the correct answers are known. How-
ever, as opposed to the gold-set approach, we only use the
seed dataset to train the aggregator network. Once the
network is trained, we evaluate its ability to aggregate re-
sponses on a completely separate dataset, of both partici-
pants and questions the aggregator has not encountered in
the past. Our training procedure involves using the small
seed dataset to synthetically create a large training dataset,
reflecting certain desiderata for aggregator functions.

We empirically evaluate our approach on a dataset of re-
sponses to a standard IQ questionnaire, and show it has a
superior performance over existing methods. We examine
the relation between the quantity of data available to our
aggregator and its performance. Finally, we explore ways
in which the network can infer not only the correct answers
but also who the strong annotators are.

2 RELATED WORK

Earlier work in machine learning and artificial intelligence
examined methods for merging the opinions of multiple
people or agents, covering various aspects such as predic-
tion markets [12] for predicting a future random event, ag-
gregation of information in semantic web platforms [9], hy-
brid probabilistic relational frameworks [7] which combine
logic based representations and probabilistic inference, and
information aggregation in peer assessment systems [13].

A domain of particular interest is collective decision mak-
ing and voting over candidate alternatives. Social choice
theory focused on a set of rational agents, each of which
has a preference order over the same set of candidates,
and examined voting schemes which aggregate these pref-
erences into a single aggregate decision [20] (such as who
is the chosen candidate who wins the elections). Social
choice theory shows how voting mechanisms allow reach-
ing good group decisions [11], but has also uncovered ways

in which voting rules are susceptible to manipulations by
voters, who may lie about their true preferences so that the
voting rule chooses an alternative their prefer [8]. We as-
sume that the participants’ responses reflect their true opin-
ion and focus on the inference problem.

Our work focuses on aggregating crowdsourced opinions.
A recent survey examines the implications of label noise in
classification [6], and discusses label noise cleaning meth-
ods. One approach proposed for this problem is using
EM [24], and another approach relies on modeling task dif-
ficulty [17]. Further, some algebraic bounds were provided
for the binary rating case [4]. Other aggregation methods
rely on probabilistic graphical models [23, 14, 18] includ-
ing the state-of-the-art method of Bachrach et al. [2] (our
empirical analysis shows we outperform this method).

3 PRELIMINARIES

We consider a set Q of |Q| = q multiple choice questions,
where each question has several possible answers. For sim-
plicity, we denote the possible answers for each question
as [a] = {1, 2, 3, . . . , a}. For each question j ∈ Q, there
is exactly one correct answer gj ∈ [a] and we denote the
set of correct answers to all the questions as the vector
g = (g1, g2, . . . , gq) ∈ [a]q . The questions are posed to
a set P of |P | = p participants. Each participant i ∈ P se-
lects a response to each question j, reflecting which of the a
possible answers they believe to be the correct one. We de-
note the response of participant i ∈ P to question j ∈ Q as
ri,j ∈ [a]. We collect the responses of all participants to all
questions in a response matrix M ∈ Mp×q (where Mp×q
denotes the set of all matrices with p rows and q columns)
as follows: the element in the i’th row and j’th column in
the matrix is the response of participant i ∈ P to question
j ∈ Q (i.e. Mi,j = ri,j ∈ [a]). Thus, each row in M repre-
sents a single participant’s responses to each question and
similarly, each column in M encodes the responses given
by all the participants to a particular question.

Our goal is to use the response matrix M to uncover the
correct answers g. This can be achieved if the responses
of the participants to a question are correlated with the cor-
rect answer, though we do not make any specific model
assumptions regarding the nature of this correlation. An
aggregator is a function f : Mp×q → [a]q that takes a re-
sponse matrix, produced by a set of participants for a set
of questions, and outputs a proposed vector of correct an-
swers – one for each of the considered questions. Given an
input matrix M ∈ Mp×q and the vector of correct answers
g = (g1, . . . , gq) ∈ [a]q for the considered q questions, we
can measure the performance of the aggregator as the pro-
portion of questions for which the inferred answers match
the correct answers: |Qc|

q whereQc denotes the set of ques-
tions for which the aggregator infers the correct responses
Qc = {j ∈ Q|f(M)j = gj}.

3.1 Desiderata for Aggreators

We now describe several properties of aggregator functions
that intuitively characterize minimal requirements we ex-
pect fair aggregators to fulfill.

3.1.1 Participant ordering invariance

First, we have no a priori knowledge about the relative abil-
ity of the participants. In other words, the order of the par-
ticipants whose opinions we aggregate is arbitrary, thus we
expect a good aggregator to show no prejudice in favour or
against a participant based on their position in the response
matrix. We denote by Mr(x↔y) the matrix M where the
rows x and y are swapped,

M
r(x↔y)
i,j =


My,j , i = x

Mx,j , i = y

Mi,j , otherwise

(1)

We say an aggregator f : Mp×q → [a]q is participant lo-
cation indifferent if for any response matrix M and x, y we
have f(Mr(x↔y)) = f(M).

3.1.2 Question ordering invariance

Similarly, we may not attribute special meaning to the or-
der in which the questions were posed to the participants.
In other words, the choice of a specific column in the re-
sponse matrix, where a certain question is placed reflects
no knowledge we have regarding the question. We denote
by M c(x↔y)

i,j the matrix M with columns x and y swapped:

M
c(x↔y)
i,j =


Mi,y, j = x

Mi,x, j = y

Mi,j , otherwise

(2)

Given a vector g ∈ [a]q (representing either the true correct
answers or a suggestion made by an aggregator regarding
the correct answers), we denote by gx↔y the vector with
the coordinates x and y swapped. We say an aggregator
f : Mp×q → [a]q is question location indifferent if by
swapping the order of two questions x, y, we obtain the
same aggregated result, except the output differs in the or-
der of answers, for the swapped questions, i.e. the required
property is: ∀M,x, y : f(M c(x↔y)) = (f(M))x↔y .

3.1.3 Answer ordering invariance

Finally, we consider assigning meaning to the identities of
the possible answers. The identities of answers are the set
[a] = 1, 2, . . . , a. In some cases, these identities reflect no
knowledge we posses regarding the dataset. For instance,
in an IQ questionnaire such as the one our empirical evalu-
ation is based on. The unique correct answer has an equal
probability of being placed in any location in the answer

set. In contrast, in other datasets, the order in which the
answers are shown is not arbitrary. For instance, consider
the case of relevance judgement queries, where users are
shown the current results of a search engine for a given
query and are asked which is the most relevant. The search
engine ranks results from best to worst, so if it is function-
ing well, the best match should be placed in the first place
(or at least in one of the first few places). In this case, un-
less answers are deliberately shuffled, the correct response
is far more likely to be one of the first responses than one
of the last responses.

If we know the identities of answers are chosen arbitrar-
ily, we may want to reflect this invariance. We denote
by Πa the set of all possible permutations over the set [a]
(i.e. any π ∈ Πa is a bijection π : [a] → [a]). Con-
sider a given πj ∈ Πa, and the column vector rT:,j =

(r1,j , r2,j , . . . , rp,j)
T of given responses by p participants

to a certain question j. We denote by (rπ:,j)
T the col-

umn vector consisting of the answers by the p partici-
pants where the answer identities are shuffled through π,
so π(r:,j)

T = (π(r1,j), π(r2,j), . . . , π(rp,j))
T . Given a

response matrix M ∈ Mp×q , we consider the case of per-
muting the answer identities for each question. Given a set
of permutations h = (π1, π2, . . . , πq) (where πj ∈ Πa),
we consider shuffling the responses with these permuta-
tions for each of the questions. We denote by Mh the ma-
trix where the responses of the participants where shuffled
through the appropriate permutation, i.e. the j’th column
of Mh is πj(r:,j). Similarly, given a vector v ∈ [a]q and
a permutation sequence h = (π1, π2, . . . , πq), we denote
the vector where each element was shuffled by the respec-
tive permutation as h(v) = (π1(v1), π2(v2), . . . , πq(vq)).
We say an aggregator is answer identity indifferent if for
any response matrix M and h = (π1, π2, . . . , πp) we have
(f ◦ h)(M) = (h ◦ f)(M).

4 DeepAgg - TRAINING A NEURAL
NETWORK AS AN AGGREGATOR

Our goal is to train a neural network as an aggregator
fn : Mp×q → [a]q , following the desiderata of Section 3.1.
We thus aim to generate an aggragtor that is participant lo-
cation indifferent, question location indifferent and answer
identity indifferent. This is a supervised learning problem,
where the input is a response matrix M ∈ Mp×q and the
desired output is the set of correct answers.

4.1 Constructing a Synthetic Training Set

The desired aggregator function is a complex mapping,
so training a neural network requires a large training set.
Given an infinite supply of participants and questions
(along with their correct answers), we could repeatedly
source q questions and p participants from the infinite sup-

ply source, pose the questions to the participants, collect
the answers and thus obtain a large training set. However,
in real-world settings we have a very limited supply of par-
ticipants and questions.

Our solution relies on synthetic data generation through
subsampling. We first take an original dataset, consisting
of the responses of p′ > p participants to a set of q′ > q
questions. We then select q questions at random from the
q′ available questions, and p participants of the p′ available
participants, and use only their responses. A single choice
of q questions, Iq ∈ C(q′, q) 3, and p participants, Ip ∈
C(p′, p), results in a subsampled input matrix MIp,Iq ∈
Mp×q . We repeat this process many times to generate a
training dataset D = {(MIp,Iq , gIq)}Iq∈C(q′,q),Ip∈C(p′,p)

where gIq denoted the correct responses for the subset of
questions Iq . In total we will have

(
q′

q

)
·
(
p′

p

)
choices of

training instances. This augmented dataset enables us to
transform a moderately small original dataset into one con-
taining enough sub-sampled training examples to success-
fully train a neural net.

4.2 Adhering to Desiderata

Training a neural network involves optimizing the net-
work’s weight parameters based on the training set. The
network could thus overfit the parameters to various prop-
erties of the training set that fail to generalize to the test set.
For instance, if one answer is more common then others in
the training set, a trained network might reflect this and se-
lect weights leading to this answer being chosen more of-
ten than others. When such trends are specific to the train-
ing data and do not occur on the test set, this overfitting is
likely to lead to reduced performance. The Desiderata in
Section 3.1 reflect assumptions regarding how the data was
generated and the expected behavior of a good aggregator.
Adhering to these properties avoids certain forms of over-
fitting. How should we design and train a neural network
so it would achieve these properties and avoid overfitting?

One possibility is relying on the synthetic data genera-
tion process, and applying various synthetic dataset per-
turbations. Note that out of the three invariance proper-
ties identified in Section 3.1, the constructed dataset D
encodes the first two. Thus in order to enforced the third
invariance, we can permute the answer identities for each
question in every subsampled data, by taking a set of ran-
dom answer identity permutations h = (π1, π2, . . . , πq)
(where πj ∈ Πa), and shuffling the responses with these
permutations for each of the questions. During the syn-
thetic dataset construction, we generate a subsampled ma-
trix (MIp,Iq , gIq) ∈ D. Now we can expand this dataset by
shuffling the answer identities via a random permutation h:

3We denote by C(n, k) the set of k-combinations that can be
form using n elements

(h◦(MIp,Iq , gIq)) = (h◦(MIp,Iq), h◦(gIq)). 4 As the an-
swers identities are randomly shuffled, even if one answer
identity is more frequently the correct answer in the origi-
nal dataset, in the synthetic dataset any answer has an equal
probability of being the correct answer. Hence, training on
the synthetic dataset should result in an answer identity in-
different aggregator. Thus we get a large training dataset
D = {(h ◦ (MIp,Iq , gIq))|h ∼ Πq

a, (MIp,Iq , gIq) ∈ D}.

An alternative approach to synthetic dataset perturbations
is relying on the chosen features to achieve the desider-
ata: we simply create features that abstract away the irrel-
evant information. Under this approach we first construct
the synthetic dataset D. We then take a training instance
(MIp,Iq , gIq) ∈ D, construct features representing this in-
stance, denoted as φ(MIp,Iq). Rather than training a neural
network on the “raw” input M ∈ D, we train it on the fea-
ture representation, φ(M). Although any neural network
must receive some representation of the training instance
in some form, we will construct the feature representation
in a way that eliminates information about participant lo-
cations, question locations or answer identities. More for-
mally, we say a feature representation φ is participant lo-
cation indifferent if changing the location of a participant
in the matrix has no influence on the generated representa-
tion, so φ(Mr(x↔y)) = φ(M) (for any M ∈ D;x, y ∈
Ip). Similarly, we say a feature representation is ques-
tion location indifferent if φ(M c(x↔y)) = φ(M),∀M ∈
D;x, y ∈ Iq , and say that it is answer identity indifferent
if φ(h ◦M) = φ(M),∀M ∈ D,h = (π1, π2, . . . , πp). 5

4.3 An Overview of Our Approach

Our approach is indeed based on choosing a feature repre-
sentation that adheres to our desiderata. Earlier work shows
that while stronger aggregators do exist, majority vote is al-
ready powerful in aggregating crowdsourced responses [2].
Our architecture thus begins by using the majority vote rule
to determine an initial answer sheet, and constructing fea-
tures that describe participants and questions based on this
initial chosen answer set; we then gradually refine this an-
swer sheet, using two building blocks.

The first block is a neural network that predicts the prob-
ability that a participant would respond correctly to a spe-
cific question. We refer to these probabilities as “success
probabilities”. The input to the block is a proposed an-
swer sheet, reflecting the “best guess” of the correct an-
swer for each question. Given this answer sheet, the block
constructs our feature representation of the participants and

4See the definitions of these operators in Section 3.1.
5These properties of a feature representation are similar to

those of an aggregator function, except in the case of a feature
representation we refer to an encoding of the important bits of
the input matrix that allow determining how to best aggregate the
data, rather than to the end result consisting of the chosen answer
for each question.

questions, and applies the neural network to compute the
success probabilities.

The second building block focuses on a single question,
and receives as input these success probabilities of the
participants as well as the answer chosen by each par-
ticipant, and outputs the chosen answer for the question.
We propose two alternatives for constructing the second
block, which both work by computing the total support for
each possible answer, then outputting the answer with the
strongest support. One alternative is using a neural net-
work, and the other is a deterministic formula that weighs
the success probabilities using a simplistic probabilistic
model of the behavior of participants. 6

Combining the two building blocks, we obtain a method
for refining an answer sheet. The first block takes the cur-
rent answer sheet and the responses of the participants, and
computes the success probabilities; the second block uses
these success probabilities to output an improved answer
sheet. We call the application of the two building blocks
a refinement step. We initialize the system with an answer
sheet computed by majority vote, and perform multiple re-
finement steps to generate our final answer sheet. 7

We now describe the features used to represent the partici-
pants and questions, then describe the building blocks and
the overall network architecture in more detail.

4.4 Feature Representation of the Input

Consider an input matrix M ∈ Mp×q consisting of the
responses of p participants to a set of q questions, and a
proposed set of answers to these questions g′ ∈ [a]n. An
element g′i can be thought of as the current best guess for
the answer to question i (our algorithms initialize g′i as the
majority vote to question i in the subsampled matrix). We
refer to the vector g′ of proposed responses as an answer
sheet. A rough estimate for the success or ability of a par-
ticipant i is the proportion of questions to which they re-
sponded correctly, assuming that the answer sheet g′ is in-
deed correct: ai =

|{j∈[q]|Mi,j=g
′
j}|

q . Similarly, a rough
estimate for a difficulty of a question is the proportion of
students who failed to provide the correct response to it:
dj = 1 − |{i∈[s]|Mi,j=g

′
j}|

s . Clearly, the quality of the fea-
tures ai (for a participant i) and dj (for a question j) depend
on the answer sheet g′: the higher the quality of g′, the less
noisy these features are.

The above features allow predicting whether a participant is
likely to correctly answer a question, and can also be used

6In the empirical analysis in Section 5 we show both perform
well on our dataset (with no significant performance difference
between the two).

7If a refinement step does not change the answer sheet, we
have reached a fixed point of the refinement function, and can
terminate the process early.

to rank participants based on their ability or questions by
their difficulty. Consider sorting the questions by their es-
timated difficulty, dj , and partitioning this set into k parts,
D1, . . . , Dk by the estimated difficulty. For example, for
k = 2 we partition the questions into two parts by es-
timated difficulty:the easiest half of the questions are D1

(with the lower difficulty estimate dj), and the hardest half
of the questions areD2 (with the highest difficulty estimate
dj). We can estimate the ability of a participant using only
the questions in one part of the partition. For instance, for
k = 2 the performance of participant i on the easiest ques-
tions D1 is a1i =

|{j∈D1|Mi,j=g
′
j}|

|D1| , and their performance

on the hardest questions is a2i =
|{j∈D2|Mi,j=g

′
j}|

|D2| . More
generally, we choose a number of parts (the “width” k), and
denote ati =

|{j∈Dt|Mi,j=g
′
j}|

|Dt| (where t ∈ {1, 2, . . . , k},
and |Dt| = q

k , assuming that k divides q).

Consider partitioning the questions into two parts, the easy
questions D1 and hard questions D2 (with difficulty esti-
mated using the current answer sheet g′). We’d expect a
student i to do better on the easy questions than on the hard
questions, so a1i is higher and a2i is lower. If we have a
student where a1i is lower than a2i , we might infer that their
success on the harder questions is due to luck rather than
skill (and predict him to be less successful than a student v
of identical average skill but where a1v is higher than a2v).
Thus a1i , . . . , a

k
i can serve as additional features providing

further useful information, beyond just the average skill.

Similarly to partitioning the questions by their difficulty to
build a more fine-grained representation of students, we can
partition the students by ability to generate a better rep-
resentation for questions. We sort the students by their
estimated ability, ai, and partition this set into k′ parts,
E1, . . . , E

′
k. We estimate the difficulty of a question using

only the students in one part of the partition (e.g. the diffi-
culty of a question for the strong and weak students). We
denote dtj = 1− |{i∈Et|Mi,j=g

′
j}|

|Et| (where t ∈ {1, 2, . . . , k′},
and |Et| = s

k′ , assuming that k′ divides s).

The goal of our first building block is to take an in-
put subsampled matrix M and a proposed answer sheet
g′ and determine the probability of a student i to cor-
rectly answer question j. We represent the students
and questions using the above features: φi,j(M) =

(ai, a
1
i , . . . , a

k
i , dj , d

1
j , . . . , d

k′

j) (where the features are
computed using g′ as the answer sheet). We note that the
representation φ is answer identity indifferent, participant
location indifferent and question location indifferent.

4.5 Predicting Whether a Participant Will Answer a
Question Correctly

We use a neural network which takes a representation of a
single user and a single questions, and predicts the prob-

ability that the user would correctly answer the question.
The input to the network is φi,j(M) (where i ∈ [p] and
j ∈ [q]), as defined in Section 4.4. We have used the di-
mensions k = k′ = 3, so both a user and a question are
represented as 4 real numbers, meaning each input is a vec-
tor φi,j(M) ∈ R8. Our network consists of three fully con-
nected layers, each performing a linear transformation then
a tanh operation. The first linear transformation maps the
input to a hidden layer with a hidden state of size h = 10
neurons, and the following layers maintain this hidden state
size. Following these layers, our network linearly maps the
final layer into a single neuron.

Given a single subsampled matrix M and given the correct
answer sheet g (consisting of the known correct answers
to the subsampled questions), we use yi,j as an indicator
variable denoting whether the participant i answered ques-
tion j correctly, so yi,j = 1 if Mi,j = gj and yi,j = 0
otherwise. 8 Each subsampled matrix results in p · q rep-
resentations for participant-question pairs, φi,j(M), and in
p · q indicator variables yi,j . Applying the network on all
the representations of participant-question pairs, we obtain
p · q activations of the final layer, denoted as ŷi,j . We use
the cross entropy loss:

L =

p∑
i=1

q∑
j=1

[yi,j log ŷi,j + (1− ŷi,j) log(1− ŷi,j)]

We train the network by randomly subsampling n =
10, 000 matrices along with the correct responses to the
questions. Once the network is trained, it can receive a
representation φi,j of a participant i and a question j, and
its output ŷi,j can be interpreted as the probability that the
participant would answer the question correctly. Figure 1
illustrates the structure of this neural network.

4.6 Computing Support for a Given Answer

The second building block in our approach considers a sin-
gle question and the responses of p participants to that
question. The goal of the block is to provide a score for
each answer, such that the correct answer would receive
the highest score. We refer to this as computing the aggre-
gate support in favor of an answer. The output of the block
is thus a vector of scores s = (s1, s2, . . . , sa) where st is
the score of answer t. We propose two alternatives for the
construction of this building block.

The first alternative we propose is a neural network. Given
the probability of a participant i to correctly answer the

8Note that while training the network we use the ground truth
correct answers. However, once the neural network is trained, it
does not require this information, and can be used for any dataset.
In our empirical analysis we train the network using one dataset,
and use it on a completely separate dataset (both participants and
questions that were not shown during training).

𝑦𝑖,𝑗

𝑔𝑗
′ − 𝑎𝑛𝑠𝑤𝑒𝑟 𝑠ℎ𝑒𝑒𝑡

𝑀𝑖.𝑗

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑚𝑎𝑡𝑟𝑖𝑥

𝜙(𝑀, 𝑔)

𝐻𝑖𝑑𝑑𝑒𝑛 𝐿𝑎𝑦𝑒𝑟𝑠

𝑦:,𝑗

Figure 1: Visualization of the first building block: pre-
dicting success probabilities yi.j , given a response matrix
M ∈ D and current answer sheet g′ = (g′1, · · · , g′q)

question, denoted bi for brevity 9 and the responses of each
participant to the question, denoted mi = ri,j for the ques-
tion j, we construct a a × p matrix U representing a prob-
ability distribution over the a possible answers.

Ui,k =

{
bi, k = mi (participant’s chosen answer)
1−bi
a−1 , otherwise

(3)
This is an alternative to a “one-hot” encoding of {bi}i=1:p,
reflecting the probability of a participant to choose each
answer, assuming that the correct answer is indeed the one
they chose, and that each incorrect answer is equally likely
(the remaining mass 1− bi spread evenly across them).

The input to the network are the rows in matrix U =
(uT1 , · · · , uTa) – one for each possible answer. As the iden-
tity of each answer does not matter, we train a function
f that takes a answer probability vector u and produces a
score, s, for this answer vector. To learn the function we
use a network of 3 fully connected layers, each consisting
of a linear transformation followed by a tanh non-linearity,
and a hidden size of h = 15, followed by another linear
layer mapping the h neurons to a score s. We use the same
mapping f to produce scores for all a possible answers,
leading to (s1, . . . , sa) = (f(u1), . . . , f(ua)).

Each subsampled matrix used to train this network consists
of q questions, where each question has an encoding, U , of
size p·a representing the responses of the participants. Fur-
ther, each subsampled matrix is considered along the vector
of correct responses to each question (g1, . . . , gq). As we
wish to optimize the network parameters so that the correct
answer gj to question j would receive the highest score
sj , the final layer of our network is a softmax operator:

exp(si)∑a
i=1 exp(si)

, and we use the cross-entropy loss. Figure 2
illustrates the structure of this neural network.

The second alternative we propose is a deterministic scor-

9Replacing the notation ŷi,j as the question index is redundant

…

…

…
𝑈 ∈ 𝑀𝑝×𝑎 𝑎𝑛𝑠𝑤𝑒𝑟

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥

𝒖𝟏: 𝒑𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚 𝒇𝒐𝒓 𝒂𝒏𝒔𝒘𝒆𝒓 𝟏

.

.

.

.

.

.

𝑒𝑠𝑘

 𝑘=1,𝑎 𝑒
𝑠𝑘

𝑝(𝑎 = 1)

𝑝(𝑎 = 2)

𝑝(𝑎 = 8)

𝑓((𝑈1,2, ⋯ , 𝑈𝑝,2))

𝑓((𝑈1,1, ⋯ , 𝑈𝑝,1))

𝑓((𝑈1,𝑎 , ⋯ , 𝑈𝑝,𝑎))

𝑥𝑘𝑠𝑘

𝑢1

𝑢2

𝑢𝑎

𝒖𝒂

𝒖𝟐
.
.
.

Figure 2: Visualization of the second building block: pre-
dicting the answer for a particular question j. Given the
participants responses M:,j and the inferred probabilities
of participants to be right or wrong y:,j , we construct an
answer probability matrix U as described in Eq. 3. Then
for each possible answer k, we compute a score based on
the participants’ answer probabilities uk: sk = f(uk).
These scores go through a softmax operator and finally
we choose the answer with the highest probability.

ing function, based on a simple probabilistic model for the
way in which the responses are chosen by the participant.
Suppose that a priori each answer is equally likely to be
the correct answer (reflecting answer identity invariance).
Thus the correct answer is a random variableA, with a uni-
form distribution over the support {1, . . . , a}. Assume that
the probability of a participant i to choose the right answer
to the question is bi (given as the block’s input), and that if
i fails to choose the correct answer, they choose an answer
uniformly at random from the remaining a − 1 answers.
Finally, we assume that the participants are independent of
one another. The responses of the participants are thus an
observed random variable R over the support [a]p.

Consider the case where the correct answer to the question
as r ∈ [a]. Given the observed responses R, we can parti-
tion the participants into two sets: the participants who re-
sponded with the answer r as Xr (the correct participants),
and those who responded with some other answer Xo (the
incorrect participants). To obtain the observed responses
R, each of the correct participants must have chosen the
correct answer (with probability bi), and each of the incor-
rect participant must have failed to chose the correct answer
(with probability 1−bi), and then choose exactly the incor-
rect answer they chose (there are a− 1 incorrect responses
and each is equally probable). Thus, under our model, the
probability of obtaining the observed responses R is:

P (R|A = r) =
∏
f∈Xr

bf ·
∏
g∈Xo

1− bg
a− 1

(4)

The goal of the second building block is choosing the
best response for a question given the input parameters
b1, . . . , bp and the observed responses R. By Bayes’ the-

orem we have P (A|R) = P (R|A)·P (A)
P (R) . Given the ob-

served responses R and our assumed model, we seek
the most probable answer arg maxa P (A = a|R) =
P (R|A=a)·P (A=a)

P (R) . As P (R) is a normalizing constant and
as we assumed that for any a we have P (A = a) = 1

a , we
have arg maxa P (A = a|R) = arg maxa P (R|A = a).
We can thus simply apply Equation 4 to compute the score
P (R|A = r) for each possible response r ∈ [a], and return
the answer with the maximal score.

4.7 Iterative Refinement

Section 4.4 discusses how we take a subsampled ma-
trix M and a proposed answer sheet g′0, and output a
feature representation φ(M, g′) for each user and ques-
tion. Section 4.5 discusses how we take the feature rep-
resentation and apply a neural network to predict yi,j ,
the probability of each participant i to answer any ques-
tion j. We call this step cor(φ(M, g′)). Finally, sec-
tion 4.6 discusses how we take the success probabilities
y = (y1,1, y1,2, . . . , y1,q, y2,1, . . . , yp,q) and the subsam-
pled response matrix M and generate and refined answer
sheet g′ (either using a trained neural network, or through
the formula on equation 4). We call this step ref(y,M).

Our method, called DeepAgg, simply involves applying
multiple such iterations (the number of iterations is the pa-
rameter nIter). Algorithm 1 describes this process.

Data: Reponse matrix M ∈Mp×q
Result: Aggregated responses g′ ∈ [a]q

g′ ←Maj(M) // Majority vote initialization ;
for i← 1, nIter do

y ← cor(φ(M, g′)) ;
g′ ← ref(y,M) ;

end
return g’ ;

Algorithm 1: DeepAgg: Iterative Refinement

5 EMPIRICAL ANALYSIS

We empirically examine the DeepAgg method of Section 4,
and evaluate its performance against both the majority vote
aggregator and the DARE Bayesian aggregator of Bachrach
et al. [2], using the same dataset described in that paper.
This dataset consists of the responses of participants to the
Raven’s Standard Progressive Matrices (SPM) IQ test [15],
an intelligence screening test. This test is a multiple choice
questionnaire, consisting of q′ = 46 questions, each with
eight possible answers. 10 SPM is a popular intelligence

10The full test has 4 parts in increasing difficulty. We removed
the easiest questions to focus on the more interesting cases where
there is not a consensus between participants. Note that includ-
ing all questions does not alter the qualitative conclusions of this
paper.

test, that has been used for research purposes, clinical as-
sessment and even military personnel screening [16]. The
dataset contains the responses of p′ = 746 participants,
who took the test in the 2006, in the process of establishing
the ability norms for the British market [15]. 11

To conduct our experiments, we partitioned the dataset’s
questions into two parts, Qa and Qb, each with half (23)
of the dataset’s questions (where Qa ∪ Qb = ∅). Simi-
larly, we partitioned the participants into two parts, Pa and
Pb, each with half (373) of the dataset’s participants (with
Qa∪Qb = ∅). We trained DeepAgg using subsampled data
from the responses of the participants in Pa to the ques-
tions in Qa, and evaluated the performance using subsam-
pled data from the responses of the participants in Pb to the
questions in Qb. This guarantees that the training and test-
ing are done on separate datasets: not only are the training
instances different from the test instances, effectively we
are testing the aggregator on a completely unseen dataset.

5.1 Aggregation Quality

DeepAgg aggregates the responses of multiple participants
and outputs the predicted correct answer for each ques-
tion, similarly to majority vote or the DARE aggregator
of Bachrach et al. [2]. We now compare the performance
of these approaches. Our quality metric for an aggrega-
tor is simple. Given a response matrix M i ∈ Mp×q , an
aggregator returns a vector g′i ∈ [a]q . Given the the
set of actual correct responses gi ∈ [a]q , we denote the
number of questions where the aggregator was correct as
c(g′) = |{j|g′ij = gij}|. We denote the proportion of ques-

tions that were aggregated successfully as si(g′) = ci(g′i)
q .

Figure 3 shows the quality of majority vote, DARE and our
DeepAgg, as a function of the available date. When an ag-
gregator has more available responses for each question,
we expect it to achieve a better performance as it has more
available data. The x-axis of Figure 3 shows the number
of responses per question (the number of participants in the
subsampled response matrix), and the y-axis shows the ag-
gregation quality 1

k

∑k
i=1 s

i(g′i), across k = 10, 000 runs
(each of which is a random subsampled response matrix).

Figure 3 shows that all methods achieve a better result as
more data is available, but that the returns diminish as the
number of participants increases (in agreement with the re-
sults reported in the work of Bachrach et al. [2]). For all
data regimes, DeepAgg outperforms DARE.

The plot in Figure 3 was created with DeepAgg using equa-
tion 4 as the second building block. We have also run
DeepAgg with the neural net implementation for the sec-
ond block, with an almost identical performance, indicat-
ing that both are reasonable choices for that block.

11We thank the Psychometrics Centre of the University of Cam-
bridge for making this dataset available for this research.

0.52

0.54

0.56

0.58

4 6 8 10

P
ro

p
o

rt
io

n
 o

f
co

rr
ec

tl
y

in
fe

rr
ed

re

sp
o

n
se

s

Number of participants, p

DeepAgg

DARE

Majority vote

Figure 3: The performance of DeepAgg and alternative ag-
gregators as a function of the size of the data

DeepAgg performs multiple iterations of improving the an-
swer sheet, as described in Algorithm 1. Figure 4 shows the
effect of the number of iterations on the quality of aggrega-
tion. The x-axis is the number of iterations (nIter in Algo-
rithm 1) and the y-axis is the average aggregation quality
1
k

∑k
i=1 s

i(g′i) across k = 10, 000 runs (with random sub-
sampled response matrices). We find that performing mul-
tiple iterations improves the quality of aggregation, but that
this improvement diminishes as the number of iterations in-
creases. One possible cause for these diminishing returns
is that if the answer sheet g′ does not change following an
iterations, we have reached a fixed point of this function,
so there is no point in performing additional iterations.

0.583

0.584

0.585

0.586

1 2 3 4

P
ro

p
o

rt
io

n
 o

f
co

rr
ec

tl
y

in
fe

rr
ed

re

sp
o

n
se

s

Iterations

Figure 4: The effect of the number of DeepAgg iterations
on aggregation quality

5.2 Evaluating the ability of participants

While the main stated goal of the DeepAgg aggregator is
inferring the set of correct answers g, a common use-case
in crowdsourcing settings is deciding which of the partici-
pants are good at the task and which are not.

One possible measure of the ability of a participant i given
a response matrix M and a set of correct answers g ∈ [a]q ,
is the proportion of questions which i answered correctly:
ai =

|{j∈[q]|Mi,j=gj}|
q . If we are not given the ground truth

set of responses, g, we could use an approximate answer
sheet g′, and use a′i =

|{j∈[q]|Mi,j=g
′
j}|

q as an approxima-
tion. Clearly, the quality of this estimator depends on how
well g′ approximates g. As DeepAgg allows inferring an
answer sheet g′ given the response matrix M , one could
thus use it as a tool for inferring the ability of participants.

Figure 5 investigates how well DeepAgg performs in infer-
ring the ability of participants. This is a density plot which
was generated by examining many data points, each de-
scribing a single random participant in a run of DeepAgg
on a random subsampled matrix. The x-axis of each point
represents the true ability of the participant, ai, and the y-
axis is the estimated ability of the participant, a′i (using an
answer sheet g′ inferred using DeepAgg). The figure shows
the density of the sampled points in each area on the chart.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

In
fe

rr
e

d
 a

b
ili

ty

True ability

0-0.005 0.005-0.01 0.01-0.015 0.015-0.02 0.02-0.025

Figure 5: Using DeepAgg to infer the ability of participants

A perfect aggregator would result in a figure where points
rest on the y = x axis, and a Pearson correlation of 1. Fig-
ure 5 shows a very strong correlation between the inferred
and true ability of each participant, even with few itera-
tions. The Pearson correlation between the true ability of
a participant and the inferred ability of that participant is
r = 0.79, which is high considering the limited amount of
data available to DeepAgg. This indicates that DeepAgg is
a powerful tool not only in aggregating responses, but also
for identifying skilled and less-skilled participants.

5.3 The Need for Computing Features

A major advantage of deep learning is its ability to learn
feature representations without resorting to hand-crafted
features [3, 19]. One might ask why we have used a method
that relies on the features discussed in Section 4.4. A sim-
pler architecture could use a deep neural net which simply
operates on the input subsampled matrix M (for instance
using a “one-hot” encoding for the chosen response of each
participant on each question). We have indeed tested such
an architecture, showing the performance it achieves to
only match majority vote. A very deep network is theo-
retically capable of performing the overall computation we
have done using DeepAgg. However, as this requires a very

deep network, training the network using stochastic gradi-
ent descent (or similar variants) must search through an ex-
tremely large and complicated parameter space. The fact
that a direct architecture does not achieve the high perfor-
mance of DeepAgg indicates that the current optimization
methods are incapable of finding this solution.

The computation in DeepAgg is quite deep: we apply a 3
layer deep network twice for each iteration (each building
block is a network), so with even as few as 3 iterations this
is a 18 layer deep architecture. Further, our computation
relies on computing the desired features once in each iter-
ations. Our ability to successfully train the network stems
from the constant supervision we apply: a loss can be com-
puted after every building block using the ground truth. In
other words, once every basic building block, we apply a
loss using the ground truth answer sheet g, allowing us to
find excellent optimized parameters for each block.

6 LIMITATIONS AND CONCLUSIONS

We presented DeepAgg, an approach for aggregating
crowdsourced responses, based on a deep neural network.
Our empirical analysis shows that DeepAgg has a supe-
rior performance over the majority aggregator and a more
sophisticated Bayesian approach. Our approach has some
inherent limitations. Training the network requires taking
an initial dataset and repeatedly sub-sampling parts of it
to generate synthetic training examples. This training pro-
cedure is a computationally expensive calculation, which
yields an aggregator taking the responses of p participants
to q questions. Once the aggregator is trained, applying it
to a new training instance is has a relatively low runtime
complexity. However, if the input dimensions p or q are
changed, the training process needs to be repeated to create
a new aggregator. Further, we used a simple network archi-
tecture. A more elaborate structure could potentially im-
prove performance. Finally, our method is desigend for the
complete data case. It is difficult to adapting our method
to the case of incomplete data, where some of the partici-
pants have only answered some of the questions. 12

Several issues remain open for future research. How can
our procedure be modified to handle the case of missing
responses, where some participants may only provide re-
sponses to a subset of the questions? While it is easy to
encode this in the input to the network, this may have a
large impact of the quality of the aggregator. Second, is it
possible to extend our approach to an active learning sce-
nario, where we have control over the next question to ask
a participant? Finally, could we take an aggregator training
for certain input dimensions and convert it into an aggrega-
tor for other input sizes, without retraining a network?

12In contrast, Bayesian approaches are usually robust to miss-
ing data (for instance, in approaches based on graphical models,
these can simply be treated as unobserved random variables).

References
[1] Y. Bachrach, T. Graepel, G. Kasneci, M. Kosinski, and

J. Van Gael. Crowd IQ - aggregating opinions to boost per-
formance. In AAMAS, 2012.

[2] Yoram Bachrach, Thore Graepel, Tom Minka, and John
Guiver. How to grade a test without knowing the answers—
a bayesian graphical model for adaptive crowdsourcing and
aptitude testing. In Proceedings of the 29th International
Conference on Machine Learning (ICML-12), pages 1183–
1190, 2012.

[3] Yoshua Bengio. Learning deep architectures for ai. Founda-
tions and trends R© in Machine Learning, 2(1):1–127, 2009.

[4] Nilesh Dalvi, Anirban Dasgupta, Ravi Kumar, and Vib-
hor Rastogi. Aggregating crowdsourced binary ratings. In
Proceedings of the 22nd international conference on World
Wide Web, pages 285–294. International World Wide Web
Conferences Steering Committee, 2013.

[5] M.J.A.N. de Caritat et al. Essai sur l’application de
l’analyse à la probabilité des décisions rendues à la plu-
ralité des voix. L’imprimerie royale, 1785.

[6] Benoı̂t Frénay and Michel Verleysen. Classification in the
presence of label noise: a survey. Neural Networks and
Learning Systems, IEEE Transactions on, 25(5):845–869,
2014.

[7] L. Getoor, N. Friedman, D. Koller, A. Pfeffer, and B. Taskar.
5 probabilistic relational models. Statistical relational
learning, page 129, 2007.

[8] Allan Gibbard. Manipulation of voting schemes: a general
result. Econometrica: journal of the Econometric Society,
pages 587–601, 1973.

[9] G. Kasneci, J. Van Gael, R. Herbrich, and T. Graepel.
Bayesian knowledge corroboration with logical rules and
user feedback. In ECML/PKDD, 2010.

[10] M. Kosinski, Y. Bachrach, G. Kasneci, J. Van-Gael, and
T. Graepel. Crowd IQ: Measuring the intelligence of crowd-
sourcing platforms. In ACM Web Sciences, 2012.

[11] A. McLennan. Consequences of the condorcet jury theorem
for beneficial information aggregation by rational agents.
American Political Science Review, pages 413–418, 1998.

[12] D.M. Pennock and R. Sami. Computational aspects of pre-
diction markets, 2007.

[13] Chris Piech, Jonathan Huang, Zhenghao Chen, Chuong Do,
Andrew Ng, and Daphne Koller. Tuned models of peer as-
sessment in moocs. arXiv preprint arXiv:1307.2579, 2013.

[14] Guo-Jun Qi, Charu C Aggarwal, Jiawei Han, and Thomas
Huang. Mining collective intelligence in diverse groups. In
Proceedings of the 22nd international conference on World
Wide Web, pages 1041–1052. International World Wide Web
Conferences Steering Committee, 2013.

[15] J.C. Raven. Standard progressive matrices plus.

[16] J.C. Raven. The raven’s progressive matrices: Change
and stability over culture and time. Cognitive Psychology,
41(1):1–48, 2000.

[17] V.C. Raykar, S. Yu, L.H. Zhao, G.H. Valadez, C. Florin,
L. Bogoni, and L. Moy. Learning from crowds. JMLR,
2010.

[18] Mahyar Salek, Yoram Bachrach, and Peter Key.
Hotspotting-a probabilistic graphical model for image
object localization through crowdsourcing. In AAAI, 2013.

[19] Jürgen Schmidhuber. Deep learning in neural networks: An
overview. Neural Networks, 61:85–117, 2015.

[20] A. Sen. Social choice theory. Handbook of mathematical
economics, 3:1073–1181, 1986.

[21] Bar Shalem, Yoram Bachrach, John Guiver, and Christo-
pher M Bishop. Students, teachers, exams and moocs: Pre-
dicting and optimizing attainment in web-based education
using a probabilistic graphical model. In Machine Learn-
ing and Knowledge Discovery in Databases, pages 82–97.
Springer, 2014.

[22] James Surowiecki. The wisdom of crowds. Anchor, 2005.

[23] P. Welinder, S. Branson, S. Belongie, and P. Perona. The
multidimensional wisdom of crowds. In NIPS, 2010.

[24] J. Whitehill, P. Ruvolo, T. Wu, J. Bergsma, and J. Movel-
lan. Whose vote should count more: Optimal integration of
labels from labelers of unknown expertise. NIPS, 22:2035–
2043, 2009.

	INTRODUCTION
	RELATED WORK
	PRELIMINARIES
	Desiderata for Aggreators
	Participant ordering invariance
	Question ordering invariance
	Answer ordering invariance

	DeepAgg - TRAINING A NEURAL NETWORK AS AN AGGREGATOR
	Constructing a Synthetic Training Set
	Adhering to Desiderata
	An Overview of Our Approach
	Feature Representation of the Input
	Predicting Whether a Participant Will Answer a Question Correctly
	Computing Support for a Given Answer
	Iterative Refinement

	EMPIRICAL ANALYSIS
	Aggregation Quality
	Evaluating the ability of participants
	The Need for Computing Features

	LIMITATIONS AND CONCLUSIONS

