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Abstract

Multiple Kernel Learning (MKL) is highly
useful for learning complex data with multi-
ple cues or representations. However, MKL
is known to have poor scalability because of
the expensive kernel computation. Dai et al
(2014) proposed to use a doubly Stochastic
Gradient Descent algorithm (doubly SGD) to
greatly improve the scalability of kernel meth-
ods. However, the algorithm is not suitable
for MKL because it cannot learn the kernel
weights. In this paper, we provide a novel ex-
tension to doubly SGD for MKL so that both
the decision functions and the kernel weights
can be learned simultaneously. To achieve this,
we develop the triply Stochastic Gradient De-
scent (triply SGD) algorithm which involves
three sources of randomness – the data points,
the random features, and the kernels, which
was not considered in previous work. We
prove that our algorithm enjoys similar conver-
gence rate as that of doubly SGD. Comparing
to several traditional MKL solutions, we show
that our method has faster convergence speed
and achieved better accuracy. Most impor-
tantly, our method makes it possible to learn
MKL problems with millions of data points on
a normal desktop PC.

1 INTRODUCTION

Kernel methods provide a principled way of learning
with non-linear representations. However, finding the
best kernel for a specific task is not always easy. Mean-
while, many applications may have several candidate
data representations, such as learning with multi-modal
or multi-source data. In either situation, we may need

the learning system to find an optimal combination of
several base kernels or data representations. To serve this
purpose, Multiple Kernel Learning algorithms (Lanckriet
et al, 2004) have been proposed to automatically learn
the decision functions as well as the weights for combin-
ing the base kernels.

In theory, there are infinite ways of combining kernels,
most MKL methods focus on linear kernel combination
for efficiency. To prevent overfitting, l1 and lp(p > 1) are
commonly used norms to regularize the kernel weights.
In this paper, we focus on linear kernel combination and
lp-normalization because of its many successful applica-
tions and its strong convexity which greatly benefits op-
timization. To learn a good kernel combination under lp
regularization, many optimization strategies have been
proposed. For example, (1). directly solving the prob-
lem using Sequential Minimal Optimization (Sun et al,
2010); (2). alternating optimization methods (Kloft et al,
2011) and (3). online learning approaches which process
one training instance at a time (Orabona and Jie, 2011).
See Bucak et al (2014); Gönen and Alpaydın (2011) for
a survey.

In the big data era, machine learning systems often have
to deal with very large datasets. However, existing MKL
algorithms require computing all the kernel matrices be-
forehand, which severely hinders scalability: the compu-
tation and storage cost isO(m·l2), where l is the number
of data instances and m is the number of kernels. To im-
prove efficiency, random feature methods (Rahimi et al,
2007) have been proposed to approximate a kernel matrix
using explicit feature mappings in a lower-dimensional
space. However, to achieve accurate solution, the num-
ber of random features has to be O(l) even for a single
kernel (Rahimi and Recht, 2009). The indication is that
the random feature matrix is still at the order of O(l2),
which is hardly scalable.

Recently, doubly stochastic gradients (doubly SGD) (Dai
et al, 2014; Xie et al, 2015) have been proposed which



sample training points and random features stochasti-
cally and update the model parameters according to the
functional gradient in the RKHS (Reproducing Kernels
Hilbert Space) induced by the kernel function. These
methods show strong empirical performance on large-
scale classification tasks which are dominated by Deep
Neural Networks. To deal with multiple kernels, doubly
SGD methods already support the concatenation of ran-
dom features from several kernels, which is equivalent to
learning with the summation of base kernels with fixed
weights. However, fixing the kernel weights may not
lead to the best classification performance. One of the
key advantages of Multiple Kernel Learning is to learn
the optimal combination of base kernels.

In this paper, we extend the doubly SGD algorithm for
the lp-MKL setting. The problem is more complicated
than the original one considered by doubly SGD: lp-
MKL problem requires learning not only the decision
functions but also the optimal weights of kernel combi-
nation.

To achieve this, we develop the triply Stochastic Gradi-
ent Descent (triply SGD) algorithm whose basic idea is
to insert a third level of randomness to the stochastic op-
timization process. Specifically, we randomly select a
kernel, a data point and a set of random features (of the
corresponding kernel) in each SGD iteration. This triple-
stochastic process was not considered in previous work.

We theoretically demonstrate how such an algorithmic
design together with a proper learning rate can lead to
an optimization program with O(1/t) convergence rate,
where t is the number of iterations. In other words, our
algorithm achieves the same order of convergence rate as
doubly SGD. As demonstrated in our experiments, triply
SGD has faster convergence rate and achieved better ac-
curacy on various classification tasks compared to tradi-
tional MKL solutions.

This paper makes two major contributions:

1. We extend the theoretic framework of doubly SGD to
learn not only the decision functions but also the weights
of kernel combination.

2. We provide an online algorithm that can learn MKL
problems with millions of data points on a normal desk-
top PC.

The rest of the paper is organized as follows. We first
review the technical background of lp Multiple Kernel
Learning and doubly stochastic gradient methods. We
provide our algorithm in Section 4 and the theoretic anal-
ysis in Section 5. In Section 6, we conduct extensive
experiments to demonstrate the advantage of our algo-
rithm over traditional MKL methods. The last section

concludes the paper.

2 PRELIMINARIES

2.1 MULTIPLE KERNEL LEARNING

In this paper, we focus on the MKL problem. Suppose
we have m kernels, in general, MKL optimizes the fol-
lowing goal

min
{β,α}

E(Y, α

m∑
r=1

βrKr) + R(α,K ′) (1)

where α are the dual coefficients, β are the kernel
weights. If we use a Lipschitz loss function l(·) in the
error term E(·) and l2 norm in the regularizer R(·), Eq.
(1) is equivalent to

min
{f,β}

RMKL(f, β) :=

E(x,y)

[
l(

m∑
r=1

fr(x), y)

]
+
ν

2

m∑
r=1

βr||fr||2Hr
; (2)

whereHr is the RKHS induced by kernel Kr and fr is a
functional in spaceHr.

In particular, the lp-MKL (p > 1) problem (Kloft et al,
2011) constrains the kernel weights to be within the p-
norm simplex ∆p = {||β||p < 1, βr > 0}. Under this
constraint, Xu et al (2010) have shown that (2) is equiv-
alent to

min
{f,β}

RlpMKL(f, β)

:= E(x,y)

[
l(

m∑
r=1

fr(x), y)

]
+
ν

2

m∑
r=1

||fr||2Hr

βr
;

s.t., β ∈ ∆p, p > 1 (3)

This problem can be solved by alternative optimization
approaches (Xu et al, 2010; Kloft et al, 2011) which can
exploit off-the-shelf SVM solvers in each iteration. lp
MKL can also be optimized using online learning ap-
proaches (Orabona and Jie, 2011; Orabona et al, 2012)
that use stochastic optimization to process the data one
point at a time. However, all these traditional lp MKL
solutions require computing and storing all the m ker-
nels, which sets up obstacles for scaling-up.

2.2 RANDOM FEATURE APPROXIMATION

There have been many attempts to make kernel meth-
ods scalable, such as the Nyström method (Williams and
Seeger, 2001), divide-and-conquer SVM solver (Hsieh
et al, 2014) and budget online kernel learning (Lu et al,



2015). In this paper, we focus on the random fea-
ture method (Rahimi et al, 2007), which explicitly maps
the decision function f(·) to a lower dimensional space
through random processes.

By Bochner’s Theorem, for any PSD (Positive Semi-
Definitive) kernel k(·, ·), there exists a set Ω, a proba-
bility measure P and a random feature φω(x), such that

k(x, x′) =

∫
Ω

φω(x)φω(x′)dP(ω) (4)

Random feature approximation methods explicitly com-
pute φω(x) for many kernel functions such as RBF ker-
nels (Rahimi et al, 2007), dot-product kernels (Kar and
Karnick, 2012), Laplacian kernels (Yang et al, 2014), to
name a few. They approximate a kernel using

k(x, x′) ≈ 1

D

D∑
j=1

φωj (x)φωj (x′) (5)

where D is the number of random features for each in-
stance. It requires O(lDd) computation and O(lD) stor-
age to generate random features for a dataset of l in-
stances. Subsequent algorithm can do efficient linear
classification on the generated random features:

Z(x) = [φω1(x) φω2(x) . . . φωD
(x)] (6)

Unfortunately, previous studies (Rahimi and Recht,
2009) have shown that we needD = O(l) to get accurate
predictive performance, which implies that the random
feature matrix still needs to be O(l2).

2.3 DOUBLY STOCHASTIC FUNCTIONAL
GRADIENTS

To further improve the scalability of random feature
methods, Dai et al (2014) have proposed the Doubly
Stochastic Functional Gradient (Doubly SGD) algorithm
which applies classical SGD procedure to stochastic ran-
dom feature learning. Specifically, whenever the SGD
procedure receives a new data point (or a batch of points),
doubly SGD will also generate its corresponding ran-
dom features on-the-fly, and compute the stochastically-
approximated functional gradient to update the model
parameters. For the prediction purpose, the system only
needs to store the seeds used for generating the random
features, which leads to great improvement in scalability.
Algorithm 1 and 2 describe the doubly SGD procedure.
On the theoretic side, Dai et al (2014) have proved that
the doubly SGD algorithm can achieve O(1/t) conver-
gence rate under certain reasonable assumptions.

Notice that the doubly SGD algorithm can be used
for multidimensional random features, i.e., φω(x) =

Algorithm 1 {αi}ti=1 =DoublySGD(P(x, y), θ)
for i = 1, . . . , t do

sample (xi, yi);
sample ωi ∼ P(ω) seed i;
f(xi) = DoublySgdPredict(xi, {αj}i−1

j=1);
γi = θ

i ;
αi = −γil′(f(xi), yi)φωi

(xi);
αj = (1− γiν)αj for j = 1, . . . , i− 1;

end for

Algorithm 2 f(x) =Predict(x, {αi}ti=1)
set f(x) = 0
for i = 1, . . . , t do

sample ωi ∼ P(ω) seed i;
f(x) = f(x) + αiφωi(x);

end for

[φω1(x)φω2(x), . . . , φωm(x)] ∈ Rm, and each dimen-
sion r corresponds to a different kernel kr(·, ·). This
formulation is actually equivalent to Multiple Kernel
Learning with fixed kernel weights, i.e., Eq. (2) with
β = 1. However, fixed kernel weights unavoidably com-
promises model expressiveness, and the generalization
performance may suffer especially when we are dealing
with large datasets. Meanwhile, directly applying dou-
bly SGD to MKL means that we have to generate ran-
dom features for all the m kernels in each iteration, this
could hinder the scalability especially when the number
of kernels m is large.

In order to address these challenges, we propose the
Triply Stochastic Functional Gradient method (triply
SGD), which can learn the kernel weights as well as
the decision functions. Most importantly, it only re-
quires generating random features for one stochastically
selected kernel in each SGD update, which also opens
the door for developing parallel implementations.

3 STOCHASTIC FUNCTIONAL
GRADIENTS FOR lp MKL

It is known that the convex combination of PSD kernels
is also a PSD kernel. The RKHSH in MKL learning can
be constructed by the sum space of functions (Sindhwani
and Rosenberg, 2008). i.e.,

H := {H1 ⊕H2 ⊕ . . .⊕Hm}

:= {F |F (x) =

m∑
r=1

fr(x),∀fr ∈ Hr} (7)

For the RKHSH defined by (7), we always have



∑
fr(x) ∈ H (8)

||
∑

fr||2H =
∑
||fr||2Hr

(9)

∇(
∑

fr) =
∑

(∇fr) (10)

From Xu et al (2010), we know that lp MKL problem (3)
is equivalent to

min
{fr∈Hr}mr=1

E(x,y)

[
l(F (x), y)

]
+
ν

2
·Ψ (11)

where

F (x) :=

m∑
r=1

fr(x)

Ψ := (

m∑
r=1

||fr||qHr
)2/q

and q = 2p
p+1 . From p > 1, we know that 1 <

q < 2. This leads to a ν(p−1)
2p -strongly convex problem

(Orabona et al, 2012). 1

Using this formulation, the functional gradient w.r.t. one
of the decision functions would be

∇R(fr) = E(x,y)[ξr(·)] +
ν

2
∇Ψ(fr) (12)

where∇Ψ(fr) is the functional gradient due to the regu-
larization term and ξr(·) = l′(F (x), y)kr(x, ·) is that of
the error term. Since we use stochastically generated ran-
dom features, we cannot compute the decision functional
kr(x, ·) explicitly. Instead, we compute the stochastic
functional gradient with respect to each decision func-
tion fr:

ζr(·) = l′(F (x), y)φωr (x)φωr (·)

which satisfies ξr(·) = Eωr [ζr(·)].

Using some basic algebraic transformation, ∇Ψ(fr) can
be represented as:

∇Ψ(fr) = 2frψr (13)

where we define

ψr :=
[∑m

s=1 ||fs||
q
Hs

||fr||qHr

] 2−q
q

(14)

In this paper, we will use the convention that t0 = 0 when
t = 0 and +∞ otherwise (Kloft et al, 2011).

So far we have derived the stochastic functional gradi-
ents w.r.t. each individual decision function of the lp
MKL problem. We next develop the triply SGD algo-
rithm based on these stochastic gradients.

1Equivalently, ν(q−1)
q

-strongly convex.

4 TRIPLY STOCHASTIC GRADIENT
DESCENT

The main idea of the triply SGD algorithm is to optimize
the lp MKL objective (11) with three levels of stochas-
tic samplings: data points, kernels and random features;
and update the model using stochastic functional gradi-
ents with respect to each decision function. The pseudo
code is given in Algorithms 3 and 4, where φωr,j

and αr,j
denote the random feature and dual coefficient for kernel
r sampled in iteration j, respectively. Agian, compared
to the multi-kernel extension of the original doubly SGD,
triply SGD only needs to sample one kernel in each iter-
ation, which makes it more efficient in memory usage.

Algorithm 3 {α1:r,i}ti=1 =TriplySGD(P(x, y), θ)
1: for i = 1, . . . , t do
2: sample (xi, yi);
3: sample kernel ri ∼ 1 . . .m seed i;
4: sample ωri,i ∼ Pri(ω) seed i;
5: {fr(xi)}mr=1 = Predict(xi, {α1:r,j}i−1

j=1);

6: ψi =
[∑m

s=1 ||fs||
q
Hs

||fr||qHr

] 2−q
q

;

7: γi = θ
i ;

8: ηi = γi
ψi

;
9: αri,i = −ηil′(

∑m
r=1 fr(xi), yi)φωri,i

(xi);
10: ∀r, αr,j = (1− γiν)αr,j for j = 1, . . . , i− 1;
11: end for

Algorithm 4 {fr(x)}mr=1 =Predict(x, {α1:r,i}ti=1)
1: set f1(x) = f2(x) = . . . = fm(x) = 0
2: for i = 1, . . . , t do
3: sample kernel ri ∼ 1 . . .m seed i;
4: sample ωri,i ∼ Pri(ω) seed i;
5: fri(x) = fri(x) + αri,iφωri,i

(x);
6: end for

Next we illustrate how lines 8-10 of the algorithm update
the functional of each kernel Kr and the global func-
tional F .

At iteration t, denote rt as the chosen kernel, Dt =
(xt, yt) as the selected data point and fr,t as the decision
function of kernel r. For brevity, we use ψt to denote
ψrt . We have fr,1(·) = 0 and

fr,t+1(·) ={
fr,t(·)− νγtfr,t(·)− ηtζr,t(·) if rt = r
fr,t(·)− νγtfr,t(·) else (15)

Ft+1(·) = Ft(·)− νγtFt(·)− ηtζrt,t(·) (16)

In other words, since we only sampled one kernel at a
time, the gradient ζrt,t(·) will only be used to update the



functional of that kernel rt. All other functionals (fr, r 6=
rt) will only shrink by a constant factor (1− νγt).

Meanwhile, since fr(·) and F (·) may not be in the corre-
sponding RKHSHr andH during the stochastic learning
process, we will also construct intermediate functionals
hr(·) and H(·) as did in Dai et al (2014). Accordingly,
hr,1(·) = 0 and

hr,t+1(·) ={
hr,t(·)− νγthr,t(·)− η̂tξr,t(·) if rt = r
hr,t(·)− νγthr,t(·) else (17)

Ht+1(·) = Ht(·)− νγtHt(·)− η̂tξrt,t(·) (18)

where we have set η̂t = γt
ψ̂t

, in which

ψ̂t :=
[∑m

s=1 ||hs,t||
q
Hs

||hr,t||qHrt

] 2−q
q

(19)

corresponds to Eq. (14).

Since the kernels are stochastically selected, for ease
of illustration, we further denote the following auxiliary
variables:

(1). Ii(r) := {j|rj = r}, all iterations (up to i) where
kernel r gets selected;

(2). T i(r) := max{Ii(r)}, the most recent iteration (up
to i) that kernel r gets selected;.

(3). Ci(r) := |Ii(r)|, the number of iterations (up to i)
that kernel r gets selected.

By these definitions, T i(ri) = i and CT
i(r)(r) = Ci(r)

always true. We can rewrite (15)(17) as

fr,t+1(·) =
∑

i∈It(r)

uit(r)ζr,i(·) (20)

hr,t+1(·) =
∑

i∈It(r)

ûit(r)ξr,i(·) (21)

where

uit(r) = −ηT i(r)

t∏
j=T i(r)+1

(1− νγj) (22)

ûit(r) = −η̂T i(r)

t∏
j=T i(r)+1

(1− νγj) (23)

Notice that uit(r), û
i
t(r) are indeterministic sequences,

which depend on the orders of kernel sampling. How-
ever, if we look at the global functionals F (·), H(·), we
can rewrite (16)(18) as

Ft+1(·) =

t∑
i=1

vitζri,i(·) (24)

Ht+1(·) =

t∑
i=1

v̂itξri,i(·) (25)

where

vit = −ηi
t∏

j=i+1

(1− νγj) = uit(ri) (26)

v̂it = −η̂i
t∏

j=i+1

(1− νγj) = ûit(ri) (27)

are deterministic sequences.

Notice that

vit = − a
i
t

ψi
; v̂it = − a

i
t

ψ̂i

where ait = −γi
∏t
j=i+1(1−νγj) is the same as defined

in Dai et al (2014), with step size γt = θ
t . These settings

help us connect to the theoretic framework of Dai et al
(2014).

5 ANALYSIS

In this section, we analyze Algorithm 3 and 4 under the
following practical assumptions:

A1. Both the loss function l(u, y) and its first-derivative
l′(u, y) are L-Lipschitz continuous.

A2. For any data {(xi, yi)}ti=1 and any sequence of func-
tionals {Fi}ti=1, the first-derivative of loss is bounded:
l′(Fi(xi), yi) ≤M .

A3. There exists κ > 0 and φ > 0, such that for
any kernel r ∈ {1, . . . ,m}, ∀x, ω: |kr(x, x′)| ≤ κ,
|φω(x)φω(x′)| ≤ φ.

A4. There exists Cq > 1, such that, ∀{fr}mr=1

1 ≤
[∑m

s=1 ||fs||
q
Hs

||fr||qHr

] 2−q
q ≤ Cq

For A4, the first inequality always holds because q ∈
(1, 2). It implies that ψ̂t ∈ [1, Cq] and ψt ∈ [1, Cq].

Under the above conditions, we are able to prove the
following theorem, which implies that the algorithm has
O(1/t) convergence rate.

Theorem 5.1 (Convergence in Expectation) Set γi =
θ
i (1 ≤ i ≤ t), θ > 0 and θν ∈ (1, 2) ∪ Z+ for Algo-
rithm 3 and 4, we always have

EDt,rt,ωt

[
|Ft+1(x)− F∗(x)|2

]
≤ 2C2 + 2κQ2

1

t
(28)



Table 1: Dataset information and experiment settings. In the experiments of Figure 1, we only use a subset of training
data as indicated in the 5th column of this table.

data classes PCA dim total size subset size kernels kernel size λ
covtype 2 40 581,012 20,000 5 rbf 22 GB 10−5

epsilon 2 100 400,000 20,000 5 rbf 22 GB 10−5

mnist8m (binary) 2 100 1,625,000 20,000 5 rbf 22 GB 10−5

cifar10 (binary) 2 100 50,000 20,000 5 rbf 22 GB 10−5

mnist8m 10 100 8,100,000 20,000 5 rbf 22 GB 10−5

cifar10 10 100 50,000 25,000 3 rbf 15 GB 10−5

where we define Q1 =

max{||F∗||H,
Q0+
√
Q2

0+(2ν′θ−1)κM2(1+νθ)2(θ)2

(2ν′θ−1) },
andQ0 = 2

√
2κ1/2LM(κ+φ)θ2, C = 4(κ+φ)2M2θ2

and ν′ = ν(p−1)
2pCq

.

Remarks. Notice that F∗(·) is the optimal functional
in the RKHS for solving the lp MKL problem (11). The
above theorem implies that after t+1 iterations the func-
tional found by triply SGD will converge to F∗(·), and
the difference is no more than 2C2+2κQ2

1

t .

Proof: (sketch) The basic flow of the proof follows that
of doubly SGD. In other words, we also decompose the
errors into the error due to random features and the error
due to random data, i.e.,

|Ft+1(x)− F∗(x)|2 ≤ 2|Ft+1(x)−Ht+1(x)|2+

2κ||Ht+1 − F∗||H (29)

we use Lemma 5.2 and 5.3 to bound each error term re-
spectively. Detailed proofs are deferred to the appendix.
�

Lemma 5.2 For any x ∈ X ,

EDt,rt,ωt

[∣∣∣Ft+1(x)−Ht+1(x)
∣∣∣2] ≤ B2

1,t+1 (30)

where B2
1,t+1 := M2(κ+ φ)2

∑t
i=1 |ait|2.

Lemma 5.3 Set γi = θ
i (1 ≤ i ≤ t), θ > 0 and θν ∈

(1, 2) ∪ Z+, we have

EDt,rt,ωt

[
||Ht+1 − F∗||2H

]
≤ Q2

1

t
(31)

where Q1 is as defined in Theorem 5.1.

In the next section, we use experiments to demonstrate
the effectiveness and efficiency of triply SGD on lp MKL
tasks.

6 EXPERIMENTS

In this section, we compare the proposed triply SGD al-
gorithm to several traditional MKL methods with various
experiments.

6.1 BASELINES

Among the many traditional MKL methods, we select
OBSCURE (Orabona et al, 2012), UFO (Orabona and
Jie, 2011) and p-norm MKL (Kloft et al, 2011) as the
baselines in this paper. OBSCURE and UFO are online
algorithms that can directly optimize the lp-MKL goal
using stochastic sub-gradient descent (Shalev-Shwartz
et al, 2011) while the p-norm MKL algorithm optimizes
kernel weights β and the SVM problem with fixed β al-
ternatively. They are highly competitive MKL solvers
in terms of convergence speed and accuracy accord-
ing to extensive experiments on medium size datasets.
(Orabona et al, 2012; Orabona and Jie, 2011; Kloft et al,
2011). Besides, in order to show the benefit of MKL and
why doubly SGD is not enough, we include the straight-
forward extension of doubly SGD as a baseline. To make
doubly SGD compatible with the MKL scenario, we gen-
erate and concatenate the random features from all the
kernels in each iteration of Algorithm 1 and 2. We de-
note this naive extension as DoublySGD-MK.

6.2 DATASETS

The purpose of our experiments is to demonstrate the
scalability of the proposed method. For this purpose, we
choose large scale datasets on which traditional MKL al-
gorithms are hardly scalable. For binary classification
tasks, we have used the epsilon, covtype, mnist8m-binary
from the LibSVM DATA collection2 and the cifar10-
binary (Krizhevsky et al, 2012) dataset. The cifar10-
binary task requires to classify whether an image is ani-
mal or not, mnist8m-binary classifies the digits ‘6’ and
‘8’. For multi-class problems, we consider all the 10
classes in cifar10 and mnist8m. The dataset information

2https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/



Figure 1: Learning curves on datasets with fixed training sizes. Experiment settings are given in Table 1 and Section
6.3. Best performance of the CNN we used for feature extraction is also indicated as a blue circle. Notice that the
curves of traditional MKL solvers start at around 100 seconds, because they need to compute the kernel matrices
before training. Compared to Triply SGD, Doubly SGD converges faster at the beginning since it does not need to
learn the kernel weights. However, as a result, its generalization error is higher than triply SGD in the long run.

Table 2: Comparison of the final test error rates between doubly and triply SGD in Figure 1.
mnist-bin cifar-bin covtype-bin epsilon-bin cifar-10 mnist-10

DoublySGD-MK 0.0014 0.1190 0.1680 0.095 0.1497 0.0250
TriplySGD 0.0011 0.1120 0.1630 0.088 0.1407 0.0220

and parameter settings are shown in Table 1.

6.3 MULTIPLE KERNELS

In order to build a multi-kernel scenario for the cifar10-
multiclass dataset, we use 3 sets of CNN-pretrained fea-
tures to construct three different RBF kernels. The first
set of features are extracted from the last dense layer
(512 dimensions) of a well-trained 18-layer-ResNet (He
et al, 2016) with 15.6% test error rate after 190 training
epochs. The other two sets of features are extracted from
a lightly-trained (5 epochs of training) CNN (Lin et al,
2013) with 29% test error rate. We use the last dense
layer (512 dimensions) and the last max-pooling layer
(2304 dimensions), respectively. In this way, we inten-
tionally made one of the kernels more informative than
the other two, so that adjusting the kernel weights is im-
portant. We apply PCA to reduce the dimensionality of
each feature representation to 100 before computing the
RBF functions.

For all other datasets, we apply PCA on the original fea-

tures or raw pixels for dimensionality reduction. We con-
struct 5 kernels on the PCA dimensions. The first ker-
nel is simply computed using all PCA dimensions. The
other 4 kernels are constructed from each 1

4 of the PCA
dimensions. In this way, we still intentionally make the
first kernel more informative. The bandwidths of all RBF
kernels are determined by the median trick.

6.4 IMPLEMENTATION DETAILS

We run all experiments on a desktop computer with an
8 core Intel i7 CPU and 24 gigabyte memories. All al-
gorithms are implemented in MATLAB. For the baseline
methods, the computer memory can only accommodate
the kernels of a subset of data, which is 20, 000/8, 000
(train/test) instances for the five kernel experiments and
25, 000/10, 000 instances for the three kernel experi-
ments. For the triply SGD algorithm, we set the number
of random features as 213 and the batch size is set as 215.
With this setting, the triply SGD program never exceeds
16 GB memory-usage, irrespective of the training size.



Figure 2: Experiments with different training sizes. The baselines can only handle a small subset of each dataset.
For each sample size of a given dataset, we set a time budget of 10, 000 seconds. The other settings including the
construction of kernels are the same as Figure 1.

For the parameter p and q in the lp MKL objective (3),
we use q = 2 logm

2 logm−1 as suggested in Orabona and Jie
(2011).

All the candidate algorithms use hinge loss for the binary
classification tasks. To handle multi-class scenarios, the
OBSCURE and UFO algorithms have used the ‘max-of-
hinge’ loss (Crammer and Singer, 2001). While the orig-
inal p-norm MKL approach focuses on binary classifica-
tion, we use the One-Versus-Rest strategy to extend it to
the multi-class setting. For the triply SGD algorithm, we
use the multi-class logistic (i.e., softmax) loss as did in
Dai et al (2014); Li and Póczos (2016).

6.5 EXPERIMENTS AND RESULTS

We first evaluate the convergence speed and accuracy of
all candidate methods with the same training size. In
other words, we restrict the triply SGD algorithm to use
the same subsets of data as the baselines. See Table 1
for our settings. We use a time budget of 3, 000 seconds
for each experiment which includes kernel computation
and random feature generation as well as training. Figure
1 depicts the learning curves of test error for different
tasks.

Observation 1. Compared to traditional MKL solvers,
Triply SGD has a faster learning convergence speed and
achieves higher predictive performance.

Table 2 shows the final test error of triplySGD and
doublySGD-MK (after 3, 000 seconds). In all six exper-
iments, TriplySGD has better performance. This is be-
cause doublySGD-MK simply concatenates the random
features from multiple kernels and cannot adjust the ker-
nel weights. As a result, this naive extension of dou-
blySGD can hardly take full advantage of the flexibility
of Multiple Kernel Learning.

Observation 2. Compared to Doubly SGD, Triply SGD
can achieve better accuracy in the MKL scenario.

In order to show how triply SGD can handle larger
datasets and gain better performance, we conduct ex-
periments with various training sizes using the covtype,
mnist8m and cifar10 datasets. We keep the same param-
eter settings and kernel composition as our previous ex-
periments. For baseline methods, they can only process
a subset of each data. For the triply SGD algorithm, we
are always able to increase the training size until the en-
tire datasets are used. For each sample size of a given
dataset, we set a running time budget of 10, 000 second
and report the final test accuracy. The results are shown
in Figure 2.

Observation 3. Triply SGD is scalable to large datasets
and achieves improved accuracy as the data size in-
creases.

The experiment on mnist8m data also indicates that triply
SGD can learn lp-MKL problem with millions of data
points.

7 CONCLUSION

In this paper, we provide a novel extension to doubly
SGD for MKL problems so that both the decision func-
tions and the kernel weights can be learned. To achieve
this, we develop the triply Stochastic Gradient Descent
(triply SGD) algorithm which involves three sources of
randomness – the data points, the random features, and
the kernels, which was not considered in previous work.
We prove that our algorithm has O(1/t) convergence
rate. Comparing to several traditional MKL solutions,
our experiments show that triply SGD has faster conver-
gence speed and achieved better accuracy. Most impor-
tantly, it is possible to learn MKL problems with millions
of data points on a normal desktop PC.
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