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Abstract

The algorithms for causal discovery and more
broadly for learning the structure of graphical
models require well calibrated and consistent
conditional independence (CI) tests. We revisit
the CI tests which are based on two-step pro-
cedures and involve regression with subsequent
(unconditional) independence test (RESIT) on
regression residuals and investigate the assump-
tions under which these tests operate. In particu-
lar, we demonstrate that when going beyond sim-
ple functional relationships with additive noise,
such tests can lead to an inflated number of false
discoveries. We study the relationship of these
tests with those based on dependence measures
using reproducing kernel Hilbert spaces (RKHS)
and propose an extension of RESIT which uses
RKHS-valued regression. The resulting test in-
herits the simple two-step testing procedure of
RESIT, while giving correct Type I control and
competitive power. When used as a component
of the PC algorithm, the proposed test is more
robust to the case where hidden variables induce
a switching behaviour in the associations present
in the data.

1 INTRODUCTION

Conditional independence tests are an important compo-
nent of causal discovery (cf. [Shalizi, 2016, Chapter 28]).
For example, the popular PC algorithm [Spirtes et al.,
2000] for recovering dependence structure among a set
of variables starts from a complete undirected graph and
recursively removes the edges between variables based
on conditional independence testing. With normally dis-
tributed variables and linear relationships, conditional in-
dependence testing can be performed using estimates of
partial correlation. Namely, when testing the hypothesis

that X |= Y |Z, partial correlation is the correlation of the
residuals of X and Y after linearly regressing each of them
on Z separately. However, in the presence of nonlineari-
ties and when one needs to condition on a random vector
Z of larger dimensions, conditional independence testing
is a challenging problem [Bergsma, 2004]. A popular ap-
proach for conditional independence testing within PC al-
gorithm is RESIT (REgression with Subsequent Indepen-
dence Test) [Hoyer et al., 2009, Peters et al., 2014], which
can incorporate nonlinearities by extending the partial cor-
relation approach in the following two ways: (1) it uses a
flexible nonparametric regression of X and Y on Z, and
(2) the subsequent test is based on a nonlinear dependence
measure between the resulting residuals. While RESIT
greatly broadens the class of models in which causal dis-
covery with conditional independence tests is possible, as
we will see, it is sensitive to departures from its modelling
assumption, which itself is not straightforward to verify. In
particular, it is likely to give an inflated number of false
positives in the presence of associations which do not di-
rectly conform to functional relationships (as illustrated in
Figure 1).

In the last decade, kernel embeddings of probability mea-
sures [Smola et al., 2007, Sriperumbudur et al., 2010]
have been widely used to construct nonparametric hy-
pothesis tests, including tests for the two-sample problem
[Gretton et al., 2007, 2012], independence [Gretton et al.,
2008, Chwialkowski et al., 2015], conditional indepen-
dence [Fukumizu et al., 2008, Zhang et al., 2011, Doran
et al., 2014], three-variable interaction [Sejdinovic et al.,
2013], joint independence [Pfister et al., 2016], and good-
ness of fit [Chwialkowski et al., 2016]. The various kernel-
based tests for conditional independence [Fukumizu et al.,
2008, Zhang et al., 2011, Doran et al., 2014] allow to mea-
sure more general forms of conditional dependence than
RESIT. However, these approaches typically involve com-
plex statistics and computationally expensive procedures to
estimate their distributions under the null hypothesis. In
this paper we propose a kernel-based conditional indepen-
dence approach which aims to strike a balance between the
simplicity of the RESIT approach and the robustness to



the functional association and additive noise assumptions
made by the RESIT. The procedure we introduce is a test
for weak conditional independence as defined by [Daudin,
1980] since, like RESIT, it focuses on individual effects1 of
the conditioning variable Z on X and Y . As such, it does
not fully characterise conditional independence, but does
benefit from a simpler testing procedure and an improved
power in comparison to the “strong” tests which do char-
acterise conditional independence. When these individual
effects are not present and as such weak CI tests are insuf-
ficient to detect a complex joint effect on (X,Y ), they can
be combined with tests for multivariate interaction [Sejdi-
novic et al., 2013].

An independent recent work, Strobl et al. [2017], considers
a very similar approach to ours – indeed, the method we
propose is essentially equivalent to the RCoT approach of
Strobl et al. [2017], which in addition operates on explicit
primal representations of feature maps leading to a de-
creased computational cost. However, Strobl et al. [2017]
do not comment on the connections with the two-step pro-
cedures for CI testing and RESIT. Hence, our contribution
is to provide the unifying framework which places the pro-
posed method as a generalisation of RESIT, pointing the
deficiencies of RESIT and the interplay between its struc-
tural assumptions and nonlinear dependencies. In addition,
while RCoT uses approximations to the null distributions
with parametric families, we simply employ a permutation-
based approach using the two-step interpretation of the pro-
posed test, and do not observe any deviations from the de-
sired significance level in the experiments. The test main-
tains correct Type I control even under the challenging
switching associations induced by hidden variables, where
RESIT is inappropriate.

In Section 2, we overview the key notion of weak condi-
tional independence and the existing approach for testing
it as well as three related tests for general conditional in-
dependence using kernel methods. In Section 3 we de-
velop our novel procedure for weak conditional indepen-
dence testing. Section 4 evaluates the performance of our
approach and compares it to RESIT and other conditional
independence tests on both synthetic and real-world data.

2 BACKGROUND

We start by introducing notation and reviewing the exist-
ing kernel-based conditional independence tests. Let X ,
Y and Z be non-empty measurable spaces, with Borel σ-
algebras BX , BY and BZ respectively. Let k, l and m
be measurable positive definite kernels on these respec-
tive domains with the corresponding reproducing kernel
Hilbert spaces (RKHSs) HX , HY , HZ . Let (X,Y, Z)

1Since regressions of X and Y on Z are done separately and
hence cannot capture the joint dependence of (X,Y ).

be a triple of random variables with the joint probabil-
ity law PXY Z on (X × Y × Z,BX × BY × BZ). We
will assume EX∼PX

[k(X,X)] < ∞ and similarly for
l and m, which will ensure that HX ⊂ L2

X (PX) ={
f : E

[
f2(X)

]
<∞

}
, and similarly HY ⊂ L2

Y(PY ) and
HZ ⊂ L2

Z(PZ) [Steinwart and Christmann, 2008, Section
4.3]. We will also assume that the kernels k, l and m are
characteristic, such that their RKHSs are dense in the cor-
responding L2-spaces [Sriperumbudur et al., 2010].

2.1 WEAK CONDITIONAL
INDEPENDENCE

Conditional independence X |= Y |Z is equivalent to

P (X ∈ A |Z)P (Y ∈ B |Z) = P (X ∈ A, Y ∈ B |Z)
(1)

as random variables, for all measurable sets A ∈ BX and
B ∈ BY , which in turn can be written as

EZ [1{Z ∈ C}P (X ∈ A |Z)P (Y ∈ B |Z)]

= EZ [1{Z ∈ C}P (X ∈ A, Y ∈ B |Z)]

= P (X ∈ A, Y ∈ B, Z ∈ C)

for all measurable sets A ∈ BX , B ∈ BY and C ∈ BZ .
Relaxation of this property which only requires it to hold
for C = Z gives rise to the notion of weak conditional
independence, i.e. that ∀A ∈ BX ,B ∈ BY

EZ [P (X ∈ A |Z)P (Y ∈ B |Z)] = P (X ∈ A, Y ∈ B) ,
(2)

which we can write as EZ [PX|Z ⊗ PY |Z ] = PXY , un-
derstood as the equality of probability measures defined
on (X × Y,BX × BY). Weak conditional independence is
studied by Daudin [1980], who interprets it in terms of zero
expected conditional covariances of square integrable func-
tions, i.e.

EZ [Cov [f(X), g(Y )|Z]] = 0 (3)

for all f ∈ L2
X (PX) and g ∈ L2

Y(PY ). In other
words, the residuals in all square integrable functions of
X and Y , given Z, are uncorrelated. Fukumizu et al.
[2004] give another characterisation of weak conditional
independence using conditional cross-covariance opera-
tors between RKHSs. Namely, they define the operator
ΣY X|Z : HX → HY , such that ∀f ∈ HX , g ∈ HY

〈g,ΣY X|Zf〉HY = EZ [Cov [f(X), g(Y )|Z]] , (4)

under the additional smoothness assumptions on condition-
ing variables, i.e. that ∀f ∈ HX , g ∈ HY , E[f(X)|Z = ·]
and E[g(Y )|Z = ·] both belong to HZ [Fukumizu et al.,
2004, Proposition 4], [Alpay, 2001]. Theorem 8 of Fuku-
mizu et al. [2004] then shows that, for characteristic ker-
nels, this operator vanishes if and only if weak conditional



independence holds. i.e.

ΣY X|Z = 0 ⇐⇒ E[PX|Z ⊗ PY |Z ] = PXY . (5)

The conditional independence clearly implies weak condi-
tional independence but the converse is not true. A sim-
ple counterexample is where X , Y and Z are all pair-
wise independent, but are jointly dependent due to a three-
variable interaction. For a concrete case, similar to the
one described in Sejdinovic et al. [2013], let X,Y,W i.i.d.∼
N (0, 1) and define Z = sign (XY ) |W |. In this case,
E(f(X)|Z) = E(f(X)) and E(g(Y )|Z) = E(g(Y )) im-
plying that LHS in (3) vanishes. However, given Z, the
pair (X,Y ) can only take values in two out of four quad-
rants, so that X and Y are clearly conditionally dependent
given Z. Essentially, whenever the variables are pairwise
independent but jointly dependent, any two variables are
weakly conditionally independent given the third and need
not be “strongly” conditionally independent. We note how-
ever that nonparametric tests exist which are directly aimed
at such multivariate interaction: Sejdinovic et al. [2013]
reports stronger power than the conditional independence
tests in these cases. Thus, we challenge the paradigm by
which all departures from conditional independence should
be tested with the same procedure and instead choose to fo-
cus on weak conditional independence testing. When mul-
tivariate interaction is present and the individual effects of
Z on X and on Y are weak or non-existing and only the
joint dependence of (X,Y ) on Z is possible to detect, then
arguably (X,Y ) should be considered a single random vec-
tor.

2.2 RESIT: THE TWO-STEP APPROACH

RESIT approach [Hoyer et al., 2009, Peters et al., 2014,
Flaxman et al., 2015] converts a conditional independence
testing problem into an unconditional one by removing the
effect of a confounder Z through a flexible nonparametric
regression. More specifically, it assumes an additive noise
model where X and Y are expressed as some deterministic
functions of Z plus an additive zero-mean noise term, i.e.

X = f(Z) + nx (6)
Y = g(Z) + ny (7)

where nx and ny are zero-mean random variables indepen-
dent of Z. Under the assumptions (6) and (7), the condi-
tional independence can be characterised as:

X |= Y |Z ⇐⇒ nx |= ny. (8)

Thus, the test proceeds by first regressing X on Z and
Y on Z, and then testing for the (unconditional) inde-
pendence between the fitted residuals of these regressions
ε̂x = X − Ê[X|Z] and ε̂y = Y − Ê[Y |Z]. This approach
obviously crucially depends on the regression procedure in

order to remove the effect of Z by using an appropriate
model of regression functions f and g. Gaussian Process
regression and kernel ridge regression are often used for
the first step, whereas Hilbert-Schmidt Independence Cri-
terion [Gretton et al., 2008] can be used in the second step
in order to capture potentially nonlinear dependence be-
tween residuals. Because of its focus on individual effects
of the conditioning variable Z on X and on Y , it is clear
that RESIT only tests for weak conditional independence.

As we will demonstrate below, RESIT can result in a sub-
stantial inflation of false discoveries when assumptions (6)
and (7) are violated. Indeed, RESIT is unable to handle
non-functional dependence between the variables X and Y
and the conditioning variable Z – the regression will not
remove the dependence on Z and the fitted residuals will
be dependent even in the cases where X and Y are inde-
pendent given Z. We see this as an undesirable property
for many real data applications, especially when condition-
ing on a multivariate Z, as these assumptions are difficult
to verify and may be violated. In particular, there could be
hidden categorical confounders which introduce a switch-
ing behaviour in the wayX and Y depend on Z, i.e. X and
Y are functionally dependent on Z and those confounders,
but not on Z itself. An example of such a relationship is
illustrated in Figure 2 which plots the total expenditure on
health per capita vs the gross national income per capita for
178 countries: there is a superposition of two functional re-
lationships corresponding to two subsets of countries de-
pending on whether their economy relies on oil [WHO,
2009].

For a simple example of how brittle the RESIT approach is,
consider the dataset presented in Figure 1. Here, the depen-
dence of both X and Y on Z is a mixture of two functional
relationships (linear for X , quadratic for Y ), arguably very
simple – but also indicating the presence of some latent
switching mechanism for bothX and Y . However, the con-
ditional expectations in both cases are constant and thus
independent of Z. Hence, the fitted regression functions
do not capture any dependence on Z and as a result, the
residuals (rightmost plot) are clearly dependent, regardless
of whether in fact X |= Y |Z (indeed, in this case, as de-
scribed in Section 4.2, the conditional independence does
hold because switching variables are independent). RESIT
with a nonlinear independence test on these residuals will
therefore falsely reject the null hypothesis. This is a highly
undesirable property as it leads to an inflated number of
false positives, and when the same method is used inside
PC algorithm, it can potentially result in reporting spurious
causal links as illustrated in Section 4.3. This problem is
exacerbated for Z being a random vector, even of a small
dimension, since such cases which go beyond simple func-
tional relationships become difficult to notice. One way to
avoid the inflation of false positives in these cases is to only
test for linear dependence between the residuals. However,



this clearly results in a reduction of power as it misses many
alternative models where (6) and (7) are satisfied and nx
and ny are nonlinearly dependent.

Figure 1: Data generated from the null model of Section 4.2 and
kernel ridge regressions are used to remove dependency on Z.
Left: X against Z. Middle: Y against Z. Simulated data (blue)
and fitted values (red). Right: residuals of the regression for Y
against residuals of the regression for X which clearly exhibits
non-linear dependency.

2.3 KERNEL TESTS FOR “STRONG”
CONDITIONAL INDEPENDENCE

In contrast to the RESIT test, there have been several
approaches in the literature that aim to measure all forms
of conditional dependence, typically at the expense of
more complex statistics which have the distribution under
the null hypothesis that is more difficult to estimate.

Cross-Covariance Operators Fukumizu et al. [2008]
proposed a general nonparametric characterisation of con-
ditional independence based on the conditional cross-
covariance operators between RKHSs. The cross-
covariance operator ΣY X : HX → HY is defined through

〈g,ΣY Xf〉 = Cov(f(X), g(Y )), f ∈ HX , g ∈ HY ,

i.e., it is a nonlinear extension of the cross-covariance ma-
trix (cf. Baker [1973], Fukumizu et al. [2004]). The con-
ditional cross covariance operator ΣY X|Z is then defined
as

ΣY X|Z = ΣY X − ΣY ZΣ−1ZZΣZX (9)

in analogy to the conditional cross-covariance matrix
CY X|Z = CY X−CY ZC−1ZZCZX formula for jointly Gaus-
sian random vectors.

The conditional dependence measure can then be based on
estimating ‖ΣŸ Ẍ|Z‖2HS , where Ÿ = (Y, Z) and Ẍ =

(X,Z), as it can be shown [Fukumizu et al., 2008] that
ΣŸ Ẍ|Z = 0 if and only if X |= Y |Z when the prod-
uct of the three positive definite kernels, klm, results
in a characteristic kernel on X × Y × Z . In addition,
Fukumizu et al. [2008] considers the conditional cross-
correlation operators, which can be expressed as VY X|Z =

Σ−1Y Y ΣY X|ZΣ−1XX .

The test statistics with these approaches however do not
have clear asymptotic null distributions. Consequently,
one needs to adopt a local permutation-based approach
which needs to take into account an artificial discretisa-
tion of condition Z (e.g. through clustering) so that the
marginal structures are preserved. As remarked by Zhang
et al. [2011], this usually requires large sample size and
the results become unreliable when the dimension of Z in-
creases.

Kernel Conditional Independence Test (KCI-Test2)
Following similar reasoning, Zhang et al. [2011] charac-
terise conditional independence based on partial associa-
tion [Daudin, 1980] where it was shown that

X |= Y |Z ⇐⇒ E(f̃ g̃) = 0 (10)

for all f̃ ∈ EXZ := {f̃ ∈ L2
X×Z(PXZ)|E(f̃ |Z) = 0}

and f̃(Ẍ) = f(Ẍ) − E(f |Z) for f ∈ L2
X×Z(PXZ). The

notations for g̃, g and EY Z are defined similarly. As noted,
if the functions f and g are restricted to the spaces HX×Z
and HY×Z , then such characterisation is exactly the same
as Fukumizu et al. [2008]. Zhang et al. [2011] derive an
explicit formulae for the asymptotic null distribution and
propose an approach for approximating it based on eigen-
decompositions of kernel matrices or fitting a parametric
family. However, this null distribution becomes harder to
accurately approximate in practice as the dimension of the
conditioning variable increases.

Permutation-based Maximum Mean Discrepancy
(MMD) Following the difficulties faced by the ap-
proaches of Fukumizu et al. [2008] and Zhang et al. [2011]
in estimating the null distributions, Doran et al. [2014]
introduce a reduction of the conditional independence test-
ing problem into a two-sample testing one, by considering
a carefully selected permutation which mimics a sample
from PZPX|ZPY |Z for which the null hypothesis of con-
ditional independence holds. While casting the problem as
a simple two-sample test is attractive, promising a better
calibration and improved performance in the cases where
dimensionality of the conditioning variable is high, this
approach does require a costly optimization procedure
over the space of doubly stochastic matrices in order to
select the required permutation.

3 PROPOSED METHOD

We have seen that RESIT, although a simple and effec-
tive conditional independence test for additive noise mod-
els, can lead to undesirable properties when the additive
noise modelling assumption is violated. On the other hand,
strong kernel-based independence tests require no restric-
tive assumptions on the type of the underlying relationships

2Termed by Zhang et al. [2011]



between the variables, but need complex and difficult to
tune testing procedures, often requiring to solve difficult
side-problems in order to have an estimate of the distribu-
tion under the null hypothesis (clustering the conditioning
variable or optimisation over the space of permutations).
Therefore, our goal is to identify an approach which aims
to strike a balance between these two approaches, and con-
struct a test which is more robust to the departures from the
modelling assumption in (6) and (7). At the same time,
we seek an approach which can be cast as an uncondi-
tional independence test on some form of regression resid-
uals – allowing us to employ the well established existing
methodology for unconditional tests, including straightfor-
ward permutation-based approaches for estimation of the
null distribution. Using heuristic arguments, we derive in
this section an intuitive test based on well known empirical
mean RKHS quantities. The rigorous statistical analysis of
this approach is left to further work.

We first note that the assumptions (6) and (7) specify
that the conditional distributions PX|Z=z and PY |Z=z de-
pend on z only through the expectations E [X|Z = z] and
E [Y |Z = z]. Therefore, any additional dependence on z,
e.g. in the conditional variance: Var [X|Z = z] 6= Var [X]
will not be captured by the regression approaches, imply-
ing that the residuals remain dependent by construction,
leading to spurious rejections when nonlinear dependence
tests on residuals are employed. Therefore, we are inter-
ested in also modelling how higher-order moments of these
distributions depend on z, leading us to consider condi-
tional expectations of feature maps E [φ(X)|Z = z] and
E [ψ(Y )|Z = z] for some φ : X → HX , ψ : Y → HY
and Hilbert spaces HX , HY , i.e. the mean embeddings
of the corresponding conditional distributions. For char-
acteristic kernels [Sriperumbudur et al., 2010], these em-
beddings fully characterise the corresponding distributions
(and thus, their dependence on z).

We thus propose the following two-step approach: first
construct feature representations of X and Y and then per-
form the vector-valued regression of these feature repre-
sentations of each of them on Z separately. Just like in
RESIT, the second step is a test of independence between
the resulting residuals, but note that the residuals are them-
selves elements of the corresponding (potentially infinite-
dimensional) feature spaces. Fortunately, as we show in
the remainder of this section, using the kernel trick allows
to perform each of these steps without ever explicitly com-
puting the feature maps. The final result is a simple test
statistic, very similar to HSIC of Gretton et al. [2008],
which lends itself to direct computation. Moreover, its
null distribution can be straightforwardly estimated using
a permutation-based approach. Thus, the key step of the
procedure is the feature transformation of the responses in
regression – we will see that this greatly relaxes the mod-
elling assumptions and in particular allows to model com-

plex dependencies between the responses and the condi-
tioning variable which cannot be expressed in functional
forms with additive noise.

Consider now k, l and m to be measurable positive definite
kernels with the corresponding RKHSs HX , HY , HZ . We
denote by φ(x) ∈ HX and ψ(y) ∈ HY the feature map
representations of k and l. Note that Daudin’s condition
(3) for weak conditional independence can be written as

0 = EZ [Cov [f(X), g(Y )|Z]]

= EXY Z [(f(X)− Ef(X|Z)) (g(Y )− Eg(Y |Z))]

= EXY Z [nf (X,Z)ng(Y,Z)] (11)

where we denoted nf (X,Z) = f(X) − Ef(X|Z),
ng(Y,Z) = g(Y ) − Eg(Y |Z) to be the regression resid-
uals for X and Y transformed through square integrable
functions f ∈ L2

X (PX) and g ∈ L2
Y(PY ). Note that

these residuals would in general depend on Z and that they
have mean zero by construction. Thus, weak conditional
independence is equivalent to uncorrelatedness of resid-
uals nf (X,Z) and ng(Y, Z) for all f ∈ L2

X (PX) and
g ∈ L2

Y(PY ). Moreover, when HX and HY are dense in
L2
X (PX) and L2

Y(PY ), it suffices to consider f ∈ HX and
g ∈ HY . But then

EXY Z [(f(X)− Ef(X|Z)) (g(Y )− Eg(Y |Z))]
= EXY Z〈f, φ(X)− Eφ(X|Z)〉HX 〈g, ψ(Y )− Eψ(Y |Z)〉HY
= 〈f,EXY Z (φ(X)− Eφ(X|Z))⊗ (ψ(Y )− Eψ(Y |Z)) g〉HX
= 〈f,EXY Z [nφ(X,Z)⊗ nψ(Y,Z)] g〉HX .

This suggests the method which regresses φ(X) and
ψ(Y ) on Z using vector-valued kernel ridge regression and
tests for unconditional linear independence of the residuals
nφ(X,Z) and nψ(Y, Z) which are elements of RKHSs.

The resulting regression functions are now simply the em-
pirical mean embeddings of the conditional distributions
PX|Z=z and PY |Z=z [Fukumizu et al., 2011, Theorem 1]
and can be expressed as follows [Song et al., 2009, Theo-
rem 5]:

Ê(φ(X)|Z = z) =

n∑
i=1

βx
i (z)φ(xi) = Φ>x β

x(z) (12)

Ê(ψ(Y )|Z = z) =

n∑
i=1

βy
i (z)ψ(yi) = Ψ>y β

y(z) (13)

with βx(z) = (M + λxIn)−1(m(z, z1), ...,m(z, zn))>,
M is the n × n matrix such that Mij = m(zi, zj), Φx =
(φ(x1), ..., φ(xn))> and Ψy = (ψ(y1), ..., ψ(yn))>. The
notation βx emphasises the fact that the coefficient vec-
tor may differ for x and y; this difference would only be
due to different choice of the regularisation parameters λx

and λy. Note that the procedure can straightforwardly be
amended to use different kernelsmx andmy for the two re-
sponses, but we do not pursue this further for simplicity of
exposition. We have enclosed two parameter optimisation
schemes in the Appendix.



The residual of the kernel ridge regression of X on Z for
the i-th data point is given by

ε̂x,i = φ(xi)− Ê(φ(X)|Z = zi)

= Φ>x ei − Φ>x β
x(zi) ∈ Hk (14)

so that the whole set of residuals ε̂x = (εx,1, ..., εx,n)> can
be written as:

ε̂x = (In −Bx)Φx = (
1

λx
M + In)−1Φx (15)

with Bx = M(M + λxIn)−1 and λx > 0, so that In −
Bx = ( 1

λxM + In)−1. Similarly the residual of the kernel
ridge regression of Y on Z is given by

ε̂y = (
1

λy
M + In)−1Ψy. (16)

The problem of testing weak conditional independence be-
tween X and Y given Z then translates into testing if ε̂x
and ε̂y are correlated.

Since they are elements of RKHSs, we can use the Hilbert-
Schmidt independence criterion (HSIC) of Gretton et al.
[2008] with linear (inner product) kernels on these residu-
als, i.e. κx(εx,i, εx,j) = 〈εx,i, εx,j〉HX and κy(εy,i, εy,j) =
〈εy,i, εy,j〉HY . Let the empirically centred residuals be
ε̂cxi

:= ε̂xi
− 1

n

∑n
j=1 ε̂xj

and ε̂cyi := ε̂yi − 1
n

∑n
j=1 ε̂yj .

Essentially, we build an empirical cross covariance opera-
tor between the residuals ε̂x and ε̂y , and HSIC is then the
squared Hilbert-Schmidt norm of such operator:

Ξ(ε̂x, ε̂y) =

∥∥∥∥∥ 1

n

n∑
i=1

ε̂cxi
⊗ ε̂cyi

∥∥∥∥∥
2

HS

(17)

=
1

n2

n∑
i=1

n∑
j=1

〈ε̂cxi
, ε̂cxj
〉〈ε̂cyi , ε̂

c
yj 〉 (18)

=
1

n2
Trace(Hε̂xε̂

>
xHHε̂y ε̂

>
y H) (19)

where H := In − 1
n11

> is the centering matrix. By defi-
nition of ε̂x, we have

ε̂xε̂
>
x = (

1

λx
M + In)−1ΦxΦ>x (

1

λx
M + In)−1 (20)

and similarly

ε̂y ε̂
>
y = (

1

λy
M + In)−1ΨyΨ>y (

1

λy
M + In)−1 (21)

where ΦxΦ>x = K and ΨyΨ>y = L are the n× n matrices
such as Kij = k(xi, xj) and Lij = l(yi, yj). Combining
equations (19), (20) and (21), we obtain

Ξ(ε̂x, ε̂y) =
1

n2
Trace(H̃z,xKH̃

>
z,xH̃z,yLH̃

>
z,y)

where H̃z,x = H( 1
λxM + In)−1 and H̃z,y = H( 1

λyM +
In)−1. Note that the HSIC statistic between the two resid-
uals can be seen as the inner product between transforma-
tions of the kernel matrices K and L through the centering
terms H̃z,x and H̃z,y which encompass information regard-
ing the impact of Z on respectively X and Y . To obtain
the test threshold, standard permutation approach can be
used to estimate the null distribution. It is tempting to also
consider the nonlinear tests on RKHS residuals, i.e. one
may specify some kernel which only depends on RKHS
distances (e.g. Gaussian RBF kernels), however, this re-
sults in inflated false positive rates for the same reasons as
RESIT.

Related Work Our proposed conditional independence test
which we term KRESIT3 (Kernel RESIT) is a generalisa-
tion of the RESIT approach in which the regressions on Z
are done after feature transforming both responses X and
Y . KRESIT is closely related to the method of Zhang et al.
[2011]. More precisely, Zhang et al. [2011] can be under-
stood as performing ridge regressions of the feature trans-
formations of pairs (X,Z) and (Y,Z) on Z in order to
achieve full characterisation of conditional independence.
This makes the method more difficult to interpret in terms
of two-step procedures. Recent extension by Strobl et al.
[2017] of Zhang et al. [2011] presents the test called RCoT
which essentially computes the same statistic as KRESIT,
but uses a different estimation procedure of the asymptotic
null distribution. RCoT can be viewed as a large scale ap-
proximation of KRESIT through the use of random Fourier
features (RFF), similarly RCIT of Strobl et al. [2017] pro-
vides an approximation of the KCI-test via RFF. Strobl
et al. [2017] has shown that RCIT and RCoT give similar
performance as KCI-test but they are orders of magnitude
faster in large-scale settings. While the large-scale approxi-
mations are not the focus of the present work, methods such
as RFF or Nyström approximation can readily be employed
in KRESIT (for comparisons of these approximation meth-
ods in unconditional independence testing, cf. Zhang et al.
[2017]).

4 EXPERIMENTS

We apply the proposed method, KRESIT, to both synthetic
and real data to evaluate its performance in terms of Type
I error and statistical power. We start with a motivat-
ing real data example comparing KRESIT and RESIT on
two socio-economic and health indicators from the World
Health Organisation (WHO) data [WHO, 2009, Rosling,
2008]. Following this, we compare the performance of the
proposed approach against RESIT and the three “strong”
conditional independence tests described in Section 2.3
on a synthetic experiment with increasing dimensional-

3Code available at https://github.com/oxmlcs/kerpy.



ity of the conditioning variable Z and sample sizes. We
then apply the two “weak” conditional independence tests
(RESIT and KRESIT) to unravel causal relationships in a
synthetic dataset, the Boston Housing dataset [Pace and
Gilley, 1997, Harrison and Rubinfeld, 1978] and the Ozone
dataset [Breiman and Friedman, 1985] (presented in the
Appendix).

Unless otherwise stated, the significance level is kept at
α = 0.05. For KRESIT, Gaussian kernels with median
heuristic are used for all three random variables in regres-
sion, but the parameters λx and λy are optimised using grid
search to find the minimum total 5-fold cross validation er-
ror over a grid of 30 evenly spaced values in the interval
(10−6, 101). For RESIT, Gaussian kernels with median
heuristic are used for kernel ridge regression and on the
residuals. The regularisation parameters are tuned in the
same way as in KRESIT.

4.1 SIMPLE MOTIVATING EXAMPLE
BASED ON WHO DATA

As a motivating example, we apply the proposed approach
to two variables in the WHO data set used in Reshef et al.
[2011]. We denote by Z the log transformed gross national
income per capita and by Y the total expenditure on health
per capita. Figure 2 (left) can be thought of as the superpo-
sition of two relationships where the small minority curve
consists of countries whose economies rely largely on oil
[WHO, 2009]. We have taken the log transform of the
gross national income per capita so that the values are more
evenly distributed. After removing all missing values, we
have 178 data points. We then construct a synthetic X with
non-functional dependence on Z as follows

xi =

{
(zi − 10)2 + nxi if cxi = 1

−(zi − 10)2 + 35 + nxi if cxi = 0
(22)

where cxi
i.i.d.∼ Bernoulli(0.5) and nxi

i.i.d.∼ N (0, 1). X
and Y are conditionally independent given Z by construc-
tion.

Figure 2: Left: Expenditure on health per cap against the loga-
rithm of gross national income per cap (Z). Right: Synthetic data
X against Z.

RESIT incorrectly rejected the null hypothesis at 5% sig-
nificance level with a p-value of 0.0025 owing to the fact
that kernel ridge regression is unable to remove the depen-
dency of Z from X and Y and HSIC using Gaussian ker-
nels is able to detect such nonlinear dependency between
the residuals. KRESIT, on the other hand, gives a p-value
of 0.91 and hence does not reject the null hypothesis that
X and Y are weakly conditionally independent. By relax-
ing the modelling assumption of additive noise and allow-
ing more complex dependencies between responses and the
conditioning variable, KRESIT is able to provide a better
calibrated test.

4.2 EFFECT OF DIMENSIONALITY OF Z
AND SAMPLE SIZE

We examine the probability of Type I and Type II errors of
the “strong” conditional independence tests vs. the “weak”
conditional independence tests when the dimensionality of
the conditioning set Z is increasing (d = 1, 2, 3, 4, 5, 6, 7)
and the sample sizes take values in {40, 80, 120, 160, 200}.

Let us consider the following non-functional dependence
as the null model:

Zji ∈
i.i.d.∼ Uniform(0, 5), j = 1, . . . , d

Cxi , C
y
i
i.i.d.∼ Bernoulli(0.5)

nxi , n
y
i
i.i.d.∼ N (0, 1)

Xi ∈ R =

{
1.7Z1

i + nxi if cxi = 1

−1.7Z1
i + nxi if cxi = 0

Yi ∈ R =

{
(Z1

i − 2.7)2 + nyi if cyi = 1

−(Z1
i − 2.7)2 + 13 + nyi if cyi = 0

Note, X and Y only depend on the first dimension of the
conditioning vector Z. To obtain the alternative model, we
couple the latent variables Cx and Cy:

ui
i.i.d.∼ Uniform(0, 1)

Cxi
i.i.d.∼ Bernoulli(0.5)

Cyi =

{
Cxi if ui < 0.3
i.i.d.∼ Bernoulli(0.5) if ui ≥ 0.3

We compare the “weak” conditional independence tests:
the proposed KRESIT, RESIT and LRESIT (RESIT with
linear kernels on residuals) with the “strong” conditional
independence tests: CIperm by Fukumizu et al. [2008],
KCIPT by Doran et al. [2014] and KCI-test by Zhang et al.
[2011]. The rejection rates are calculated out of 100 trials.
Each rejection rate is associated with a 95% Wald confi-
dence interval.



For a given dimension, we observe in Figure 3 that the Type
I error of RESIT is increasing with the number of samples.
As a simple kernel ridge regression cannot remove the de-
pendency of Z from X and Y , the nonlinear dependency
pattern in the residuals are more visible as sample size in-
creases. As expected, the proposed approach, KRESIT, has
correct Type I control together with LRESIT and the other
“strong” conditional independence tests.

To establish sensible comparison in the alternative model
(Figure 4), we only compare those methods with correct
Type I control. When Z is of dimension 1, KRESIT per-
forms similarly to KCI test where the probability of Type
II error (1-power) for both decreases to zero as the num-
ber of samples increases to 200, while the other tests give
weaker power. In dimension 7, KRESIT again gives strong
performance, outperforming other tests. Although LRE-
SIT also tests for weak conditional independence, as ex-
pected, it has a reduced power comparing to KRESIT in
both cases. While KCI test and KCIPT give similar power
performance, CIperm struggles to detect the conditional de-
pendence across all sample sizes.

Figure 3: Null model experiments for d = 1 (Top) and d = 7
(Bottom).

4.3 APPLICATION IN CAUSAL DISCOV-
ERY

Conditional independence tests are frequently used in
causal discovery to recover the dependence relationships
among a set of variables represented as a directed acyclic
graph (DAG). Assuming causal Markov condition (i.e.,
any variable/node is conditionally independent of its non-
descendents given its parents [Hausman and Woodward,
1999]) and faithfulness (i.e., the conditional independences
of the distribution can be inferred from the d-separation in
the graph and vice-versa [Kalisch and Buhlmann, 2007]),

Figure 4: Alternative model experiments for d = 1 (Top) and
d = 7 (Bottom).

the popular constraint-based PC-algorithm [Spirtes et al.,
2000] is often used to estimate a Markov equivalence class
of DAGs (i.e. a set of graphs that impose the same inde-
pendences and conditional independences). The estima-
tion starts from a complete undirected graph and recur-
sively deletes edges based on conditional independence de-
cisions. The result is an undirected graph (skeleton) which
is then partially directed and further extended to repre-
sent the underlying equivalence class of DAG [Kalisch and
Buhlmann, 2007]. The quality of the conditional indepen-
dence tests are hence crucial for the performance of the PC
algorithm.

The PC algorithm used in this section is a modified version
of the pcalg implementation in python4 with conditional in-
dependence test using KRESIT/RESIT and independence
test using HSIC with Gaussian kernel using median heuris-
tic. Completed partially acyclic graph (CPDAG) are used
to visualise the equivalence classes of DAGs. Whenever an
undirected edge i − j is shown, there exists a DAG with
i→ j and a DAG with i← j in the equivalence class.

4.3.1 Synthetic Data

Consider variables of the null model from Section 4.2 and
additionally let Ai = (Yi − 5)2/3 + 5 + nAi and Bi =

5.5 tanh(Yi) + nBi where nAi , n
B
i
i.i.d.∼ N (0, 1).

We compare the results obtained from the PC algorithm
with the variables {X,Y, Z,Cx, Cy, A,B} using KRESIT
and RESIT. Using a sample of size 800, we obtain Figure 5
(Left). Both KRESIT and RESIT recover the correct struc-
ture of the model.

We now turn to investigating the robustness of the method
4https://github.com/keiichishima/pcalg



upon removing the variables Cx and Cy . PC algorithm
with KRESIT is still able to discover the correct skeleton as
shown in Figure 5 (Right). An incorrect graph is obtained
with RESIT, reporting a spurious causal link X − Y . We
note that when the switching variables Cx, Cy are present,
all associations are functional, but this is no longer the case
when Cx, Cy are unobserved.

Cx

X

Z

Y

Cy

A

B

X

Z

Y A

B

Figure 5: Left: The DAG obtained by using KRESIT (black)
fully recovers the causal structure, but the one using RESIT
(green) does not. Right: The DAG obtained by PC algorithm us-
ing KRESIT and RESIT with Cx and Cy being latent variables.

4.3.2 Boston Housing Data

We consider the corrected Boston Housing dataset of Pace
and Gilley [1997] and pre-whiten each variable using the
spatial coordinates with a GP regression as in Flaxman
et al. [2015] since there is significant spatial clustering in
every single variable in the dataset. There are 14 variables
in total and each with 506 observations. For a detailed ex-
planation of each variable, we refer to the original paper
[Harrison and Rubinfeld, 1978]. To correct for multiple
testing, we set the significance level to α = 0.001.
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Figure 6: Results of PC algorithm with KRESIT (black) and
RESIT [Flaxman et al., 2015] (orange) using pre-whitened Boston
Housing dataset.

Overall, the CPDAG obtained by our proposed method is
substantially different from previous results in the litera-

ture [Zhang et al., 2011, Flaxman et al., 2015]. We ar-
gue that many potentially unobserved variables could be
driving such differences. The details and some possible
interpretations are given in the Appendix: Boston Hous-
ing Data. Therefore, the links discovered using RESIT and
KRESIT within PC algorithm may need further investiga-
tion and one should analyse the results with potential hid-
den variables in mind and be cautious about any conclusion
drawn due to potential violation of structural assumptions.

5 CONCLUSION

We proposed a weak conditional independence test that ex-
tends the popular two-step approach RESIT, which com-
bines regression with an unconditional independence test.
We consider RKHS-valued ridge regressions and subse-
quently use a test for linear independence on RKHS-valued
residuals. While maintaining simple and effective testing
procedures of RESIT, the resulting test has a correct Type
I control under more challenging scenarios where the mod-
elling assumptions required by RESIT are violated. It also
yields competitive or improved power performance to that
of the other conditional independence tests. When used
in the PC algorithm, the proposed method is more robust
than RESIT to hidden variables inducing associations more
complex than functional ones with additive noise.
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