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Abstract

Despite their popularity, many questions about
the algebraic constraints imposed by linear
structural equation models remain open prob-
lems. For causal discovery, two of these prob-
lems are especially important: the enumeration
of the constraints imposed by a model, and de-
ciding whether two graphs define the same sta-
tistical model. We show how the half-trek cri-
terion can be used to make progress in both
of these problems. We apply our theoretical
results to a small-scale model selection prob-
lem, and find that taking the additional alge-
braic constraints into account may lead to sig-
nificant improvements in model selection ac-
curacy.

1 INTRODUCTION

In a linear structural equation model (SEM), each vari-
able of interest is a linear function of the other vari-
ables and a noise term, with possibly correlated noise
terms. Linear SEMs are popular in many fields of sci-
ence, in no small part due to their causal interpretability
(Spirtes et al., 2000; Pearl, 2000). However, many ques-
tions about these models remain unanswered. For exam-
ple, it is known that many of these models impose equal-
ity constraints on the observational distribution which do
not correspond to (conditional) independences (Richard-
son and Spirtes, 2002). One example of these is the
Verma constraint (Robins, 1986; Verma and Pearl, 1991).
But no general method exists which enumerates all con-
straints that hold in a model given its graphical represen-
tation. Figure 1 shows another example of a graph that
imposes an equality constraint in the linear case; for this
type of constraint, no systematic approach exists yet.

Relatedly, given graphical representations of two mod-
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Figure 1: A mixed graph imposing the non-independence
constraint (3) on the observational distribution.

els, it is often unclear whether the models can be distin-
guished based on observational data alone. Both of these
problems are great impediments to the development of
methods that learn the structure of a linear SEM from ob-
servational data: constraint-based methods (e.g. PC and
FCI (Spirtes et al., 2000)) cannot test for constraints that
are not yet well understood and may thus miss signals in
the data, while score-based methods (e.g. (Chickering,
2002; Silva and Ghahramani, 2006)) would currently re-
quire the scoring of many models that then turn out to be
indistinguishable.

The theoretical results of this paper achieve progress in
addressing both problems mentioned above. For exam-
ple, we provide an efficient method to find the constraint
imposed by the graph in Figure 1, as well as similar con-
straints for many other graphs. Our results apply to mod-
els with latent confounders (represented by bidirected
edges), including confounders between nodes that are
also related by a direct causal effect (a structure known
as a bow), and even to models with directed cycles. We
show how these results enable practical improvements on
model selection problems.

Suppose we see that our observational data obeys a non-
independence equality constraint, such as the one im-
posed by the graph in Figure 1, and no other constraints.
Then we can often draw very specific conclusions about
the graph structure. Without knowledge of these con-
straints, automated methods for causal discovery would
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Figure 2: Two graphs whose statistical models are al-
most, but not entirely identical: (a) the instrumental vari-
able model; (b) a saturated model.

likely select a saturated model (one imposing no con-
straints). This tells us very little about the graph struc-
ture, so e.g. it does not allow us to predict the results
of interventions. Constraint-based methods generally
use only (conditional) independence constraints, so they
would not be able to draw any conclusions in the situa-
tion described here. For purposes of model selection, we
are thus interested in a notion of model equivalence that
is more fine-grained than Markov equivalence (which
only takes conditional independence constraints into ac-
count), yet not so fine-grained as to be impractical

The equivalence concept we propose in this paper is
algebraic equivalence: Two linear structural equation
models are algebraically equivalent if they impose the
same algebraic (i.e. equality) constraints on the observa-
tional distribution.1 These constraints take the form of
polynomial equations over covariances σvw of the ob-
served variables. Because the graph in Figure 1 imposes
such a constraint, it is not algebraically equivalent to
the saturated model on four nodes, so a model selection
method based on algebraic equivalence is able to distin-
guish the two, while a method based on Markov equiva-
lence is not.

For an example of models not distinguished by algebraic
equivalence, consider the mixed graph in Figure 2(a), of-
ten called the instrumental variable model. This model
contains all multivariate Gaussian distributions on the
three variables with σab 6= 0, but excludes some with
σab = 0. Because it imposes no equality constraints,
it is algebraically equivalent to the saturated model on
three nodes, represented for example by the graph in Fig-
ure 2(b). The difference between the two models is a
measure zero subset of their union, so that in a model
selection problem, it would rarely be possible to distin-
guish between these models based on observational data
alone. Thus it is appropriate that our proposed equiva-
lence concept treats these models as equivalent.

By considering only equality constraints, we are also
treating models as equivalent if they differ only by in-
equality constraints (of the form f(Σ) ≥ 0). It is known
that linear Gaussian models with latent variables may im-
pose inequality constraints. For example, consider the

1Using terminology from algebraic geometry, the statistical
models have the same Zariski closure (Cox et al., 2015).
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Figure 3: The types of constraints imposed by linear
structural equation models.

graph with three observed variables and a latent con-
founder between every pair of observed variables. The
corresponding mixed graph has three nodes and a bidi-
rected edge between each pair of nodes. This corre-
sponds to the saturated model. However, if we consider
the entire graph on 6 nodes and then marginalize out the
latent variables, the resulting set of distributions obeys a
nontrivial inequality constraint (Richardson and Spirtes,
2002). By using mixed graphs instead of including latent
variables in our models explicitly, we are already simpli-
fying away such inequality constraints. However, as we
will show in Section 3.3, using mixed graphs does not get
rid of all inequality constraints. We found that for models
imposing an inequality constraint, maximum likelihood
estimation can be challenging, so score-based methods
for causal discovery would benefit significantly from be-
ing able to ignore these models. Algebraic equivalence
provides a way to do this, as many models that impose
an inequality constraint are algebraically equivalent to a
model that imposes no such constraints.2

1.1 RELATIONS TO OTHER TYPES OF
CONSTRAINTS

When defining linear structural equation models statisti-
cally, often the noise terms are chosen to be Gaussian.
For Gaussian variables, independence is equivalent to
having zero covariance (and in turn to having zero cor-
relation), and conditional independence is equivalent to
zero partial correlation. Because we do not want to as-
sume that the data are generated by a Gaussian distribu-
tion, we need to distinguish between conditional inde-
pendence and vanishing partial correlation. The equality
constraints we consider express vanishing partial correla-
tions, not conditional independences, so we will use that
terminology from now on.

A partial correlation ρvw.S is zero precisely when a cer-
tain submatrix of the observed covariance matrix has

2In a model selection task, we can of course still check for
inequality constraints, but we propose to do this after selecting
the algebraic equivalence class.



zero determinant. Sullivant et al. (2010) give a graphical
characterization for the more general type of constraint
where an arbitrary square submatrix has zero determi-
nant; this also includes the vanishing tetrad constraints
(Spirtes et al., 2000). Together these are called vanishing
determinant constraints (see Figure 3).

The questions of constraint enumeration and model
equivalence that we study here for the linear case, are
studied for the general nonparametric case by Tian and
Pearl (2002) and Shpitser et al. (2014). Tian’s algorithm
gives a sound enumeration of constraints in the general
case, and Evans (2015) shows it to be complete in the
discrete case. If other parametric assumptions are made,
there may be additional constraints. Indeed this happens
in the linear Gaussian case: Tian’s algorithm returns no
constraints for the graph in Figure 1, even though one
exists.

Lists of algebraic constraints can also be obtained us-
ing algorithms from computer algebra, but these are in
general impractically slow, sometimes taking many days
even for very small graphs (Garcı́a-Puente et al., 2010).
The methods we propose are based on the graphical cri-
teria proposed by Foygel et al. (2012), which can be
checked in polynomial time.

The rest of this paper is structured as follows. Sec-
tion 2 discusses preliminaries about linear SEMs, the
half-trek criterion, algebraic geometry, and our notation
for sets of graphs. Our main theoretical contributions
are in Section 3, addressing the enumeration of alge-
braic constraints in Section 3.1, and a sufficient graph-
ical criterion for algebraic equivalence in Section 3.2;
further, Section 3.3 gives an example of how inequal-
ity constraints may arise in linear SEMs. Experimental
results demonstrating the practical usefulness of our re-
sults are presented in Section 4. Section 5 concludes the
paper. All proofs are in the supplementary material in
Appendix A, and a complete description of all algebraic
equivalence classes on four nodes (acyclic) can be found
in Appendix B.

2 PRELIMINARIES

We follow Foygel et al. (2012) for most of the notation
defined in this section.

A mixed graph G = (V,D,B) consists of a set of nodes
V , a set of directed edges D which are ordered pairs of
distinct nodes, and a set of bidirected edges B which
are unordered pairs of nodes. In this article, the word
‘graph’ without qualification refers to mixed graphs. A
node x ∈ V with (x, v) ∈ D is called a parent of v,
and the set of parents is denoted by pa(v); similarly, a
node x with {x, v} ∈ B is called a sibling of v and

the set is denoted sib(v). G is called acyclic if it con-
tains no directed cycle (such a G is also called acyclic
directed mixed graph (ADMG)). If G is acyclic and con-
tains no bidirected edges, it is called a directed acyclic
graph (DAG).

Together with parameter vector λ0 and parameter ma-
trices Λ and Ω, the graph G describes a distribution on
observed variables X via

Xv = λ0v +
∑

w∈pa(v)

λwvXw + εv for v ∈ V ,

where the noise terms have covariances Cov(εv, εw) =
ωvw. The parameter space is defined as follows. Let
n = |V |. RD is the set of all n × n matrices Λ with
Λvw 6= 0 only if (v, w) ∈ D, and RD

reg is the subset of RD

for which I−Λ is invertible (for acyclic G, RD = RD
reg).

PDn is the set of all positive definite n×n matrices, and
PD(B) is the subset consisting of all Ω with Ωvw 6= 0
only if v = w or {v, w} ∈ B. The parameterization
map φG maps parameters (Λ,Ω) ∈ RD

reg × PD(B) to
covariance matrices Σ ∈ PDn on the observed variables
X as follows:

φG(Λ,Ω) = (I − Λ)−T Ω(I − Λ)−1.

The model defined by a graph G then consists of all co-
variance matrices Σ that can be obtained for some setting
of the parameters:

M(G) := {φG(Λ,Ω) | (Λ,Ω) ∈ RD
reg × PD(B)}. (1)

Note that the mean of X can be set arbitrarily by choos-
ing appropriate values for the parameter vector λ0 ∈ Rn,
regardless of the structure of G. Thus these aspects of
the model carry no information for model selection, and
we will ignore them here.

2.1 THE HALF-TREK CRITERION

A central question about a mixed graph G is that of (pa-
rameter) identifiability: can the parameters (Λ,Ω) be
uniquely recovered from Σ? A graph is called gener-
ically identifiable (or almost-everywhere identifiable) if
this is true of φG(Λ,Ω) for all but a measure zero sub-
set of RD

reg × PD(B). Similarly, G is called generically
finite-to-one if for almost all (Λ,Ω), the number of pa-
rameter values mapped by φG to the same Σ is finite,
and generically infinite-to-one if this number is infinite
for almost all parameter values. We will sometimes omit
the qualifier ‘generically’ when talking about (in)finite-
to-one models.

Foygel et al. (2012) present two graphical criteria to de-
cide in which of the above categories a graph G be-
longs. A graph is called HTC-identifiable if it meets



the condition for being generically identifiable; HTC-
nonidentifiable if it meets the condition for being gener-
ically infinite-to-one; and HTC-inconclusive otherwise.
Because neither criterion is necessary, the class of HTC-
inconclusive graphs contains generically identifiable,
finite-to-one, and infinite-to-one graphs. While the cri-
teria are not complete, they are quite powerful. For ex-
ample, all bow-free acyclic graphs are HTC-identifiable
(thus implying the earlier identification result of Brito
and Pearl (2002)), and so are many graphs containing
bows or directed cycles.

The proof of HTC-identifiability in (Foygel et al., 2012)
is constructive: it gives an algorithm that, given Σ ∈
M(G), computes parameters such that Σ = φG(Λ,Ω)
(except for a measure zero subset). To apply our Theo-
rem 1 below, some details of HTC-identifiability and this
algorithm are needed; for the rest, we refer to (Foygel
et al., 2012, proof of Theorem 1). A half-trek from v
to w is either a directed path, or a path consisting of
one bidirected edge followed by directed edges towards
w. We write htr(v) (half-trek reachable) for the set of
nodes that are reachable from v by half-treks.3 HTC-
identifiability of a graph G requires that for each node
v ∈ V , a set Yv ⊆ V \ ({v} ∪ sib(v)) exists, con-
sisting of nodes y with v ∈ htr(y), and the set as a
whole satisfying |Yv| = |pa(v)|. There are some addi-
tional restrictions which we omit here, except to point
out that for all v, w ∈ V , at most one of v ∈ Yw
and w ∈ Yv can hold. As an example, the instrumen-
tal variable model (Figure 2(a)) is HTC-identifiable with
Ya = ∅ and Yb = Yc = {a}.

Using these sets Yv , the algorithm for finding Λ solves
a sequence of linear systems, one for each v ∈ V : Let
Yv = {y1, . . . , yn} and pa(v) = {p1, . . . , pn}, and de-
fine A ∈ Rn×n and b ∈ Rn as

Aij =

{
[(I − Λ)T Σ]yipj

if yi ∈ htr(v),
Σyipj

if yi /∈ htr(v);

bi =

{
[(I − Λ)T Σ]yiv if yi ∈ htr(v),
Σyiv if yi /∈ htr(v).

Then the vector Λpa(v),v is found by solving A ·
Λpa(v),v = b. After the entire matrix Λ has been found
this way, Ω is given by (I − Λ)T Σ(I − Λ).

2.2 SOME TERMINOLOGY FROM
ALGEBRAIC GEOMETRY

This section very briefly highlights the main terms from
algebraic geometry; we refer to Cox et al. (2015) for fur-
ther reading.

3Here we follow the (more natural) definition of Chen et al.
(2014) rather than that of Foygel et al. (2012).

directed edge
bidirected edge
bow: directed and bidirected edge
any one of the above

Figure 4: Legend for the edges we use to denote (sets of)
graphs.

Algebraic geometry studies sets of points defined by sys-
tems of polynomial equations. For points in Rn, such a
set is called an affine variety. The set of polynomials
that are identically zero on some set of points form an
ideal. The Zariski closure of a set of points is obtained
by first finding the ideal of the set, then taking all points
for which the polynomials in the ideal all vanish.

2.3 NOTATION FOR SETS OF GRAPHS

The notation described here will be used in the remain-
ing figures in this paper, and extensively in Appendix B
in the supplementary material. When drawing a mixed
graph, we draw directed edges in solid blue and bidi-
rected edges in dashed red (see Figure 4; note that the
colours are redundant but may aid visual distinction).
Because we often want to show a set of graphs with a
common node set V (e.g., an algebraic equivalence class
of graphs), we use some new notation to avoid listing
all graphs one by one. This notation is based on the
skeletons of the graphs. Formally, the skeleton S(G) of
G = (V,D,B) is the undirected graph on V that has an
edge between a pair of nodes if there is at least one edge
of any type between them in G. Similarly, our graph
patterns also have at most one edge between each pair
of nodes, with different markings to show what (combi-
nations of) edges may occur between those nodes. For
example, in this notation, a bow (a directed and a bidi-
rected edge between two nodes) is represented visually
as a double magenta line with ‘fletching’ at the back.

In a pattern representing a set of graphs, other edges oc-
cur in places where the graphs differ. The only such edge
that appears in the patterns in the main paper is a green
arrow with a plus sign as its tail. In all of these patterns,
it can be understood to mean either a directed edge, a
bidirected edge, or both. Its meaning changes if another
edge is incident at the endpoint with the plus sign; for
this case, additional markings are used and defined in
Appendix B.

3 THEORETICAL RESULTS

We now present our main theoretical results.



3.1 ALGEBRAIC CONSTRAINTS

The statistical modelM(G) for a graph G is defined by
(1) in terms of the parameterization φG. This makes it
hard to decide whether a given Σ belongs to a model, or
whether two models differ. For these purposes, a more
usable description of M(G) would be as a set of con-
straints that must hold for any Σ ∈M(G): a set of func-
tions f1, . . . , fk : Σ→ R such that

M(G) ⊆ {Σ ∈ PD|V | | f1(Σ) = . . . = fk(Σ) = 0},

with the set difference a measure zero subset of the right-
hand set.4 For a DAG G, this can be done by choosing
each fi to be a partial correlation: fi(Σ) = ρviwi.Si(Σ)
(Richardson and Spirtes, 2002). Put differently, van-
ishing partial correlation constraints fully describe such
models.

In the more general case where G is allowed to contain
bidirected edges and directed cycles, vanishing partial
correlation constraints are not always expressive enough
to describe M(G) (as we saw in the example of Fig-
ure 1). Below we present a method that allows us to write
down a list of equality constraints that together describe
M(G), for any HTC-identifiable graph G (Foygel et al.,
2012).

Any modelM(G) is a semi-algebraic subset of PD|V |:
it can be described by a set of polynomial (in)equalities
(Sullivant et al., 2010). Thus we may use the terms
‘equality constraint’ and ‘algebraic (i.e. polynomial)
constraint’ interchangeably, and similarly for ‘inequal-
ity’ and ‘semi-algebraic’.

The question of finding constraints that describeM(G)
is related to the question of parameter identifiability.
Identifiability of a graph G means that for given Σ, at
most one pair of parameter values (Λ,Ω) exists for which
φG(Λ,Ω) = Σ (in other words, the fibre φ−1

G (Σ) has car-
dinality at most one). We ask for what Σ (up to measure
zero subsets as above) exactly one such pair exists. The
main tool used here is the algorithm for retrieving the
parameters of an HTC-identifiable graph that appears in
the proof of Theorem 1 of Foygel et al. (2012), and that
we sketched in Section 2.1. For given G and Y = (Yv)v
(which we will call HTC-identifying sets) satisfying the
conditions of the HTC-identifiability theorem, this algo-
rithm defines a rational function that maps Σ to Λ by
solving a sequence of linear equation systems. We write
this function as ΛY(Σ).5 Points Σ for which the algo-
rithm encounters a singular matrix are excluded from the
domain of ΛY .

4Put more precisely, the difference is contained in an affine
variety of lower dimension.

5Note that this function does not depend on the ordering ≺
that also appears in the HTC-identifiability theorem.

Theorem 1 below shows that a graph G imposes the fol-
lowing constraints:

[(I − ΛY(Σ))T Σ(I − ΛY(Σ))]vw = 0

for all {v, w} /∈ B with v /∈ Yw and w /∈ Yv . (2)

Each left-hand side in these equations is a rational func-
tion of Σ: a function of the form p(Σ)/q(Σ), with p and q
polynomials. Instead of these rational constraints, it will
often be useful to consider the polynomial constraints
p(Σ) = 0 obtained by multiplying out the denomina-
tor. For Σ with q(Σ) 6= 0, p(Σ) = 0 iff p(Σ)/q(Σ) = 0,
so the two forms of the constraints agree whenever both
are defined (see the proof of Theorem 1 for details). The
polynomial constraints have the advantage that they are
defined everywhere.

As an example, consider again the graph in Figure 1. For
Y with Yb = {a}, Yd = {c} and Ya = Yc = ∅, (2) gives
us one rational constraint (for v = b, w = d):[

1 −ΛY(Σ)ab
] [σbd σbb
σad σab

] [
1

−ΛY(Σ)bd

]
= 0,

where ΛY(Σ)ab = σab/σaa and ΛY(Σ)bd = σcd/σbc.
Multiplying out the denominators, we obtain the polyno-
mial constraint

σaaσbdσbc−σaaσbbσcd−σabσadσbc+σ2
abσcd = 0. (3)

Theorem 1. For an HTC-identifiable graph G with
HTC-identifying sets Y = (Yv)v and generic Σ, Σ ∈
M(G) iff ΛY(Σ) ∈ RD

reg and Σ satisfies the rational con-
straints (2). A stronger statement holds in one direction:
All (not merely generic) Σ ∈ M(G) satisfy the polyno-
mial constraints described above.

This means that the constraints (2) define the model
M(G) up to a measure zero set that may satisfy all con-
straints, but still be missing from M(G). In particular,
it shows that the model of an HTC-identifiable graph
imposes no semi-algebraic (i.e. inequality) constraints.
This is not true for general graphs, as we will see in Sec-
tion 3.3.

The HT-overidentifying constraints from Chen et al.
(2014) are also based on (a version of) the half-trek cri-
terion, but unlike (2), they do not give a full description
of the algebraic constraints imposed by a graph G: no
constraint is found for pairs {v, w} with v 6∈ htr(w) and
w 6∈ htr(v). An example is given in Appendix A.

There may often be several ways of expressing Λ in terms
of Σ, using different HTC-identifying sets Y . As a result,
the rational constraints may look very different, though
they may become the same when converted to polyno-
mial form. For example, a different choice of Y for the



graph in Figure 1 would have led to a different ratio-
nal expression than we found above. Similarly, sets of
constraints may be found which are different when com-
pared one by one, even in polynomial form, but which
together still define the same model (in the terminology
of algebraic geometry, they generate the same ideal). For
example, if σab = 0, then σac = 0 iff ρac.b = 0, so that
a model satisfying all these constraints can be described
in two ways using two constraints, or redundantly using
all three constraints. So while the set of constraints (2)
is not unique, Theorem 1 shows that they are a complete
description of M(G): the model imposes no algebraic
constraints beyond these.

Theorem 1 only applies to HTC-identifiable graphs. This
immediately excludes graphs which are not generically
identifiable; we will revisit those in Sections 3.2 and 3.3.
However, it also excludes graphs that are generically
identifiable but not HTC-identifiable. For the case of
acyclic graphs on four variables, HTC-identifiability is
complete (in the sense that all generically identifiable
graphs are also HTC-identifiable), but this is no longer
true when either more nodes or cycles are allowed. Find-
ing more general sufficient graphical criteria for generic
identifiability is the topic of ongoing research (Chen
et al., 2014; Chen, 2016; Drton and Weihs, 2016; Chen
et al., 2017). Because these criteria are extensions of
HTC-identifiability, our Theorem 1 might be extended
to work with these criteria as well.

3.2 ALGEBRAIC EQUIVALENCE AND
INFINITE-TO-ONE GRAPHS

We now turn to the second central problem we address in
this paper, namely checking whether two graphs G1 and
G2 are algebraically equivalent. Theorem 1 from the pre-
vious section in principle allows us to do this: we need to
check that each equality constraint imposed by G1 is im-
plied by G2’s equality constraints, and vice versa. How-
ever, the general solution for such tasks from algebraic
geometry (computing Gröbner bases (Cox et al., 2015))
is computationally extremely expensive. The theorem
below gives a sufficient condition for algebraic equiv-
alence that relies only on graphical criteria that can be
checked efficiently.

Another limitation of Theorem 1 is that it only applies
to HTC-identifiable graphs, so it does not help us in
finding equivalences involving graphs that are not HTC-
identifiable. This issue is also addressed by the following
theorem.

Theorem 2. IfG is generically infinite-to-one,G′ gener-
ically finite-to-one and obtained by deleting k edges from
G, and this k is the smallest number for which such a G′

exists, then G and G′ are algebraically equivalent. If

further G′ imposes no inequality constraint,M(G) and
M(G′) are equal up to a measure zero subset.

A relation between forms of model equivalence and lack
of parameter identifiability has been shown previously by
Bekker et al. (1994). The following two corollaries serve
to illustrate the power of this theorem.

Corollary 3. All infinite-to-one graphs are algebraically
equivalent to some finite-to-one graph.

This implies that it is not a limitation that Theorem 1
does not apply to infinite-to-one graphs: for any such
graph, these always exists a finite-to-one graph that we
can consider instead. In particular, if this finite-to-one
graph is HTC-identifiable, then this gives us a complete
description of the infinite-to-one graph as a set of equal-
ity constraints.

Corollary 4. If two generically finite-to-one graphs
G′1, G

′
2 are each obtained by deleting an edge from a

single generically infinite-to-one graph G, then G′1 and
G′2 are algebraically equivalent to each other (and their
models are equal up to a measure zero subset if they im-
pose no inequality constraints).

Combined with graphical criteria for generic (in)finite-
to-oneness, this gives a sufficient graphical condition for
model equivalence. As an example, take G′1 and G′2 to
be the two graphs in Figure 2, and G to be their union
(thus having three nodes and four edges). G′1 and G′2 are
generically finite-to-one, while G is generically infinite-
to-one (it is HTC-nonidentifiable). Then Corollary 4
states that G′1 and G′2 are algebraically equivalent. In
fact, both graphs are HTC-identifiable, so they impose
no inequality constraints, and their models are thus equal
up to measure zero subsets.

By repeatedly applying Corollary 4, equivalence of many
more pairs of models may be established. This is illus-
trated by the following proposition (which is similar to
(Nowzohour et al., 2017, Theorem 2), though there the
stronger relation of distributional equivalence is shown).

Proposition 5. If two bow-free acyclic graphs have the
same skeleton, and any 2-edge path through three dis-
tinct nodes that is a collider in one graph is a collider in
both, the graphs are algebraically equivalent.

3.2.1 Algebraic Equivalence Classes on Four Nodes

Using Theorems 1 and 2 and information on the identifi-
ability of the acyclic graphs on four nodes, we can deter-
mine the algebraic equivalence classes of these graphs.
An explicit description of these classes is given in Ap-
pendix B. Here we describe some details of how these
results were derived.



Using HTC-identifiability and HTC-nonidentifiability,
almost all acyclic graphs on four nodes can be classified
as either generically identifiable or generically infinite-
to-one. With the additional information from (Foygel
et al., 2012) that the remaining graphs are generically
finite-to-one (see Section 3.3), we can apply Theorem 2
to all these graphs. Together with transitivity, this parti-
tions the set of graphs into 419 subsets, which we will
call clusters here. Because the theorem only gives a suf-
ficient condition for algebraic equivalence, this partition
may be finer than the partition into algebraic equivalence
classes. We still need to check if algebraic equivalences
exist between different clusters.

Among clusters imposing two or more equality con-
straints, all but three (up to graph isomorphism) can be
described by vanishing (partial) correlation constraints.
Because graphs in different Markov equivalence classes
must also be in different algebraic equivalence classes,
we only need to focus on these remaining three clusters.
One of these imposes the Verma constraint (Verma and
Pearl, 1991); the other two both impose the constraints
σcd = 0 and σacσbd − σadσbc = 0 (a vanishing tetrad
constraint). These two latter clusters are shown in Fig-
ure 5(a) and (b). So those two clusters are algebraically
equivalent, while no other algebraic equivalences among
these graphs were missed by Theorem 2.

For graphs imposing only one equality constraint, it is
much easier to check if two graphs impose the same
equality constraint, as we do not need to worry about the
possibility of two equality constraints implying a third
(see Section 3.1). In algebraic terminology, these models
are described by principal ideals; for these, equality can
be checked by normalizing the generating polynomials
so that their leading coefficients equal one (Cox et al.,
2015). This way, we find that among graphs imposing
one equality constraint, the three clusters (up to isomor-
phism) shown in Figure 5(c), (d) and (e) are actually al-
gebraically equivalent to each other, while all others are
different. This leaves a total of 389 algebraic equivalence
classes.

Interestingly, the graphs imposing a vanishing tetrad con-
straint and no other equality constraints were all deter-
mined to be algebraically equivalent by Theorem 2.

3.2.2 Consequences for Model Selection

The theoretical results we presented above offer enor-
mous benefits to model selection, in particular to score-
based methods. Without any knowledge of model equiv-
alence, a score-based method for model selection may in
principle need to score all different graphs. Even for the
limited case of acyclic graphs on four nodes, there are
34752 distinct graphs, making such an approach clearly
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Figure 5: The algebraic equivalences not detected by
Theorem 2: clusters (a) and (b) are algebraically equiv-
alent to each other, and the same is true for clusters (c),
(d) and (e).

not practical. For this reason, most score-based meth-
ods for model selection rely on a coarser concept of
equivalence such as Markov equivalence, or even limit
themselves to DAGs, ignoring the possibility of latent
confounders entirely (Drton and Maathuis, 2017). As
demonstrated in Section 3.2.1, our theoretical results
can be used to determine the 389 algebraic equivalence
classes. Scoring just one representative of each class
leads to huge computational savings, making algebraic
equivalence class selection feasible. As will be elabo-
rated on in Section 4, the gains become even larger when
these representatives are chosen cleverly: for example,
the maximum likelihood parameters of a DAG are gener-
ally much easier to compute than those of a graph which
also includes bidirected edges, so by picking a DAG from
each class that contains one, we can avoid many rela-
tively expensive score computations on more complex
graphs.

When we are looking for maximum likelihood parame-
ters for an HTC-identifiable graph G but our maximum
likelihood fitting procedure has difficulty converging, it
may be beneficial to apply the procedure to an ‘easier’
algebraically equivalent graph G′ instead. After max-
imum likelihood parameters (Λ′,Ω′) have been found,
we can compute Σ = φG′(Λ′,Ω′), the point in M(G′)
where the likelihood is maximized; this will be the same
point for all algebraically equivalent models (up to the
nongeneric case where Σ /∈ M(G)—though then points
arbitrarily close to Σ will be included in M(G)). For
this Σ, we can compute parameters (Λ,Ω) for which
φG(Λ,Ω) = Σ using the algorithm in the proof of Theo-
rem 1 of Foygel et al. (2012).

Because Theorem 2 only provides a sufficient condition
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Figure 6: Four acyclic finite-to-one graphs.

for algebraic equivalence, an automatic procedure for
model selection based on this theorem may sometimes
fail to recognize that two classes of graphs are equiva-
lent, and consider both separately (unless the results of
Theorem 1 are also considered by the algorithm, simi-
lar to how we used them above). While this means that
some redundant computational work is done, it does not
hurt the quality of model selection, and the gains in com-
putation time are still enormous compared to testing all
models individually: 34752 acyclic mixed graphs on four
nodes are grouped into 419 clusters by Theorem 2, which
is very close to the 389 algebraic equivalence classes we
would find by also looking at the constraints.

3.3 FINITE-TO-ONE GRAPHS AND
INEQUALITY CONSTRAINTS

Among the acyclic graphs on four nodes, four (up
to graph isomorphism) are HTC-inconclusive. These
graphs are shown in Figure 6. By (Foygel et al., 2012,
Table 1), these graphs are generically finite-to-one but
not identifiable. We used this in Section 3.2.1 to assign
them to algebraic equivalence classes, and found that all
are algebraically equivalent to the saturated model.

Because these graphs are not generically identifiable,
Theorem 1 does not apply to them, so we cannot rule out
the possibility that they impose inequality constraints.
Indeed, the proposition below shows that one of the
graphs imposes such a constraint, so that its model dif-
fers from the saturated model by a subset of nonzero
measure. We believe the other graphs listed here impose
similar constraints, and expect that the same is true for
many other graphs that are generically finite-to-one but
not generically identifiable.

Proposition 6. The model of the graph in Figure 6(a)
imposes the inequality constraint ρbc.a ·ρcd.a ·ρbd.a ≤ 0.

4 EXPERIMENTAL RESULTS

In Section 4.2, we will describe the results of a model se-
lection experiment using algebraic equivalence classes,
choosing the class with the best BIC score from among
those found in Section 3.2.1. We define the BIC score of
an equivalence class as the best score among its models;
this can be determined by computing the maximum like-
lihood of just one member model. RICF (Drton et al.,
2009) was used to find maximum likelihood parameters.
We will first describe some empirical results about its
convergence behaviour.

4.1 CONVERGENCE BEHAVIOUR OF RICF

As already mentioned in Section 3.2.2, knowing the alge-
braic equivalence classes is very useful in a model selec-
tion problem. Here we elaborate on this, based on Monte
Carlo results.

RICF finds maximum likelihood parameters in its first it-
eration if the graph is a DAG (Drton et al., 2009). For all
algebraic equivalence classes not containing a DAG (so
all graphs in the class contain a bidirected edge), we saw
evidence of local optima: when RICF was run with the
same random data on different graphs in the same class,
or with different initialization values, there would be dif-
ferent runs that all reported convergence but achieved
different likelihoods. This could be addressed by random
restarts. However, Drton and Richardson (2004) observe
that for one of these graphs, local optima only present
themselves when the model is misspecified. If the same
is true for all graphs with bidirected edges, then it would
follow that local minima will not change the results of
model selection, as they only affect the scores of models
that would not have scored well anyway. Either way, it
is clearly advantageous to run RICF on a DAG, for every
algebraic equivalence class that contains one.

For equivalence classes where all graphs contain a bow,
RICF failed to converge relatively often (in fact, Drton
et al. (2009) only discuss bow-free graphs). These equiv-
alence classes contain graphs having different skeletons;
as an example, the nine graphs represented by the pat-
tern in Figure 5(a) have a different skeleton than those in
Figure 5(b), but all are algebraically equivalent to each
other. We found that for many data sets, RICF failed to
converge on all graphs in such a class having one skele-
ton, even with random restarts, but did converge easily on
graphs with a different skeleton. Knowing the algebraic
equivalence classes is a great benefit here, as it would be
very difficult to determine scores for all graphs in this sit-
uation otherwise. When scoring a model, if we find that
RICF fails to converge on a graph of this type (e.g., one
from Figure 5(a)), then we run RICF again on an alge-



a b

c

d

(a)

a b

c

d

(b)

Figure 7: (a) A Y-structure; (b) an extended Y-structure.

braically equivalent graph with a different skeleton (one
from Figure 5b).

4.2 USING ALGEBRAIC EQUIVALENCE
CLASS SELECTION TO DETECT
Y-STRUCTURES

To demonstrate the practical usefulness of algebraic
equivalence class selection, we consider the setup of
Mooij and Cremers (2015).6 In a simulated dataset with
p ∈ {10, 30, 50} variables (with acyclic ground truth),
they look at each ordered 4-tuple of distinct nodes, and
use several independence tests to detect whether or not
these nodes form a Y-structure or an extended Y-structure
(see Figure 7). These are two of the simplest Markov
equivalence classes (coinciding with algebraic equiva-
lence classes) that must contain a directed edge in a fixed
place that is not part of a bow, so detecting these struc-
tures in observational data allows us to draw conclusions
about the results of interventions.

Mooij and Cremers observed that detecting 4-tuples
which were in either of these two classes yielded
poor precision, especially for larger p. Precision im-
proved when additional tests were added so that only Y-
structures were detected.

We applied algebraic equivalence class selection to this
problem by taking the 4-tuples that tested positively ac-
cording to one of these sets of tests, and then filtering
out those for which the algebraic equivalence class with
the best BIC score was different from the class / pair
of classes being tested for. The resulting precisions are
shown in Figure 8. The gains of this filtering procedure
are significant when testing for both classes together: the
precision is close to 0.1 larger for all p. We also show the
results of filtering using only Maximal Ancestral Graphs
(MAGs) (Richardson and Spirtes, 2002), thus only com-
puting BIC scores of classes which can be described us-
ing vanishing partial correlations. This already yields a
large improvement, but the gains from considering all al-
gebraic equivalence classes instead are still significant,
especially for the larger p. On the other hand, for 4-tuples

6The code for reproducing these results is available online
at https://github.com/caus-am/aelsem.
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Figure 8: Precision of (extended) Y-structure detection.

that passed the more stringent Y-structure tests, the ben-
efit of filtering is much smaller. Importantly, these gains
in precision came at a very small cost in recall: of the
true positives detected by a set of independence tests, at
least 98% passed through the filter for each p.

5 CONCLUSION

We proposed the notion of algebraic equivalence for use
in model selection among linear structural equation mod-
els, and showed how graphical criteria can be used to ef-
ficiently establish the equivalence of many models. Our
experimental results show that the finer granularity of
the resulting equivalence classes sometimes allows for
improvements in model selection accuracy, compared
to methods that only consider vanishing partial correla-
tions.

While the experimental model selection results we show
are limited to four nodes, we believe that the theoretical
results described here can form the foundation of effi-
cient causal inference algorithms on (much) larger num-
bers of nodes. For this, more work will need to be put
into finding an efficient algorithm, for example by using
ideas from Chickering (2002).
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