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Abstract

We present the first framework for Gaussian-
process-modulated Poisson processes when
the temporal data appear in the form of panel
counts. Panel count data frequently arise when
experimental subjects are observed only at dis-
crete time points and only the numbers of oc-
currences of the events between subsequent
observation times are available. The exact
occurrence timestamps of the events are un-
known. The method of conducting the efficient
variational inference is presented, based on the
assumption of a Gaussian-process-modulated
intensity function. We derive a tractable lower
bound to alleviate the problems of the in-
tractable evidence lower bound inherent in the
variational inference framework. Our algo-
rithm outperforms classical methods on both
synthetic and three real panel count sets.

1 INTRODUCTION

Background and issues. Temporal data frequently
arise as outcomes of an underlying temporal point pro-
cess (Kingman,|1993) in continuous time. Temporal data
can generally be classified into two types. One is from
experiments that monitor subjects in a continuous fash-
ion; and thereby the exact timestamps of all occurrences
of the events are fully observable. These data are usually
referred to as recurrent event data (Cook and Lawless|
2007). On the other hand, we have the so-called panel
count data (Sun and Zhao, [2016)), which is the focus of
our paper. Under this framework, subjects are examined
or observed only at discrete time-points and thus give
only the numbers of occurrences of the events between
subsequent observation times.

Characteristics of panel count data. A common
characteristic of the panel count data is that we only have
the numbers of occurrences between subsequent obser-
vation times. In particular, the exact occurrence times of
the events are unknown. Hence, panel counts are non-
negative integers and they represent the number of oc-
currences of events within a fixed period. Classical ex-
amples often arise in the clinical trials (Thall and Lachin,
1988) where patients are required to go back to the hos-
pital after a certain treatment and only the numbers of
symptoms between subsequent visits are recorded, such
as the number of vomits or new tumors. Figure (1] gives
an example of panel count data.

Objective of this study. The purpose of this paper is to
present the variational Bayesian inference on Gaussian-
process-modulated Poisson processes (GP3) that permits
panel data observations.

There have been extensive studies on GP3 models and
various inference algorithms are introduced for recur-
rent event data when timestamps of the events are fully
observable, e.g., Monte Carlo sampling (Diggle et al.,
2013/Adams et al.,|2009)), Laplace approximation (Flax-
man et al., |2015) and variational inference (Lloyd et al.,
2015). Among these approaches, the variational infer-
ence method (Lloyd et al., 2015) provides a computa-
tionally efficient estimate of the intensity function and
does not require a careful discretization of the underly-
ing space.

To the best of our knowledge, however, there has not
been any study carried out on the variational inference
of the GP3 model when the data come in the form of
panel counts. Our ultimate goal is to infer the underlying
intensity function in the panel count data.

Related statistical works. Based on the maximum
likelihood criterion, several non-parametric estima-
tors have been proposed to infer the underlying
intensity function (Sun and Zhao, 2016), e.g., a
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Figure 1: Bladder Cancer Data Set. This figure illus-
trates the panel count data from the patients. For the kth
subject (or the kth patient), his/her observation window
X*) is divided into disjoint intervals. The ith interval is
denoted as Xi(k). For example, patient No. 4 (k = 4)
has an observation window which is divided into 8 dis-
joint intervals, i.e., | JS_, Xi(4) =XWand X;NX; =0
for i # j. Patients may drop out from the study at any
time and therefore their observation windows are differ-
ent. An interval is shown by a rectangle. We use different
colors to indicate the different numbers of new bladder
tumors observed in this interval. Note that we only have
access to the number of events in each interval.

non-parametric maximum pseudo-likelihood estima-
tor (NPMPLE) (Wellner and Zhang, [2000), a non-
parametric maximum pseudo-likelihood estimator with
gamma frailty (NPMPLGF) (Zhang and Jamshidian|
and the local Expectation-Maximization (Lo-
calEM) estimator 2011). Unlike NPMPLE
and NPMPLGF, which only estimate the cumulative in-
tensity function at a set of points, LocalEM provides a
smooth estimate of the underlying intensity function due

to the use of an exponential quadratic kernel (Fan et al.|
2011).

Besides the computational cost in selecting the band-
width of the exponential quadratic kernel, the estima-
tors obtained by the LocalEM algorithm and other sim-
ilar algorithms are point-estimates in the sense that the
estimated intensity function is a point in the functional
space. These point-estimates fail to capture the uncer-
tainty in the data set. We show an example of the esti-
mated intensity function by LocalEM in Figure 2] The
uncertainty of the intensity function helps us understand
the difficulty of the prediction at a given time.

Contributions. The contributions of our work are two-
fold. 1) In the first place it undertakes to construct a vari-
ational inference procedure for the Gaussian-Process-
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Figure 2: Bladder Cancer Data Set. Inferred inten-

sity function by the LocalEM and GP4C methods. For

GP4C, a 75% credible interval is given by dotted lines.

Our estimator GP4C provides the additional uncertainty

in the estimated intensity function compared with Lo-
calEM. See SectionElfor details.

modulated Poisson Process model for Panel Count data
(GP4C). 2) To carry out a variational inference in this
setting, we derive a simple and tractable lower bound
of the intractable evidence lower bound and demonstrate
through empirical evidence that with this lower bound,
GPAC outperforms a non-Bayesian method.

2 BACKGROUND

Throughout this paper, we denote the set of panel count
data from K € N¥ independent subjects as D. Each sub-
ject will generate a sequence of events in the continuous
space X'. We only consider the temporal point processes
where the continuous space &’ is a subset of R. In the re-
current event data, the timestamps of the events are fully
observable. We denote the timestamps from the kth sub-

ject as {zgk) € X}

In the panel count data, the kth subject is assessed in Ny,
disjoint intervals {X "} where U X" = xX®)

)

X. We have access to each interval Xi(k and the num-

ber of events observed in this interval ml(-k) = |{x§k) €
X Let di = (X, m*) N and D = {dy}.

Figure [Tillustrates an example of the panel count data.

2.1 LIKELIHOOD OF PANEL COUNT DATA

In the recurrent event data, one approach to modeling
the events {x§k) € X'} from each subject is to use the in-
homogeneous Poisson processes (IPP)
and assume that there is a fixed underlying intensity func-
tion A\(z) : X — R*. Given the intensity function \(z),



the likelihood for the observed events is
(e YA@) = exp (= [ Mwpde) [T,
J

To derive the likelihood of the panel count data D, we
use two important features of an IPP (Kingman), [1993).
The first is that given the intensity function A(z), the

(k)

probability that we observe m, ’ events in the interval

Xi(k) is given as follows:

m k)

z

p(m{? () X)) = (k) exp(—ri), (1)

where 7, 2 / o A(z)dz is the rate parameter of the
Poisson distribution. Hereafter, we omit the dependency
on Xi(k) for simplicity. However, the likelihood depends
on the intervals and even for the same sequence, after
censored with different intervals, the likelihood of the
sequence will vary. See Appendix E.1 for a brief dis-
cussion.

The second feature is that on two disjoint intervals Xl-(k)

and Xj(k) ( Xi(k) N Xj(k) = ()), the numbers of events on
these intervals are independent random variables.

p(m{” A @)p(m” |\ ().
@)
Based on these two features, the likelihood of the panel
count data D can be derived. We assume that all subjects
share the same intensity function A(z). Since K subjects
are independent of each other and for the kth subject,
the N, intervals {Xi(k)}ﬁv:kl
following likelihood:

p(m{, mM\(z)) =

are disjoint, we obtain the

K
p(DA@)) = [] (el A= H Hp (m{"” A (@)
k=1 k=1i=1

3
Several maximum likelihood estimators have been pro-
posed on the basis of this likelihood or its variants,
e.g., NPMPLE (Wellner and Zhang|, 2000; Wellner et al.,
2007), NPMPLGF (Zhang and Jamshidian, [2003) and
the LocalEM estimator (Fan et al., [2011). An estimate
from LocalEM on the data set in Figure[I]is given in Fig-
ure[2] As we discussed, these estimators fail to model the

uncertainty in the intensity function.

2.2 GP3MODEL

In order to model the uncertainty of the intensity function
A(z) via a kernel, the traditional approach is to use the
Cox process (Kingman, |1993). A Cox process is defined
via a stochastic intensity function A(z). The stochastic

process to generate the intensity function is usually cho-
sen to be a Gaussian process (GP) (Adams et al., 2009)
and the model using a GP is called a GP3 model.

For the recurrent event data, GP3 models have been stud-
ied extensively (Adams et al., |2009; |Gunter et al., [2014;
Lloyd et al., 2015). The following model is an example
of GP3 models (Lloyd et al.,2015),

Na) = f2(x), f~GP(g(x),k(z,2"), @

where GP(g(z), k(x,z’)) denotes the Gaussian pro-
cess with mean function g(z) and covariance function
k(z,2"). The function f(z) drawn from a GP prior
is squared to ensure the non-negativity of the intensity
function. The GP3 model in Equation () admits a com-
plete variational inference framework. Moreover, this in-
tensity model can be enhanced with an independent vari-
able for each subject or a mixture structure (Lloyd et al.,
2016) to flexibly model the heterogeneity of the intensity
functions across several subjects.

3 OUR MODEL GP4C : GP3 MODEL
FOR PANEL COUNT DATA

In order to retain the scalability and efficiency of the vari-
ational inference approach (Lloyd et al., 2015) and add
the uncertainty on the intensity function when we only
observe the panel count data, we use the GP3 model de-
fined in Equation (@) as the underlying intensity model.

The joint distribution p(D, f) can be obtained by com-
bining the likelihood model in Equation (@) and the in-
tensity model in Equation (@).

K
D,f) = [Hp(dklk(x))}p(f;g,ﬂ)- ©)
k=1

We call this model the GP-modulated Poisson Process
model for Panel Count data (GP4C).

4 INFERENCE

In this section, we will discuss the problems when apply-
ing variational inference techniques on the GP4C model.

4.1 VARIATIONAL INFERENCE

We use sparse GPs to reduce the computational com-
plexity with the set of pseudo inputs {z, }f* | on X (Tit-
siasl 2009). Let fr 2 [f(z1),..., f(zg)]T. The joint
model with additional pseudo inputs is p(D, f, fr) =

p(D|f)p(f|fr)p(fr) and the variational distribution is

defined as follows:

q(f, Fr) = p(f|fr)a(fR), (6)



where ¢(fr) = N(u,X) and V' (p, ) denotes the nor-
mal distribution with mean g and covariance matrix .
The evidence lower bound (ELBO) £ can be obtained by
using Jensen’s inequality.
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In ELBO, when assuming that the covariance function
k(z, z") is the automatic relevance determination (ARD)

"2
(z—z) ,x, 7 € X, the

2a?
second term in the ELBO can be analytically calculated
(Lloyd et al., 2015)) as follows:

function k(z,2") = yexp ( -

B, [ fA@)da] =X P (K k)
X (k)

+tr(Kpp®Kpp(up'’ +3)),
(8)

where ® is an R x R matrix related to the pseudo inputs
with its (7, j)-th entry equal to [, k(z;, z)k(z, z;)d
and Kprp is the covariance matrix computed at the
pseudo inputs. However, the ELBO L is still intractable,
since we can not analytically compute the expected inte-

gral E, [ln inuc) fQ(x)dm} in the first term.

4.2 A TRACTABLE LOWER BOUND

We tackle the intractable expectation by deriving a
tractable lower bound. First we introduce a relevant
lemma on the expectation of the logarithm of the square
of a normal-distributed random variable.

(n/o).

2 J 2
E,[lny? = In(20? +Z (9/2) ejF( #/2)
7=0

Lemma 1. Lety ~ N (p,0?) and ¢ = Then

€))

where (+) is the digamma function.

The proof of Lemma|[I|can be found in Appendix A. Let

o) = SR iy o)

|
=0 7

Then Ey[Iny?] = In(202) + go.5(/2). The function
9m(y), where y is a positive real number and m is a pos-
itive integer, has been studied in the analysis of mobile

P(+1/2),

and wireless communication systems (Moser},[2007). For
m = 1/2, go.5(¢/2) can be computed using a conflu-
ent hyper-geometric function G(-) (Lloyd et al., [2015),
which is stored in a pre-computed look-up table.

g05(p/2) = ~G(~p/2) —2m2 - C, (1)
where C' is Euler’s constant and C' =~ 0.5772. How-
ever, to the best of our knowledge, it is still not clear how
to calculate the integral of the function G(—¢/2) when
using a GP. To derive a tractable lower bound of the in-
tractable expectation, we introduce the following lemma
to give a lower bound of the function g, () and the proof
can be found in Appendix B.

Lemma 2. Lety ~ N (i, 02) and C be Euler’s constant.

E,[lny? > In(p® +bo?) — C —1n2, Vb € [0,1]. (12)

Based on Lemma [2] we propose the following lower
bound for the intractable expectation in the ELBO.

Theorem 1. Let f be a GP as defined in Equation ().
For b € [0, 1], the following bound holds:

Eq[ln/ - fg(x)dx} >—-C—1n2
Xi
+1In (/XW (ng(x) —|—bVarqf(a:))dm), (13)

where the distribution q is given in Equation (0)).

Proof. We first use Jensen’s inequality on the logarithm
function and then interchange the order of integration
and expectation.

Eq[ln/X;k) fQ(x)dx} - Eq[m/){;m p(x)J;((xx)) d

> /X f") Bo)E, | In J;((;;)}dx, (14)

where p(x) is a probability distribution on Xi(k). Further-
more, maximizing this lower bound with respect to p(x)
yields the optimal distribution:

Bops () o exp (]Eq In f2(gc)>. (15)

We remark that this result is analogous to that of the dis-
crete version presented in [Paisley| (2010). Substituting
Equation into the right-hand side of Equation (14)



yields

Eq{ln/&(k) f2(x)dac} >1n (/Xi(k) et lnfz(w)dac)

(123) In (/ eln(]Eif(m)+bVarqf(a:))fC'fln2dx)
x®

=In </X““) (Eif(x) + bVarqf(m)>da:) —C—-1In2,

where we have invoked Lemma [2)in the penultimate line
whilst defining y := f(x). O

It should be emphasized that we are making no further
assumptions on the dimensionality of z in the proof of
Theorem |1l Hence we may augment the dimensionality
of & in Theorem(T|such that it can also be applied to prob-
lems in spatial point processes. In summary, the ELBO
in Equation (7)) inherits an analytical bound. We present
the following:

Theorem 2. A tractable lower bound of the ELBO L in
the GP4C model is given as follows:

P(fR)}

fQ(x)da:] +E, [ln o(Fr)

h—1 X (k)
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- Z Z (mz(-k)(C +In2) + ln(mz(k)!)). (16)

k=11i=1

The details of the proof are deferred to Appendix C. The
derivations of EZ f(x) and Var, f () follow similar lines

to the derivation of Equation (8). The third part of L
is a constant and thus can be omitted when maximizing
the lower bound. Let ¥ = {u,X} and ® = {~,a} be
the variational parameters and hyper-parameters in the
covariance function of a GP, respectively. We use the
variational Expectation-Maximization (vVEM) algorithm
(Dempster et al.| [1977) to update the parameters ¥ and
@ iteratively on the modified ELBO L.

4.3 THE VALUE OF PARAMETER b

A natural question is, how do we select the parameter b in
Theorem|[I]? Recall that two inequalities were used in the
proof. It is cumbersome to evaluate Inequality since
it is an integral over Xi(k). We first examine different
choices of b in Lemma 2]

In Paisley et al.| (2012)), a more correlated lower bound
of the ELBO serves as a better control variate in reduc-
ing the variance of a stochastic gradient. Inspired by this
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Figure 3: Influences of b in Lemma 2. (Left) The true
value of —G(—¢/2) by a look-up table and two simple
lower bounds. The bound In(¢ + b) with b = 0.3 corre-
lates with the curve of the true value better. (Right). The
variance Var[h(y; b)] when varying the choices of b and
the best b is shown with a red circle.

study, we introduce a heuristic method and conduct the
following experiment to evaluate the correlation for dif-
ferent choices of b. In Lemma 2] the difference between
the lower bound and the true value is

In(p? + bo?) — C —In2 — E, [Iny?]
=In(p+b) +G(~p/2) S h(e:h). (D)

For each choice of b, we vary ¢ = (u/0)? on a vector
of 5000 logarithmically spaced points between 10~5 and
106 and evaluate the correlation between the lower bound
and the true value by the variance Var[h(p;b)]. We
calculate Var[h(p;b)] on a vector of 50 evenly spaced
choices of b between 0 and 1 and the result is shown in
Figure[3] We see that the optimal choice of b is 0.3061 if
¢ ranges from 107° to 105. In the actual situation, this
optimal value of b depends on the range of ¢ in the data
and the influence of Inequality (T4), we evaluate several
choices of b on synthetic data sets in Section 3}

44 COMPUTATIONAL COMPLEXITY

Let each interval in temporal point processes be Xi(k) =
[xfﬁ), xl(,’;)} with two end points xg:) and ;1:1()];). Two inter-
vals are different if at least one end point is different. We
denote the number of different intervals in the data set as
N and the number of pseudo inputs as M. For each in-
terval, the computation complexity of GP4C is O(M?3)
which is determined by the matrix-matrix calculation
when evaluating Var, f(x) in Equation (I6). The com-
putational complexity during one iteration of the vEM
algorithm is O(NN M?) since in our implementation, we
calculate the integral of all /V different intervals.

We analyze the computational complexity of the Lo-



calEM (Fan et al.l 2011)) algorithm for comparison. In
LocalEM, {zg]z)} and {xl(f)} are first merged into a sin-
gle ordered set X where duplicated values are removed.
We denote the size of the merged set X as N and gen-
erally N < N. Then the Gaussian quadratic rule with
M points is used to calculate the integral of the inten-
sity function between subsequent values in the set X
and the computational complexity during one iteration
is O(N2M?). If the size of the merged set N is sig-
nificantly smaller than N, LocalEM may be computa-
tionally more efficient than GP4C. However, if N =~ N,
LocalEM may suffer from the term N2 in the computa-
tional complexity. We provide additional experiments on
the influence of the number N in Appendix E.3.

S EXPERIMENTS

We evaluate our proposed GP4C model and compare
it with the benchmark methods on both synthetic and
real-world data sets. The algorithms are programmed
in Matlab R2015b and run on an Intel Xeon E5-2667
CPU with a memory of 64GB. Our code is available at
github.com/Dinghy/GP4C.

5.1 EXPERIMENT SETTINGS

For each data set D, we randomly partition the subjects
into training and testing sets, which we denote as Dy, ain
and Diest, respectively. We repeat each setting for S =
40 times. In the sth trial, the training and testing sets are
denoted as D). and Dgzgt.

train

Benchmark. Two benchmark algorithms are used.

a) GP3 (Lloyd et al., 2015). This benchmark reflects
the best performance that can be obtained if we ob-
tain the recurrent event data set where we have the
exact timestamps.

b) LocalEM (Fan et al., 2011). Both LocalEM and
GP4C are nonparametric estimators based on the
maximum likelihood criterion. To fairly compare
the computation time, we implemented the Lo-
calEM algorithm in MATLAB based on the R code
provided inFan et al.|(2011)). This method produces
a smooth estimate of the intensity function due to
the use of an exponential quadratic kernel. We use
a 5-fold cross-validation on the training set to select
the bandwidth of the exponential quadratic kernel.

Evaluation Metric. We evaluate the performance of the
algorithms in terms of three metrics.

a) Mean of the integrated squared error (MISE). In
synthetic data sets, we have the ground truth of the

intensity function A¢;ye and the integrated squared
error can be calculated using our estimated intensity
function Afj{ during the sth trial. To measure the
bias of each estimator, we calculate the mean of the

integrated squared error as follows:
MISE(s) £ / A% (@) = Mpue(@))2dz. (18)
X

For GP4C, to measure its bias, we omit the variance
of the estimator and use the expectation of the in-

tensity function E ) [f*(z)] as A% ().

b) Test log likelihood Lyies;. During the sth trial, the
logarithm of the test likelihood can be written as
follows:

Loon(s) 2 1n / p(DEL (DS )df. (19)

For LocalEM, since this estimator provides a point-
estimate and we directly use the estimated function
£ to calculate Lyest(s). For GP4C and GP3, we
need to sample the function () from the varia-
tional distribution and the detailed calculation can
be found in Appendix D.

¢) Computation time 7". We record the training time
measured in seconds for each setting. For GP3 and
GP4C, we record the computation time of the train-
ing process. For LocalEM, it includes the time of
5-fold cross-validation on the training set to select
the bandwidth of the exponential quadratic kernel
and the time of a training process over the whole
training set.

Optimization Settings. For GP3 and GP4C, following
Lian et al.| (2015), we use the re-parametrization trick
¥ = LL" by Cholesky decomposition and add positiv-
ity constraints to the diagonal elements in L. Due to this
constraint on L, we use the limited-memory projected
quasi-Newton algorithm (Schmidt et al., 2009) to opti-
mize the variational parameters ¥ = {p, X}. We add a
jitter term eI where ¢ = 107° to the covariance matrix
Krp to avoid numerical instability (Titsias,[2009).

5.2 SYNTHETIC DATA SETS

We test three synthetic data sets which we denote as the
Synthetic A, B and C data sets, respectively.

On the Synthetic A data set, the intensity function is a
square wave function h; () as follows. See Figure [4] for
an illustration of hq (z).
x
7if mod([5],2) =0,
if mod( | 5
2 otherwise.

hl (SL’) =


github.com/Dinghy/GP4C

Table 1: Synthetic data sets. Mean and standard de-
viation of statistics about different choices of b over 40
runs. GP3 uses the recurrent event data while LocalEM
and GP4C use the panel count data. For GP4C, b = 0.3
and b = 0 perform better than b = 1 in terms of MISE

and Etest .

Method MISE Liest T[s]
(Synthetic A)
GP3 29.5+£1.0 -1366.5+17.4 16+4
GP4C(1) 41.846.2 -3236.9+542.3 2545
GP4C(0) 40.843.3 -1378.1£16.9 19+4
GP4C(0.3) 40.243.2 -1377.8£17.5 2043
LocalEM 44.6+3.1 -1383.5£17.0 3342
(Synthetic B)
GP3 0.5£0.2  -783.14+20.7 8+1
GP4C(1) 1.942.1 -1005.8+81.5 55+44
GP4C(0) 2.7+0.8 -794.5+20.1 1743
GP4C(0.3) 2.440.7 -794.2420.2 1744
LocalEM 3.54+0.7 -800.3£19.6 3342
(Synthetic C)
GP3 1.2404  -864.1+14.9 8+3
GP4C(1) 2.3+1.5 -1194.6+100.5 52453
GP4C(0) 2.1£0.6  -871.24+159 1742
GP4C(0.3) 2.0+£0.7  -872.0+15.7 18+3
LocalEM 5.241.1 -882.7£16.5 3442

On the Synthetic B and C data set, the underlying in-
tensity functions are drawn according to Equation ().
We first draw a function from a GP on a vector of 3001
evenly-spaced points in X = [0,7], where T = 60.
We approximate the value of the function at an arbi-
trary position with linear interpolation. The function is
then squared to guarantee the positiveness of the inten-
sity function. See Figure 5] for an illustration.

During the sth trial, we first generate a recurrent event
data set with 100 subjects on the same observation win-
dow X*) = X. Then we generate the corresponding
panel count data set D) by censoring each subject with
10 intervals. We generate the censored intervals by a
draw from a Dirichlet distribution w*) ~ Dir(8) and
6 is a 10-dimensional vector with all elements equal to
1. The ¢th interval of the kth subject can be computed

k i—1_ (k i k
as Xi( ) = > w](. T, > o1 w§ )T]. We randomly
partition D(*) into two parts, where 50 subjects are used

for training and 50 for testing.

Different choices of the hyper-parameter 6. On all
three synthetic data sets, we test three different choices of
bin {0,0.3,1}. We choose the number of pseudo inputs
to be 30. We calculate the MISE and L., and the results
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Figure 4: Synthetic A Data Set. The estimated intensity
functions from GP4C (b = 1) and GP4C (b = 0.3) are
shown with 75% credible intervals. True intensity func-
tion hq(z) is given for comparison. We see that GP4C
(b = 1) over-estimates the variance of the intensity func-
tion.
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Figure 5: Synthetic B & C Data Sets. An illustration
of the underlying intensity functions and inferred inten-
sity functions by the LocalEM and GP4C methods. The
underlying intensity function is drawn from a Gaussian
process. For GP4C, a 75% credible interval is given by
dotted lines.

are provided in Table[T] We see that b = 0, 0.3 generally
outperform b = 1 on these simple synthetic data sets.
However, the difference between b = 0 and b = 0.3 is
not significant. The reason is that Inequality and the
range of ¢ on X are also relevant to the actual perfor-
mance of different b, as we discussed in Section4.3

To investigate the reason behind the bad performance of
Liest when b = 1, we plot the best result in terms of
MISE during 40 trials in Figure f] We see that GP4C
(b = 1) over-estimates the variance of the intensity func-
tion and the over-estimated variance leads to the poor
performance in Liqs. We fix b = 0.3 during the remain-
ing experiments for simplicity.

Number of the pseudo inputs. We vary the number of
pseudo inputs in GP3 and GP4C since this number de-
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Figure 6: Synthetic Data Set. Comparison of performance of GP3, GP4C and LocalEM in terms of Ly, MISE and
T when varying the number of pseudo inputs for sparse GPs. For the test likelihood, MISE and the computation time,
the median, the 0.25 and 0.75 quantiles of the statistics in 40 experiments are shown with error bars or shaded area.
For GP3 and GP4C, MISE and L. stay relatively stable with the increase of the number of pseudo inputs.

termines the accuracy of approximation in a sparse GP.
We expect that for GP-based methods the test likelihood
will be relatively stable when increasing the number of
pseudo inputs according to previous studies on sparse
GPs (Titsias, [2009).

The result for the Synthetic A data set is given in Figures
[6l In Figure [6] we see that for GP3 and GP4C, MISE
and Lyes stay relatively stable with the increase of the
number of pseudo inputs. The computation time of GP3
and GP4C will grow with the increase of the number of
pseudo inputs.

In both Table [I] and Figure [6] we see that GP4C out-
performs LocalEM on these three datasets. However,
we also notice that there is still a gap between GP3 and
GP4C in terms of L.s; and MISE in Table[I} Two rea-
sons may account for this fact. The first one is that the
data are provided in the form of panel counts rather than
exact timestamps. The second reason is that we use a
lower bound of the true ELBO to perform the variational
inference, which may lead to a bias. This bias can be
alleviated with the stochastic variational inference (Pais-
ley et al., 2012)), where our lower bound can serve as a
control variate. We leave this as a future study.

An additional experiment in which we increase the num-
ber of training subjects to evaluate the gain in perfor-
mance on the Synthetic A data set is given in Appendix
E.2.

5.3 REAL WORLD DATA SETS

Sun and Zhao, (2016) provided three panel count data
sets. Some statistics can be found in Table Pl A brief
description about the these data sets can be found in Ap-

Table 2: Statistics about the three data sets, where K, X,
N and N denote the number of subjects in each data set,
the underlying continuous space, the number of different
end points and the number of different intervals Xi(k),
respectively.

Data Set X K N N
Na-A [0, 55] 65 45 109
Na-B [0, 55] 48 38 84
BI-A [0, 53] 38 52 176
BI-B [0,53] 47 52 201
Sk-A & Sk-B [0,61.57] 143 751 816
Sk-C & Sk-D  [0,62.63] 147 808 887
pendix F.

We use 18 pseudo inputs for all real world experiments.
In each trial, we randomly split each data set into two
parts, which are D). (50%) and D{%); (50%). On these
three data sets, since the original data are in the form of
panel counts, GP3 is not tested. We compare GP4C with

LocalEM in terms of L. and the computation time 7.

The results are given in Table 3] The standard deviation
of the likelihood is large since the likelihood depends on
the censored intervals of the subjects, which vary greatly
in different train/test split. We conduct an experiment to
reduce the standard deviation in Appendix H. In Table
Bl LocalEM performs better on the Nausea and Bladder
data sets in terms of the computation time 7. GP4C out-
performs LocalEM in terms of test likelihood Lest in all
data sets.
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Figure 7: Bladder A Data Set. An illustration of the
panel count data in the test set (Left) and the test likeli-
hood from GP4C and LocalEM of each subject (Right).
GP4C mainly outperforms LocalEM on two subjects
whose numbers of newly-occurred cancers are large (No.
12 and 15).

To see the difference between GP4C and LocalEM, we
show the result of inferred intensities by two algorithms
during one trial on the Bladder A data set in Figure[2] We
see that GP4C provides the additional uncertainty which
helps improve L;est compared with LocalEM. Since the
Bladder A set is small, we plot the panel count data in
the training set in Figure[T] The test set and the test like-
lihood of all its subjects are given in Figure [7] From
the test likelihood of each subject, we see that GP4C
outperforms LocalEM on two subjects whose counts of
newly-occurred tumors are large (No. 12 and No. 15).
The count 8 never occurs in the training set and a point-
estimate will fail to model this uncertainty while a GP-
modulated method will take the uncertainty into consid-
eration.

Another observation about this data set is that there is
a heterogeneity across all subjects. The traditional ap-
proach to modeling heterogeneity is to add an additional
variable on the intensity function for each subject (Cook
and Lawless| [2007). We briefly discuss how to add this
change to GP4C in Appendix G.

6 CONCLUSION

We presented the first framework for GP-modulated
Poisson processes when data appear in the form of panel
counts. We derived a tractable lower bound for the in-
tractable evidence lower bound when modeling the panel
count data using the GP-modulated intensity function.
Our model, GP4C, outperforms a non-Bayesian method
using the maximum likelihood criterion in terms of test
likelihood and achieves comparable results in terms of

Table 3: Mean and standard deviation of the test like-
lihood (Lycst) and the computation time 7' measured in
seconds on the three panel count data sets over 40 runs.
LocalEM performs better on the Nausea and Bladder
data sets in terms of computation time. In all data sets,
GPAC performs better on the test likelihood and outper-
forms LocalEM on computation time in the Skin data
sets.

Data Set METHOD Liest T[s]
Na-A LocalEM -492.1£306.1 140
GP4C -484.9+201.8 10+£10
Na-B LocalEM -473.24212.2 140
GP4C -411.0+£184.3 10+7
BI-A LocalEM -201.8+46.9 1+0
GP4C -182.2+47.3 2549
BI-B LocalEM -313.1+£54.2 1+0
GP4C -310.4+£549  26+£21
Sk-A LocalEM -259.1£27.3 3943
GP4C -258.7426.7 3346
Sk-B LocalEM -198.1+47.1 39+3
GP4C -191.2442.5 24+4
Sk-C LocalEM -358.0£35.8  47+4
GP4C -355.7£36.0  21+£12
Sk-D LocalEM -200.9+31.9  46+£3
GP4C -198.9+£30.6 2744

computational time.

In the future, we plan to implement the stochastic vari-
ational inference algorithm to evaluate the bias in the
tractable lower bound. We are also considering to find
an applicable two-dimensional data set where we can ex-
tend our algorithm to spatial point processes.

Acknowledgements

We thank the anonymous reviewers for their helpful sug-
gestions. MS was supported by KAKENHI 17H00757.

References

Adams, R. P, Murray, 1., and MacKay, D. J. (2009).
Tractable nonparametric Bayesian inference in Pois-
son processes with Gaussian process intensities. In
Proceedings of the 26th Annual International Confer-
ence on Machine Learning, pages 9-16. ACM.

Cook, R. J. and Lawless, J. (2007). The Statistical Anal-
ysis of Recurrent Events. Springer Science & Business
Media.

Dempster, A. P, Laird, N. M., and Rubin, D. B. (1977).
Maximum likelihood from incomplete data via the EM



algorithm. Journal of the royal statistical society. Se-
ries B (methodological), pages 1-38.

Diggle, P. J., Moraga, P, Rowlingson, B., and Tay-
lor, B. M. (2013). Spatial and spatio-temporal log-
Gaussian Cox processes: extending the geostatistical
paradigm. Statistical Science, pages 542—563.

Fan, C.-P. S., Stafford, J., and Brown, P. E. (2011).
Local-EM and the EMS algorithm. Journal of Com-
putational and Graphical Statistics, 20(3):750-766.

Flaxman, S., Wilson, A., Neill, D., Nickisch, H., and
Smola, A. (2015). Fast Kronecker inference in Gaus-
sian processes with non-Gaussian likelihoods. In In-

ternational Conference on Machine Learning, pages
607-616.

Gunter, T., Lloyd, C., Osborne, M. A., and Roberts, S. J.
(2014). Efficient Bayesian nonparametric modeling
of structured point processes. In Proceedings of the
Thirtieth Conference on Uncertainty in Artificial In-
telligence, pages 310-319. AUAI Press.

Kingman, J. F. C. (1993). Poisson Processes. Wiley On-
line Library.

Lian, W., Henao, R., Rao, V., Lucas, J., and Carin, L.
(2015). A multitask point process predictive model. In
International Conference on Machine Learning, pages
2030-2038.

Lloyd, C., Gunter, T., Osborne, M., and Roberts, S.
(2015). Variational inference for Gaussian process
modulated Poisson processes. In International Con-
ference on Machine Learning, pages 1814—1822.

Lloyd, C., Gunter, T., Osborne, M., Roberts, S., and
Nickson, T. (2016). Latent point process allocation. In
Artificial Intelligence and Statistics, pages 389-397.

Moser, S. M. (2007). Some expectations of a non-central
chi-square distribution with an even number of degrees
of freedom. In TENCON 2007-2007 IEEE Region 10
Conference, pages 1-4. IEEE.

Paisley, J. (2010). Two useful bounds for variational
inference. Technical report, Technical report, De-
partment of Computer Science, Princeton University,
Princeton, NJ.

Paisley, J., Blei, D. M., and Jordan, M. 1. (2012). Vari-
ational Bayesian inference with stochastic search. In
Proceedings of the 29th International Coference on In-

ternational Conference on Machine Learning, pages
1363-1370. Omnipress.

Schmidt, M., Berg, E., Friedlander, M., and Murphy, K.
(2009). Optimizing costly functions with simple con-
straints: A limited-memory projected quasi-Newton
algorithm. In Artificial Intelligence and Statistics,
pages 456-463.

Sun, J. and Zhao, X. (2016). Statistical Analysis of Panel
Count Data. Springer.

Thall, P. F. and Lachin, J. M. (1988). Analysis of re-
current events: Nonparametric methods for random-
interval count data. Journal of the American Statistical
Association, 83(402):339-347.

Titsias, M. K. (2009). Variational model selection for
sparse Gaussian process regression. Report, Univer-
sity of Manchester, UK.

Wellner, J. A. and Zhang, Y. (2000). Two estimators of
the mean of a counting process with panel count data.
Annals of Statistics, pages 779-814.

Wellner, J. A., Zhang, Y., et al. (2007). Two likelihood-
based semiparametric estimation methods for panel
count data with covariates. The Annals of Statistics,
35(5):2106-2142.

Zhang, Y. and Jamshidian, M. (2003). The gamma-
frailty Poisson model for the nonparametric estimation
of panel count data. Biometrics, 59(4):1099—-1106.



	INTRODUCTION
	BACKGROUND
	LIKELIHOOD OF PANEL COUNT DATA
	GP3 MODEL

	OUR MODEL GP4C : GP3 MODEL FOR PANEL COUNT DATA
	INFERENCE
	VARIATIONAL INFERENCE
	A TRACTABLE LOWER BOUND
	THE VALUE OF PARAMETER b
	COMPUTATIONAL COMPLEXITY

	EXPERIMENTS
	EXPERIMENT SETTINGS
	SYNTHETIC DATA SETS
	REAL WORLD DATA SETS

	CONCLUSION

