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Abstract

Many models of dynamical systems have
causal interpretations that support reasoning
about the consequences of interventions, suita-
bly defined. Furthermore, local independence
has been suggested as a useful independence
concept for stochastic dynamical systems.
There is, however, no well-developed theore-
tical framework for causal learning based on
this notion of independence. We study inde-
pendence models induced by directed graphs
(DGs) and provide abstract graphoid proper-
ties that guarantee that an independence model
has the global Markov property w.r.t. a DG.
We apply these results to 1t diffusions and
event processes. For a partially observed sys-
tem, directed mixed graphs (DMGs) represent
the marginalized local independence model,
and we develop, under a faithfulness assump-
tion, a sound and complete learning algo-
rithm of the directed mixed equivalence graph
(DMEQG) as a summary of all Markov equiva-
lent DMGs.

1 INTRODUCTION

Causal learning has been developed extensively using
structural causal models and graphical representations of
the conditional independence relations that they induce.
The Fast Causal Inference (FCI) algorithm and its varia-
tions (RFCI, FCI+, ...) can learn a representation of the
independence relations induced by a causal model even
when the causal system is only partially observed, i.e.,
the data is “causally insufficient” in the terminology of
Spirtes et al. (2000). FCI is, however, not directly ap-
plicable for learning causal relations among entire pro-
cesses in a continuous-time dynamical system. The dy-
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namic evolution of such a system cannot be modeled us-
ing a finite number of variables related via a structural
causal model, and standard probabilistic independence
cannot adequately capture infinitesimal conditional in-
dependence relationships between processes since such
relationships can be asymmetric. The asymmetry can in-
tuitively be explained by the fact that the present of one
process may be independent of the past of another pro-
cess, or the reverse, or both.

Local independence was introduced by Schweder (1970)
and is a formalization of how the present of one stochas-
tic process depends on the past of others in a dynamical
system. This concept directly lends itself to a causal in-
terpretation as dynamical systems develop as functions
of their pasts, see e.g. Aalen (1987). Didelez (2000,
20064, 2008) considered graphical representations of lo-
cal independence models using directed graphs (DGs)
and §-separation and proved the equivalence of the pair-
wise and global Markov properties in the case of multi-
variate counting processes. Nodelman et al. (2002, 2003)
and Gunawardana et al. (2011) also considered learning
problems in continuous-time models. In this paper, we
extend the theory to a broader class of semimartingales,
showing the equivalence of pairwise and global Markov
properties in DGs. To represent marginalized local inde-
pendence models, Mogensen and Hansen (2018) intro-
duced directed mixed graphs (DMGs) with p-separation.
Bidirected edges in DMGs (roughly) correspond to de-
pendencies induced by latent processes, and in this sense
DMGs can represent partially observed dynamical sys-
tems. In contrast to the “causally sufficient” setting as
represented by a DG, multiple DMGs may represent the
same set of (marginal) local independence relations; thus
we use the characterization of Markov equivalent DMGs
by Mogensen and Hansen (2018) to propose a sound and
complete algorithm for selecting a set of DMGs consi-
stent with a given collection of independence relations.

Proofs omitted from the main text can be found in the
supplementary material.



9
6- . IS
31 o k:\»wl § OK\O
o %[5 e B
04 B
p— < \
Y — 9
> — 6- —
e e AA‘-‘,_.{ % g y
3+ g N~——7
. : Uy
-3

50 75 100

Time

00 25

exp(hB)—1I
h

Figure 1: Simulated sample paths (left) for the linear SDE determined by B in (1). The sample paths are from the
observational distribution started in the stationary mean as well as under an intervention regime on «. For the local
independence graph (middle) the color of the edge j — ¢ indicates if the nonzero entry B;; is positive (red) or negative
(blue). The step size h difference quotient at 0 for the semigroup ¢ — exp(tB) (right) determines the discrete time
conditional means for time step A transitions. It does not directly reflect the local independences except in the limit
h — 0, where it converges to the infinitesimal generator B. Danks and Plis (2013) make a similar point in the case of

subsampled time series.

2 CAUSAL DYNAMICAL MODELS

The notion of interventions in a continuous-time model
of a dynamical system is not new, and has been investi-
gated thoroughly in the context of control theory. Causal
models and interventions for event processes and their
relation to graphical independence models have been
treated in detail (Didelez, 2008, 2015). Relations to
structural causal models have been established for ordi-
nary differential equations (ODEs) (Mooij et al., 2013;
Rubenstein et al., 2016). Notions of causality and in-
terventions have also been treated for general stocha-
stic processes such as stochastic differential equations
(SDEs) (Aalen et al., 2012; Commenges and Gégout-
Petit, 2009; Sokol and Hansen, 2014).

To motivate and explain the general results of this paper,
we introduce the toy linear SDE model in R5 given by
dX; = B(X; — A)dt +dW, with A = (1,2,3,4,5)7,

1.1 1 1 :
Co—11 .20 :

B= 11 : 1],
: -1 -11 :
1 : S

and (W;) a five-dimensional standard Brownian motion.
The coordinates of this process will be denoted «, 3, 7,
0, and €. If we assume that this SDE has a causal inter-
pretation, we can obtain predictions under interventions
via manipulations of the SDE itself, see e.g. Sokol and
Hansen (2014). In Figure 1, for instance, we replace the
« coordinate of the SDE by

dXp = 1(X] > 1)dt, XP-X7 = -Xp1(x] <1).

The nonzero pattern of the B matrix defines a directed

graph which we identify as the local independence graph
below, which in turn is related to the local independence
model of the SDE. It is a main result of this paper that
the local independence model satisfies the global Markov
property w.r.t. this graph. Under a faithfulness assump-
tion we can identify (aspects of) the causal system from
observational data even when some processes are unob-
served.

It is well known that

Xepn = Xo | X ~ N(("P = I)(X, — A), %(h))

with ¥(h) given in terms of B. Thus a sample of the pro-
cess at equidistant time points is a vector autoregressive
process with correlated errors. We note that e"® — I'is a
dense matrix that will not reveal the local independence
graph unless & is sufficiently small, see Figure 1. The
matrix B is, furthermore, a stable matrix, hence there is
a stationary solution to the SDE and for h — oo we have
Y (h) — X, the invariant covariance matrix. We note that
>~ is also a dense matrix, thus the invariant distribution
does not satisfy the global Markov property w.r.t. to any
undirected graph but the complete graph.

In conclusion, the local independence model of the SDE
is not encoded directly neither by Markov properties of
discrete time samples, nor by Markov properties of the
invariant distribution. This is the motivation for our ab-
stract development of local independence models, their
relation to continuous-time stochastic processes, and a
dedicated learning algorithm.



3 INDEPENDENCE MODELS

Consider some finite set V. An independence model over
V is a set of triples (A, B | C') such that A, B,C C V.
We let Z denote a generic independence model. Follow-
ing Didelez (2000, 2008) we will consider independence
models that are not assumed to be symmetric in A and B.
The independence models we consider do however satis-
fy other properties which allow us to deduce some inde-
pendences from others. We define the following prop-
erties, some of which have previously been described as
asymmetric (semi)graphoid properties (Didelez, 2006b,
2008). Many of them are analogous to properties in
the literature on conditional independence models (Lau-
ritzen, 1996), though due to the lack of symmetry, one
may define both left and right versions.

e Leftredundancy: (A, B | A) € T

e Left decomposition:
(A,B|CYeI,DCA=(D,B|C)eT

e Right decomposition:
(A,B|C)eI,DCB=(AD|C)el

e Left weak union:
(A,B|CYeI, DCA= (A B|CUD)eTI

e Right weak union:
(A,B|CYeI, DCB=(A,B|CUD)eZ

e Left intersection:
(A,B|C)eI,(C,B|A)yel=
(AUC,B|ANC)eTI

e Left composition:
(A,B|C)eZI,(D,B|C)eI=
(AUD,B|C)eT

e Right composition:
(A,B|CYeI,(A,D|C)eI=
(A, BUD |CyeZI

o Left weak composition:
(A,B|CYeI, DCC=(AUD,B|C)eT

For disjoint sets A,C, D C V, we say that A and D
factorize w.r.t. C if there exists a partition C = C; U Cs
such that (i) and (ii) hold:

(i) (A,C,UD|CUD)€eT
(i) (D,CoUA|CUA)€T.

Definition 1. The independence model Z satisfies can-
cellationif (A, B | CU{6}) € ZTimplies (A, B | C) € T
whenever A and {d} factorize w.r.t. C. Such an indepen-
dence model is called cancellative.

Cancellation is related to ordered downward-stability as
defined by Sadeghi (2017) for symmetric independence
models over a set with a preorder and studied in relation
to separation in acyclic graphs.

3.1 DIRECTED MIXED GRAPHS

We wish to relate a local independence model, as defined
in Section 4, to a graph and therefore we need a notion
of graphical separation which allows for asymmetry. Di-
rected mixed graphs along with u-separation will provide
the means for such graphical modeling of local indepen-
dence. The subsequent definitions follow Mogensen and
Hansen (2018), which we refer to for further details.

Definition 2 (Directed mixed graph). A directed mixed
graph (DMG) is an ordered pair (V, E) where V is a
finite set of vertices (also called nodes) and FE is a finite
set of edges of the types — and <+. A pair of vertices
a, f € V may be joined by any subset of {a — 8, +
B,a < [}. Note that we allow for loops, i.e., edges
a — aand/or a <> a.

Let G; = (V,Ey) and Go = (V, E3) be DMGs. If
FE; C Es, then we write G; C G5 and say that G5 is a
supergraph of G,. The complete DMG on V is the DMG
which is a supergraph of all other DMGs with vertices
V. Throughout this paper, G will denote a DMG with
node set V' and edge set £. We will also consider di-
rected graphs (DGs) which are DMGs with no bidirected
edges. Let o, 8 € V. We will say that the edge o —
has a head at § and a tail at «, and that the edge a <>
has heads at both « and 5. When we write e.g. o — (8
this does not preclude other edges between these nodes.
We use a *— [ to denote any edge between « and 3
that has a head at 5. A letter over an edge, e.g. « N R
denotes simply that e refers to that specific edge. If the
edge o — [ is in the graph then we say that « is a parent
of B and if o <+ 3 then we say that o and 3 are siblings.
Let pa(a) (or pag () to make the graph explicit) denote
the set of parents of « in G. Note that due to loops, a can
be both a parent and a sibling of itself.

A walk is an alternating, ordered sequence of nodes
and edges along with an orientation of the edge such
that each edge is between its two adjacent nodes,
(vi,e1,v2, ..., €n,Vny1), Where v; € V and e; € E.
We say that the walk is between v; and v,,4; or from
vy to vp41. The vy and v,4; are called the endpoint
nodes of the walk. A non-endpoint node v;, i # 1,n+1,
is called a collider if the two adjacent edges on the
walk both have heads at the node, and otherwise a non-
collider. Note that the endpoint nodes are neither colli-
ders nor non-colliders. A walk is called trivial if it con-
sists of a single node and no edges. A path is a walk
where no node is repeated. A path from « to 3 is di-
rected if every edge on the path is directed and points
towards /3. We say that « is an ancestor of a set C' C V
if there exists a (possibly trivial) directed path from « to
~v € C. We let an(C) denote the set of nodes that are
ancestors to C'. Note that C' C an(C).



Figure 2: A DMG G (left) with sets {«} and {4} that factorize w.r.t. C' = {v1,72,73} such thata L, 8 | C'U {4}.
Any node is ji-separated from either v by C'U {0} or § by C'U {a} (middle), and as Z(G) is cancellative, o L, 3 | C.
A corresponding factor graph (right) with the three factor nodes W', W2 and \?, cf. Theorem 14.

3.1.1 pu-separation

Definition 3 (u-connecting walk). A p-connecting walk
from « to S given C' is a non-trivial walk from « to 3
such that o ¢ C, every non-collider is not in C and every
collider is in an(C'), and such that the final edge has a
head at 3.

Definition 4. Let o, 5 € V,C C V. We say that § is
p-separated from « given C' in the graph G if there is no
p-connecting walk from « to 8 in G given C'. For general
sets, A, B,C'" C V, we say that B is u-separated from
A given C and write A 1, B | C if 3 is p-separated
from « given C' for every o € A and 5 € B. We write
A 1, B | C[g]if we wish to make explicit to which
graph the statement applies.

Note that this definition means that B is separated from
A given C whenever A C C. We associate an indepen-
dence model Z(G) with a DMG G by

(A,B|C)eZ(G)=« AL, B|C[gG]

Lemma 5. The independence model Z(G) satisfies left
and right {decomposition, weak union, composition}
and left {redundancy, intersection, weak composition}.
Furthermore, (A, B | C) € Z(G) whenever B = ().

Lemma 6. Z(G) satisfies cancellation.

3.1.2 Markov equivalence

We say that DMGs G; = (V, Ey), Go = (V, Ey) are
Markov equivalent if Z(G1) = Z(G2) and this defines
an equivalence relation. We let [G] denote the (Markov)
equivalence class of G. For DMGs, it does not hold
that Markov equivalent graphs have the same adjacen-
cies. Note that the same is true for the directed (cyclic)
graphs with no loops considered by Richardson (1996,

1997) in another context. We say that a DMG is maxi-
mal if it is complete or if no edge can be added without
changing the associated Markov equivalence class. Mo-
gensen and Hansen (2018) define for every vertex in a
DMG a set of potential parents and potential siblings
(both subsets of V') using the independence model in-
duced by the graph (these definitions are also included
in the supplementary material). We let pp(«, Z) denote
the set of potential parents of « and ps(«,Z) denote
the set of potential siblings of « in the independence
model Z. If G; and G5 are Markov equivalent we thus
have pp(«, Z(G1)) = pp(e, Z(G2)) and ps(«, Z(G1)) =
ps(a,Z(Gs)) for each @« € V. Given a DMG G and
independence model Z = Z(G), one can construct an-
other DMG N in which « is a parent of 3 if and only
if « € pp(8,Z) and « and S are siblings if and only
if & € ps(B,Z). Mogensen and Hansen (2018) showed
that A € [G], that it is a supergraph of all elements of
[G], and that A/ is maximal. This allows one to define
a directed mixed equivalence graph (DMEG) from the
(unique) maximal graph N in the equivalence class to
summarize the entire equivalence class. The DMEG is
constructed from N by partitioning the edge set into two
subsets: one consisting of the edges which are common
to all graphs in the Markov equivalence class, and one
consisting of edges that are present in some members of
the equivalence class but absent in others. One may visu-
alize the DMEG by drawing N and making the edges in
the latter set dashed. Note that by collapsing the distinc-
tion between dashed and solid edges one may straight-
forwardly apply p-separation to a given DMEG.

3.2 MARKOV PROPERTIES

The main result of this section gives conditions on an
abstract independence model ensuring equivalence be-



tween the pairwise and the global Markov properties
w.r.t. a directed graph with p-separation. In the next
section we give examples of classes of processes that ful-
fill these conditions, extending results in Didelez (2008)
to a broader class of models. We take an axiomatic ap-
proach to proving the equivalence in the sense that we
describe some abstract properties and use only these to
show the equivalence. This is analogous to what Lau-
ritzen and Sadeghi (2017) did in the case of symmetric
independence models.

Definition 7. A DG and an independence model satisfy
the pairwise Markov property if for o, 8 € V,

agpaB) = (a,f[V\{e}) el

A DMG and an independence model satisfy the global
Markov property if for A, B,C C V,

Al,B|C=(AB|C)eT

Theorem 8. Assume that 7 is an independence
model that satisfies left {redundancy, intersection, de-
composition, weak union, weak composition}, right
{decomposition, composition}, is cancellative, and fur-
thermore (A, B | C') € Z whenever B = (). Let D be a
DG. Then 7 satisfies the pairwise Markov property with
respect to D if and only if it satisfies the global Markov
property with respect to D.

To keep consistency with earlier literature, we define
the pairwise Markov condition above as the absence of
an edge, which does not directly generalize to DMGs.
Therefore, we prove the equivalence of pairwise and
global Markov only in the class of DGs. The main pur-
pose of DMGs is to represent Markov properties from
marginalized DGs as defined below, in which case the
global Markov property w.r.t. a DMG is inherited from
the DG.

Definition 9 (Marginal independence model). Assume
that 7 is an independence model over V. Then the
marginal independence model of Z over O C V, 70,
is the independence model,

I° ={(A,B|C) | (A,B|C) € ;A,B,C C O}.

Mogensen and Hansen (2018) give a marginalization al-
gorithm (a.k.a. a “latent projection”), which outputs a
marginal DMG, G = (O, F), from a DG, D = (V, E),
such that Z(D)® = Z(G). If T satisfies the global
Markov property w.r.t. D then

7(G) = I(D)° C 1°.

This shows that the marginalized independence model
Z© then satisfies the global Markov property w.r.t. the
DMG G.

4 LOCAL INDEPENDENCE

This section introduces local independence models and
local independence graphs. The main results of the sec-
tion provide verifiable conditions that ensure that a local
independence model satisfies the global Markov property
w.r.t. the local independence graph.

Let X = (X},...,X}) for t € [0,7] be a cadlag
stochastic process defined on the probability space
(Q, F, P). Introduce for A C V = {1,...,n} the filtra-
tion F7* as the completed and right continuous version of
o({X% s <t,a € A}). Letalso A = (A},..., A7) be
an integrable cadlag stochastic process. This A-process
need not have any specific relation to X a priori, but for
the main Theorem 14 the relation is through the compat-
ibility processes defined below. Note that some compu-
tations below technically require that E(- | ;) is com-
puted as the optional projection, cf. Theorem VI.7.1 and
Lemma VI.7.8 in Rogers and Williams (2000). This is
unproblematic, and will not be discussed any further.

Definition 10. We say that B is A-locally independent
of A given C if the process

t B(X] | FAY9)

has an F-adapted version for all 3 € B. In this case
we write A 45 B | C.

This is slightly different from the definition in Didelez
(2008) in that S is not necessarily in the conditioning
set. This change in the definition makes it possible for a
process to be locally independent from itself given some
separating set. We define the local independence model,
Z(X, ), determined by X and ) via

(A,B|C) € I(X,\) < A\ B|C.

When there is no risk of ambiguity we say that B is lo-
cally independent of A given C, and we write A /4 B |
CandZ =Z(X,\).

The local independence model satisfies a number of the
properties listed in Section 3.

Lemma 11. Let 7 be a local independence model. Then
it satisfies left {redundancy, decomposition, weak union,
weak composition} and right {decomposition, composi-
tion} and furthermore (A, B | C') € Z whenever B = ().
If FA N FE = FANC holds for all A,C C V and
t € [0, T, then left intersection holds.

Definition 12. The local independence graph is the di-
rected graph with node set V' = {1,...,n} such that

a g pa(f) < ayp|Vi{al



By Theorem 8 and Lemma 11 a local independence
model that satisfies left intersection and is cancellative
satisfies the global Markov property w.r.t. the local in-
dependence graph. Left intersection holds by Lemma
11 whenever F* N FE¢ = FANC. Theorem 14 below
gives a general factorization condition on the distribu-
tion of the stochastic processes that ensures a local in-
dependence model to be cancellative. This condition is
satisfied for example by event and It processes.

Introduce for C' C V and 8 € V the shorthand notation
C,
AP =B | FP).
Furthermore, forae € A C V let

\I’fﬂ = Qﬁé(()‘?’Q)SStv (X:)SSt)

denote a cadlag process that is given in terms of a positive
functional 1f* of the history of the A4 and the X -
processes up to time ¢.

Definition 13. We say that P \-factorizes with compa-
tibility processes U4 > ( if forall A C V

1 A,
PZFH‘I’K -Q
t(xEA

with Q7' a probability measure on (£, F) such that
(X%)o<s<t for v € A are independent under Q7. Here,
Z{! is a deterministic normalization constant.

Theorem 14. The local independence model Z( X, \) is
cancellative if P A-factorizes.

Proof. Assume that A, {6} C V factorize w.r.t. C =
C1UCs,. In this proof, (i) and (ii) refer to the factorization
properties, see Definition 1. Let ¥ = C'U AU {d}. Then
by (i)

Uy = ] (V) oz, (XD)ozr) = 00000
for v € C1 U {6}, and by (ii)

\va’Y = %[}z((/\sCUAW)SSh I (X;y)‘?ﬁf) = \I/tCUAﬁ

fory e Cy U A.
It follows that
v vy
F, Ccu{s}, CcuA,
H\I,t,'v: H 5 {8}y H \Ptu'y
YEF yeC,U{6} yEC2UA

:\Iltlll/§7

cf. Figure 2. Note that U? is FCY4-adapted. Let 3 €
B. We have (A, B | C U {6}) € Z, hence with A} =

)\tCU{fs}ﬁ

B | FEOY = BB | FOAVEY | FOU4
= B\ | FEU4)
Eqr (N W}03 | FEU4)
T Eqr (V107 | FEUA)
Eqr (AW} | FOU4)
T Egr (] [ FOUA)
 Eor(Wwl | FP)
T Eqr (V] [ FF)
= \&P

where the second last identity follows from X for a €
A being independent of X7 for v € C'U {§} under Qf .
We conclude that (4, B | C') € Z, and this shows that Z
is cancellative. O

4.1 ITO PROCESSES

For X a multivariate Itd process with X fulfilling the
equation

¢
Xf‘:/ Adds + o (@)W
0

with W; a standard Brownian motion (o¢(a) > 0 deter-
ministic) we introduce the compatibility processes

t )\A,a 1 t >\A’0¢ 2
U = exp / - dej‘/( : ) ds | .
0 Us(a) 2 0 O'S(Oé>

The following result is a consequence of Theorem 7.3 in
Liptser and Shiryayev (1977) combined with Theorem
VIL.8.4 in Rogers and Williams (2000).

Proposition 15. If forall A C V

E (H <\IJ§"°“>1> =1 )

a€cA

then P \-factorizes.

It can be shown that the linear SDE introduced earlier
satisfies the integrability condition (2).

4.2 EVENT PROCESSES

For X a multivariate counting process with X* having
intensity process A* we introduce the compatibility pro-
cesses

¢ ¢
\IJ,‘;"“ = exp </ log()\?;a)dX? —/ )\?’O‘ds) )
0 0



Here )\;4;0‘ = lim, _,,_ A;“va denotes the left continuous
(and thus predictable) version of the intensity process
MY = B(AY | FA). With these compatibility pro-
cesses, Proposition 15 above holds exactly as formulated
for Itd processes, see e.g. Sokol and Hansen (2015) for
details and weak conditions ensuring that (2) holds.

S LEARNING ALGORITHMS

In this section, we assume that we have access to a lo-
cal independence oracle that can answer whether or not
some independence statement is in Z. In applications,
the oracle would of course be substituted with statisti-
cal tests of local independence. The local independence
model, Z, is assumed to be faithful to some DMG G, i.e.
7 =Z(Go).

Meek (2014) described a related algorithm for learning
local independence graphs which is, however, not com-
plete when the system of stochastic processes is only par-
tially observed. In the FCI algorithm, which learns an
equivalence class of MAGs (Maximal Ancestral Graphs),
one can exploit the fact that Markov equivalent graphs
have the same adjacencies, so the learning algorithm can
first find this so-called skeleton of the graph and then ori-
ent the edges by applying a finite set of rules (Zhang,
2008; Ali et al., 2009). Since Markov equivalent DMGs
may have different adjacencies, we cannot straightfor-
wardly copy the FCI strategy here, and our procedure is
more complicated.

5.1 A THREE-STEP PROCEDURE

As described in Section 3.1.2, we know that there exists
a unique graph which is Markov equivalent to Gy and a
supergraph of all DMGs in [Gy] and we denote this graph
by A. In this section we give a learning algorithm ex-
ploiting this fact. Having learned the maximal DMG N
we can subsequently construct a DMEG to summarize
the Markov equivalence class.

The characterization of Markov equivalence of DMGs in
Mogensen and Hansen (2018) implies a learning algo-
rithm to construct A~ which is Markov equivalent to Gg.
For each pair of nodes «, 3 there exists a well-defined
list of independence tests such that o« — 3 is in A/ if and
only if all requirements in the list is met by Z(Gy), ana-
logously for the edge o <+ 3 (see conditions (p1)-(p4)
and (s1)-(s3) in the supplementary material). This means
that we can use these lists of tests to construct a maxi-
mal graph A such that Z(N) = Z(Gy). However such
an algorithm would perform many more independence
tests than needed and one can reduce the number of in-
dependence tests conducted by a kind of preprocessing.
Our proposed algorithm starts from the complete DMG

input : alocal independence oracle for Z
output: a DMG, G = (V, E)
initialize G as the complete DMG, set n = 0, initialize
Ls=0,L, =0
while n < maxgey [pag(5)| do
foreach o — 8 € F do
foreach C' C pag(53)\{a},
if a 45 (| C then
delete & — B and o +> B from G;
update L, = L, U {(a, 5| C)};
else
| update £,, = L, U{{a, 3| C)}:
end

C|=ndo

end
end
update n =n + 1;

end

setn =1;

while n < max, gev |Dg(a, 5)| do

foreach « — 5 € F do

foreach C C Dg (o, B),

if o /4 8| C then
delete « — (B and « <+ (8 from G;
update L5 = L, U{(a,, 3| C) };

C|=ndo

else
| update £,, = L, U{{a, 3| C)}:
end
end
update n =n + 1;
end
end

return G, L., L,

Subalgorithm 1: Separation step

and removes edges that are not in Gy by an FCI-like ap-
proach, exploiting properties of DMGs and p-separation,
and then in the end applies the potential parents and po-
tential siblings definitions (see the supplementary mate-
rial), but only if and when needed.

In this section we describe three steps (and three subalgo-
rithms): a separation, a pruning, and a potential step, and
then we argue that we can construct a sound and com-
plete algorithm by using these steps. For all three steps,
we sequentially remove edges starting from the complete
DMG on nodes V. We will also along the way update
a set of triples £, corresponding to independence state-
ments that we know to be in Z and a set of triples £,
corresponding to independence statements that we know
to not be in Z. We keep track of this information as we
will reuse some of it to reduce the number of indepen-
dence tests that we conduct. Figure 3 illustrates what



input : a separability graph, S, a set of known
independencies L
output: a DMG
initialize G = S;
foreach unshielded W -structure in S, ,(c, 3,7) do
if 5 € Sq 4 such that (., | Sa,) € L, then
if § <> v is in G then
‘ delete 5 <> ~ from G;
end
else
if 3 — ~v is in G then
| delete  — 7 from G;
end

end
end
return G

Subalgorithm 2: Pruning step

each subalgorithm outputs for an example G.

5.1.1 The separation step

When we have an independence model Z over V', we will
for o, 8 € V say that 3 is inseparable from « if there
exists no C' C V' \ {«} such that (o, 8 | C) € T. Let

u(B,Z) = {y € V| B is inseparable from 7 in Z}.

The purpose of the first step is to output a separability
graph. The separability graph of an independence model
T is the DMG such that the edge o — S is in the DMG
if and only if @ € u(f,7) and the edge o <+ (3 is in the
DMG if and only if &« € u(8,Z) and 8 € u(e, I).

We say that ~ is directedly collider connected to (3 if
there exists a non-trivial walk from ~ to 3 such that every
non-endpoint node on the walk is a collider and such that
the final edge has a head at 5. As shorthand, we write
v — (. We define the separator set of 8 from c,

Dg(a, B) = {v € an(a, ) | v = B} \ {a}.

If there exists a subset of V' \ {a} that separates 8 from
«a, then this set does (Mogensen and Hansen, 2018). This
set will play a role analogous to that of the set Possible-
D-Sep in the FCT algorithm (Spirtes et al., 2000).

In the first part of Subalgorithm 1, we consider pairs
of nodes, «, [, and test if they can be separated by
larger and larger conditioning sets, though only subsets
of pag (/) \ {a} in the current G. In the second part, we
use all subsets of the current separator set Dg(c, 3) to
determine separability of each pair of nodes. Note that
separability is not symmetric, hence, one needs to de-
termine separability of g from « and of « from 3. The

input : alocal independence oracle for Z, a DMG
G = (V, E), a set of known dependencies L,
output: a DMG
foreach o = 5 € E do
ifZ(G —e)N L, =0 then
if o ¢ pp(B,7) then
‘ delete o — Bin G;
end
end
end
foreach o <& 3 € F do
if Z(G — e) N L, = () then
if o ¢ ps(B,Z) then
| delete a <+ Bin G;
end
end

end
return g

Subalgorithm 3: Potential step

candidate separator sets may be chosen in more-or-less
efficient ways, but we will not discuss this aspect of the
algorithm (Colombo et al., 2012; Claassen et al., 2013).

Lemma 16. Subalgorithm 1 outputs the separability
graph of Z, S, and furthermore ' C S.

5.1.2 The pruning step

Let S denote the graph in the output of Subalgorithm
1. One can use some of the information encoded by the
graph along with the set £, to further prune the graph.
For this purpose, we consider W -structures which are
triples of nodes «, 3, such that « # 8 # ~, and a —
B *— 7. We denote such a triple by ,, (v, 8, 7). We will
say that a W-structure is unshielded if the edge o — v
is not in the graph. For every unshielded W -structure
w(a, B,7), there exists exactly one triple (o, | C) in
L (output from Subalgorithm 1) and we let S, - denote
the separating set C'.

Lemma 17. Subalgorithm 2 outputs a supergraph of V.

5.1.3 Potential step

In the final step, we sequentially consider each edge
which is still in the graph. If G = (V,E) and e € E
we let G — e denote the DMG (V, E \ {e}). We then
check if Z(G — e) N L, = 0. If not, we leave this edge
in the graph. On the other hand, if the intersection is the
empty set, we check if the edge is between a pair of po-
tential parents/siblings using the definition of these sets.
That is, in the case of a directed edge we check each of
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Figure 3: Illustration of the learning algorithm. The DMG G is the underlying graph and we have access to Z = Z(Gy).
Subalgorithm 1 outputs S, the separability graph of Z(Gp). Subalgorithm 2 prunes S and outputs S. Note e.g. the
unshielded W-structure & — 8 — ¢ in S. The DMG N is the maximal element in [Gy]. Note that 6 — ¢ has been
removed by Subalgorithm 3 using the potential parent criteria. The final graph A is the DMEG constructed from .

Figure 4: Left: linear SDE example (see Figure 1).
Right: the DMEG after marginalization over ~. It is
not possible to decide if a loop is directed or bidirected
from the independence model only and we choose only
to draw the directed loop and to not present it as dashed.

the conditions (pl)-(p4) and in the case of a bidirected
edge each of the conditions (s1)-(s3); both sets of con-
ditions are in the supplementary material. Note that if
a € ps(B,Z), then also 3 € ps(a, 7).

Theorem 18. The algorithm defined by first doing the
separation step, then the pruning, and finally the potential
step outputs A, the maximal element of [Gy].

Using properties of maximal DMGs, Mogensen and
Hansen (2018) showed how one can construct the DMEG
efficiently. The learning algorithm that is defined by
first constructing A" and then constructing the DMEG is
sound and complete in the sense that if an edge is absent
in the DMEG, then it is also absent in any element of [G]
and therefore also in Gy. If it is present and not dashed in
the DMEG, then it is present in all elements of [Gy] and
therefore also in Gy. Finally, if it is present and dashed
in the DMEG, then there exist G1,G2 € [Go] such that
the edge is present in G; and absent in G5 and therefore
it is impossible to determine if the edge is in Gy using

knowledge of Z(Gy) only.

One could also skip the potential step to reduce the com-
putational requirements. The resulting DMG is then a
supergraph of the true graph. A small simulation study
(supplementary material) indicates that one could save
quite a number of tests and still get close to the true AV

6 CONCLUSION AND DISCUSSION

We have shown that for a given directed graph with pu-
separation it is possible to specify abstract properties that
ensure equivalence of the pairwise and global Markov
properties in asymmetric independence models. We have
shown that under certain conditions these properties hold
in local independence models of 1t6 diffusions and event
processes, extending known results.

Assuming faithfulness, we have given a sound and com-
plete learning algorithm for the Markov equivalence
class of directed mixed graphs representing a marginal-
ized local independence model. Faithfulness is not an
innocuous assumption and it remains an open research
question how common this property is in different classes
of stochastic processes.
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