
Sylvester Normalizing Flows for Variational Inference

Rianne van den Berg∗
Informatics Institute

University of Amsterdam

Leonard Hasenclever∗
Department of statistics

University of Oxford

Jakub M. Tomczak
Informatics Institute

University of Amsterdam

Max Welling †
Informatics Institute

University of Amsterdam

Abstract

Variational inference relies on flexible ap-
proximate posterior distributions. Normaliz-
ing flows provide a general recipe to con-
struct flexible variational posteriors. We in-
troduce Sylvester normalizing flows, which
can be seen as a generalization of planar
flows. Sylvester normalizing flows remove the
well-known single-unit bottleneck from planar
flows, making a single transformation much
more flexible. We compare the performance
of Sylvester normalizing flows against pla-
nar flows and inverse autoregressive flows and
demonstrate that they compare favorably on
several datasets.

1 INTRODUCTION

Stochastic variational inference [Hoffman et al., 2013]
allows for posterior inference in increasingly large and
complex problems using stochastic gradient ascent. In
continuous latent variable models, variational inference
can be made particularly efficient through the amortized
inference, in which inference networks amortize the cost
of calculating the variational posterior for a data point
[Gershman and Goodman, 2014]. A particularly suc-
cessful class of models is the variational autoencoder
(VAE) in which both the generative model and the infer-
ence network are given by neural networks, and sampling
from the variational posterior is efficient through the non-
centered parameterization [Kingma and Welling, 2014],
also known as the reparameterization trick [Kingma and
Welling, 2013, Rezende et al., 2014].

∗Equal contribution
†Also affiliated with the Canadian Institute for Advanced

Research (CIFAR)

Despite its success, variational inference has drawbacks
compared to other inference methods such as MCMC.
Variational inference searches for the best posterior ap-
proximation within a parametric family of distributions.
Hence, the true posterior distribution can only be recov-
ered exactly if it happens to be in the chosen family.
In particular, with widely used simple variational fami-
lies such as diagonal covariance Gaussian distributions,
the variational approximation is likely to be insufficient.
More complex variational families enable better poste-
rior approximations, resulting in improved model perfor-
mance. Therefore, designing tractable and more expres-
sive variational families is an important problem in vari-
ational inference [Nalisnick et al., 2016, Salimans et al.,
2015, Tran et al., 2015].

Rezende and Mohamed [2015] introduced a general
framework for constructing more flexible variational dis-
tributions, called normalizing flows. Normalizing flows
transform a base density through a number of invert-
ible parametric transformations with tractable Jacobians
into more complicated distributions. They proposed two
classes of normalizing flows: planar flows and radial
flows. While effective for small problems, these can be
hard to train and often many transformations are required
to get good performance. For planar flows, Kingma
et al. [2016] argue that this is due to the fact that the
transformation used acts as a bottleneck, warping one
direction at a time. Having a large number of flows
makes the inference network very deep and harder to
train, empirically resulting in suboptimal performance.
Kingma et al. [2016] proposed inverse auto-regressive
flows (IAF), achieving state of the art results on dynami-
cally binarized MNIST at the time of publication. While
very successful, IAFs require a very large number of pa-
rameters. Due to the large number of parameters IAFs
cannot amortize all flow parameters. Instead amortiza-
tion is achieved through an additional context vector that
is fed into each flow step.

Paper contribution In this paper, we use Sylvester’s
determinant identity to introduce Sylvester normalizing
flows (SNFs). This family of flows is a generalization
of planar flows, removing the bottleneck. We compare
a number of different variants of SNFs and show that
they compare favorably against planar flows and IAFs.
We show that one specific variant of SNFs is related to
IAFs, while requiring many fewer parameters due to di-
rect amortization of all flow parameters.

2 VARIATIONAL INFERENCE

Consider a probabilistic model with observations x and
continuous latent variables z and model parameters θ. In
generative modeling we are often interested in perform-
ing maximum (marginal) likelihood learning of the pa-
rameters θ of the latent-variable model pθ(x, z). This
requires marginalization over the unobserved latent vari-
ables z. Unfortunately, this integration is generally in-
tractable. Variational inference [Jordan et al., 1999] in-
stead introduces a variational approximation qφ(z|x) to
the posterior with learnable parameters φ, to construct a
lower bound on the log marginal likelihood:

log pθ(x) ≥ log pθ(x)− KL(qφ(z|x) || p(z|x)) (1)
= Eqφ [log pθ(x|z)]− KL(qφ(z|x) || p(z))

(2)

=: −F(θ, φ) (3)

This bound is known as the evidence lower bound
(ELBO) and F is referred to as the variational free en-
ergy. In equation (2), the first term represents the re-
construction error, and the second term is the Kullback-
Leibler (KL) divergence from the approximate posterior
to the prior distribution, which acts as a regularizer. In
this paper we consider variational autoencoders (VAEs),
where both pθ(x|z) and qφ(z|x) are distributions whose
parameters are given by neural networks. The param-
eters θ and φ of the generative model and inference
model, respectively, are trained jointly through stochastic
minimisation of F which can be made efficient through
the reparameterization trick [Kingma and Welling, 2013,
Rezende et al., 2014].

From equation (1) we see that the better the variational
approximation to the posterior the tighter the ELBO. The
simplest, but probably most widely used choice of vari-
ation distribution qφ(z|x) is diagonal-covariance Gaus-
sians of the form N (µµµ(x), σσσ2(x)) However, with such
simple variational distributions the ELBO will be fairly
loose, resulting in biased maximum likelihood estimates
of the model parameters θ (see Fig. 2) and harming gen-
erative performance. Thus, for variational inference to
work well, more flexible approximate posterior distribu-
tions are needed.

Figure 1: Since the ELBO is only a lower bound on the
log marginal likelihood, they do not share the same local
maxima. The looser the ELBO is the more this can bias
maximum likelihood estimates of the model parameters.

2.1 NORMALIZING FLOWS

Rezende and Mohamed [2015] propose a way to con-
struct more flexible posteriors by transforming a sim-
ple base distribution with a series of invertible transfor-
mations (known as normalizing flows) with easily com-
putable Jacobians. The resulting transformed density af-
ter one such transformation f is as follows [Tabak and
Turner, 2013, Tabak and Vanden-Eijnden, 2010]:

p1(z′) = p0(z)

∣∣∣∣det

(
∂f(z)

∂z

)∣∣∣∣−1 , (4)

where z′ = f(z), z, z′ ∈ RD and f : RD 7→ RD is
an invertible function. In general the cost of computing
the Jacobian will be O(D3). However, it is possible to
design transformations with more efficiently computable
Jacobians.

This strategy is used in variational inference as fol-
lows: first, a stochastic variable is drawn from a simple
base posterior distribution such as a diagonal Gaussian
N (z0|µ(x),σ2(x)). The sample is then transformed
with a number of flows. After applying K flows, the
final latent stochastic variables are given by zK = fK ◦
. . . f2 ◦ f1(z0). The corresponding log-density is then
given by:

log qK(zK |x) = log q0(z0|x)

−
K∑
k=1

log

∣∣∣∣det

(
∂fk(zk−1;λk(x))

∂zk−1

)∣∣∣∣, (5)

where λk are the parameters of the k-th transforma-
tion. Given variational posterior qφ(z|x) = qK(z|x)
parametrized by a normalizing flow of length K, the vari-

ational objective can be rewritten as:

F(θ, φ) = Eqφ [log qφ(z|x)− log pθ(x, z)] (6)
= Eq0 [log q0(z0|x)− log pθ(x, z)]

− Eq0

[
K∑
k=1

log

∣∣∣∣det

(
∂fk(zk−1;λk(x))

∂zk−1

)∣∣∣∣
]
.

(7)

Normalizing flows are normally used with amortized
variational inference. Instead of learning variational pa-
rameters for each data point, both µ and σ, as well as all
the flow parameters are outputs of a deep neural network
conditioned on x. This is referred to as the inference net-
work.

Rezende and Mohamed [2015] introduced a normalizing
flow, called planar flow, for which the Jacobian determi-
nant could be computed efficiently. A single transforma-
tion of the planar flow is given by:

z′ = z + uh(wT z + b). (8)

Here, u,w ∈ RD, b ∈ R and h is a suitable smooth ac-
tivation function. Rezende and Mohamed [2015] show
that for h = tanh, transformations of this kind are in-
vertible as long as uTw ≥ −1.

By the Matrix determinant lemma the Jacobian of this
transformation is given by:

det
∂z′

∂z
= det

(
I + uh′(wT z + b)wT

)
= 1 + uTh′(wT z + b)w, (9)

where h′ denotes the derivative of h and which can be
computed in O(D) time.

In practice, many planar flow transformations are re-
quired to transform a simple base distribution into a flex-
ible distribution, especially for high dimensional latent
spaces. Kingma et al. [2016] argue that this is related
to the term uh(wT z + b) in Eq. (8), which effectively
acts as a single-neuron MLP. In the next section we will
derive a generalization of planar flows, which does not
have a single-neuron bottleneck, while still maintaining
the property of an efficiently computable Jacobian deter-
minant.

3 SYLVESTER NORMALIZING
FLOWS

Consider the following more general transformation sim-
ilar to a single layer MLP with M hidden units and a
residual connection:

z′ = z + Ah(Bz + b), (10)

with A ∈ RD×M ,B ∈ RM×D, b ∈ RM , and M ≤ D.
The Jacobian determinant of this transformation can be
obtained using Sylvester’s determinant identity, which is
a generalization of the matrix determinant lemma.

Theorem 1 (Sylvester’s determinant identity). For all
A ∈ RD×M ,B ∈ RM×D,

det (ID + AB) = det (IM + BA) , (11)

where IM and ID are M and D-dimensional identity
matrices, respectively.

When M < D, the computation of the determinant of a
D ×D matrix is thus reduced to the computation of the
determinant of an M ×M matrix.

Using Sylvester’s determinant identity, the Jacobian de-
terminant of the transformation in Eq. (10) is given by:

det

(
∂z′

∂z

)
= det (IM + diag (h′(Bz + b)) BA) .

(12)
Since Sylvester’s determinant identity plays a crucial
role in the proposed family of normalizing flows, we will
refer to them as Sylvester normalizing flows.

3.1 PARAMETERIZATION OF A AND B

In general, the transformation in (10) will not be invert-
ible. Therefore, we propose the following special case of
the above transformation:

z′ = z + QRh(R̃QT z + b) = φ(z), (13)

where R and R̃ are upper triangular M ×M matrices,
and

Q = (q1 . . .qM)

with the columns qm ∈ RD forming an orthonormal set
of vectors. By theorem 1, the determinant of the Jacobian
J of this transformation reduces to:

det J = det
(
IM + diag

(
h′(R̃QT z + b)

)
R̃QTQR

)
= det

(
IM + diag

(
h′(R̃QT z + b)

)
R̃R

)
,

(14)

which can be computed in O(M), since R̃R is also up-
per triangular. The following theorem gives a sufficient
condition for this transformation to be invertible.

Theorem 2. Let R and R̃ be upper triangular matrices.
Let h : R −→ R be a smooth function with bounded,
positive derivative. Then, if the diagonal entries of R
and R̃ satisfy riir̃ii > −1/‖h′‖∞ and R̃ is invertible,
the transformation given by (13) is invertible.

Proof. Case 1: R and R̃ diagonal

Recall that one-dimensional real functions with strictly
positive derivatives are invertible. The columns of
Q are orthonormal and span a subspace W =
span{q1, . . . ,qM} of RD. Let W⊥ denote its orthog-
onal complement. We can decompose z = z‖ + z⊥,
where z‖ ∈ W and z⊥ ∈ W⊥. Similarly we can decom-
pose z′ = z′‖ + z′⊥. Clearly, QRh(R̃QT z + b) ∈ W .
Hence φ only acts on z‖ and z⊥ = φ(z)⊥ = z′⊥. Thus,
it suffices to consider the effect of φ on z‖. Multiplying
(13) by QT from the left gives:

QT z′︸ ︷︷ ︸
v′

= QT z︸︷︷︸
v

+Rh(R̃ QT z︸︷︷︸
v

+b)

= (f1(v1), . . . , fM (vM))T , (15)

where the vectors v and v′ are the respective coordi-
nates of z‖ and z′‖ w.r.t. q1, . . . ,qM . The dimen-
sions in (15) are completely independent and each di-
mension is transformed by a real function fi(v) = v +
riih(r̃iiv + bi). Consider a single dimension i of (15).
Since ‖h′‖∞riir̃ii > −1, we have f ′i(v) > 0 and thus
fi is invertible. Since all dimensions are independent and
the transformation is invertible in each dimension we can
find f−1 : W → W such that z‖ = f−1(z′‖). Hence we
can write the inverse of φ as:

φ−1(z′) = z′⊥︸︷︷︸
z⊥

+ f−1(z′‖)︸ ︷︷ ︸
z‖

= z, (16)

Case 2: R triangular, R̃ diagonal

Let us now consider the case when R is an upper triangu-
lar matrix. By the argument for the diagonal case above,
it suffices to consider the effect of the transformation in
W . Multiplying (13) by QT from the left gives:

QT z′︸ ︷︷ ︸
v′

= QT z︸︷︷︸
v

+Rh(R̃ QT z︸︷︷︸
v

+b) (17)

where the vectors v and v′ contain the respective coordi-
nates of z‖ and z′‖ w.r.t. q1, . . . ,qM . As in the diagonal
case consider the functions fi(v) = v + riih(r̃iiv + bi).
Since ‖h′‖∞riir̃ii > −1, we have f ′i(v) > 0 and thus fi
is invertible. Let us rewrite (17) in terms of fi:

v′1 = f1(v1) +

M∑
j=2

r1jh(r̃jjvj + bj) (18)

. . .

v′k = fk(vk) +

M∑
j=k+1

rkjh(r̃jjvj + bj) (19)

. . .

v′M = fM (vM) (20)

Since fM is invertible we can write vM = f−1M (v′M).
Now suppose we have expressed {vj ,∀j > k} in terms
of {v′j ,∀j > k}. Then

fk(vk) = v′k −
M∑

j=k+1

rkjh(r̃jjvj + bj)︸ ︷︷ ︸
some function of {v′j ,∀j>k}

=: gk(v′k, v
′
k+1, . . . , v

′
M) (21)

vk = f−1k (gk(v′k, v
′
k+1, . . . , v

′
M)).

Thus we have expressed {vj ,∀j ≥ k} in terms of
{v′j ,∀j ≥ k}. By induction, we can express {vj ,∀j}
in terms of {v′j ,∀j} and hence the transformation is in-
vertible.

Case 3: R and R̃ triangular

Now consider the general case when R̃ is triangular. As
before we only need to consider the effect of the trans-
formation inW .

QT z′︸ ︷︷ ︸
v′

= QT z︸︷︷︸
v

+Rh(R̃ QT z︸︷︷︸
v

+b) (22)

Let g be the function g(v) = R̃v. By assumption, g is
invertible with inverse g−1. Multiplying (22) by R̃ gives:

g(v′) = g(v) + R̃Rh(g(v) + b)︸ ︷︷ ︸
=:f(g(v))

(23)

Since R̃R is upper triangular with diagonal entries
r̃jjrjj , f is covered by case 2 considered before and is
invertible. Thus, v can be written as:

v = g−1(f−1(g(v′))). (24)

Hence the transformation in (22) is invertible.

3.2 PRESERVING ORTHOGONALITY OF Q

Orthogonality is a convenient property, mathematically,
but hard to achieve in practice. In this paper we consider
three different flows based on the theorem above and var-
ious ways to preserve the orthogonality of Q. The first
two use explicit differentiable constructions of orthogo-
nal matrices, while the third variant assumes a specific
fixed permutation matrix as the orthogonal matrix.

Orthogonal Sylvester flows. First, we consider a
Sylvester flow using matrices with M orthogonal
columns (O-SNF). In this flow we can choose M < D,
and thus introduce a flexible bottleneck. Similar to
[Hasenclever et al., 2017], we ensure orthogonality of

Q by applying the following differentiable iterative pro-
cedure proposed by [Björck and Bowie, 1971, Kovarik,
1970]:

Q(k+1) = Q(k)

(
I +

1

2

(
I−Q(k)>Q(k)

))
. (25)

with a sufficient condition for convergence given by
‖Q(0)>Q(0) − I‖2 < 1. Here, the 2-norm of a matrix
X refers to ‖X‖2 = λmax(X), with λmax(X) repre-
senting the largest singular value of X. In our experi-
mental evaluations we ran the iterative procedure until
‖Q(k)>Q(k)−I‖F ≤ ε, with ‖X‖F the Frobenius norm,
and ε a small convergence threshold. We observed that
running this procedure up to 30 steps was sufficient to en-
sure convergence with respect to this threshold. To min-
imize the computational overhead introduced by orthog-
onalization we perform this orthogonalization in parallel
for all flows.

Since this orthogonalization procedure is differentiable,
it allows for the calculation of gradients with respect to
Q(0) by backpropagation, allowing for any standard op-
timization scheme such as stochastic gradient descent to
be used for updating the flow parameters.

Householder Sylvester flows. Second, we study
Householder Sylvester flows (H-SNF) where the orthog-
onal matrices are constructed by products of House-
holder reflections. Householder transformations are re-
flections about hyperplanes. Let v ∈ RD, then the re-
flection about the hyperplane orthogonal to v is given
by:

H(z) = z− vvT

‖v‖2
z (26)

It is worth noting that performing a single Householder
transformation is very cheap to compute, as it only re-
quires D parameters. Chaining together several House-
holder transformations results in more general orthog-
onal matrices, and it can be shown [Bischof and Sun,
1997, Sun and Bischof, 1995] that any M ×M orthogo-
nal matrix can be written as the product ofM−1 House-
holder transformations. In our Householder Sylvester
flow, the number of Householder transformations H is
a hyperparameter that trades off the number of parame-
ters and the generality of the orthogonal transformation.
Note that the use of Householder transformations forces
us to use M = D, since Householder transformation re-
sult in square matrices.

Triangular Sylvester flows. Third, we consider a tri-
angular Sylvester flow (T-SNF), in which all orthogo-
nal matrices Q alternate per transformation between the

identity matrix and the permutation matrix correspond-
ing to reversing the order of z. This is equivalent to al-
ternating between lower and upper triangular R̃ and R
for each flow.

3.3 AMORTIZING FLOW PARAMETERS

When using normalizing flows in an amortized inference
setting, the parameters of the base distribution as well as
the flow parameters can be functions of the data point x
[Rezende and Mohamed, 2015]. Figure 2 (left) shows a
diagram of one SNF step and the amortization procedure.
The inference network takes datapoints x as input, and
provides as an output the mean and variance of z0 such
that z0 ∼ N (z|µ0, σ0). Several SNF transformations are
then applied to z0 → z1 → . . . zK , producing a flexible
posterior distribution for zK . All of the flow parameters
(R, R̃ and Q for each transformation) are produced as
an output by the inference network, and are thus fully
amortized.

4 RELATED WORK

4.1 NORMALIZING FLOWS FOR
VARIATIONAL INFERENCE

A number of invertible transformations with tractable Ja-
cobians have been proposed in recent years. Rezende and
Mohamed [2015] first discussed such transformations in
the context of stochastic variation inference, coining the
term normalizing flows.

Rezende and Mohamed [2015] proposed two different
parametric families of transformations with tractable Ja-
cobians: planar and radial flows. While effective for
small problems, these transformations are hard to scale
to large latent spaces and often require a large number
of transformations. The transformation corresponding to
planar flows is given in Eq. (8).

More recently, a successful class of flows called Inverse
Autoregressive Flows was introduced in [Kingma et al.,
2016]. As the name suggests, one IAF transformation
can be seen as the inverse of an autoregressive transfor-
mation. Consider the following autoregressive transfor-
mation:

z0 = µ̄0 + σ̄0 · ε0
zi = µ̄i(z1:i−1) + σ̄i(z1:i−1) · εi, i = 1, . . . , D (27)

with ε ∼ N (0, I). This transformation models the dis-
tribution over the variable z with an autoregressive fac-
torization p(z) = p(z0)

∏D
i=1 p(zi|zi−1, . . . , z0). Since

the parameters of transformation for zi are dependent on
z1:i−1, this procedure requiresD sequential steps to sam-

Figure 2: Different amortization strategies for Sylvester normalizing flows and Inverse Autoregressive Flows. Left:
our inference network produces amortized flow parameters. This strategy is also employed by planar flows. Right:
IAF has a large number of parameters, and introduces a measure of x dependence through a context h(x). This context
acts as an additional input for each transformation. The flow parameters themselves are independent of x.

ple a single vector z. This is undesirable for variational
inference, where sampling occurs for every forward pass.

However, the inverse transformation (which exists if
σ̄i > 0 ∀i) is easy to sample from:

εi =
zi − µ̄i(z1:i−1)

σ̄i(z1:i−1)
. (28)

For this inverse transformation, εi is no longer depen-
dent on the transformation of εj for j 6= i. Hence,
this transformation can be computed in parallel: ε =
(z − µ̄(z))/σ̄(z). Rewriting σi(z1:i−1) = 1/σ̄i(z1:i−1)
and µi(z1:i−1) = −µ̄(z1:i−1)/σ̄i(z1:i−1), yields the IAF
transformation:

zti = µti(z
t−1
1:i−1) + σti(z

t−1
1:i−1) · zt−1i , i = 1, ..., D.

(29)

Starting from z0 ∼ N (0, I), multiple IAF transforma-
tions can be stacked on top of each other to produce flex-
ible probability distributions.

If µt and σt depend on zt−1 linearly, IAF can model
full covariance Gaussian distributions. In order to move
away from Gaussian distributions to more flexible dis-
tributions, it is important that µt and σt are nonlinear
functions of zt−1.

In practice, wide MADEs [Germain et al., 2015] or deep
PixelCNN layers [van den Oord et al., 2016] are needed
to increase the flexibility of IAF transformations. This
results in transformations with a large number of pa-
rameters. As shown in Figure 2 (right), amortization is
achieved through a context h(x) that is fed into the au-
toregressive networks as an additional input at every IAF
step.

Our Triangular Sylvester flows are strongly related to
mean-only IAF transformations (σt = 1). As mentioned

in Kingma et al. [2016], between every IAF transforma-
tion the order of z is reversed, in order to ensure that on
average all dimensions get warped equally. In T-SNF, the
same effect is achieved by using the permutation matrix
that reverses the order of z in every other transforma-
tion as the orthogonal matrix. However, mean-only IAF
is a volume-preserving transformation, i.e. the determi-
nant of the Jacobian has absolute value one. T-SNF is
not volume preserving due to the nonzero elements on
the diagonals of R and R̃. Note, that in Kingma et al.
[2016] it was shown that the empirical difference in per-
formance between mean-only IAF and the general IAF
transformation is negligible.

The most important difference between IAF and T-SNF
is the way parameters are amortized. In T-SNF, R and R̃
are directly amortized functions of the input x (see Fig.
2). This is equivalent to amortizing the MADE parame-
ters in mean-only IAF. Having input dependent MADE
parameters allows for flexible transformations with fewer
parameters.

Householder Sylvester flows can also be seen as a
non-linear extension of Householder flows [Tomczak
and Welling, 2016]. Householder flows are volume-
preserving flows, which transform the variational pos-
terior with a diagonal covariance matrix to a full-
covariance posterior. Householder flows are a special
case of H-SNF if h(z) = z, R is the identity matrix,
and the residual connection in Eq. (13) is left out.

4.2 NORMALIZING FLOWS FOR DENSITY
ESTIMATION

A number of invertible transformations have been pro-
posed in the context of density estimation. Note that
density estimation requires the inverse of the flow to be
tractable. Having a provably invertible transformation is

not the same as being able to compute the inverse.

For density estimation with normalizing flows, we are
interested maximizing the log-likelihood of the data:

log p(x) = log p0(f−1(x)) + log

∣∣∣∣det

(
∂f−1(x)

∂x

)∣∣∣∣ .
(30)

Thus, the goal is to transform a complicated data dis-
tribution back to a simple distribution. In general, both
directions of an invertible transformations need not be
tractable. Hence, methods developed for density estima-
tion are generally not directly applicable to variational
inference.

Non-linear independent component estimation (NICE,
Dinh et al. [2014]) and the related Real NVP [Dinh et al.,
2016], and Masked Autoregressive Flow (MAF, Papa-
makarios et al. [2017]) are recent examples of normal-
izing flows for density estimation.

In NICE, each transformation splits the variables into
two disjoint subsets zA, zB . One of the subsets is trans-
formed as z′A = zA + f(zB), while zB is left un-
changed. In the next transformation a different subset of
variables is transformed. This results in a transformation
which is trivially invertible and has a tractable Jacobian.
Real NVP uses the same fundamental idea. Appealingly,
because of the tractable inverse, NICE and real NVP
can generate data and estimate density with one forward
pass. However due to fact that only a subset of variables
is updated in each transformation many transformations
are needed in practice. Rezende and Mohamed [2015]
compared NICE to planar flows in the context of varia-
tional inference and found that planar flows empirically
perform better.

Finally, Papamakarios et al. [2017] showed that fitting an
MAF can be seen as fitting an implicit IAF from the data
distribution to the base distribution. However, generat-
ing data from an MAF density model requires D passes,
making it unappealing for variational inference.

5 NUMBER OF PARAMETERS

Here, we briefly compare the number of parameters
needed by planar flows, IAF and the three Sylvester nor-
malizing flows. We denote the size of the stochastic vari-
ables z with D, and the number of output units of the
inference network with E.

Planar flows use amortized parameters u,w ∈ RD and
b ∈ R for each flow transformation. Therefore, the num-
ber of parameters related to K flow transformations is
equal to 2EDK + EK.

For the implementation of IAF as described in Section 6,
the inference network needs to produce a context of size
C, where C denotes the width of the MADE layers. The
total number of flow related learnable parameters then
comes down to EC +K × (C2 + 3CD).

In the case of Orthogonal Sylvester flows with a bottle-
neck of size M , we require KE × (MD + 2M2 + M)
parameters. For Householder Sylvester flows with H
Householder reflections per flow transformation, KE ×
(HD + 2D2 + D) parameters are needed. Finally, for
triangular Sylvester flows KE × (2D2 +D) parameters
require optimization.

Planar flows require the smallest number of parameters
but generally result in worse results. IAFs on the other
hand require a number of parameters that is quadratic
in the width of the MADE layers. For good results this
has to be quite large. In contrast, for SNFs the number
of parameters is quadratic in the dimension of the latent
space and while large, this can still be amortized.

6 EXPERIMENTS

We perform empirical studies of the performance of
Sylvester flows on four datasets: statically binarized
MNIST, Freyfaces, Omniglot and Caltech 101 Silhou-
ettes. The baseline model is a plain VAE with a fully fac-
torized Gaussian distribution. We furthermore compare
against planar flows and Inverse Autoregressive Flows of
different sizes.

We use annealing to optimize the lower bound, where
the prefactor of the KL divergence is linearly increased
from 0 to 1 during 100 epochs as suggested by Bowman
et al. [2015] and Sønderby et al. [2016]. A learning rate
of 0.0005 was used in all experiments. In order to obtain
estimates for the negative log likelihood we used impor-
tance sampling (as proposed in [Rezende et al., 2014]).
Unless otherwise stated, 5000 importance samples were
used.

In order to assess the performance of the different flows
properly, we use the same base encoder and decoder ar-
chitecture for all models. We use gated convolutions and
transposed convolutions as base layers for the encoder
and decoder architecture respectively. The inference net-
work consists of several gated convolution layers that
produce a hidden unit vector. After being flattened, these
hidden units act as an input to two fully connected layers
that predict the mean and variance of z0.

For planar and Sylvester flows, the flattened hidden units
are passed to a separate linear layer that output the amor-
tized flow parameters. For IAF, the flattened hidden units
are also passed to a linear layer to produce the context

vector hcontext(x). For details of the architecture see
Section A of the appendix. In all models the latent space
is of dimension 64.

4 8 16
Number of flows

83.5

84.0

84.5

85.0

85.5

86.0

86.5

-E
LB

O

VAE
Planar
IAF(320)

IAF(640)
IAF(1280)
O-SNF(16)

O-SNF(32)
H-SNF(8)
T-SNF

Figure 3: The negative evidence lower bound for static
MNIST. The results for H-SNF with 4 reflections per or-
thogonal matrix are left out for clarity, as they are very
similar to the results with 8 reflections. Each model is
evaluated 3 times. The shaded areas indicate± one stan-
dard deviation.

We use the following implementation for each IAF trans-
formation1: one IAF transformation first applies one
MADE Layer (denoted as MaskedLinear) followed by
a nonlinearity to the input z, upscaling it to a hidden
variable of size M . At this point the context vector
hcontext(x) is added to the hidden units, after which two
more masked layers are applied to produce the mean and
scale of the IAF transformation:

hz ← ELU(MaskedLinear(z))

h← hz + hcontext(x)

h← ELU(MaskedLinear(h))

µ← MaskedLinear(h), s← MaskedLinear(h)

z′ ← σ(s)� z + (1− σ(s))� µ. (31)

Here, σ() denotes the sigmoid activation function. In
Kingma et al. [2016] it was mentioned that the gated
form of IAF in Eq. (31) is more stable than the form
of Eq. (29). Note that the size of hcontext(x) scales with
the width of the MADE layers C.

1This implementation is based on the open source code for
IAF available at https://github.com/openai/iaf

Table 1: Negative log-likelihood and free energy (nega-
tive evidence lower bound) for static MNIST. Numbers
are produced with 3 runs per model with different ran-
dom initializations. Standard deviations over the 3 dif-
ferent runs are also shown.

Model -ELBO NLL

VAE 86.55± 0.06 82.14± 0.07
Planar 86.06± 0.31 81.91± 0.22
IAF 84.20± 0.17 80.79± 0.12
O-SNF 83.32± 0.06 80.22± 0.03
H-SNF 83.40± 0.01 80.29± 0.02
T-SNF 83.40± 0.10 80.28± 0.06

6.1 MNIST

Figure 3 shows the dependence of the negative evidence
lower bound (or free energy) on the number of flows and
the type of flow for static MNIST. The exact numbers
corresponding to the figure are shown in Section C in the
appendix.

For all models the performance improves as a functions
of the number of flows. For 4 flows the difference be-
tween the baseline VAE and planar flows is very small.
However, planar flows clearly benefit from more flow
transformations.

For IAF three different widths of the MADE layers were
used: C = 320, 640 and 1280. Surprisingly, for 4 flows
the widest IAF with 1280 hidden units is outperformed
by an IAF with 640 hidden units in the MADE layers.
We expect this to be due to the fact that this model has
more parameters and can therefore be harder to train, as
indicated by the larger standard deviation for this model.

All three Sylvester flows outperform IAF and planar
flows. For Orthogonal Sylvester flows, we show results
for M = 16 and M = 32 orthogonal vectors per or-
thogonal matrix, thus corresponding to bottlenecks of
size 16 and 32 respectively for a latent space of size
D = 64. Clearly, a larger bottleneck improves per-
formance. For Householder Sylvester flows we experi-
mented with H = 4 and H = 8 Householder reflections
per orthogonal matrix. Since the results were nearly in-
distinguishable between these two variants, we have left
out the curve for H = 4 to avoid clutter. O-SNF with
M = 32, H-SNF and T-SNF seem to perform on par.

In Table 1, the negative evidence lower bound and the
estimated negative log-likelihood are shown for the base-
line VAE, together with all flow models for 16 flows. The
reported result for IAF is for a MADE width of 1280.
The O-SNF model has a bottleneck of M = 32, and

Table 2: Results for Freyfaces, Omniglot and Caltech 101 Silhouettes datasets. For the Freyfaces dataset the results
are reported in bits per dim. For the other datasets the results are reported in nats. For each flow model 16 flows are
used. For IAF a MADE width of 1280 was used, and for O-SNF flow a bottleneck of M = 32 was used. For H-SNF 8
householder reflections were used to construct orthogonal matrices. For all datasets 3 runs per model were performed.

Model Freyfaces Omniglot Caltech 101
-ELBO NLL -ELBO NLL -ELBO NLL

VAE 4.53± 0.02 4.40± 0.03 104.28± 0.39 97.25± 0.23 110.80± 0.46 99.62± 0.74
Planar 4.40± 0.06 4.31± 0.06 102.65± 0.42 96.04± 0.28 109.66± 0.42 98.53± 0.68
IAF 4.47± 0.05 4.38± 0.04 102.41± 0.04 96.08± 0.16 111.58± 0.38 99.92± 0.30
O-SNF 4.51± 0.04 4.39± 0.05 99.00± 0.29 93.82± 0.21 106.08± 0.39 94.61± 0.83
H-SNF 4.46± 0.05 4.35± 0.05 99.00± 0.04 93.77± 0.03 104.62± 0.29 93.82± 0.62
T-SNF 4.45± 0.04 4.35± 0.04 99.33± 0.23 93.97± 0.13 105.29± 0.64 94.92± 0.73

H-SNF contains 8 Householder reflections per orthogo-
nal matrix. Again, all Sylvester flows outperform planar
flows and IAF, both in terms of the free energy and the
negative log-likelihood.

As discussed in Section 4, T-SNF is closely related to
mean-only IAF, but with the MADE parameters directly
amortized. The fact that T-SNF outperforms IAF indi-
cates that amortizing the parameters directly leads to a
more flexible transformation compared to taking a very
wide MADE with a data dependent context as an addi-
tional input.

6.2 FREYFACES, OMNIGLOT AND CALTECH
101 SILHOUETTES

We further assess the performance of the different mod-
els on Freyfaces, Omniglot and Caltech 101 Silhouettes.
The results are shown in Table 2. The model settings are
the same2 as those used for Table 1.

Freyfaces is a very small dataset of around 2000 faces.
All normalizing flows increase the performance, with
planar flows yielding the best result, closely followed by
Triangular and Householder Sylvester flows. We expect
planar flows to perform the best in this case since it is the
least sensitive to overfitting.

For Omniglot and Caltech 101 Silhouettes the results are
clearer, with the Sylvester normalizing flows family re-
sulting in the best performance. Both H-SNF and T-SNF
perform better than O-SNF. This could be attributed to
the fact that O-SNF has a bottleneck of M = 32 for a
latent space size of D = 64. The IAF scores for Cal-
tech 101 are surprisingly bad. We expect this could be
the case due to the large number of parameters that need
to be trained for IAF(1280). Therefore we also evaluated

2For Caltech 101 Silhouettes we used 2000 importance
samples for the estimation of the negative log-likelihood.

the result for MADEs of width 320 for 16 flows. The re-
sulting free energy and estimated negative log-likelihood
are 111.23 ± 0.45 and 99.74 ± 0.28 respectively, only
slightly improving on the results of 1280 wide IAFs.

7 CONCLUSION

We present a new family of normalizing flows: Sylvester
normalizing flows. These flows generalize planar flows,
while maintaining an efficiently computable Jacobian
determinant through the use of Sylvester’s determinant
identity. We ensure invertibility of the flows through
the use of orthogonal and triangular parameter matri-
ces. Three variants of Sylvester flows are investigated.
First, orthogonal Sylvester flows use an iterative pro-
cedure to maintain orthogonality of parameter matrices.
Second, Householder Sylvester flows use Householder
reflections to construct orthogonal matrices. Third, tri-
angular Sylvester flows alternate between fixed permu-
tation and identity matrices for the orthogonal matri-
ces. We show that the triangular Sylvester flows are
closely related to mean-only IAF, with directly amortized
MADE parameters. While performing comparably with
planar flows and IAF for the Freyfaces dataset, our pro-
posed family of flows improve significantly upon planar
flows and IAF on the three other datasets.

Acknowledgements

We would like to thank Christos Louizos for useful dis-
cussions and helping with the implementation of inverse
autoregressive flows. LH is funded by the UK EPSRC
OxWaSP CDT through grant EP/L016710/1. JMT is
funded by the European Commission within the MSC-
IF (Grant No. 702666). RvdB is funded by SAP SE.

References
Christian Bischof and Xiaobai Sun. On orthogonal block

elimination. Technical Report MCS-P450-0794, Ar-
gonne National Laboratory, Argonne, IL, 10 1997.

Åke Björck and Clazett Bowie. An iterative algorithm for
computing the best estimate of an orthogonal matrix.
SIAM Journal on Numerical Analysis, 8(2):358–364,
1971.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, An-
drew M. Dai, Rafal Jozefowicz, and Samy Bengio.
Generating Sentences from a Continuous Space. nov
2015. URL http://arxiv.org/abs/1511.
06349.

Laurent Dinh, David Krueger, and Yoshua Bengio.
NICE: non-linear independent components estima-
tion. abs/1410.8516, 2014.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio.
Density estimation using Real NVP. arXiv preprint
arXiv:1605.08803, 2016.

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo
Larochelle. MADE: Masked Autoencoder for Distri-
bution Estimation. ICML, pages 881–889, 2015.

Samuel Gershman and Noah Goodman. Amortized in-
ference in probabilistic reasoning. In Proceedings of
the Annual Meeting of the Cognitive Science Society,
volume 36, 2014.

Leonard Hasenclever, Jakub Tomczak, Rianne van den
Berg, and Max Welling. Variational inference with
orthogonal normalizing flows. 2017.

Matthew D. Hoffman, David M. Blei, Chong Wang, and
John Paisley. Stochastic variational inference. Journal
of Machine Learning Research, 14:1303–1347, 2013.

Michael I. Jordan, Zoubin Ghahramani, Tommi S.
Jaakkola, and Lawrence K. Saul. An introduction to
variational methods for graphical models. Machine
Learning, 37(2):183–233, 1999.

Diederik Kingma and Max Welling. Efficient gradient-
based inference through transformations between
bayes nets and neural nets. ICML, pages 1782–1790,
2014.

Diederik P Kingma and Max Welling. Auto-encoding
variational bayes. arXiv preprint arXiv:1312.6114,
2013.

Diederik P Kingma, Tim Salimans, Rafal Jozefowicz,
Xi Chen, Ilya Sutskever, and Max Welling. Im-
proved Variational Inference with Inverse Autoregres-
sive Flow. NIPS, pages 4743–4751, 2016.

Zdislav Kovarik. Some iterative methods for improving
orthonormality. SIAM Journal on Numerical Analysis,
7(3):386–389, 1970.

Eric Nalisnick, Lars Hertel, and Padhraic Smyth. Ap-
proximate inference for deep latent gaussian mixtures.
In NIPS Workshop on Bayesian Deep Learning, 2016.

George Papamakarios, Iain Murray, and Theo Pavlakou.
Masked Autoregressive Flow for Density Estimation.
NIPS, pages 2335–2344, 2017.

Danilo Rezende and Shakir Mohamed. Variational in-
ference with normalizing flows. ICML, pages 1530–
1538, 2015.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan
Wierstra. Stochastic backpropagation and approx-
imate inference in deep generative models. arXiv
preprint arXiv:1401.4082, 2014.

Tim Salimans, Diederik Kingma, and Max Welling.
Markov Chain Monte Carlo and variational inference:
Bridging the gap. ICML, pages 1218–1226, 2015.

Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe,
Søren Kaae Sønderby, and Ole Winther. Ladder Vari-
ational Autoencoders. feb 2016. URL http://
arxiv.org/abs/1602.02282.

Xiaobai Sun and Christian Bischof. A basis-kernel rep-
resentation of orthogonal matrices. SIAM Journal on
Matrix Analysis and Applications, 16(4):1184–1196,
1995.

EG Tabak and Cristina V Turner. A family of nonpara-
metric density estimation algorithms. Communica-
tions on Pure and Applied Mathematics, 66(2):145–
164, 2013.

Esteban G Tabak and Eric Vanden-Eijnden. Density es-
timation by dual ascent of the log-likelihood. Com-
munications in Mathematical Sciences, 8(1):217–233,
2010.

Jakub M Tomczak and Max Welling. Improving Varia-
tional Auto-encoders using Householder Flow. arXiv
preprint arXiv:1611.09630, 2016.

Dustin Tran, Rajesh Ranganath, and David M Blei.
The variational Gaussian process. arXiv preprint
arXiv:1511.06499, 2015.

Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt,
koray kavukcuoglu, Oriol Vinyals, and Alex Graves.
Conditional image generation with pixelcnn decoders.
NIPS, pages 4790–4798, 2016.

