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Abstract

This paper addresses the problem of formally
verifying desirable properties of neural net-
works, i.e., obtaining provable guarantees that
neural networks satisfy specifications relating
their inputs and outputs (robustness to bounded
norm adversarial perturbations, for example).
Most previous work on this topic was lim-
ited in its applicability by the size of the net-
work, network architecture and the complexity
of properties to be verified. In contrast, our
framework applies to a general class of activa-
tion functions and specifications on neural net-
work inputs and outputs. We formulate verifi-
cation as an optimization problem (seeking to
find the largest violation of the specification)
and solve a Lagrangian relaxation of the opti-
mization problem to obtain an upper bound on
the worst case violation of the specification be-
ing verified. Our approach is anytime i.e. it can
be stopped at any time and a valid bound on the
maximum violation can be obtained. We de-
velop specialized verification algorithms with
provable tightness guarantees under special as-
sumptions and demonstrate the practical sig-
nificance of our general verification approach
on a variety of verification tasks.

1 INTRODUCTION

Neural networks and deep learning have revolutionized
machine learning achieving state of the art performance
on a wide range of complex prediction tasks [Krizhevsky
et al., 2012, Goodfellow et al., 2016]. However, in re-
cent years, researchers have observed that even state of
the art networks can be easily fooled into changing their
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predictions by making small but carefully chosen modifi-
cations to the input data (known as adversarial perturba-
tions) [Szegedy et al., 2013, Kurakin et al., 2016, Carlini
and Wagner, 2017a, Goodfellow et al., 2014, Carlini and
Wagner, 2017b]. While modifications to neural network
training algorithms have been proposed to mitigate this
phenomenonMadry et al. [2018], a comprehensive so-
lution that is fully robust to adversarial attacks remains
elusive [Carlini and Wagner, 2017b, Uesato et al., 2018].

Neural networks are typically tested using the standard
machine learning paradigm: If the performance (accu-
racy) of the network is sufficiently high on a holdout
(test) set that the network did not have access to while
training, the network is deemed acceptable. This is justi-
fied by statistical arguments based on an i.i.d. assumption
on the data generating mechanism, that is each input out-
put pair is generated independently from the same (un-
known) data distribution. However, this evaluation pro-
tocol is not sufficient in domains with critical safety con-
straints [Marston and Baca, 2015]. In these cases, we
may require a stronger test: for example, we may require
that the network is robust against adversarial perturba-
tions within certain bounds.

Adversarial evaluation. In the context of adversarial
examples, a natural idea is to test neural networks by
checking if it is possible to generate an adversarial at-
tack to change the label predicted by the neural network
[Kurakin et al., 2016] and train them to be robust to these
examples Madry et al. [2018]. Generating adversarial ex-
amples is a challenging computational task itself, and the
attack generated by a specific attack algorithm may be far
from optimal. This may lead one to falsely conclude that
a given model is robust to attacks even though a stronger
adversary may have broken the robustness. Recent work
[Athalye et al., 2018, Uesato et al., 2018] has shown
that evaluating models against weak adversaries can lead
to incorrect conclusions regarding the robustness of the
model. Thus, there is a need to go beyond evaluation us-



ing specific adversarial attacks and find approaches that
provide provable guarantees against attacks by any ad-
versary.

Towards verifiable models. Verification of neural net-
works has seen significant research interest in recent
years. In the formal verification community, Satisfia-
bility Modulo Theory (SMT) solvers have been adapted
for verification of neural networks [Ehlers, 2017, Huang
et al., 2017, Katz et al., 2017]. While SMT solvers have
been successfully applied to several domains, applying
them to large neural networks remains a challenge due to
the scale of the resulting SMT problem instances. Fur-
thermore, these approaches have been largely limited to
networks with piecewise linear activation functions since
most SMT solvers are unable to deal efficiently with
nonlinear arithmetic. More recently, researchers have
proposed a set of approaches that make use of branch
and bound algorithms either directly or via mixed-integer
programming solvers [Bunel et al., 2017, Cheng et al.,
2017, Tjeng and Tedrake, 2017]. While these approaches
achieve strong results on smaller networks, scaling them
to large networks remains an open challenge. These ap-
proaches also rely heavily on the piecewise linear struc-
ture of networks where the only nonlinearities are max-
pooling and ReLUs.

Towards scalable verification of general models. In
this paper, we develop a novel approach to neural net-
work verification based on optimization and duality. The
approach consists of formulating the verification prob-
lem as an optimization problem that tries to find the
largest violation of the property being verified. If the
largest violation is smaller than zero, we can conclude
that the property being verified is true. By using ideas
from duality in optimization, we can obtain bounds on
the optimal value of this problem in a computationally
tractable manner. Note that this approach is sound but
incomplete, in that there may be cases where the prop-
erty of interest is true, but the bound computed by our
algorithm is not tight enough to prove the property. This
strategy has been used in prior work as well [Kolter and
Wong, 2018, Raghunathan et al., 2018]. However, our
results improve upon prior work in the following ways:

1. Our verification approach applies to arbitrary feed-
forward neural networks with any architecture and
any activation function and our framework recovers
previous results [Ehlers, 2017] when applied to the
special case of piecewise linear activation functions.

2. We can handle verification of systems with discrete
inputs and combinatorial constraints on the input
space, including cardinality constraints.

3. The computation involved only requires solving an
unconstrained convex optimization problem (of size
linear in the number of neurons in the network),
which can be done using a subgradient method ef-
ficiently. Further, our approach is anytime, in the
sense that the computation can be stopped at any
time and a valid bound on the verification objective
can be obtained.

4. For the special case of single hidden layer networks,
we develop specialized verification algorithms with
provable tightness guarantees.

5. We attain state of the art verified bounds on ad-
versarial error rates on image classifiers trained on
MNIST and CIFAR-10 under adversarial perturba-
tions in the infinity norm.

2 Related Work

Certifiable training and verification of neural net-
works A separate but related thread of work is on cer-
tifiable training, ie, training neural networks so that they
are guaranteed to satisfy a desired property (for example,
robustness to adversarial examples within a certain ra-
dius) [Kolter and Wong, 2018, Raghunathan et al., 2018].
These approaches use ideas from convex optimization
and duality to construct bounds on an optimization for-
mulation of verification. However, these approaches are
limited to either a class of activation functions (piecewise
linear models) or architectures (single hidden layer, as in
Raghunathan et al. [2018]). Further, in Kolter and Wong
[2018], the dual problem starts with a constrained convex
formulation but is then converted into an unconstrained
but nonconvex optimization problem to allow for easy
optimization via a backprop-style algorithm. In contrast,
our formulation allows for an unconstrained dual convex
optimization problem so that for any choice of dual vari-
ables, we obtain a valid bound on the adversarial objec-
tive and this dual problem can be solved efficiently using
subgradient methods.

We also note that the ultimate goals of [Kolter and Wong,
2018, Raghunathan et al., 2018] are different from our
paper: they modify the training procedure of the neural
network so that the network is trained to be easily veri-
fiable. In contrast, our work focuses on extending veri-
fication algorithms to apply to a broader class of archi-
tectures, activation functions and - in this sense, we view
our work as complementary to [Kolter and Wong, 2018,
Raghunathan et al., 2018]. In fact, since the objective of
our dual optimization is differentiable with respect to the
network weights, we can extend our approach to training
verifiable networks easily by simultaneously optimizing
the network weights and dual variables to minimize the



dual objective. We leave the study of such an extension
for future work.

Theoretical analysis of robustness Another related
line of work has to do with theoretical analysis of ad-
versarial examples. It has been shown that feedfor-
ward ReLU networks cannot learn to distinguish be-
tween points on two concentric spheres without neces-
sarily being vulnerable to adversarial examples within
a small radius [Gilmer et al., 2018]. Under a different
set of assumptions, the existence of adversarial examples
with high probability is also established in Fawzi et al.
[2018]. In Wang et al. [2017], the authors study robust-
ness of nearest neighbor classifiers to adversarial exam-
ples. As opposed to these theoretical analyses, our ap-
proach searches computationally for proofs of existence
or non-existence of adversarial examples. The approach
does not say anything a-priori about the existence of ad-
versarial examples, but can be used to investigate their
existence for a given network and compare strategies to
guard against adversarial attacks.

3 VERIFICATION AS OPTIMIZATION

3.1 NOTATION

Our techniques apply to general feedforward architec-
tures and recurrent networks, but we focus on layered
architectures for the development in this paper. The in-
put layer is numbered 0, the hidden layers are numbered
1, . . . , L − 1 and the output layer is numbered L. The
size of layer l is denoted nl

We denote by xin the input to the neural network, by zl

the pre-activations of neurons at layer l before applica-
tion of the activation function and by xl the vector of neu-
ral activations after application of the activation function
(to zl−1). For convenience, we define x0 = xin. We use
xl(xin), zl(xin) to denote the activations at the l-th layer
as a function of the input xin. Upper and lower bounds
on the pre/post activations are denoted by xl, xl, zl, zl re-
spectively. The activation function at layer l is denote hl

and is assumed to be applied component-wise, ie,

[hl(zl)]k = hlk(z
l
k)

Note that max-pooling is an exception to this rule - we
discuss how max-pooling is handled separately in the
Appendix section 6.2.1. The weights of the network
at layer l are denoted W l and the bias is denoted bl,
zl =W lxl + bl.

3.2 VERIFICATION PROBLEM

As mentioned earlier, verification refers to the process
of checking that the output of the neural network sat-

isfies a certain desirable property for all choices of the
input within a certain set. Formally, this can be stated as
follows:

∀xin ∈ Sin (xnom) xL(xin) ∈ Sout (1)

where xin denotes the input to the network, xnom de-
notes a nominal input, Sin(xnom) defines the constrained
subset of inputs induced by the nominal input, and Sout
denotes the constraints on the output that we would like
to verify are true for all inputs in Sin(xnom). In the
case of adversarial perturbations in image classification,
xnom would refer to the nominal (unperturbed image),
Sin(xnom) would refer to all the images that can be ob-
tained by adding bounded perturbations to xnom, and xin

would refer to a perturbed image.

In this paper, we will assume that: Sout is always a de-
scribed by a finite set of linear constraints on the values
of final layer ie. Sout = ∩mi=1{xL :

(
ci
)T
xL + di ≤ 0},

and Sin (xnom) is any bounded set such that any linear
optimization problem of the form

max
xin∈Sin(xnom)

cTx

can be solved efficiently. This includes convex sets and
also sets describing combinatorial structures like span-
ning trees, cuts in a graph and cardinality constraints.

See the following examples for a concrete illustration of
the formulation of the problem:

Robustness to targeted adversarial attacks. Con-
sider an adversarial attack that seeks to perturb an input
xnom to an input xin subject to a constraint on the per-
turbation

∥∥xin − xnom∥∥ ≤ ε to change the label from
the true label i to a target label j. We can map this to (1)
as follows:

Sin (xnom) = {xin :
∥∥xin − xnom∥∥ ≤ ε}, (2a)

Sout = {z : cT z ≤ 0} (2b)

where c is a vector with cj = 1, ci = −1 and all other
components 0. Thus, Sout denotes the set of outputs
for which the true label i has a higher logit value than
the target label j (implying that the targeted adversarial
attack did not succeed).

Monotonic predictors. Consider a network with a sin-
gle real valued output and we are interested in ensuring
that the output is monotonically increasing wrt each di-
mension of the input xin. We can state this as a verifica-



tion problem:

Sin (xnom) = {xin : xin ≥ xnom} (3a)

Sout = {xL : xL (xnom)− xL ≤ 0} (3b)

Thus, Sout denotes the set of outputs which are large than
the network output at xnom. If this is true for each value
of xnom, then the network is monotone.

Cardinality constraints. In several cases, it makes
sense to constrain a perturbation not just in norm but also
in terms of the number of dimensions of the input that
can be perturbed. We can state this as:

Sin (xnom) =

{xin :
∥∥xin − xnom∥∥

0
≤ k,

∥∥xin − xnom∥∥∞ ≤ ε}
(4a)

Sout = {z : cT z ≤ 0} (4b)

where ‖x‖0 denotes the number of non-zero entries in
x. Thus, Sout denotes the set of outputs which are larger
than the network output at xnom. If this is true for each
value of xnom, then the network is monotone.

3.3 OPTIMIZATION PROBLEM FOR
VERIFICATION

Once we have a verification problem formulated in the
form (1), we can easily turn the verification procedure
into an optimization problem. This is similar to the opti-
mization based search for adversarial examples [Szegedy
et al., 2013] when the property being verified is ad-
versarial robustness. For brevity, we only consider the
case where Sout is defined by a single linear constraint
cT z + d ≤ 0. If there are multiple constraints, each one
can be verified separately.

max
z0,...,zL−1

x0,...,xL

cTxL + d (5a)

s.t xl+1 = hl
(
zl
)
, l = 0, 1, . . . , L− 1 (5b)

zl =W lxl + bl, l = 0, 1, . . . , L− 1 (5c)

x0 = xin, xin ∈ Sin (xnom) (5d)

If the optimal value of this problem is smaller than 0 (for
each c, d in the set of linear constraints defining Sout),
we have verified the property (1). This is a nonconvex
optimization problem and finding the global optimum
in general is NP-hard (see Appendix section 6.4.1 for a
proof). However, if we can compute upper bounds on the
value of the optimization problem and the upper bound
is smaller than 0, we have successfully verified the prop-
erty. In the following section, we describe our main ap-
proach for computing bounds on the optimal value of (5).

3.4 BOUNDING THE VALUE OF THE
OPTIMIZATION PROBLEM

We assume that bounds on the activations zl, xl, l =
0, . . . , L−1 are available. Section 6.1 discusses details of
how such bounds may be obtained given the constraints
on the input layer Sin (xnom). We can bound the op-
timal value of (5) using a Lagrangian relaxation of the
constraints:

max
z0,...,zL−1

x0,x1,...,xL−1

cT
(
hL−1

(
zL−1

))
+ d

+

L−1∑
l=0

(
µl
)T (

zl −W lxl − bl
)

+

L−2∑
l=0

(
λl
)T (

xl+1 − hl
(
zl
))

(6a)

s.t. zl ≤ zl ≤ zl , l = 0, 1, . . . , L− 1 (6b)

xl ≤ xl ≤ xl , l = 0, 1, . . . , L− 1 (6c)

x0 ∈ Sin (xnom) (6d)

Note that any feasible solution for the original prob-
lem (5) is feasible for the above problem, and for any
such solution, the terms involving λ, µ become 0 (since
the terms multiplying λ, µ are 0 for every feasible solu-
tion). Thus, for any choice of λ, µ, the above optimiza-
tion problem provides a valid upper bound on the opti-
mal value of (5) (this property is known as weak duality
[Vandenberghe and Boyd, 2004]).

We now look at solving the above optimization problem.
Since the objective and constraints are separable in the
layers, the variables in each layer can be optimized inde-
pendently. For l = 1, . . . , L− 1, we have

fl
(
λl−1, µl

)
=

max
xl∈[xl,xl]

(
λl−1 −

(
W l
)T
µl
)T
xl −

(
bl
)T
µl

which can be solved trivially by setting each compo-
nent of xl to its upper or lower bound depending on
whether the corresponding entry in λl−1 −

(
W l
)T
µl is

non-negative. Thus,

fl
(
λl−1, µl

)
=[

λl−1 −
(
W l
)T
µl
]
+

T

xl

+
[
λl−1 −

(
W l
)T
µl
]
−

T

xl −
(
bl
)T
µl

where [x]+ = max(x, 0), [x]− = min(x, 0) denote the
positive and negative parts of x.



Similarly, collecting the terms involving zl, we have, for
l = 0, . . . , L− 1

f̃l(λ
l, µl) = max

zl∈[zl,zl]
µl
T
zl −

(
λl
)T
hl
(
zl
)

where λL−1 = −c.

Since hl is a component-wise nonlinearity, each dimen-
sion of zl can be optimized independently. For the k-th
dimension, we obtain

f̃l,k
(
λlk, µ

l
k

)
= max
zlk∈[z

l
k,z

l
k]
µlkz

l
k − λlkhlk

(
zlk
)

This is a one-dimensional optimization problem and
can be solved easily- for common activation functions
(ReLU, tanh, sigmoid, maxpool), it can be solved ana-
lytically, as discussed in appendix section 6.2. Finally,
we need to solve

f0(µ
0) = max

x0∈Sin(xnom)

(
−
(
W 0
)T
µ0

)T
x0 −

(
b0
)T
µ0

which can also be solved easily given the assumption on
Sin. We work out some concrete cases in 6.3.

Once these problems are solved, we can construct the
dual optimization problem:

min
λ,µ

nL−1∑
k=0

f̃L−1,k
(
−ck, µlk

)
+

L−2∑
l=0

nl∑
k=0

f̃l,k
(
λlk, µ

l
k

)
+

L−1∑
l=1

fl(λ
l−1, µl) + f0

(
µ0
)
+ d (7)

This seeks to choose the values of λ, µ so as to minimize
the upper bound on the verification objective, thereby ob-
taining the tightest bound on the verification objective.

This optimization can be solved using a subgradient
method on λ, µ.

Theorem 1. For any values of λ, µ, the objective of (7)
is an upper bound on the optimal value of (5). Hence,
the optimal value of (7) is also an upper bound. Further,
(7) is a convex optimization problem in (λ, µ).

Proof. The upper bound property follows from weak du-
ality [Vandenberghe and Boyd, 2004]. The fact that (7) is
a convex optimization problem can be seen as each term
fl, f̃l,k is expressed as a maximum overa set of linear
functions of λ, µ [Vandenberghe and Boyd, 2004].

Theorem 2. If each h is a ReLU function, then (7) is
equivalent to the dual of the LP described in Ehlers
[2017].

Proof. See section 6.4.

The LP formulation from Ehlers [2017] is also used in
Kolter and Wong [2018]. The dual of the LP is derived
in Kolter and Wong [2018] - however this dual is differ-
ent from (7) and ends up with a constrained optimiza-
tion formulation for the dual (the details of this can be
found in appendix section 6.4.2). To allow for an un-
constrained formulation, this dual LP is transformed to a
backpropagation-like computation. While this allows for
folding the verification into training, it also introduces
nonconvexity in the verification optimization - our for-
mulation of the dual differs from Kolter and Wong [2018]
in that we directly solve an unconstrained dual formula-
tion, allowing us to circumvent the need to solve a non-
convex optimization for verification.

3.5 TOWARDS THEORETICAL GUARANTEES
FOR VERIFICATION

The bounds computed by solving (7) could be loose in
general, since (5) is an NP-hard optimization problem
(section 6.4.1). SMT solvers and MIP solvers are guaran-
teed to find the exact optimum for piecewise linear neu-
ral networks, however, they may take exponential time
to do so. Thus, an open question remains: Are there
cases where it is possible to perform exact verification
efficiently? If not, can we approximate the verification
objective to within a certain factor (known a-priori)? We
develop results answering these questions in the follow-
ing sections.

Prior work: For any linear classifier, the scores of
each label are a linear function of the inputs wTi x +
bi. Thus, the difference between the predictions of
two classes j (target class for an adversary) and class i
(true label) is (wi − wj)Tx. Maximizing this subject to∥∥x− x0∥∥

2
≤ ε can be solved analytically to obtain the

value (wi − wj)Tx0 + ‖wi − wj‖2 ε. This observation
formed the basis for algorithms in [Raghunathan et al.,
2018] and [Hein and Andriushchenko, 2017]. However,
once we move to nonlinear classifiers, the situation is not
so simple and computing the worst case adversarial ex-
ample, even in the 2-norm case, becomes a challenging
task. In [Hein and Andriushchenko, 2017], the special
case of kernel methods and single hidden layer classi-
fiers are considered, but the approaches developed are
only upper bounds on the verification objective (just like
those computed by our dual relaxation approach). Sim-
ilarly, in Raghunathan et al. [2018], a semidefinite pro-
gramming approach is developed to compute bounds on
the verification objective for the special case of adversar-
ial perturbations on the infinity norm. However, none of
these approaches come with a-priori guarantees on the
quality of the bound, that is, before actually running the
verification algorithm, one cannot predict how tight the



bound on the verification objective would be. In this sec-
tion, we develop novel theoretical results that quantify
when the verification problem (5) can be solved either
exactly or with a-priori approximation guarantees. Our
results require strong assumptions and do not immedi-
ately apply to most practical situations. However, we
believe that they shed some understanding on the con-
ditions under which exact verification can be performed
tractably and lead to specialized verification algorithms
that merit further study.

We assume the following for all results in this section:
1) We study networks with a single hidden layer, i.e. L =
2, with activation function h0 = h and a linear mapping
from the penultimate to the output layer x2 = h1

(
z1
)
=

z1 =W 1x1 + b1.
2) The network has a differentiable activation function h
with Lipschitz-continuous derivatives denoted h′ (tanh,
sigmoid, ELU, polynomials satisfy this requirement).
3) Sin (xnom) = {xin :

∥∥xin − xnom∥∥
2
≤ ε}.

Since the output layer is a linear function of the penulti-
mate layer x1, we have

cTx2 =
((
W 1
)T
c
)T
x1 + cT b1

=
((
W 1
)T
c
)T
h0
(
z0
)
+ cT b1

For brevity, we simply denote
(
W 1
)T
c as c, drop the

constant term cT b1 and let W = W 0, b = b0, znom =
Wxnom + b and Wi denote the i-th row of W . Then, (5)
reduces to:

max
xin:‖xin−xnom‖2≤ε

∑
i

cihi
(
Wix

in + bi
)

(8)

Theorem 3. Suppose that h has a Lipschitz continuous
first derivative:

h′i(t)− h′i(t̃) ≤ γi|t− t̃|

Let

ν =
∥∥diag (c)WTh′ (znom)

∥∥
2

L = σmax

(
diag (c)WT

)
σmax (diag (γ)W )

Then ∀ ε ∈ (0, ν2L ), the iteration:

xk+1 ← xnom + ε

(
WT diag (c)h′(Wxk + b)

‖WT diag (c)h′(Wxk + b)‖2

)
starting at x0 = xnom converges to the global optimum

x? of (8) at the rate
∥∥xk − x?∥∥ ≤ ( εL

ν−εL

)k
Proof. Section 6.4

Thus, when ε is small enough, a simple algorithm exists
to find the global optimum of the verification objective.
However, even when ε is larger, one can obtain a good
approximation of the verification objective. In order to
do this, consider the following quadratic approxiimation
of the objective from (8):

max
∑
i

ci (hi (z
nom
i ) + h′i (z

nom
i ) (Wiz))

+
∑
i

ci
2
h′′i (z

nom
i ) (Wiz)

2 (9a)

s.t. ‖z‖2 ≤ ε (9b)

This optimization problem corresponds to a trust region
problem that can be solved to global optimality using
semidefinite programming [Yakubovic, 1971]:

max
z,Z

∑
i

ci (hi (z
nom
i ) + h′i (z

nom
i ) (Wiz))

+
∑
i

ci
2
h′′i (z

nom
i ) tr

(
WT
i WiZ

)
(10a)

s.t. tr (Z) ≤ ε,
(
1 zT

z Z

)
� 0 (10b)

where X � 0 denotes that X is constrained to be a pos-
itive semidefinite matrix. While this can be solved using
general semidefinite programming solvers, several spe-
cial purpose algorithms exist for this trust region prob-
lem that can exploit its particular structure for efficient
solution, [Hazan and Koren, 2016]

Theorem 4. Suppose that h is thrice-differentiable with
a globally bounded third derivative. Let

ζi = ‖Wi‖2 , ηi = sup
t
|h′′′i (t)|, κ =

1

6

(∑
i

ηiciζ
3
i

)

For each ε > 0, the difference between the optimal values
of (10), (8) is at most κε3.

Proof. See Section 6.4

4 EXPERIMENTS

In this section, we present numerical studies validation
our approach on three sets of verification tasks:
Image classification on MNIST and CIFAR: We use our
approach to obtain guaranteed lower bounds on the accu-
racy of image classifers trained on MNIST and CIFAR-
10 under adversarial attack with varying sizes of the per-
turbation radius. We compare the bounds obtained by
our method with prior work (in cases where prior work
is applicable) and also with the best attacks found by var-
ious approaches.



Classifier stability on GitHub data: We train networks
on sequences of commits on GitHub over a collection of
10K repositories - the prediction task consists of predict-
ing whether a given repository will reach more than 40
commits within 250 days given data observed until a cer-
tain day. Input features consist a value between 0 and 1
indicating the number of days left until the 250th day, as
well as another value indicating the progress of commits
towards the total of 40. As the features evolve, the pre-
diction of the classifier changes (for example, predictions
should become more accurate as we move closer to the
250th day). In this situation, it is desirable that the clas-
sifier provides consistent predictions and that the number
of times its prediction switches is as small as possible. It
is also desirable that this switching frequency cannot be
easily be changed by perturbing input features. We use
our verification approach combined with dynamic pro-
gramming to compute a bound on the maximum number
of switches in the classifier prediction over time.
Digit sum task: We consider a more complex verifica-
tion task here: Given a pair of MNIST digits, the goal
is to bound how much the sum of predictions of a clas-
sifier can differ from the true sum of those digits under
adversarial perturbation subject to a total budget on the
perturbation across the two digits.

4.1 IMAGE CLASSIFICATION: MNIST AND
CIFAR

We study adversarial attacks subject to an l∞ bound on
the input perturbation. An adversarial example (AE) is
a pertubation of an input of the neural network such that
the output of the neural network differs from the correct
label for that input. An AE is said to be within radius ε
if the `∞ norm of the difference between the AE and the
original input is smaller than ε. We are interested in the
adversarial error rate, that is,

# Test examples that have an AE within radius ε
Size of test set

Computing this quantity precisely requires solving the
NP-hard problem (5) for each test example, but we can
obtain upper bounds on it using our (and other) verifica-
tion methods and lower bounds using a fixed attack algo-
rithm (in this paper we use a bound constrained LBFGS
algorithm similar to [Carlini and Wagner, 2017b]). Since
theorem 2 shows that for the special case of piecewise
linear neural networks, our approach reduces to the ba-
sic LP relaxation from Ehlers [2017] (which also is the
basis for the algorithms in Bunel et al. [2017] and Kolter
and Wong [2018]), we focus on networks with smooth
nonlinearities like tanh and sigmoid. We compare our
approach with The SDP formulation from Raghunathan
et al. [2018] (note that this approach only works for sin-

gle hidden layer networks, so we just show it as produc-
ing vacuous bounds for other networks).

Each approach gets a budget of 300 s per verifiation prob-
lem (choice of test example and target label). Since the
SDP solver from [Raghunathan et al., 2018] only needs
to be run once per label pair (and not per test example),
its running time is amortized appropriately.

Results on smooth activation functions: Figures 1a,1b
show that our approach is able to compute nearly tight
bounds (bounds that match the upper bound) for small
perturbation radii (up to 2 pixel units) and our bounds
significantly outperform those from the SDP approach
[Raghunathan et al., 2018] ( which is only able to com-
pute nontrivial bounds for the smallest model with 20
hidden units).

Results on models trained adversarially: We use the ad-
versarial training approach of [Uesato et al., 2018] and
train models on MNIST and CIFAR that are robust to
perturbations from the LBFGS-style attack on the train-
ing set. We then apply our verification algorithm to these
robust models and obtain bounds on the adversarial er-
ror rate on the test set. These models are all multilayer
models, so the SDP approach from [Raghunathan et al.,
2018] does not apply and we do not plot it here. We sim-
ply plot the attack versus the bound from our approach.
The results for MNIST are plotted in figure 2b and for
CIFAR in figure 2a. On networks trained using a differ-
ent procedure, the approaches from Raghunathan et al.
[2018] and Kolter and Wong [2018] are able to achieve
stronger results for larger values of ε (they work with
ε = .1 in real units, which corresponds to ε = 26 in pixel
units we use here). However, we note that our verifica-
tion procedure is agnostic to the training procedure, and
can be used to obtain fairly tight bounds for any network
and any training procedure. In comparison, the results in
Kolter and Wong [2018] and Raghunathan et al. [2018]
rely on the training procedure optimizing the verification
bound. Since we do not rely on a particular adversar-
ial training procedure, we were also able to obtain the
first non-trivial verification bounds on CIFAR-10 (to the
best of our knowledge) shown in figure 2a. While the
model quality is rather poor, the results indicate that our
approach could scale to more complicated models.

4.2 GITHUB CLASSIFIER STABILITY

We allow the adversary to modify input features by up to
3% (at each timestep) and our goal is to bound the maxi-
mum number of prediction switches induced by each at-
tack over time. We can model this within our verifica-
tion framework as follows: Given a sequence of input
features, we compute the maximum number of switches



(a) Sigmoid (b) Tanh

Figure 1: Figures show three curves per model - Dashed line: Lower bound from LBFGS attack. Solid line: Our
verified upper bound. Dash-dot line: SDP verified upper bound from [Raghunathan et al., 2018]. Each color represents
a different network. The dashed lines at the bottom are lower bounds on the error rate computed using the best attack
found using the LBFGS algorithm.

achievable by first computing the target classes that are
reachable through an adversarial attack at each timestep
(using (7)), and then running a dynamic program to com-
pute the choices of target classes over time (from within
the reachable target classes) to maximize the number of
switches over time.

Figure 3a shows how initially predictions are easily at-
tackable (as little information is available to make pre-
dictions), and also shows how the gap between our ap-
proach and the best attack found using the LBFGS algo-
rithm evolves over time.

4.3 COMPLEX VERIFICATION TASK: DIGIT
SUM

In order to test our approach on a more complex spec-
ification, we study the following task: Given a pair of
MNIST digits, we ask the question: Can an attacker per-
turb each image, subject to a constraint on the total per-
turbation across both digits, such that the sum of the dig-
its predicted by the classifier differs from the true sum
of those digits by as large an amount as possible? An-
swering this question requires solving the following op-
timization problem:

max
xina ,x

in
b

εa,εb

| argmax
(
xL
(
xina
))

+ argmax
(
xL
(
xinb
))
− s|

s.t.
∥∥xina − xnoma

∥∥ ≤ εa,∥∥xinb − xnomb

∥∥ ≤ εb
εa + εb ≤ ε

where s is the true sum of the two digits. Thus, the adver-
sary has to decide on both the perturbation to each digit,

as well as the size of the perturbation. We can encode this
within our framework (we skip the details here). The up-
per bound on the maximum error in the predicted sum
from the verification and the lower bound on the maxi-
mum error computed from an attack for this problem (on
an adversarially trained two hidden layer sigmoid net-
work) is plotted in figure 3b. The results show that even
on this rather complex verification task, our approach is
able to compute tight bounds.

5 CONCLUSIONS

We have presented a novel framework for verification
of neural networks. Our approach extends the appli-
cability of verification algorithms to arbitrary feedfor-
ward networks with any architecture and activation func-
tion and to more general classes of input constraints
than those considered previously (like cardinality con-
straints). The verification procedure is both efficient
(given that it solves an unconstrained convex optimiza-
tion problem) and practically scalable (given its anytime
nature only required gradient like steps). We proved
the first known (to the best of our knowledge) theorems
showing that under special assumptions, nonlinear neu-
ral networks can be verified tractably. Numerical exper-
iments demonstrate the practical performance of our ap-
proach on several classes of verification tasks.
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