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Abstract

This work investigates the training of condi-
tional random fields (CRFs) via the stochas-
tic dual coordinate ascent (SDCA) algorithm
of Shalev-Shwartz and Zhang (2016). SDCA
enjoys a linear convergence rate and a strong
empirical performance for binary classification
problems. However, it has never been used to
train CRFs. Yet it benefits from an “exact” line
search with a single marginalization oracle call,
unlike previous approaches. In this paper, we
adapt SDCA to train CRFs, and we enhance it
with an adaptive non-uniform sampling strategy
based on block duality gaps. We perform ex-
periments on four standard sequence prediction
tasks. SDCA demonstrates performances on
par with the state of the art, and improves over
it on three of the four datasets, which have in
common the use of sparse features.

1 INTRODUCTION

The conditional random field (CRF) model (Lafferty et al.,
2001) is a common tool in natural language process-
ing and computer vision for structured prediction. The
optimization of this model is notoriously challenging.
Schmidt et al. (2015) describes a practical implementation
of the stochastic average gradient (SAG) algorithm (Roux
et al., 2012) for CRFs and proposes a non-uniform sam-
pling scheme that boosts performance. This algorithm
(SAG-NUS) is currently the state of the art for CRFs op-
timization and we refer to Schmidt et al. (2015) for a
detailed review of competing methods.

Deterministic (batch) methods such as L-BFGS (Sha and
Pereira, 2003; Wallach, 2002) have linear convergence
rate but the cost per iteration is large. On the other hand,
the online exponentiated gradient method (OEG) (Collins
et al., 2008) and SAG are both members of a family of

algorithms with cheap stochastic updates and linear con-
vergence rates, and they have both been applied to the
training of CRFs. They are called variance reduced algo-
rithms, because their common point is to use memory to
reduce the variance of the stochastic update direction as
they get closer from the optimum. Johnson and Zhang
(2013) coined the name stochastic variance reduced gradi-
ent (SVRG) and Defazio et al. (2014) unified the family.

The stochastic dual coordinate ascent (SDCA) algorithm
proposed by Shalev-Shwartz and Zhang (2013b, 2016)
is a member of this family that has not yet been applied
to CRFs. It is closely related to OEG in that it also does
block-coordinate ascent on the dual objective. Yet an in-
teresting advantage of SDCA over OEG (and SAG) is that
the form of its update makes it possible to perform an “ex-
act” line search with only one call to the marginalization

oracle, i.e. the computation of the marginal probabilities
for the CRF. This is in contrast to both SAG and OEG
where each step size change requires a new call to the
marginalization oracle. We thus propose in this paper to
investigate the performance of SDCA for training CRFs.

Contributions. We adapt the multiclass variant of SDCA
to the CRF setting by considering the marginal probabili-
ties over the cliques of the graphical model. We provide
a novel interpretation of SDCA as a relaxed fixed point
update and highlights the block separability of the dual-
ity gap. We propose to enhance SDCA with an adaptive
non-uniform sampling strategy based on the block gaps,
and analyze its theoretical convergence improvement over
uniform sampling. We compare the state-of-the-art meth-
ods on four prediction tasks with a sequence structure.
SDCA with uniform sampling performs comparably with
OEG and SAG. When SDCA is enhanced with the adap-
tive sampling strategy, it outperforms its competitors in
terms of number of parameters updates on three of the
tasks. These three tasks are all about natural language
with handcrafted sparse features. We hypothesize that
the efficiency of the dual methods can be related to the
sparsity of these features.



Related work. Our proposed gap sampling strategy
is similar to the one from Osokin et al. (2016) in the
context of SDCA applied to the structured SVM objec-
tive, which reduces to the block-coordinate Frank-Wolfe
(BCFW) algorithm (Lacoste-Julien et al., 2013). Dünner
et al. (2017) recently analyzed a general adaptive sam-
pling scheme for approximate block coordinate ascent
that generalizes SDCA. Their proposed sampling scheme
(which basically chooses the biggest gap) was motivated
in the different context of mixed GPU and CPU computa-
tions, which does not apply to our setting. Our proposed
practical strategy takes in consideration the staleness of
the gaps and is more robust in our experimental setting.
Csiba et al. (2015) proposes an adaptive sampling scheme
for SDCA for binary classification which unfortunately
cannot be generalized to the CRF setting due to an in-
tractable computation. Closely related to our work is
Perekrestenko et al. (2017) who analyzed several adaptive
sampling strategies for a generalization of the primal-
dual SDCA setup, including our proposed gap sampling
scheme. However their analysis was focused on the sin-
gle coordinate descent method (e.g. binary SDCA) and
on sublinear convergence results obtained when strong
convexity is not assumed. We cover instead the block-
coordinate approach relevant to CRFs, and one of our
notable results is to show that the linear convergence rate
for gap sampling dominates the one for uniform sam-
pling, in contrast to what happens in the sublinear regime
studied by Perekrestenko et al. (2017).

Outline. We review the optimization problem for CRFs
as well as provide novel insights on the primal-dual op-
timization structure in Section 2. We present SDCA for
CRFs in Section 3 and discuss important implementation
aspects in Section 4. We present and analyze various
adaptive sampling schemes for SDCA in Section 5. We
provide experiments in Section 6 and discuss the implica-
tions in Section 7.

2 CONDITIONAL RANDOM FIELDS

In this section, we review the CRF model and its asso-
ciated primal and dual optimization problems. We then
derive some interesting properties which motivate several
optimization algorithms.

2.1 DEFINITION

A CRF models the conditional probability of a struc-
tured output y 2 Y (e.g. a sequence) given an input
x 2 X with a Markov random field that uses an expo-
nential family parameterization with sufficient statistics
F (x, y) 2 Rd and parameters w 2 Rd : p(y|x;w) /
exp(w>F (x, y)). The feature vector F decomposes as a
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Figure 1: Example of graphical model for the optical
character recognition (OCR) task. We want to exploit
the structure of the word to predict that yi,5 is an "e"
and not a "c". This can be done by working on the pairs
yi,{t,t+1} = (yi,t, yi,t+1), the cliques of that model.

sum over the cliques C 2 C of the graphical model for y:
F (x, y) =

P
C FC(x, yC), where yC denotes the subset

of coordinates of y selected by the indices from the set C.
See Figure 1 for an illustration.

2.2 PRIMAL PROBLEM

We have a data set (xi, yi)i2[1,n] of n i.i.d. input and
structured output pairs. The parameter is learned by mini-
mizing the `2-regularized negative log-likelihood:

min
w2Rd

�

2
kwk22 +

1

n

nX

i=1

� log (p(yi|xi;w)) . (1)

We now rewrite it using the notation for the SDCA setup
for multi-class classification from Shalev-Shwartz and
Zhang (2016). Denote Mi = |Yi| the number of la-
belings for sequence i. Denote Ai the d ⇥ Mi matrix
whose columns are the corrected features { i(y) :=
F (xi, yi) � F (xi, y)}y2Yi . Denote also �i(s) :=
log
�P

y2Yi
exp(sy)

�
the log-partition function for the

scores s 2 RMi . The negative log-likelihood can be
written � log(p(yi|xi;w)) = �i(�A>

i w). The primal
objective function to minimize over w 2 Rd thus be-
comes:

P(w) :=
�

2
kwk22 +

1

n

nX

i=1

�i(�A>
i w) . (2)

2.3 DUAL FORMULATION

The above minimization problem (2) has an equivalent
Fenchel convex dual problem (Lebanon and Lafferty,
2002). Denote �M the probability simplex over M ele-
ments. Denote ↵i 2 �Mi the set of dual variables for a
given xi. The dual problem handles directly the probabil-
ity of the labels for the training set. The dual objective
to maximize over the choice of ↵ = (↵1, . . . ,↵n) 2



�|Y1| ⇥ . . .⇥�|Yn| is:

D(↵) := ��
2
k 1

n�

X

i

Ai↵ik2 +
1

n

nX

i=1

H(↵i) , (3)

where H(↵i) := �
P

y2Yi
↵i(y) log(↵i(y)) is the en-

tropy of the probability distribution ↵i. The negative
entropy appears as the convex conjugate of the softmax:
�H = �⇤.

2.4 OPTIMALITY CONDITION

We define the conjugate weight function ŵ as follows:

ŵ(↵) :=
1

n�

X

i

Ai↵i =
1

�n

nX

i=1

Ey⇠↵i [ i(y)]

=
1

�

 
1

n

nX

i=1

F (xi, yi)�
1

n

nX

i=1

Ey⇠↵i [F (xi, y)]

!
.

It is the difference between the average of the ground
truth features, and the average of the expected features
for the dual variable, up to a factor 1

� . We can show that
ŵ(↵?) = w? where w? and ↵? are respectively the opti-
mal primal parameters and the optimal dual parameters.

We can also define the conjugate probabilities ↵̂i as fol-
lows:

8i, ↵̂i(w) := rs�i(�A>
i w) = p(.|xi;w). (4)

We get another optimality condition ↵̂(w?) = ↵?. These
two optimality conditions can be deduced directly from
the structure of the duality gaps.

2.5 DUALITY GAPS

Note that P(w) � D(↵) is always true, with equality at
the optimum. The duality gap is defined by:

g(w,↵) = P(w)�D(↵) . (5)

Note that we can rewrite the primal gradient as following:

rP(w) = �(w � ŵ � ↵̂(w)) . (6)

One can verify that:

g(w, ↵̂(w)) =
�

2
kw � ŵ(↵̂(w))k2 (7)

=
1

2�
krP(w)k2 . (8)

This structure of the gap for the primal weights and its
conjugate dual probabilities have an equivalent in the
dual. Denote the Fenchel duality gap of �i for the scores
si = �AT

i w and probabilities ↵i:

Fi(si,↵i) := �i(si) + �⇤i (↵i) + sTi ↵i � 0. (9)

The positivity comes from the definition of convex con-
jugates. The gap is zero when si and ↵i are conjugate
variables for �i, e.g. ↵i = r�i(si). For any smooth
loss �i, the duality gap between ŵ(↵) and ↵ decomposes
as a sum of Fenchel gaps (Shalev-Shwartz and Zhang,
2013a):

g(ŵ(↵),↵) =
1

n

X

i

F (�AT
i ŵ(↵),↵i). (10)

The log-sum-exp and the entropy are a special pair
of conjugates. Their Fenchel duality gap is also
equal to the Bregman divergence generated by �⇤i =
�H , the Kullback-Leibler divergence: Fi(si,↵i) =
DKL(↵i||r�i(si)). Writing this for the same pair of
conjugate variables yields:

g(ŵ(↵),↵) =
1

n

X

i

DKL(↵i||↵̂i(ŵ(↵)). (11)

The duality gaps (7) and (11) are typically used to monitor
the optimization. In Appendix D, we explain how one can
transfer a convergence guarantee on the primal or dual
suboptimality to a convergence guarantee on the duality
gap.1 Moreover, the block-separability of gaps from (11)
can motivate an adaptive sampling scheme, as we describe
in Section 5.

2.6 INTERPRETATION

The primal formulation chooses a w of small norm so
as to maximise the conditional probability of observing
the labels. Conversely, the dual formulation chooses con-
ditional probabilities of the labels so as to minimize the
`2 distance between the expected features and empirical
expectation of the ground truth features. The optimal dis-
tribution would be the empirical distribution, if not for the
entropic regularization that favors more uniform probabili-
ties. This is the regularized version of the classical duality
between maximum-likelihood and maximum-entropy for
exponential families.

The optimality conditions show that the solution of the
primal Problem (2) is also a fixed point for the function ŵ�
↵̂. Because of the gradient form (6), the gradient descent
update can also be written as a relaxed fixed point update:

w+ = w � �rP(w) (12)
= (1� ��)w + �� ŵ � ↵̂(w) . (13)

The algorithm SDCA described in the next section also
admits a relaxed fixed point update on the block ↵i

1 This implies that convergence results on the dual problem
directly translates to convergence results on the primal and vice-
versa; a fact apparently missed in the linear rate comparison
of Schmidt et al. (2015).



(see (14)). More generally, optimization algorithms for
Problem (2) can often be interpreted as a back and forth
between the conjugate variables w and ŵ(↵̂(w)) (primal
methods) or ↵ and ↵̂(ŵ(↵)) (dual methods). For instance,
one could interpret OEG as a relaxed fixed point iteration
over the score variables si = �AT

i w.

w
↵̂

//

�
rs�i(�AT

i w)
�n
i=1

✏✏1
n�

P
i Ai↵i

OO

↵
ŵ

oo

Most of the results presented in this section and in Sec-
tion 5 can be transposed to other kinds of loss and regu-
larization, under some regularity assumptions. Our focus
in this paper is the application of SDCA to CRF models
and thus we focused the discussion on the log-likelihood
setting and the `2 norm, which are widely used.

3 PROXIMAL STOCHASTIC DUAL
COORDINATE ASCENT

We first describe the SDCA in its general setting, and then
describe the necessary modifications for training a CRF.

3.1 GENERAL SETTING

The stochastic dual coordinate ascent algorithm (SDCA)
updates one dual coordinate at a time so as to maximize
the dual objective. SDCA was originally proposed for
binary classification (Shalev-Shwartz and Zhang, 2013b)
where each dual variable ↵i lives in �2 = [0, 1]. In this
case, it is possible to do exact coordinate maximization
of the dual objective over a single ↵i with standard one
dimensional optimization.

In the multi-class setting however, there is no simple way
to maximize the dual objective over the block ↵i 2 �K .
The algorithm with the surprising name of Proximal-
SDCA2, option II (Shalev-Shwartz and Zhang, 2016) pro-
poses a solution to this problem. It updates ↵i in a clever
direction derived from the primal-dual relationship, which
amounts to a relaxed fixed point update. See Algorithm 1.

We now describe the idea. At all time, we maintain the
pair of dual and primal variables (↵,w = ŵ(↵)). At
each step, we sample a training point i. We compute �i =
rs�i(�AT

i w) = ↵̂i � ŵ(↵), the next fixed point iterate.
We then define the dual ascent direction by �i := �i � ↵i.
Finally we update the block ↵i with the right step size
so as to increase the dual objective D(↵) using a relaxed
fixed point update:

↵+
i  ↵i + ��i = (1� �)↵i + �↵̂i � ŵ(↵) . (14)

2We simply call it SDCA in the rest of this paper

Algorithm 1 Prox-SDCA (option II) called SDCA here

Initialize ↵(0)
i 2 �Mi , 8i

Let w(0) = ŵ(↵(0)) = 1
�n

P
i Ai↵i

for t = 0, 1 . . . do
Sample i uniformly at random in {1, . . . , n}
Let �i := ↵̂i(w) = rs�(�AT

i w)

Let �i = �i � ↵(t)
i {dual ascent direction}

Let vi =
1
�nAi�i {primal direction}

Solve Equation (15) to get �⇤ {Line Search}
Update ↵(t+1)

i := ↵(t)
i + �⇤�i

Update w(t+1) := ŵ(↵(t+1)) = w(t) + �⇤vi

The dual ascent direction is guaranteed to increase D(↵),
unless �i = 0 (this actually means that the block is already
optimal, see (11)). The primal weights w = ŵ(↵) are
related to ↵ by a linear transformation. Define the primal
direction vi =

1
�nAi�i 2 Rd. One can update the weights

directly: w+  w + �vi.

The step size � 2 [0, 1] is either fixed, or found via line
search. In practice the fixed step size for which conver-
gence is guaranteed is really small. The line search is
relatively cheap as we are looking at only one block:

�⇤ := argmax
�2[0,1]

��⇤i (↵i+��i)�
�n

2
kw+�vik2. (15)

Note that one can decompose the quadratic term and pre-
compute hw,vii and kvik2 to accelerate the optimisation.
The bottleneck remains the computation of �⇤i (and its
derivatives).

3.2 ADAPTATION TO CRF

In the CRF setting, the dual variable ↵i is exponentially
large in the input size xi. For a sequence xi of length T
where each node can take up to K values, the number
of possible labels is |Yi| = KT . It might not even fit in
memory. Instead, the standard approach used in OEG and
SAG is to consider the marginal probabilities (µC)C2C
on the cliques of the graphical model. Similarly, we
replace ↵ by µ = (µ1, · · · , µn), where µi 2

Q
C �C is

the concatenation of all the clique marginal vectors for
the sample i. For the same sequence xi, this reduces the
memory cost to K2(T � 1) for the pair marginals. We
denote mi =

P
C |Yi,C | this new memory fingerprint.

For a sequence long enough, we have mi ⌧ Mi. The
associated weight vector can still be expressed as function
of µ thanks to the separability of the features:

ŵ(µ) =
1

�n

X

i

X

C

Eµi,C [ i,C ] =
1

�n

X

i

Biµi, (16)

where Bi = ( i,C(yC))C,yC 2 Rd⇥mi is the horizontal
concatenation of the cliques feature vectors.



Algorithm 2 SDCA for CRF

Initialize µ(0)
i 2

Q
C �C consistently 8i {use (21)}

Set w(0) := ŵ(µ(0)) = 1
�n

P
i Biµ

(0)
i {See (16)}

(Optional) Let gi = 100, 8i
for t = 0, 1 . . . do

Sample i uniformly at random in {1, . . . , n}
(Alternatively) Sample i proportionally to gi
Let ⌫i,C(yC) := p(yC |xi;w(t)), 8C 2 C {oracle}
(Optional) Let gi = D̃(µi||⌫i) {duality gap (19)}
Let �i = ⌫i � µ(t)

i {ascent direction}
Let vi =

1
�n ŵ(�i) {primal direction}

Solve Equation (20) to get �⇤ {Line Search}
Update µ(t+1)

i := µ(t)
i + �⇤�i

Update w(t+1) := ŵ(µ(t+1)) = w(t) + �⇤vi

Now, assume that the graph has a junction tree struc-
ture T = (C,S) (Koller and Friedman, 2009, Def. 10.3),
where C is the set of maximal cliques and S the set of
separators. We can then run message passing on the junc-
tion tree to infer the new marginals given weights w:
µ̂i(w) = p(yC = .|xi;w). We can also now recover the
joint probability ↵i(y) as a function of its marginals µi,C

(Koller and Friedman, 2009, Def. 10.6):

↵i(y) =

Q
C2C µi,C(yC)Q
S2S µi,S(yS)

. (17)

Equation (17) in turn allows us to compute the entropy
and the divergences of the joints, using only the marginals.
Let µi and ⌫i be the marginals of respectively ↵i and �i,
then the entropy and the Kullback-Leibler divergence are
given by:

H̃(µi) := H(↵i) =
X

C

H(µi,C)�
X

S

H(µi,S) (18)

and

D̃(µi||⌫i) := DKL(↵i||�i)

=
X

C

DKL(µi,C ||⌫i,C)�
X

S

DKL(µi,S ||⌫i,S). (19)

With this expression of the entropy (18), we can compute
the dual objective, and thus perform the line search:

�⇤ = argmax
�2[0,1]

H̃(µ(t)
i +��i)�

�n

2
kw(t)+�vik2. (20)

With the Kullback-Leibler divergence (19), we can com-
pute efficiently the individual duality gaps from (11). Al-
gorithm 2 describes this variation of SDCA, with as an
option a non-uniform sampling strategy defined in Sec-
tion 5.3.

4 IMPLEMENTATION

We provide in Appendix A a discussion of various impor-
tant implementation aspects summarized here.

1. The initialization of dual methods for CRFs can sig-
nificantly influence their performance. As explained
in Appendix A, we use:

↵(0) := "u+ (1� ")� , (21)

where u is the uniform distribution on each block, �
is a unit mass on each ground truth label and " is a
small number.

2. Storing the dual variable may be expensive and one
should allocate a decent amount of memory.

3. The line search requires computing the entropy of
the marginals. This is costly and we used Newton-
Raphson algorithm to minimize the number of itera-
tions. This in turn requires storing the logarithm of
the dual variable.

5 ADAPTIVE SAMPLING FOR SDCA

Recently, there has been a lot of attention on non-uniform
sampling for stochastic methods. The general goal is to
sample more often points which are harder to classify and
can bring more progress on the objective. These methods
are said to be adaptive when the sampling probability
changes during the optimization. SDCA itself has had
several adaptive schemes proposed. In the following, we
attempt to explain and relate these methods, and suggest
new schemes that work well on our problem.

5.1 ASCENT LEMMA

We start by restating the ascent lemma from Equation (25)
in Shalev-Shwartz and Zhang (2013a). This lemma in-
spires and supports all the strategies.

Ascent after sampling i: At iteration t, if we sample i
and take a step of size �i 2 [0, 1], we can lower bound
the resulting dual improvement:

n(D(↵+)�D(↵))

� �i
⇥
�(�AT

i w) + �⇤(↵i) +wTAi↵i

⇤
| {z }

Fenchel gap=:gi

+ �i

✓
(1� �i)

2
� �iRi

2�n

◆
k�i � ↵ik21 (22)

where Ri := kAik21!2 = maxy2Yi k i(y)k22 is the
squared radius of the corrected features for sample i.

Note that compared to the original text, we used the fact
that the regularizer is the `2 norm and the loss is 1-smooth



with respect to the `1 norm. We define R := maxi Ri,
R̄ := 1

n

P
i Ri and ḡ := 1

n

P
i gi the true duality gap

(see (9)-(10)). We also introduce Li := � + Ri
n an

upper bound on the smoothness of loss i plus regular-
izer for the `2 norm. We recall from Section 2.5 that
gi = DKL(↵i||�i) (11). We give the name residual to
di := k�i � ↵ik21.

This lemma is derived with standard assumptions and
inequalities on the smoothness of the loss and the strong
convexity of the regularizer. The first term of the lower
bound is the ascent guarantee while the other term gives
condition on the step-size to ensure progress. We refer
the reader to the original paper for more details.

To get the expected progress (conditioned on the past)
after sampling with probability p, we simply need to take
the sum of the inequality above after multiplying both
sides by pi. Our goal is to maximize this lower bound by
choosing the right probability p and step sizes �. To be
able to conclude the proof with the original method, we
also want some constants time the duality gap ḡ to appear
in the lower bound – the gap is lower bounded by the dual
suboptimality and thus this constant will give the linear
rate of convergence. The lemma can then transpose this
result from the dual sub-optimality to the duality gap as
described in Appendix D. From there on there are two
general approaches: importance sampling and duality gap
sampling.

5.2 IMPORTANCE AND RESIDUAL SAMPLING

With the importance sampling approach, the goal is to set
the step-size and the probability so that they cancel each
other out: �i = �

pi
. One then get an unbiased estimate

of the true duality gap from (11) as the first term of the
upper bound. What is left is maximizing the second term
with respect to p. This is the approach proposed by Zhao
and Zhang (2015) (Importance Sampling, left term below)
and generalized by Csiba et al. (2015) (Residual sampling,
a.k.a. AdaSDCA for binary classification, right term):

pi / Li or pi / di
p

Li. (23)

These sampling schemes somehow allow to maximize the
second term of (22). Intuitively, they replace a depen-
dency on R in the convergence rate by a dependency on
R̄. They can give good results on binary and multi-class
logistic regression. There are a few issues though.

• One needs an accurate estimate of the Li.
• Importance sampling is not adaptive.
• In the CRF setting, the residual is di = k�i � ↵ik21.

It is the squared `1 norm of a vector of exponential
size. We are not aware of any trick to compute it
efficiently.

5.3 GAP SAMPLING

To make sure that the second term is positive, the original
proof of uniform SDCA sets �i = � = (1 + R

�n )
�1 to

obtain:

nEp[D(↵+)�D(↵)] � �
X

i

pigi. (24)

Assuming a full knowledge of the duality gaps gi, the
optimal decision is to sample the point with maximum
duality gap. This was done by Dünner et al. (2017) in the
context of multi-class classification on a pair CPU-GPU.
While the GPU computes the update, the CPU updates as
many duality gaps as possible. This lead to impressive
acceleration over massive datasets.

However, this is not our current setting. We know and
update only one gap at a time (for efficiency). Because of
staleness of the gaps, our experiments with this method
did not even converge for the most part (see Section 6.3).
We need a more robust method.

We take inspiration from what was done by Osokin et al.
(2016) to improve the Block-Coordinate Frank-Wolfe
(BCFW) algorithm (Lacoste-Julien et al., 2013). We pro-
pose to bias sampling towards examples whose duality
gaps are large: pi / gi. If we know all the duality gaps,
the expected improvement reads:

nEp[D(↵+)�D(↵)] � �(g)2 � ḡ, (25)

where �(g) =
q

1
n

P
i g

2
i

ḡ2 2 [1,
p
n] is the non-uniformity

of the duality gaps, as defined in Osokin et al. (2016, Sec-
tion 3.1). The value �(g)2� is the value that will appear in
the linear convergence rate of this method. It means that
the convergence rate for gap sampling dominates the one
for uniform sampling. This is different from what was ob-
served for BCFW where they could not prove dominance
in general.

In practice we use stale estimates of the gaps and there are
no convergence guarantees. We discuss more this issue in
section 6.3.

We also explored a combination of gap sampling and im-
portance sampling. We could get similar convergence rate
where a trade-off appeared between the mean smoothness
and the non-uniformity. We detail these considerations as
a technical report in Appendix F for the interested reader.

6 EXPERIMENTS

We conducted these experiments to answer three ques-
tions: (1) How does the line search influence SDCA? (2)
How do the non-uniform sampling schemes compare with
each other? and (3) How does SDCA compare with SAG
and OEG on sequence prediction?



Table 1: Dataset summary. d is the dimension of w. n is
the number of data points (sequences). N is the number
of nodes (e.g. sum of sequences length). K is the number
of possible labels for each node. A is the number of
attributes (see Appendix B). a is the maximum number of
attributes extracted from one node. Mem. is the memory
required by the pairwise marginals stored as float 64. The
pairwise marginals dominate the memory cost.

Dataset OCR CONLL NER POS

d 4,082 1.6⇥ 106 2.8⇥ 106 8.6⇥ 106

n 6,202 8,936 15,806 38,219
N 52,827 2.1⇥ 105 2⇥ 105 9.1⇥ 105

K 26 22 9 45
A 128 74,658 3.1⇥ 105 1.9⇥ 105

a 128 19 20 13
Mem.(GiB) 0.2 0.7 0.1 13

6.1 EXPERIMENTAL SETTING

We applied the experimental setup outlined by Schmidt
et al. (2015). We implemented SDCA to train a classi-
fier on four CRF training tasks: (1) the optical character
recognition (OCR) dataset (Taskar et al., 2004), (2) the
CoNLL-2000 shallow parse chunking dataset (CONLL),
(3) the CoNLL-2002 Dutch named-entity recognition
dataset (NER), and (4) a part-of-speech (POS) tagging
task using the Penn Treebank Wall Street Journal data.
Additional details regarding these datasets are provided
in Table 1. Note that the tasks (2), (3), (4) are about lan-
guage understanding. They use sparse features (the ratio
a/A from the table is small). The sparsest data set is NER.
Note that POS is considerably larger than other datasets.
All experiments are performed with a regularization factor
� = 1/n. We used our own implementation3 of SDCA
coded in plain Python and Numpy (Walt et al., 2011). In
most plots we report the logarithm base 10 of the primal
sub-optimality. We got the optimum by running L-BFGS
a large number of iterations.

6.2 EFFECT OF THE LINE SEARCH

We implemented the safe bounded Newton-Raphson
method from Press et al. (1992, Section 9.4) on the deriva-
tive of the line search function. A natural question to ask
is : how precise should the line search be? The stopping
criterion for this algorithm is the size of the last step taken
so there is no proper precision parameter. We refer to this
stopping criterion for the line search as the sub-precision
of SDCA.

3The code to reproduce our experiments is available
at: https://remilepriol.github.io/research/
sdca4crf.html.

We discovered experimentally that the convergence of
SDCA is mostly independent of the sub-precision. On
all datasets, if we ask 0.01 sub-precision or less, SDCA
converges with the same rate. An explanation is that the
accuracy of the optimization arises from iterates ↵ and
↵̂(ŵ(↵)) getting closer to each other in the simplex with
each iteration.

Reaching 0.01 or 0.001 takes on average 2 iterations.
Each iteration of Newton’s method require the computa-
tion of the first and second derivative of the line search
objective (20). In the following we report results with
sub-precision 0.001 to be on the safe side. These 2 iter-
ations were taking about 30% of the algorithms running
time for each dataset.4

We also performed experiments with only one step of the
Newton update. The convergence was not affected on
OCR, CONLL and POS, but convergence failed on NER
(see Figure 8 of Appendix E). This phenomenon could be
related to sparsity.

6.3 COMPARISON OF SAMPLING SCHEMES

We compare the performance of four sampling strategies
with 20% of uniform sampling against the full Uniform
approach, on the OCR dataset (see results in Figure 2):

• Importance: sample proportionally to the smooth-
ness constants Li = � + Ri

n . We report how we
evaluated the radii Ri in Appendix C.

• Gap: sample proportionally to our current estimate
of the duality gaps.5

• Gap ⇥ importance: sample proportionally to the
product of the gap and smoothness constants.

• Max: sample deterministically the variable with the
largest recorded gap (Dünner et al., 2017).

As discussed in Section 5.3, Max sampling is not robust
enough to the staleness of the gap estimates and fails to
converge here. We also observe that Importance performs
worse than Uniform, and that Gap⇥ Importance performs
worse than Gap. This indicates that the smoothness upper
bounds we estimated are not informative of the difficulty
of optimizing a point for SDCA. Overall, Gap sampling
gives the best performance and this is what we use in the
following experiments.

The ratio of uniform sampling is here to mitigate the
fact that we sample proportionally to stale gaps. This is

4 We also tried initializing the line search with 0.5 or with
the previous step size. There was no significant difference.

5 For the gap approaches, we initialize the gap estimates with
large values (100) so as to perform a pass over the whole dataset
before starting to sample proportionally to the stale estimates.

https://remilepriol.github.io/research/sdca4crf.html
https://remilepriol.github.io/research/sdca4crf.html
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Figure 2: Performance of competing sampling schemes
on the OCR dataset with 80% of non-uniformity. Sam-
pling proportionally to the gap gives the best performance.
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Figure 3: SDCA with Gap sampling applied on NER with
various fractions of non-uniform sampling, as indicated
by the number in the legend. Increasing the fraction only
improves the performance, up to a certain point.

the strategy adopted by SAG-NUS (Schmidt et al., 2015)
which samples uniformly half of the time. Another strat-
egy used by Osokin et al. (2016) is to update all the duality
gaps at once every 10 epochs or so. Our experiments indi-
cate that these strategies are not needed for SDCA-GAP.
Increasing the ratio of non-uniformity up to 1 only im-
proves the performance on all datasets, though after 0.8
the improvements are marginal, as illustrated by Figure 3
for the NER dataset.

In fact, the estimate of the total gap maintained by SDCA
is somewhat accurate, as illustrated for different datasets
in Figure 9 of Appendix E. Empirically, it always remains
within a factor 2 of the true duality gap. This accuracy
is a good news because one can use this estimate of the
duality gap as a stopping criterion for the whole algorithm.
Once it reaches a certain precision threshold, one just has
to perform one last batch update to check the real value.
This is similar in spirit to SAG, which uses the norm of its
estimate of the true gradient as a stopping criterion. Both
are duality gaps estimators (see Equation (7)).

6.4 COMPARISON AGAINST SAG AND OEG

We downloaded the code for OEG and SAG-NUS as im-
plemented by Schmidt et al. (2015) from the SAG4CRF
project page.6 We used our own implementation of SDCA
with a line search sub-precision of 0.001. We provide
the comparison in Figure 4 according to two different
measures of complexity which are implementation inde-
pendent.

Oracle calls. Schmidt et al. (2015) compared the algo-
rithms on the basis of the number of oracle calls. We re-
port these on OCR and NER in Figures 4a and 4d. Results
on the other datasets are in Figure 6 in Appendix E. This
metric was suitable for the methods they compared. Both
OEG and SAG-NUS use a line search where they call an
oracle on each step. SDCA does not need the oracle to
perform its line search. However the oracle is message
passing on a junction tree. It has a cost proportional to
the size of the marginals. Each iteration of the line search
require computing the entropy of these marginals, or their
derivatives. These costs are roughly the same. Comparing
the number of oracle calls for each method is thus unfairly
advantaging SDCA by hiding the cost of its line search.
It becomes a relevant comparison when a marginalization
oracle becomes much more expensive than approximating
the entropy (see the discussion in Section 7). When this
cost is hidden, SDCA-GAP is on par with SAG-NUS* on
OCR and it is much faster on the sparse datasets.

Parameter updates. To give a different perspective, we
report the log of the sub-optimality against the number
of parameter updates in Figures 4b, 4c, 4e and 4f. This
removes the additional cost of the line search for all meth-
ods.7

We observe that uniform SDCA and OEG need roughly
the same number of parameters update on all four datasets.
When we add the adaptive gap sampling, SDCA outper-
forms OEG by a margin. On OCR, SDCA and SDCA-
GAP do not perform as well as SAG-NUS. On the three
other datasets, SDCA-GAP needs less iterations. In fact,
the more sparse the dataset, the less iterations are needed.

This is likely explained by SDCA’s ability to almost per-
fectly optimize each block separately due to its line search
method. More specifically, as the datasets become sparser,
the prediction between data points becomes less and less
correlated (i.e. the label distribution for two points that
share no attributes will not influence each other directly
through their primal weights). In settings where no points

6https://www.cs.ubc.ca/~schmidtm/
Software/SAG4CRF.html

7 This is a penalty for SAG-NUS* which enforces a line-
search skipping strategy.

https://www.cs.ubc.ca/~schmidtm/Software/SAG4CRF.html
https://www.cs.ubc.ca/~schmidtm/Software/SAG4CRF.html


(a) OCR (Oracle Calls) (b) OCR (c) CONLL

(d) NER (Oracle calls) (e) NER (f) POS

Figure 4: Primal sub-optimality as a function of the number of oracle calls (left) or parameters updates (center and
right). SDCA refers to uniform sampling. SDCA-GAP refers to sampling Gap sampling 80% of the time. SAG-NUS
performs a line search at every iteration. SAG-NUS* implements a line-search skipping strategy. It appears worse than
SAG-NUS when we look at the number of updates, which hides the cost of the line search.

share any attributes (completely sparse), all methods opti-
mize each point independently. SDCA may perform very
well thanks to its precise line search.

In terms of test error, SDCA is on par with SAG, and a bit
better than OEG. All methods reach maximum accuracy
after a few epochs. We report the evolution of the test
error in Figure 7 of Appendix E.

Comparing the number of parameters updates also has
a disadvantage. It penalizes methods with line search
skipping strategies likes OEG and SAG. The running time
is highly implementation dependent and providing a fair
comparison is non-trivial. We focused on implementation
independent comparisons. SCDA, SAG and OEG have
many common operations: the oracle, the computation of
the scores and the primal direction. The fact that the line
search took only 30% of SDCA’s runtime indicates that
the conclusion drawn from the number of updates may
hold for other metrics.

7 DISCUSSION

In this work, we investigated using SDCA for training
CRFs for the first time. The observed empirical con-
vergence per parameter update was similar for standard
SDCA and OEG. However, SDCA can be enhanced with
an adaptive sampling scheme, consistently accelerating

its convergence and also yielding faster convergence than
SAG with non-uniform sampling on datasets with sparse
features. It would be natural to also implement a gap sam-
pling scheme for OEG, though several quantities needed
for the computation are not readily available in standard
OEG and would yield higher overhead in actual imple-
mentation. We leave finding a more efficient implementa-
tion of a gap sampling scheme for OEG as an interesting
research direction.

A key feature of SDCA is to only require one marginal-
ization oracle per line-search. This could become ad-
vantageous over SAG or OEG when the marginalization
oracle becomes much more expensive than evaluating the
entropy function from the marginals. Examples for this
scenario include: when a parallel implementation is used
for the entropy computation; or when the marginalization
oracle uses an iterative approximate inference algorithms
such as TRW BP whereas an approximation of the en-
tropy is direct from the marginals (Krishnan et al., 2015).
Investigating these scenarios with full timing comparison
(which is implementation dependent) is a further interest-
ing direction of future work.

We also note that acceleration schemes have been pro-
posed for both SAG and SDCA (Lin et al., 2015; Shalev-
Shwartz and Zhang, 2016), though they have not been
tested yet for training CRFs.
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