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Abstract

Lifted inference reduces the complexity of in-
ference in relational probabilistic models by
identifying groups of constants (or atoms)
which behave symmetric to each other. A
number of techniques have been proposed in
the literature for lifting marginal as well MAP
inference. We present the first application of
lifting rules for marginal-MAP (MMAP), an
important inference problem in models having
latent (random) variables. Our main contribu-
tion is two fold: (1) we define a new equiv-
alence class of (logical) variables, called Sin-
gle Occurrence for MAX (SOM), and show
that solution lies at extreme with respect to
the SOM variables, i.e., predicate groundings
differing only in the instantiation of the SOM
variables take the same truth value (2) we de-
fine a sub-class SOM-R (SOM Reduce) and
exploit properties of extreme assignments to
show that MMAP inference can be performed
by reducing the domain of SOM-R variables
to a single constant. We refer to our lifting
technique as the SOM-R rule for lifted MMAP.
Combined with existing rules such as decom-
poser and binomial, this results in a power-
ful framework for lifted MMAP. Experiments
on three benchmark domains show significant
gains in both time and memory compared to
ground inference as well as lifted approaches
not using SOM-R.

1 INTRODUCTION

Several real world applications such as those in NLP, vi-
sion and biology need to handle non-i.i.d. data as well
as represent uncertainty. Relational Probabilistic mod-
els (Getoor and Taskar 2007) such as Markov logic net-
works (Domingos and Lowd 2009) combine the power

of relational representations with statistical models to
achieve this objective. The naive approach to inference
in these domains grounds the relational network into
a propositional one and then applies existing inference
techniques. This can often result in sub-optimal perfor-
mance for a large number of applications since inference
is performed oblivious to the underlying network struc-
ture.

Lifted inference (Kimmig, Mihalkova, and Getoor 2015)
overcomes this shortcoming by collectively reasoning
about groups of constants (atoms) which are identical
to each other. Starting with the work of Poole (Poole
2003), a number of lifting techniques which lift propo-
sitional inference to the first-order level have been pro-
posed in literature. For instance, for marginal infer-
ence, exact algorithms such as variable elimination and
AND/OR search and approximate algorithms such as be-
lief propagation and MCMC sampling have been lifted to
the first-order level (cf. (de Salvo Braz, Amir, and Roth
2005; Gogate and Domingos 2011; G. Van den Broeck
et al. 2011; Kersting, Ahmadi, and Natarajan 2009;
Singla and Domingos 2008; Niepert 2012; Venugopal
and Gogate 2012)). More recently, there has been in-
creasing interest in lifting MAP inference (both exact
and approximate) (Sarkhel et al. 2014; Mittal et al. 2014;
Mladenov, Kersting, and Globerson 2014). Some recent
work has looked at the problem of approximate lifting
i.e., combining together those constants (atoms) which
are similar but not necessarily identical (Van den Broeck
and Darwiche 2013; Singla, Nath, and Domingos 2014;
Sarkhel, Singla, and Gogate 2015).

Despite a large body of work on lifted inference, to
the best of our knowledge, there is no work on lifted
algorithms for solving marginal maximum-a-posteriori
(MMAP) queries. MMAP inference is ubiquitous in real-
world domains, especially those having latent (random)
variables. It is well known that in many real-world do-
mains, the use of latent (random) variables significantly
improves the prediction accuracy (Maaten, Welling, and



Saul 2011). Moreover, the problem also shows up in the
context of SRL domains in tasks such as plan and activity
recognition (Singla and Mooney 2011). Therefore, effi-
cient lifted methods for solving the MMAP problem are
quite desirable.

MMAP inference is much harder than marginal (sum)
and MAP (max) inference because sum and max opera-
tors do not commute. In particular, latent (random) vari-
ables need to be marginalized out before MAP assign-
ment can be computed over the query (random) variables
and as a result MMAP is NP-hard even on tree graph-
ical models (Park 2002). Popular approaches for solv-
ing MMAP include variational algorithms (Liu and Ihler
2013), AND/OR search (Marinescu, Dechter, and Ihler
2014) and parity solvers (Xue et al. 2016).

In this paper, we propose the first ever lifting algorithm
for MMAP by extending the class of lifting rules (Jha
et al. 2010; Gogate and Domingos 2011; Mittal et al.
2014). As our first contribution, we define a new equiv-
alence class of (logical) variables called Single Occur-
rence for MAX (SOM). We show that the MMAP solution
lies at extreme with respect to the SOM variables, i.e.,
predicate groundings which differ only in the instantia-
tion of the SOM variables take the same truth (true/false)
value in the MMAP assignment. The proof is fairly in-
volved due to the presence of both MAX and SUM opera-
tions in MMAP, and involves a series of problem trans-
formations followed by exploiting the convexity of the
resulting function.

As our second contribution, we define a sub-class of
SOM, referred to as SOM-R (SOM Reduce). Using
the properties of extreme assignments, we show that the
MMAP solution can be computed by reducing the do-
main of SOM-R variables to a single constant. We refer
to this as SOM-R rule for lifted MMAP. SOM-R rule is
often applicable when none of the other rules are, and can
result in significant savings since inference complexity is
exponential in the domain size in the worst case.

Finally, we show how to combine SOM-R rule along
with other lifting rules e.g., binomial and decomposer,
resulting in a powerful algorithmic framework for lifted
MMAP inference. Our experiments on three different
benchmark domains clearly demonstrate that our lifting
technique can result in orders of magnitude savings in
both time and memory compared to ground inference as
well as vanilla lifting (not using the SOM-R rule).

2 BACKGROUND

First-Order Logic: The language of first-order
logic (Russell and Norvig 2010) consists of constant,
variable, predicate, and function symbols. A term is a
variable, constant or is obtained by application of a func-

tion to a tuple of terms. Variables in first-order logic are
often referred to as logical variables. We will simply
refer to them as variables, henceforth. A predicate de-
fines a relation over the set of its arguments. An atom
is obtained by applying a predicate symbol to the corre-
sponding arguments. A ground atom is an atom having
no variables in it. Formulas are obtained by combining
predicates using a set operators: A (and), V (or) and —
(not). Variables in a formula can be universally or exis-
tentially quantified using the operators V and 3, respec-
tively. A first-order theory (knowledge base) is a set of
formulas. We will restrict our attention to function free
finite first-order logic with Herbrand interpretation (Rus-
sell and Norvig 2010) and universally quantified vari-
ables. In the process of (partially) grounding a theory,
we replace all (some) of the universally quantified vari-
ables with the possible constants in the domain. In the
following, we will use capital letters (e.g., X, Y etc.) to
denote logical variables and small case letters to denote
constants. We will use Ax = {x1, 2, -,z } denotes
the domain of variable X.

Markov Logic: A Markov logic network (Domingos
and Lowd 2009) (MLN) M is defined as a set of pairs
{fi,w;}*_, where f; is a formula in first-order logic and
wj is the weight of f;. We will use F'(M) to denote the
set of all the formulas in MLN. Let X denote the set of all
the logical variables appearing in MLN. An MLN can be
seen as a template for constructing ground Markov net-
works. Given the domain A x for every variable X € X,
the ground network constructed by MLN has a node for
every ground atom and a feature for every ground for-
mula. Let 7 denote the set of all the predicates appearing
in M. We will use 7, to denote all the ground atoms cor-
responding to the set 7 and ¢ to denote an assignment,
i.e. a vector of true/false values, to 7,. The distribution
specified by an MLN is given as:

]. n my
P(7-g = t) = Zezizl Zj:l ’w,,f”(t) (1)

where m; denotes the number of groundings of the i*"
formula. f;; represents the feature corresponding to the
4" grounding of the i*" formula. The feature is on if
the corresponding formula is satisfied under the assign-
ment ¢ off otherwise. Z is the normalization constant.
Equivalently, in the potential function representation, the
distribution can be written as:
n m;

P(t) = % II1] 450 )

i=1j=1
where there is a potential ¢;; for each f;; such that
¢ij(t) = ewifi; (1)

Marginal MAP (MMAP): Let the set of all predicates
T be divided into two disjoint subsets Q and S, referred



to as MAX and SUM predicates, respectively. Let ¢ (resp.
s) denote an assignment to all the groundings of the pred-
icates in Q (resp. S). Note that 7 = Q U S, and given
assignment ¢ to 7, t = ¢ U s. Then, the marginal-MAP
(MMAP) problem for MLNs can be defined as:

arg maxz H H ¢ij(q,s) = argmax Wir(q) (3)
q s i=1j=1 a
where, Wi (q) = Z H H bij(q, s)
s i=1j=1

Wi (q) is referred to as the MMAP objective function
for the MLN M, and its solution ¢* = arg max, Was(q)
is referred as the MMAP solution. Note that we can get
rid of Z in equation 3, since we are only interested in
finding the maximizing assignment and Z is a constant.

Preliminaries: We will assume that our MLN is in Nor-
mal Form (Mittal et al. 2014) i.e., (a) no constants ap-
pear in any of the formulae (b) if X and Y appear at the
same predicate position in one or more formulae, then
Ax = Ay. Any MLN can be converted into normal
form by a series of mechanical operations. We will also
assume that formulas are standardized apart i.e., we re-
name the variables such that the sets of variables appear-
ing in two different formulae are disjoint with each other.
We define an equivalence relation ~ over the set of vari-
ables such that X ~ Y if (a) X and Y appear at the
same predicate position OR (b) 37 such that X ~ Z
and Y ~ Z. We will use X to denote the equivalence
class corresponding to variable X. Variables in the same
equivalence class must have the same domain due to the
normal form assumption. We will use A ¢ to refer to the
domain of the variables belonging to X

Finally, though our exposition in this work is in terms
of MLNSs, our ideas can easily be generalized to other
representations such as weighted parfactors (de Salvo
Braz, Amir, and Roth 2005) and probabilistic knowledge
bases (Gogate and Domingos 2011).

3 SINGLE OCCURRENCE FOR MMAP
3.1 Motivation

In this work, we are interested in lifting the marginal-
MAP (MMAP) problem. Since MMAP is a problem
harder than both marginal and MAP inference, a nat-
ural question to examine would be if existing lifting
techniques for MAP and marginal inference can be ex-
tended to the case of MMAP. Or further still, if additional
rules can be discovered for lifting the MMAP problem.
Whereas many of the existing rules such as decomposer
and binomial ! (Jha et al. 2010; Mittal et al. 2015) extend

lapplicable when the binomial predicate belongs to MAX

in a straightforward manner for MMAP, unfortunately
the SO rule (Mittal et al. 2014), which is a powerful rule
for MAP inference, is not directly applicable.

In response, we propose a new rule, referred to as Single
Occurrence for MAX Reduce (SOM-R), which is appli-
cable for MMAP inference. We first define a variable
equivalence class, referred to as SOM, which requires
that (1) no two variables in the class appear in the same
formula (2) at least one of the variables in the class ap-
pears in a MAX predicate. We further define a sub-class
of SOM, referred to as SOM-R, which imposes a third
condition (3) either all the SUM predicates in the theory
contain a SOM variable or none of them does. Our SOM-
R rule states that domain of SOM-R variables can be re-
duced to a single constant for MMAP inference. Con-
sider the following example MLN, henceforth referred
to as Mi:

wy : Prods(X,Y) A Parent(Z, X) = Knows(Z,Y)
wa : Knows(U, V)
SUM : Parent MAX : Frnds, Knows

The equivalence classes in this example are given by
{X}, {Y,V} and{Z,U}. It is easy to see that each
of these equivalence classes satisfy the three conditions
above and hence, SOM-R rule can be applied over them.
This makes the MMAP inference problem independent
of the size of the domain and hence, it can be solved
in O(1) time. Ground inference has to deal with O(m?)
number of ground atoms resulting in O (exp(cm?)) com-
plexity in the worst case 2, where c is a constant. Further,
in the absence of the SOM-R rule, none of the existing
lifting rules apply and one has to resort to partial ground-
ing again resulting in worst case exponential complexity.

We note that conditions for identifying SOM and SOM-
R specifically make use of the structure of the MMAP
problem. Whereas condition 1 is same as Mittal et al.’s
SO condition, condition 2 requires the variables in the
SOM class to belong to a MAX predicate. Condition 3
(for SOM-R) further refines the SOM conditions so that
domain reduction can be applied.

We prove the correctness of our result in two phases.
First, we show that SOM equivalence class implies that
MMAP solution lies at extreme, meaning that predicate
groundings differing only in the instantiation of the SOM
class take the same truth value. Second, for the sub-class
SOM-R, we further show that domain can be reduced to
a single constant for MMAP. Here, we rely on the prop-
erties of extreme assignments.

Our proof strategy makes use of a series of problem

YInference complexity is exponential in the number of
ground atoms. Here, we assume |Ax| = |Ay| = |Az|=m



transformations followed by using the convexity of the
resulting function. These algebraic manipulations are
essential to prove the correctness of our result, and are
some of the important contributions of our paper. Next,
we describe each step in detail. The proofs of theorems
(and lemmas) marked with (x) are in the supplement.

3.2 SOM implies Extreme Solution

We introduce some important definitions. We will as-
sume that we are given an MLN M. Further, we are
interested in solving an MMAP problem over M where
the set of MAX predicates is given by Q.

Definition 1. (Single Occurrence for MAX) We say that
a variable equivalence class X is Single Occurrence for
MAX (SOM) if (a) Vi, f; € F(M), there is at most one
variable from the set X occurring in f; (b) there exists
a variable X € X and a predicate P € Q, such that X
appears in P.

Next, we define the notion of an extreme assignment.

Definition 2. (Extreme Assignment) Let X be a variable
equivalence class. An assignment g to MAX predicates Q
lies at extreme (with respect to X ), if VP € Q, all the
groundings of P with the same instantiation to variables
X — X, take the same value in q.

In M;, an extreme assignment with respect to variable
equivalence class {Y, V'} will assign the same truth value
to the ground atoms Knows(z,y;) and Knows(z, yz),
Vz € Ay and Vy1,y2 € Ay. We next define the notion
of an MLN variablized with respect to a variable equiva-
lence class.

Definition 3. (Variablized MLN) Let X be an equiva-
lence class. Let M 3 be the MLN obtained by instantiat-
ing (grounding) the variables in the set X — X. We say
that M 5 is variablized (only) with respect to the set X.

For instance in M, variablizing with respect to the
equivalence class {Y, V'} results in MLN with formulas
similar to:

wy : Prads(z,Y) A Parent(z,z) = Knows(z,Y)

wa : Knows(u, V)

where z, z and u are constants belonging to respective
domains. Frnds(z,Y), Knows(z,Y) and Knows(u, V')
can be treated as unary predicates over the equivalence
class {Y,V'} since x, z and u are constants. Similarly,
Parent(z, x) can be treated as a propositional predicate.

It is important to note that, M ¢ represents the same dis-
tribution as M. Further, M ¢ can be converted back into
normal form by introducing a new predicate for every
combination of constants appearing in a predicate. We
now define one of the main theorems of this paper.

Theorem 1. Let M be an MLN and let X be a SOM
equivalence class. Then, an MMAP solution for M lies
at extreme with respect to X.

We will prove the above theorem by defining a series
of problem transformations. In the following, we will
work with MLN M and X as a SOM variable equiva-
lence class. We will use Q and S to denote set of MAX
and SUM predicates, respectively. ¢ and s will denote
the assignments to respective predicate groundings (see
Background (section 2)).

3.2.1 Problem Transformation (PT) 1

Objective PT1: Convert MMAP objective into a form
which only has unary and propositional predicates.

Lemma 1. Let My denote the MLN variablized with
respect to SOM equivalence class X. Then, My con-

tains only unary and propositional predicates. Further,
the MMAP objective can be written as:

argmax Wiy (q) = argmax Wy (q)
q q

The proof that Mg only has unary and propositional
predicates follows immediately from the definition of
M (defn. 3) and the fact that X is SOM. Further, since
M and My define the same distribution, we have the
equivalence of the MMAP objectives. Since, My only
has unary and propositional predicates, we will split the
assignment ¢ to groundings of Q into (g, g,) where g,
and ¢, denote the assignments to groundings of unary
and propositional predicates, respectively. Similarly, for
assignment s to groundings of S, we split s as (sy, Sp).

3.2.2 Problem Transformation 2

Objective PT2: In the MMAP objective, get rid of
propositional MAX predicates.

Lemma 2.* Consider the MMAP problem over M ;. Let
qp be some assignment to propositional MAX predicates.
Let M ;E be an MLN obtained by substituting the truth
value in q, for propositional predicates. Then, if M ;2
has a solution at extreme for all possible assignments of
the form qp, then, M ; also has a solution at extreme.

Therefore, in order to prove the extrema property for
M, it is sufficient to prove it for a generic MLN M ;{,
i.e., without making any assumptions on the form of g,,.

For ease of notation, we will drop the prime in M ;{ and
simply refer to it as M ¢ . Therefore, we need to show that
the solution to the following problem lies at extreme:

argmax Wiy (qu)
Qu

where the propositional MAX predicates have been gotten
rid of in M 5.



3.2.3 Problem Transformation 3

Objective PT3: In the MMAP objective, get rid of unary
SUM predicates using inversion elimination (de Salvo
Braz, Amir, and Roth 2005).

First, we note that the MMAP objective:

Wirg (g = 3 TTTT @650 0. 50)
Sp,Su 1=1j=1

can be equivalently written as:

Wi, (qu) = Z H H 01 (qus Sps Su)

Sp,Sy t=17=1

where m = |Ag|. ¢};(qus Sps Su) = ij(qus Sps Su) if

f; contains a variable from X, else G5 (Qus Spy Su) =

Gij (Qu> Sp, su)% otherwise. It is easy to see this equiva-
lence since the only variables in the theory are from the
class X. When fi; contains a variable from X , it has
exactly m; = m groundings since X is SOM. On the
other hand, if f; does not contain a variable from X , it
only contains propositional predicates. Then we raise it
to power %, and then multiply m times in the latter ex-
pression to get an equivalent form.

Next, we use inversion elimination (de Salvo Braz, Amir,
and Roth 2005) to get rid of unary SUM predicates.

Lemma 3. MMAP problem over M 3 can be written as:

arg max Wiy (qu) = arg max Z H ©;(qu, sp)

Qu w5

where ©; is a function of unary MAX and propositional
SUM predicates groundings q,, and sp, respectively.

Proof. We can write the MMAP objective Wiy _ (q.) as:

= Z H H (b;j(qu Sp, Su)

Sp,Sy t=1j=1

= Z H H ¢;j(qvu Sp, Su)

SpySu j=11=1

= Z H (I)j(Q1l,7 Sps SU)

SpySu j=1
m
= § § Hq)j(chuspasuj)
Sp SuqrSug ey Suy, j=1

(apply inversion elimination)

= Z H Z (Dj(q’ua SI)’ S’lt]‘)

sp j=1 Su;;

=> 11©i(aus»)

sp j=1

Proof Explanation: Second equality is obtained by in-
terchanging the two products. Third equality is obtained
by defining [[; ¢};(qusSpssu) = Pj(qu;Sp,su). In
fourth equality, we have made explicit the dependence
of ®; on s, i.e. the groundings corresponding to the
4" constant.

Inversion Elimination (de Salvo Braz, Amir, and Roth
2006): Since ®; only depends on s,; (among s,)
groundings, we can use inversion elimination to invert
the sum over s,,; and product over j in the fifth equality.
Final Expression: = We define ©,(qy,s,) =
S, ®3(Gus 5p150).

Note that, at this point, we have only propositional SUM
and unary MAX predicates in the transformed MMAP
objective.

3.2.4 Problem Transformation 4

Objective PT4: Exploit symmetry of the potential func-
tions in the MMAP objective.

We rename ¢, to ¢ and s, to s for ease of notation in
Lemma 3. The MMAP objective can be written as:

Wi (0) = > [1©5(a5,9) @)

s g=1

Here, ¢ = (¢1,¢2, . - ., gm) and g; represents the assign-
ment to the unary MAX predicate groundings correspond-
ing to constant j. In the expression above, we have made
explicit the dependence of ©; on g;. We make the fol-
lowing two observations.

1) Due to the normal form assumption, all the ground-
ings of a first-order logic formula behave identical to
each other (up to renaming of constants). Hence, the re-
sulting potential function ©;’s are also identical to each
other.

2) Ifthere are r unary MAX predicates in M ¢, then each
q; can take R = 2" possible values 3.

Therefore, the value of the product [ [~ ©;(g, s) in the
RHS of Equation 4 depends only on the number of dif-
ferent types of values g;’s take in ¢ (and not on which g;
takes which value). Let {v1,ve,- - ,vgr} denote the set
of R different values that g;’s can take. Given a value vy,
let N; denote the number of times v; appears in q. Next,
we state the following lemma.

Lemma 4. The MMAP problem can be written as:
R
argmax Wy (q) = argmax Z H fi(s)™
q Ni,Na2,--,Nr 5 1

subject to the constraints that ¥Yl, N, > 0, N; € Z and
> Ni = m. Here, fi(s) = O;(v, s).

3since there are 7 predicate groundings for each j and each
is Boolean valued



Proof. Proof follows from the fact that ©;’s are sym-
metric to each other and that the g;’s take a total of m
possible (non-unique) assignments since A ; = m.

We say that an assignment Ny, No,--- , N subject to
the constraints: VI, N; > 0 and . N1 = miis at extreme
if 3l such that N; = m. Note that for R > 2, extreme
assignment also implies that 9/, N; = 0. We have the
following lemma.

Lemma 5. * The solution to the MMAP formulation
argmax, W, (q) lies at extreme iff solution to its
equivalent formulation:

R
arg max Z H fl(s)N’

Ni,Na,--,Nr "o 124

subject to the constraints ¥YI,N; > 0,N; € Z and
> 1 Ni = m lies at extreme.

3.2.5 Proving Extreme

Lemma 6. Consider the optimization problem:

R
arg max Zg(s) X Hfl(s)N’
=1

Ni,Naz,--- ,Nr 7

subject to the constraints Ny > 0, Y, Ny = m. g(s) is
an arbitrary real-valued function independent of l. The
solution of this optimization problem lies at extreme.

Proof. Note that it suffices to prove this theorem as-
suming N;’s are real-valued. If the solution is at ex-
treme with real-valued IN;’s, it must also be at extreme
when N;’s are further constrained to be integer val-
ued. We will use induction on R to prove the result.
Consider base case of R = 2, the function becomes
argmax, >, F1()N f2(s)™ ™ x g(s). This func-
tion is convex and has its maximum value at Ny = m
or N; = 0 (see supplement for a proof).

Assuming that the induction hypothesis holds for R = k.
We need to show for the case when R = k + 1. We
will prove it by contradiction. Assume that the solu-
tion to this problem does not lie at extreme. Then, in
this solution, it must be the case that N; # 0,VI. If
not, we can then reduce the problem to a k sized one
and apply our induction hypothesis to get an extreme so-
lution. Also, clearly N; < m,VI. Let Nii1 has the
optimal value of N 11 in this solution. Then, substitut-
ing the optimal value of this component in the expres-
sion, we can get the optimal value for (N1, Na, -+ -, Ng)

by solving arg max, n,.. n, o9 (s)x Hlil fi(s)M,
subject to 37| N' = m — Nj,,. Here, ¢'(s) =
9(s) X fry1(s)Ne+1. Using the induction hypothesis, the
solution for this must be at extreme, i.e. 3, N; = 0 since
k > 2. This is a contradiction.

Corollary 1. The solution to the optimization problem

R
arg max Z H fl(s)Nl

Ni,N2,-- ,Nr " 1

subject to the constraints YI,N; > 0, N; € 7Z and
> 1 Ni = m lies at extreme.

Theorem 1 (Proof): Corollary 1 combined with
Lemma 5, Lemma 4, Lemma 3, Lemma 2 and Lemma 1
proves the theorem.

3.3 SOM-R Rule for lifted MMAP

We will first define the SOM-R (SOM Reduce) equiva-
lence class which is a sub-class of SOM. Following our
notation, we will use Q and S to denote the set of MAX
and SUM predicates, respectively in the MMAP problem.

Definition 4. We say that an equivalence class of vari-
ables X is SOM-R if (a) X is SOM (b) VP € S, P con-
tains a variable from X OR VP € S, P does not have a
variable from X.

Note that if |S| = 1, then any SOM equivalence class is
also necessarily SOM-R. Next, we exploit the properties
of extreme assignments to show that domain of SOM-R
variables can be reduced to a single constant for MMAP
inference. We start with the definition of a reduced MLN.

Definition 5. (Reduced MLN) Let {(f;, w;}, denote
the set of (weighted) formulas in M. Let X be a SOM-R
equivalence class with |[A | = m. We construct a
reduced MLN M" by considering the following 2 cases:

CASE 1: VP € S,P contains a variable from X
e Vfi € F(M) containing a variable X € X, add
(fi, wi) to M".

e Vf; € F(M) not containing a variable X € X, add
(fi, % X ’U}Z) toM".

CASE 2: VP € S, P does not contain a variable from X

e Vf; € F(M) containing a variable X € X, add
(fi; w; X m) to M".

e Vf; € F(M) not containing a variable X € X, add
(fi, wi) to M".

In each case, we reduce the domain of X to a single con-
stantin M".

We are ready to state our SOM-R rule for lifted MMAP.

Theorem 2. (SOM-R Rule for MMAP) Let X be a
SOM-R equivalence class. Let M" be the reduced MLN
in which domain of X has been reduced to single con-
stant. Then, MMAP problem can be equivalently solved
over M".



Proof. Let Q denote the set of MAX predicates in the
problem. We prove the above theorem in two parts. In
Lemma 7 below, we show that for every extreme assign-
ment (with respect to X) qto groundings of Q in M,
there is a corresponding extreme assignment ¢” in M"
(and vice-versa). In Lemma 8, we show that given two
extreme assignments, g and ¢" for the respective MLNSs,
the MMAP value at ¢ (in M) is a monotonically in-
creasing function of the MMAP value at ¢" (in M)f().
These two facts combined with the fact that MMAP so-
lution to the original problem is at extreme (using The-
orem 1) prove the desired result. Next we prove each
result in turn.

Lemma 7. Letr q (resp. q°) denote the sets of extreme
assignments to the groundings of Q in M (resp. M").
There exists a one to one to mapping between q and *.

Proof. Instead of directly working with M and M", we
will instead prove this lemma for the corresponding vari-
ablized MLNs Mg and M%. This can be done since
the process of variablization preserves the distribution as
well as the set of extreme assignments. Let ¢ denote an
extreme assignment to MAX predicates in M ¢. We will
construct a corresponding assignment ¢” for MAX pred-
icate in M%. Since X is SOM-R, My has only unary
and propositional predicates, whereas M7 is full ground

since the domain of X is reduced to a single constant.

First, let us consider a propositional MAX predicate P in
M. Since P is ground both in M and M", we can as-
sign the value of P in ¢" to be same as q. Next, let us
consider a unary predicate P. Let the assignments to the
m groundings of P in ¢ be given by the set {gp, } where
1 < 5 < m. Since q is extreme, each element in the set
{qp, } takes the same truth value. We can simply assign
this value to the ground appearance of P in M ;. Hence,
we get a mapping from ¢ to ¢". It is easy to see that we
can get a reverse mapping from ¢" to ¢ in a similar man-
ner. Hence, proved.

Next, we state the relationship between the MMAP val-
ues obtained by the extreme assignments in M and M".

Lemma 8. * Let M be an MLN and M" be the re-
duced MLN with respect to the SOM-R equivalence class
X. Let q and q" denote two corresponding extreme
assignments in M and M", respectively. Then, 3 a
monotonically increasing function g such that Wy (q) =

IgWarr(q")).

The proof of Lemma 8 exploits inversion elimination and
symmetry of potential functions over a variablized MLN
similar to their use in Section 3.2. These combined with
Lemma 7 become our key insights for reducing the com-
plexity of MMAP inference significantly compared to
existing methods (see supplement for details).

Corollary 2. SOM-R rule for MMAP problem subsumes
SO rule for MAP problem given by Mittal et al. (2014).

The corollary follows from the fact that MAP is a special
case of MMAP when all the predicates are MAX.

4 ALGORITHMIC FRAMEWORK

SOM-R rule can be combined with existing lifted infer-
ence rules such as lifted decomposition and condition-
ing (Jha et al. 2010; Gogate and Domingos 2011) (with
minor modifications) to yield a powerful algorithm for
solving MMAP (see Algorithm 1). The algorithm takes
as input an MLN M, the set of MAX predicates Q, SUM
predicates S and a ground MMAP solver ¢gSol. It has six
steps. In the first step, the algorithm checks to see if the
MLN, along with Q and S can be partitioned into disjoint
MLNSs that do not share any ground atoms. If this con-
dition is satisfied, then the MMAP solution can be con-
structed by solving each component independently and
simply concatenating the individual solutions. In the next
three steps, we apply the decomposer (Jha et al. 2010),
SOM-R (this work) and binomial rules (Jha et al. 2010;
Gogate and Domingos 2011) in order. The former two
reduce the domain of all logical variables in the equiv-
alence class to a constant and thus yield exponential re-
ductions in complexity. Therefore, they are applied be-
fore the binomial rule which creates O(m) (|A ¢| = m)
smaller sub-problems. In the algorithm, M ¢ refers to an
MLN obtained from M by setting the domain of Xtoa
single constant and we assume that |A ¢| = m. Simi-
larly, M" refers to the MLN obtained from M by apply-
ing the SOM-R rule (see Definition 5).

The binomial rule (steps 4a and 4b) efficiently conditions
on the unary predicates and can be applied over the SUM
as well as MAX predicates. However, care must be taken
to ensure that all MAX predicates are instantiated before
the SUM predicates. Therefore, the binomial rule is ap-
plied over the SUM predicates only when the MLN has no
MAX predicates (Step 4b). In the algorithm, Mj, refers to
the MLN obtained from M by setting exactly k& ground-
ings of P to true and the remaining to false.

If none of the lifting rules are applicable and the MLN
has only ground atom, we return the solution returned by
the propositional solver gSol. Otherwise, if not all pred-
icates are ground, we resort to partial grounding, namely
we heuristically ground a logical variable and recurse on
the corresponding MLN M’.

Finally, note that the algorithm returns the exponentiated
weight of the MMAP assignment. The assignment can
be recovered by tracing the recursion backwards.

Heuristics: (a) Binomial: In case of multiple possible
binomial applications, we pick the one which results in



Algorithm 1 Lifted MMAP

Input: MLN M, O, S, gSol
Output: MMAP value
Begin:
//1. Disjoint Sub-Theories
if M can be partitioned into disjoint MLNs My, . .., M; that
share no atoms then
return [[}_, liftedMMAP(M;, Q;, S;)
//2. Decomposer
if there exists a decomposer X in M then
return [liftedMMAP(M?, 9,S,gSoD]™;
//3. SOM-R (see Defn. 5) _
if there exists a SOM-R class X in M then
return liftedMMAP(M", Q, S,gSol);
//4a. Binomial over MAX
if there exists a unary predicate P € Q then
return maxy, liftedMMAP(My, Q — {P}, S,gSol);
//4b. Binomial over SUM
if Q = () and there exists a unary predicate P € S then
return > () liftedMMAP(M;, Q, S — {P},gSol);
//5. Check if fully Ground
if M is fully Ground then
return apply(M', Q, S, gSol);
else
//6. Partial Grounding
M’ = Heuristically ground an equivalence class X in M
return liftedMMAP(M', Q, S, gSol);

End.

the application of other lifting rules (in the priority order
described above) using a one step look ahead. In case of
a tie, we pick the one with maximum domain size.

(b) Partial Grounding: We pick the equivalence class
which results in further application of lifting rules (in the
priority order) using a one step look ahead. In case of a
tie, we pick the one which has smallest domain size.

S EXPERIMENTS

The goal of our experiments is two fold. First, we would
like to examine the efficacy of lifting for MMAP. Sec-
ond, we would like to analyze the contribution of SOM-R
rule in lifting. Towards this end, we compare the follow-
ing three algorithms: (1) Ground: ground inference with
no lifting whatsoever (2) Lifted-Basic: lifted inference
without use of the SOM-R rule # (3) Lifted-SOM-R: us-
ing all our lifting rules including SOM-R. For ground in-
ference, we use a publicly available 3 base (exact) solver
built on top of And/Or search developed by Marinescu et
al. (2014).

We experiment with three benchmark MLNs: (1) Stu-

“We use the rules described in Algorithm 1. For Lifted-
Basic, too many applications of the binomial rule led to blow
up. So, we restricted the algorithm to a single binomial appli-
cation and before any partial grounding. Lifted-SOM-R had no
such issues.

>https://github.com/radum2275/merlin

dent (Sarkhel et al. 2014) (2) IMDB (Mittal et al. 2016)
(3) Friends & Smokers (FS) (Domingos and Lowd 2009).
All the datasets are described in the lower part of Figure 1
along with the MAP predicates used in each case; the
remaining predicates are treated as marginal predicates.
Weights of the formulas were manually set.

We compare the performance of the three algorithms on
two different metrics: (a) time taken for inference (b)
memory used. We used a time-out of 30 minutes for each
run. Memory was measured in terms of the number of
formulas in the ground network in each case. We do not
compare the solution quality since all the algorithms are
guaranteed to produce MMAP assignments with same
(optimal) probability. All the experiments were run on
a 2.20 GHz Xeon(R) E5-2660 v2 server with 10 cores
and 62 GB RAM.

Results: For each of the graphs in Figure 1, we plot time
(memory) on y-axis (log-scale) and domain size on x-
axis. Time is measured in seconds. Since we are pri-
marily concerned about the scaling behavior, we use the
number of ground formulae as a proxy for the actual
memory usage. Domain size is measured as a function
of a scaling factor, which is the number by which (all
of) the starting domain sizes are multiplied. We refer to
domain descriptions (Figure 1) for the starting sizes.

Figures 1a and 1d compare the performance of the three
algorithms on the Student dataset. None of the lifting
rules apply for Lifted-Basic. Hence, its performance is
identical to Ground. For Lifted-SOM-R, all the variables
(except teacher(T)) can be reduced to a single constant,
resulting in significant reduction in the size of the ground
theory. Lifted-SOM-R is orders of magnitude better than
Ground and Lifted-Basic for both time and memory.

Figures 1b and 1le compare the three algorithms on
the FS dataset. Here, Lifted-Basic performs identical to
Lifted-SOM-R. This is because binomial rule applies in
the beginning on Smokes, following which theory de-
composes. We never need to apply SOM-R rule on this
domain. Both Lifted-SOM-R and Lifted-Basic perform
significantly better than Ground on this domain (in both
time and memory).

IMDB dataset (Figures 1c and 1f) presents a particu-
larly interesting case of interspersed application of rules.
For Lifted-SOM-R, SOM-R rule applies on movie(M)
variables, simplifying the theory following which bino-
mial rule can be applied on Mov, Dir and Act predicates.
Theory decomposes after these binomial applications.
For Lifted-Basic, though binomial rule can be applied
on Dir, Act the movie variables still remain, eventually
requiring for partial grounding. Surprisingly, Ground
does slightly better than both the lifted approaches for
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Teaches(T, C) A Takes(S, C) = JobOffer(S, M)
MAP Predicate: Takes(S, C), JobOffer(S, M)
size: teachr(T):2,course(C):3,comp(M):4,stud(S):6
FS (Domingos and Lowd 2009)

Smokes(P) = Cancer(P);

Smokes(P1) A Friend(P1, P2) = Smokes(P2);
MAP Predicates: Smokes(P), Cancer(P)

size: person(P):5

WorksWith(P1,P2) = Act(P1); WorksWith(P1,P2) = Dir(P2);

Dir(P1) A Act(P2) A Mov(M,P1) A Mov(M,P2) = WorksWith(P2,P1);
Dir(P1) A Act(P2) A Mov(M,P2) A WorksWith(P2,P1) = Mov(M,P1);
Dir(P1) A Act(P2) A Mov(M,P1) A WorksWith(P2,P1) = Mov(M,P2);
Dir(P1) A Act(P2) = WorksWith(P2,P1);

MAP Predicates: Act(P), Dir(P), Mov(M,P)

size: person(P):3, movie(M):2

Figure 1: Results and rules of Student, FS and IMDB datasets. “’size” gives initial domain sizes for each case.

smaller domains for time. This is due to the overhead of
solving multiple sub-problems in binomial without much
gain since domains are quite small. Lifted-SOM-R has a
much better scaling behavior for larger domains. It also
needs significantly less memory compared to both other
approaches.

In none of the above cases, Lifted-SOM-R has to ever
partially ground the theory making a very strong case
for using Lifted-SOM-R for MMAP inference in many
practical applications. Overall, our experiments clearly
demonstrate the utility of SOM-R in the scenarios where
other lifting rules fail to scale.

6 CONCLUSION

We present the first lifting technique for MMAP. Our
main contribution is the SOM-R rule, which states that
the domain of a class of equivalence variables, referred
to as SOM-R, can be reduced to a single constant for the
purpose of MMAP inference. We prove the correctness
of our rule through a series of problem transformations
followed by the properties of what we refer to as extreme

assignments. Our experiments clearly demonstrate the
efficacy of our approach on benchmark domains. Direc-
tions for future work include coming up with additional
lifting rules, approximate lifting and lifting in presence
of constraints (Mittal et al. 2015), all in the context of
MMAP, and experimenting with a wider set of domains.
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