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Abstract

We consider the problem of predicting plausible
missing facts in relational data, given a set of
imperfect logical rules. In particular, our aim
is to provide bounds on the (expected) number
of incorrect inferences that are made in this
way. Since for classical inference it is in general
impossible to bound this number in a non-trivial
way, we consider two inference relations that
weaken, but remain close in spirit to classical
inference.

1 INTRODUCTION

In this paper we study several forms of logical inference
for predicting plausible missing facts in relational data.
While a variety of approaches have already been stud-
ied for this task, ranging from (relational versions of)
probabilistic graphical models [19, 4] to neural-network
architectures [24, 20] and graph-based methods [15, 16],
logic-based inference has several advantages over these
other forms of inference. For example, logic-based in-
ference is explainable: there is a proof for any derived
statement, which can, in principle, be shown to a human
user. It is also more transparent than most other methods,
in the sense that a knowledge base as a whole can be
understood and modified by domain experts. On the other
hand, classic logical inference can be very brittle when
some of the rules which are used are imperfect, or some
of the initial facts may be incorrect.

Statistical relational learning approaches, such as Markov
logic networks [19] or probabilistic logic programming
[4], offer a solution to this latter problem, but they re-
quire learning a joint probability distribution over the
set of possible worlds. This distribution is typically es-
timated from one or several large examples using maxi-
mum likelihood, which essentially corresponds to finding

a maximum-entropy distribution given by a set of suffi-
cient statistics. However, there are usually no guarantees
on the learned distributions beyond guarantees for the
sufficient statistics (see, e.g., [12]), which means that we
do not have much control over the quality of the predic-
tions. Moreover, these models are not easy to modify, and
are not always easy to explain because the way in which
probabilities are computed can simply be too complex.

In this paper we focus on forms of inference that stay
as close to classical logic as possible while not breaking
completely when the given theory happens to be “mildly”
inconsistent with the data. This problem of reasoning
under inconsistency has a long tradition in the field of
artificial intelligence, with common solutions including
the use of paraconsistent logics [3, 18], belief revision
[8] (and related inconsistency repair mechanisms [11]),
and argumentation-based inference [7, 2]. In contrast to
these approaches, however, our specific aim is to study
forms of inference that can allow us to bound the (ex-
pected) number of mistakes that are made. To this end,
we introduce two inference relations called k-entailment
and voting entailment, both of which are close to classical
logic, and in particular do not require rules to be weighted.
We define them such that errors produced by imperfect
rules would not necessarily propagate too much in the
given relational data.

As our main contribution, we are able to show that in a
relational learning scenario from [12], in which a (large)
training example and a test example are sampled from
a hidden relational structure, there are non-trivial PAC-
type bounds on the number of errors that a theory learned
on the training example produces on the test example.
From this perspective, our work can also be seen as a
relational-learning counterpart of PAC semantics [23].

Technical contributions. The results presented in this
paper rest mainly on the following two technical contri-
butions: (i) the introduction of bounds on the worst case
behavior of the considered inference relations, and (ii)



new concentration inequalities for sampling from rela-
tional data without replacement that allow us to bound
the (expected) test error as a function of the training error,
in the spirit of classical PAC-learning results [22].

2 PRELIMINARIES

In this paper we consider a function-free first-order logic
language L, which is built from a set of constants Const,
variables Var, and predicates Rel =

⋃
i Reli, where Reli

contains the predicates of arity i. We assume an untyped
language. For a1, ..., ak ∈ Const ∪ Var and R ∈ Relk,
we call R(a1, ..., ak) an atom. If a1, .., ak ∈ Const, this
atom is called ground. A literal is an atom or its negation.
The formula α0 is called a grounding of α if α0 can be
obtained by replacing each variable in α with a constant
from Const. A formula is called closed if all variables
are bound by a quantifier. A possible world ω is defined
as a set of ground atoms. The satisfaction relation |= is
defined in the usual way. A substitution is a mapping
from variables to terms.

3 PROBLEM SETTING

First we describe the learning setting considered in this
paper. It follows the setting from [12],which was used to
study the estimation of relational marginals.

An example is a pair (A, C), with C a set of constants and
A a set of ground atoms which only use constants from C.
An example is intended to provide a complete description
of the world, hence any ground atom over C which is not
contained inA is implicitly assumed to be false. Note that
this is why we have to explicitly specify C, as opposed to
simply considering the set of constants appearing in A.

In practice, we usually only have partial information about
some example of interest. The problems we consider in
this paper relate to how we can then reason about the
probability that a given ground atom is true (i.e. belongs to
the example). To estimate such probabilities, we assume
that we are given a fragment of the example, which we
can use as training data. Specifically, let Υ = (A, C) be
an example and S ⊆ C. The fragment Υ〈S〉 = (B,S)
is defined as the restriction of Υ to the constants in S,
i.e. B is the set of all atoms from A which only contain
constants from S . In a given example, any closed formula
α is either true or false. To assign probabilities to formulas
in a meaningful way, we consider how often the formula
is satisfied in small fragments of the given example.

Definition 1 (Probability of a formula [12]). Let Υ =
(A, C) be an example and k ∈ N. For a closed formula α

without constants, we define its probability as follows1:

QΥ,k(α) = PS∼Unif(C,k) [Υ〈S〉 |= α]

where Unif(C, k) denotes uniform distribution on size-k
subsets of C.

Clearly QΥ,k(α) = 1
|Ck| ·

∑
S∈Ck 1(Υ〈S〉 |= α) where

Ck is the set of all size-k subsets of C.

The above definition is also extended straightforwardly
to probabilities of sets of formulas (which we will also
call theories interchangeably). If Φ is a set of formulas,
we set QΥ,k(Φ) = QΥ,k(

∧
Φ) where

∧
Φ denotes the

conjunction of all formulas in Φ.

Example 1. Let sm/1 be a unary predicate denoting
that someone is a smoker, e.g. sm(alice) means that
alice is a smoker. Let us have an example Υ =
({fr(alice, bob), sm(alice), sm(eve)}, {alice, bob, eve}),
and formulas α = ∀X : sm(X) and β = ∃X,Y :
fr(X,Y ). Then, for instance, QΥ,1(α) = 2/3,
QΥ,2(α) = 1/3 and QΥ,2(β) = 1/3.

Definition 2 (Masking). A masking process is a function
κ from examples to ground conjunctions that assigns to
any Υ = (A, C) a conjunction of ground literals β such
that Υ |= β. We also define κ(Υ)〈S〉 to be the conjunc-
tion consisting of all literals from κ(Υ) that contain only
constants from S.

Unlike examples, masked examples only encode partial
information about the world. This is why they are encoded
using conjunctions of literals, so we can explicitly encode
which atoms we know to be false.

Example 2. Let Υ = {sm(alice), fr(alice, bob),
{alice, bob}}. Then a masking process κ may, for in-
stance, yield κ(Υ) = ¬sm(bob) ∧ sm(alice). In this
case κ(Υ) retains the information that alice is a smoker
and bob is not, but it no longer contains any information
about their friendship relation.

Next we introduce the statistical setting considered in this
paper.

Definition 3 (Learning setting). Let ℵ = (Aℵ, Cℵ) be an
example and κ be a masking function. Let CΥ ⊆ Cℵ and
CΓ ⊆ Cℵ be uniformly sampled subsets of size n and u,
respectively. We call Υ = ℵ〈CΥ〉 the training example
and Γ = ℵ〈CΓ〉 the test example. We assume that the
learner receives Υ in the training phase and κ(Γ) in the
test phase.

With slight abuse of terminology, we will sometimes say
that Υ and Γ are sampled from ℵ.

1We will use Q for probabilities of formulas as defined in
this section, to avoid confusion with other “probabilities” we
deal with in the text.



In addition to the training example Υ and masked test
example κ(Γ), we will assume that we are given a set of
formulas Φ (which we will also refer to as rules). Our
main focus will be on how these formulas can be used to
recover as much of Γ as possible. Rather than specifying
a loss function that should be minimized, we want to find
a form of inference which allows us to provide bounds
on the (expected) number of incorrect literals that can
be inferred from {κ(Γ)} ∪ Φ. Note that in this case, the
training example Υ is used to estimate the accuracy of the
set of formulas. We also analyze the case where the rules
are learned from the training example Υ (in the spirit of
classical PAC-learning results).

Among others, the setting from Definition 3 is close to
how Markov logic networks are typically used. For in-
stance, when training Markov logic networks, one typi-
cally starts with a training example that contains all facts
(i.e. nothing is unknown about the training set), on which
a model is trained. This model is then used to predict
unknown facts about a test example. However, unlike
for Markov logic networks, we do not attempt to learn a
probability distribution. It was shown in [14] that models
based on classic logical inference, like those considered
in this paper, work well in practice for relational infer-
ence from evidence sets containing a small number of
constants (domain elements). Thus, such models are also
of considerable practical interest.

4 REASONING WITH INACCURATE
RULES

When reasoning with imperfect rules, using classical infer-
ence can have drastic consequences, as we will illustrate
in Section 4.1. Even a single mistake can lead to many
errors, since an incorrectly derived literal can be used as
the basis for further inferences. This means that classi-
cal inference is not suitable for the considered setting,
even in cases where the given rules have perfect accu-
racy on the training example. Intuitively, to allow for
any meaningful bounds to be derived, we need to pre-
vent arbitrarily long chains of inference. To this end, we
propose and motivate the use of a restricted form of in-
ference, called k-entailment, in Section 4.2. A further
restriction on inferences, based on a form of voting, is
subsequently discussed in Section 4.3. In Section 5 we
will then show which bounds can be derived for these two
restricted forms of inference.

4.1 WHEN CLASSICAL REASONING LEADS
TO ERRORS

The next example, which is related to label propagation as
studied e.g. in [26], shows that classic logical reasoning

on the obtained relational sample may produce many mis-
takes even when all the available rules are very accurate.

Example 3. Let k = 2, Γ = {{rare(c1)}, {c1, c2, . . . ,
c1000000}, and α = ∀X,Y : rare(X)⇒ rare(Y ). While
the rule does not intuitively make sense, its accuracy
is actually very high QΓ,k(α) = 1 − 999999/(0.5 ·
1000000 · 999999) = 0.999998. When we apply this
rule with the evidence rare(c1), we derive rare(c2), . . . ,
rare(c1000000), all of which are incorrect (i.e. not in-
cluded in Γ).

Note that in this paper, we are interested in worst-case
behavior, in the sense that the masking process which is
used may be seen as adversarial. The next example further
illustrates how adversarial masking processes can lead to
problems, even for rules with near-perfect accuracy.

Example 4. Let k = 2, Γ = {{rare(c1), e(c1, c2),
e(c2, c3), . . . , e(c999999, c1000000) }, {c1, c2, . . . ,
c1000000}, and α = ∀X,Y : rare(X) ∧ e(X,Y ) ⇒
rare(Y ). In this case, there is only one size-k subset
of CΓ where the formula α does not hold, so the accuracy
is even higher than in the previous example. Yet the ad-
versarial masking process can select evidence consisting
of all true positive literals from Γ, i.e. the evidence will
consist of the rare(c1) literal and all the e/2 literals from
Γ. Then the set of errors that are made when using the
formula α will be the same as in Example 3, despite the
fact that the rule is almost perfect on Γ.

Note that in the examples above, we had perfect knowl-
edge of the accuracy of the rule α on the test example (i.e.
we knew the value of QΓ,k(α)). In practice, this accuracy
needs to be estimated from the training example. In such
cases, it can thus happen that a rule α has accuracy 1 on
the training example Υ, but still produces many errors on
κ(Γ). We will provide PAC-type bounds for this setting
with estimated accuracies in Sections 5. First, however,
in Section 4.2 and 4.3 we will look at how bounds can
be provided on the number of incorrectly derived literals
in the case where QΓ,k(α) is known. As the above ex-
amples illustrate, to obtain reasonable bounds, we will
need to consider forms of inference which are weaker
than classical entailment.

4.2 BOUNDED REASONING USING
k-ENTAILMENT

We saw that even for formulas which hold for almost all
subsets of Γ, the result of using them for inference can be
quite disastrous. This was to a large extent due to the fact
that we had inference chains involving a large number of
domain elements (constants). This observation suggests a
natural way to restrict the kinds of inferences that can be
made when imperfect rules are involved.



Definition 4 (k-entailment). Let k be a non-negative in-
teger, Υ = (A, C) be an example, κ be a masking pro-
cess, and Φ be a set of closed formulas. We say that
a ground formula ϕ is k-entailed by Φ and κ(Υ), de-
noted {κ(Υ)} ∪ Φ |=k ϕ, if there is a C′ ⊆ C such that
|C′| ≤ k, const(ϕ) ⊆ C′, {κ(Υ)〈C′〉} ∪ Φ is consistent
and {κ(Υ)〈C′〉} ∪ Φ |= ϕ.

In other words, a formula φ is k-entailed by Υ and Φ if it
can be proved using Φ together with a fragment of κ(Υ)
induced by no more than k constants, with the additional
condition that Φ and this fragment are not contradictory.

Example 5. Let

Υ = ({fr(alice, bob), sm(alice)}, {alice, bob, eve})
κ(Υ) = fr(alice ∧ bob) ∧ sm(alice)

Φ = {∀X,Y : fr(X,Y ) ∧ sm(X)⇒ sm(Y )}.

Then ϕ = sm(bob) is 2-entailed from κ(Υ) and Φ but not
1-entailed.

Note that, in the setting of Example 4, k-entailment would
make at most k − 1 mistakes. However, 2-entailment
would already produce many mistakes in the case of Ex-
ample 3. So there are cases where k-entailment produces
fewer errors than classical logic entailment but, quite nat-
urally, also cases where both produce the same number
of errors. Importantly, however, for k-entailment, we can
obtain non-trivial bounds on the number of errors.

Next we state two lemmas that follow immediatelly from
the respective definitions.

Lemma 1. Let Υ = (A, C) be an example, Φ be a set of
constant-free formulas and κ be a masking function. Let
Ck be the set of all size-k subsets of C. Let HX denote
the set of all ground literals which can be derived using
k-entailment from {κ(Υ)}∪Φ and only contain constants
from X . ThenHC =

⋃
S∈Cl HS .

Lemma 2. When Γ〈S〉 |= Φ then all ground literals that
only contain constants from S and that are entailed by
{κ(Γ〈S〉)} ∪ Φ must be true in Γ〈S〉.

We now provide a bound on the number of ground literals
wrongly k-entailed by a given Φ, assuming that we know
its accuracy QΓ,k(Φ) on the example Γ.

Proposition 6. Let Γ = (A, C) be an example, Φ be a
set of constant-free formulas and κ be a masking process.
Next let F(Γ) be the set of all ground literals of a predi-
cate p/a, a ≤ k, which are k-entailed by {κ(Γ)} ∪Φ but
are false in Γ. Then

|F(Γ)| ≤ (1−QΓ,k(Φ))|C|kka.

Proof. First, we note that the number of size-k subsets
is bounded by |C|k and the number of different ground

p/a atoms in each of these subsets is ka. It follows from
Lemma 2 and Lemma 1 that for any literal δ ∈ F there
must be a size-k set S ⊆ C such that Γ〈S〉 6|= Φ. The
number of all such S’s that satisfy Γ〈S〉 6|= Φ is bounded
by (1 − QΓ,k(Φ))|C|k. Hence, we have |F(Γ)| ≤ (1 −
QΓ,k(Φ))|C|kka.

We can notice that when we increase the domain size
|C|, keeping QΓ,k(Φ) fixed and non-zero, the bound even-
tually becomes vacuous for predicates whose arity a is
strictly smaller than k. This is because the number of
all ground literals grows only as |C|a whereas the bound
grows as |C|k. However, if a = k, the bound stays fixed
when we increase the domain size. We will come back to
consequences of this fact in Section 6.

4.3 BOUNDED REASONING USING VOTING

To further restrict the set of entailed ground literals, we
next introduce voting entailment.
Definition 5 (Voting Entailment). Let k be an integer and
γ ∈ [0; 1]. Let Υ = (A, C) be an example, Φ be a set of
constant-free formulas, and κ be a masking process. A
ground literal l of arity a, a ≤ k, is said to be entailed
from Φ and κ(Υ) by voting with parameters k and γ if
there are at least max{1, γ · |C|k−a} size-k sets S ⊆ C
such that l is k-entailed by κ(Υ)〈S〉.

The next example illustrates the use of voting entailment.
Example 7. Let Υ = (A, C), where C =
{alice, bob, eve}, and let κ(Υ) = fr(alice, bob) ∧
fr(eve, bob) ∧ sm(eve). Next, let Φ = {∀X,Y :
fr(X,Y )∧ sm(X)⇒ sm(Y )}. Then sm(bob) is entailed
from Φ and κ(Υ) by voting with the parameters k = 2
and γ = 2/3, as γ · |C|k−a = 2/3 · 32−1 = 2 and there
are two size-2 subsets of C that 2-entail sm(bob).

We now show how the bound from Proposition 6 can be
strengthened in the case of voting entailment.
Proposition 8. Let k be an integer and γ ∈ [0; 1]. Let
Γ = (A, C) be an example, Φ be a set of constant-free
formulas, and κ be a masking process. Let F(Γ) be the
set of all ground literals of a predicate p/a, a ≤ k, that
are entailed by voting from {κ(Γ)} ∪ Φ with parameters
k and γ but are false in Γ. If γ · |C|k−a ≥ 1 then

|F(Γ)| ≤ (1−QΓ,k(Φ))
|C|aka

γ

and otherwise

|F(Γ)| ≤ (1−QΓ,k(Φ)) |C|kka.

Proof. First we define the number of “votes” for a ground
literal l as

#κ(Γ),Φ(l) = | {S ⊆ C ||S|=k, {κ(Γ)〈S〉} ∪ Φ |=k l} |.



Let L be the set of all ground p/a literals l such that
Γ |= ¬l. Then, since any size-k subset of C can only
contribute ka votes to literals based on the predicate p/a,
we have∑

l∈L

#κ(Γ),Φ(l) ≤ (1−QΓ,k(Φ)) |C|kka.

Hence |F(Γ)| ≤ (1−QΓ,k(Φ))|C|kka
max{1,γ·|C|k−a} . If γ · |C|k−a ≥ 1

then |F(Γ)| ≤ (1−QΓ,k(Φ)) |C|
aka

γ . The case when
γ · |C|k−a < 1 follows from Theorem 6.

Unlike for k-entailment, the fraction of “wrong” ground
p/a literals entailed by voting entailment does not grow
with an increasing domain size as long as γ · |C|k−a ≥ 1.

5 PROBABILISTIC BOUNDS

We now turn to the setting where the accuracy of the for-
mulas needs to be estimated from a training example Υ.
More generally, we also cover the case where the formu-
las themselves are learned from the training example. In
such cases, to account for over-fitting, we need to con-
sider the (size of the) hypothesis class that was used for
learning these formulas. Specifically, we prove probabilis-
tic bounds for variants of the following learning problem.
We are given a hypothesis setH of constant-free theories,
and we want to compute bounds on the number of incor-
rectly predicted literals which simultaneously hold for all
Φ ∈ H (as a function of QΥ,k(Φ)) with probability at
least 1− δ, where δ is a confidence parameter. Note that
the case where the theory Φ is given, rather than learned,
corresponds toH = {Φ}.

We start by proving general concentration inequalities
in Section 5.1 which we then use to prove bounds for
k-entailment. These bounds are studied for the realizable
case in Section 5.2 and for the general case in Section 5.3.
Bounds for voting entailment are studied in Section 5.4

5.1 CONCENTRATION INEQUALITIES

We will need to bound the difference between the “accu-
racy” of given sets of logic formulas Φ on the training
sample Υ and their accuracy on a test sample Γ (i.e. the
difference between QΥ,k(Φ) and QΓ,k(Φ)). To prove the
concentration inequalities in this section, we will utilize
the following lemma.

Lemma 3 (Kuželka et al. [12]). Let ℵ = (Aℵ, Cℵ) be
an example. Let 0 ≤ n ≤ |Cℵ| and 0 ≤ k ≤ n be
integers. Let X = (S1,S2, . . . ,Sbnk c) be a vector of
subsets of Cℵ, each sampled uniformly and independently
of the others from all size-k subsets of Cℵ. Next let CΥ be
sampled uniformly from all size-n subsets of Cℵ. Finally,

let I ′ = {1, 2, . . . , |Cℵ|} and let Y = (S ′1,S ′2, . . . ,S ′bnk c)
be a vector sampled by the following process:

1. Sample subsets I ′1, . . . , I ′bnk c of size k from I ′.

2. Sample an injective function g :
⋃bn/kc
i=1 I ′i → CΥ

uniformly from all such functions.

3. Define S ′i = g(I ′i) for all 0 ≤ i ≤ bnk c.

Then X and Y have the same distribution.

The next example illustrates the intuition behind the proof
of this lemma, which can be found in [12].

Example 9. Let Cℵ = {1, 2, . . . , 106}. Let us sample
bm/kc size-k subsets of Cℵ uniformly. If this was the
process that generates the data from which we estimate
parameters, we could readily apply Hoeffding’s inequal-
ity to get the confidence bounds. However, in typical SRL
settings (e.g. with MLNs), we are given a complete ex-
ample on some set of constants (objects), rather than a
set of small sampled fragments. So we instead need to
assume that the whole training example is sampled at
once, uniformly from all size-m subsets of Cℵ. However,
when we then estimate the probabilities of formulas from
this example, we cannot use Hoeffding’s bound or any
other bound expecting independent samples. What we can
do2 is to mimic sampling from Cℵ by sampling from an
auxiliary set of constants of the same size as Cℵ and then
specialising these constants to constants from a sampled
size-m subset. Hence the first bm/kc sampled sets will
be distributed exactly as the first bm/kc subsets sampled
i.i.d. directly from Cℵ.

Lemma 3 was used in [12] to prove a bound on expected
error. Here we extend that result and use Lemma 3 to
prove the concentration inequalities stated in the next two
theorems.

Theorem 10. Let ℵ = (Aℵ, Cℵ) be an example and let
0 ≤ n ≤ |Cℵ| and 0 ≤ k ≤ n be integers. Let CΥ be sam-
pled uniformly from all size-n subsets of Cℵ and let Υ =
ℵ〈CΥ〉. Let α be a closed and constant-free formula and
let Ck denote all size-k subsets of CΥ. Let ÂΥ = QΥ,k(α)

and letAℵ = Qℵ,k(α). Then we haveP [ÂΥ−Aℵ ≥ ε] ≤
exp

(
−2
⌊
n
k

⌋
ε2
)
, P [Aℵ − ÂΥ ≥ ε] ≤ exp

(
−2
⌊
n
k

⌋
ε2
)
,

and P
[∣∣∣ÂΥ −Aℵ

∣∣∣ ≥ ε] ≤ 2 exp
(
−2
⌊
n
k

⌋
ε2
)
.

Proof. First we define an auxiliary estimator Ã(q)
Υ . Let

Y(q) be a vector of bn/kc · q size-k subsets of CΥ where

2Note that we do not need to do this in practice which will
follow from Theorem 10; we only need this mimicking process
to prove that theorem.



the subsets of CΥ in each of the q non-overlapping size-
bn/kc segments Y

(q)
1 ,Y

(q)
2 , . . . ,Y

(q)
q of Y(q) are sam-

pled in the same way as the elements of the vector Y in
Lemma 3, all with the same CΥ (i.e. Y(q) is the concate-
nation of the vectors Y(q)

1 ,Y
(q)
2 , . . . ,Y

(q)
q ). Let us define

Ã
(q)
Υ = 1

q·bn/kc
∑
S∈Y(q) 1(Υ〈S〉 |= α). We can rewrite

Ã
(q)
Υ as Ã(q)

Υ = 1
q

∑q
i=1

1
bn/kc

∑
S∈Y(q)

i
1(Υ〈S〉 |= α).

Then we can use the following trick (Hoeffding [9], Sec-
tion 5) based on application of Jensen’s inequality and
Markov’s inequality: If T = a1 ·T1+a2 ·T2+· · ·+aq ·Tn,
where ai ≥ 0 and

∑q
i=1 ai = 1, then, for any h > 0,

P [T ≥ ε] ≤
∑n
i=1 ai · E [exp (h(Ti − ε))]. Note that

the Ti’s do not have to be independent. Next, using Ho-
effding’s lemma (Lemma 1 in [9]), if ai = 1/q and each
of the terms Ti is a sum of independent random zero-
mean variables X(i)

j such that P [a ≤ X(i)
j ≤ b] = 1 and

b− a ≤ 1, then we get:

P [T ≥ ε] ≤
q∑
i=1

1

q
· E [exp (h(Ti − ε))]

≤ e−hε exp

(
m · h2

8

)
= exp

(
−hε+

m · h2

8

)
where m denotes the number of summands of Ti (which,
in our case, is the same for all Ti’s). Note that this func-
tion achieves its minimum at h = 4ε

m . We set Ti :=∑
S∈Y(q)

i
(1(Υ〈S〉 |= α)−Aℵ) (note that E [Ti] = 0

and m = bn/kc). Thus, we get P [
⌊
n
k

⌋
· (Ã(q)

Υ − Aℵ) ≥
ε] ≤ exp

(
−2ε2/

⌊
n
k

⌋)
, and finally

P [Ã
(q)
Υ −Aℵ ≥ ε] ≤ exp

(
−2
⌊n
k

⌋
ε2
)
,

symmetrically also P
[
Aℵ − Ã(q)

Υ ≥ ε
]

≤
exp

(
−2
⌊
n
k

⌋
ε2
)
, and, using union bound, we get

P [|Ã(q)
Υ −Aℵ| ≥ ε] ≤ 2 exp

(
−2
⌊n
k

⌋
ε2
)
.

It follows from the strong law of large numbers (which
holds for any Υ) that P [limq→∞ Ã

(q)
Υ = ÂΥ] = 1. Since

q was arbitrary, the statement of the proposition follows.

As the next theorem shows, the above result can be gener-
alized to the case where we need to bound the difference
between the estimations obtained from two samples.

Theorem 11. Let ℵ = (Aℵ, Cℵ) be an example and let
0 ≤ n, u ≤ |Cℵ| and 0 ≤ k ≤ n be integers. Let CΥ
and CΓ be sampled uniformly from all size-n and size-
u subsets of Cℵ and let Υ = ℵ〈CΥ〉,Γ = ℵ〈CΓ〉. Let
α be a closed and constant-free formula. Let ÂΥ =

QΥ,k(α), ÂΓ = QΓ,k(α), and let Aℵ = Qℵ,k(α). Then

we have P [ÂΥ − ÂΓ ≥ ε] ≤ exp
(

−2ε2

1/bn/kc+1/bu/kc

)
,

and P
[∣∣∣ÂΥ − ÂΓ

∣∣∣ ≥ ε] ≤ 2 exp
(

−2ε2

1/bn/kc+1/bu/kc

)
.

Proof. See the appendix.

We note that the concentration inequality derived in Theo-
rem 10 improves upon a concentration inequality derived
in [17] (Chapter 10) that contains n/k2 (in our notation)
instead of bn/kc in the exponential.3

Next we prove an inequality for the special case where the
probability of a formula α on Υ is 0. Since we can also
take negations of formulas, this theorem will be useful
to prove bounds for formulas that are perfectly accurate
on training data. As the following theorem shows, in
this case we obtain stronger guarantees, where we have ε
instead of ε2 in the exponential.

Theorem 12. Let ℵ = (Aℵ, Cℵ) be an example and let
0 ≤ n ≤ |Cℵ| and 0 ≤ k ≤ n be integers. Let CΥ
be sampled uniformly from all size-n subsets of Cℵ and
let Υ = ℵ〈CΥ〉. Let α be a closed and constant-free
formula and let Ck denote all size-k subsets of CΥ. Let
ÂΥ = QΥ,k(α) and let Aℵ = Qℵ,k(α) ≥ ε. Then we
have

P
[
ÂΥ = 0

]
≤ exp (−bn/kc ε) .

Proof. Let Y be sampled as in Lemma 3 (i.e. Y is
sampled only using Υ and not directly ℵ). Then us-
ing Lemma 3 we know that the elements of Y are dis-
tributed like bn/kc independent samples (size-k sub-
sets) from Cℵ. Hence we can bound the probability
P [AΥ = 0] ≤ (1 − ε)bn/kc ≤ exp (−bn/kcε). Ob-
viously, adding the rest of the information from size-k
subsets of CΥ that are not contained in Y cannot increase
the bound.

5.2 ZERO TRAINING ERROR CASE

We start by proving a bound for the realizable (i.e. zero
training error) case.

Theorem 13. Let ℵ, Υ, Γ, n, u and κ be as in Definition
3 (i.e. Υ and Γ are sampled from ℵ and n, u are sizes of
Υ’s and Γ’s domains). LetH be a finite hypothesis class
of constant-free formulas. Let F(Γ,Φ) denote the set of
all ground literals of a predicate p/a that are k-entailed
by {κ(Γ)} ∪ Φ but are false in Γ.4 With probability at

3This is essentially due to the fact that we use Hoeffding’s
decomposition whereas Lovasz relies on Azuma’s inequality,
leading to a looser bound compared to our bound.

4Note that here, as well as in the rest of the theorems in the
paper, F(Γ,Φ) is a set-valued random variable.



least 1− δ, the following holds for all Φ ∈ H that satisfy
QΥ,k(Φ) = 1:

E [|F(Γ,Φ)|] ≤ ln |H|+ ln 1/δ

bn/kc
ukka.

Proof. It follows from the linearity of expectation and
from Proposition 6 that, for any Φ, E [|F(Γ,Φ)|] ≤ (1−
Qℵ,k(Φ))ukka. Next, it follows from Theorem 12 and
from the union bound taken over all Φ ∈ H that the
probability that there exists Φ ∈ H such that QΥ,k(Φ) =
1 and ε ≤ 1−Qℵ,k(Φ) is at most |H|·exp (−bn/kcε). If
ε ≥ ln |H|+ln 1/δ

bn/kc then |H| · exp (−bn/kcε) ≤ δ. Hence,
with probability at least 1 − δ, the following holds for
all Φ ∈ H such that QΥ,k(Φ) = 1: E [|F(Γ,Φ)|] ≤
ln |H|+ln 1/δ
bn/kc ukka.

5.3 GENERAL CASE

Next we prove a bound for the general case when the
training error is non-zero.

Theorem 14. Let ℵ, Υ, Γ, n, u and κ be as in Definition
3 (i.e. Υ and Γ are sampled from ℵ and n, u are sizes of
Υ’s and Γ’s domains). LetH be a finite hypothesis class
of constant-free formulas. Let F(Γ,Φ) denote the set of
all ground literals of a predicate p/a that are k-entailed
by {κ(Γ)}∪Φ but are false in Γ. With probability at least
1− δ, for all Φ ∈ H:

E [|F(Γ,Φ)|] ≤

1−QΥ,k(Φ) +

√√√√ ln
(
|H|
δ

)
2bn/kc

ukka.

Proof. First, as in the proof of Theorem 13, we find that,
for any Φ ∈ H, E [|F(Γ)|] ≤ (1 − Qℵ,k(Φ))ukka.
Next, it follows from Theorem 10 and from union
bound that P [∃Φ ∈ H : QΥ,k(Φ)−Qℵ,k(Φ) ≥ ε] ≤
|H| exp

(
−2bn/kcε2

)
. It follows that

P

[
∃Φ ∈ H : QΥ,k(Φ) ≥ Qℵ,k(α) +

√
ln (|H|/δ)

2bn/kc

]
≤ δ.

The theorem then follows straightforwardly from the
above and from Proposition 6.

The previous two theorems provided bounds on the ex-
pected number of errors on the sampled test examples.
The next theorem is different in that it provides a bound
on the actual number of errors.

Theorem 15. Let ℵ, Υ, Γ, and κ be as in Definition 3
(i.e. Υ and Γ are sampled from ℵ and n, u are sizes of
Υ’s and Γ’s domains). LetH be a finite hypothesis class
of constant-free formulas. Let F(Γ,Φ) denote the set of

all ground literals of a predicate p/a that are k-entailed
by {κ(Γ)}∪Φ but are false in Γ. With probability at least
1− δ, for all Φ ∈ H :

|F(Γ,Φ)| ≤

(
1−QΥ,k(Φ)+√

(bn/kc+ bu/kc) ln (2|H|/δ)
2bn/kcbu/kc

)
ukka

≤

(
1−QΥ,k(Φ) +

√
ln (2|H|/δ)

min(bn/kc, bu/kc)

)
ukka.

Proof. Let us denote Â = QΥ,k(Φ), B̂ = QΓ,k(Φ). Us-
ing Theorem 11 and the union bound over Φ ∈ H, we
get

P [∃Φ ∈ H : |Â−B̂| ≥ ε] ≤ 2|H| exp

(
−2ε2bn/kcbu/kc
bn/kc+ bu/kc

)
.

Solving the above for ε that achieves the 1− δ bound, we
obtain that, with probability at least 1− δ, we have for all

Φ ∈ H: |Â − B̂| ≤
√

(bn/kc+bu/kc) ln (2|H|/δ)
2bn/kcbu/kc . Hence,

with probability at least 1 − δ, for all Φ ∈ H it holds

1−QΓ,k(Φ) ≤ 1−QΥ,k(Φ)+
√

(bn/kc+bu/kc) ln (2|H|/δ)
2bn/kcbu/kc .

The validity of the theorem then follows from the above
and from Proposition 6 and the fact that ab

a+b ≥
min(a,b)

2
for any nonnegative a and b.

5.4 BOUNDS FOR VOTING ENTAILMENT

Next we prove a bound for voting entailment, which,
unsurprisingly, is tighter than the respective bound for
k-entailment.

Theorem 16. Let k be an integer and γ ∈ [0; 1]. Let
further ℵ, Υ, Γ and κ be as in Definition 3 (i.e. Υ and
Γ are sampled from ℵ and n, u are sizes of Υ’s and Γ’s
domains). LetH be a finite hypothesis class of constant-
free formulas. Let F(Γ,Φ) denote the set of all ground
literals of a predicate p/a that are entailed by voting from
{κ(Γ)} ∪ Φ with parameters k and γ but are false in Γ.
Then, with probability at least 1− δ, for all Φ ∈ H:

|F(Γ)| ≤(
1−QΥ,k(Φ) +

√
ln (2|H|/δ)

min {bu/kc, bn/kc}

)
uaka

γ
.

Proof. This follows from the same reasoning as in the
proof of Theorem 15, which gives us the bound on the
difference of QΥ,k(Φ) and QΓ,k(Φ), combined with The-
orem 8.



Remark 17. The fraction of “wrong” ground p/a liter-
als does not grow with increasing test-set size (u), since,
by rewriting the bound from Theorem 16, we get, with
probability at least 1− δ, for all Φ ∈ H:

|F(Γ)|
ua

≤

(
1−QΥ,k(Φ) +

√
ln (2|H|/δ)

min {bu/kc, bn/kc}

)
ka

γ
.

We note here that one can also easily obtain counterparts
of Theorems 13 and 14 for voting entailment.

6 SUMMARY OF RESULTS

In this section we discuss positive and negative results
that follow from the theorems presented in the preceding
sections. Here, bounds are considered vacuous if they are
not lower than the total number of ground literals. We
first focus on k-entailment in Sections 6.1–6.3, and then
discuss the results for voting entailment in Section 6.4.
Finally, we also make a connection to MAP-entailment in
Section 6.5.

6.1 SMALL TEST EXAMPLES

One case where we have non-vacuous bounds for the
expected number of incorrectly predicted literals with k-
entailment is when the domain of the test examples Γ is
small. Naturally a necessary condition is also that the
given (or learned) theory Φ is sufficiently accurate. The
only way to be confident that Φ is indeed sufficiently
accurate, given that this accuracy needs to be estimated,
is by estimating it on a sufficiently large training example.
This is essentially what Theorems 13 and 14 imply.

Interestingly, this finding agrees with some experimental
observations in the literature. For instance, it has been
observed in [14] that classical reasoning in a relational
setting close to ours worked well for small-size test-set
evidence but was not competitive with other methods for
larger evidence sizes. The analysis in the present paper
thus sheds light on experimental observations like these.

Note that the bounds from Theorems 13 and 14 are for
the expected value of the number of errors. Bounds on
the actual number of errors are provided in Theorem 15.
In this case, to obtain non-vacuous bounds, we also need
to require that the domain of the test example Γ be suf-
ficiently large. This is not unexpected, however, as it is
a known property of statistical bounds for transductive
settings (see e.g., [21]) that the size of the test set affects
confidence bounds, similarly to how the size of the Γ’s
domain affects the bound in Theorem 15.

6.2 PREDICATES OF ARITY K

Another case where we have non-vacuous bounds for k-
entailment is when the arity of the predicted literals is
equal to the parameter k. In this case both the bounds
for the expected error and for the actual error |F(Γ,Φ)|
are non-vacuous. This means that our results cover im-
portant special cases. One such special case is classical
attribute-value learning when k = 1 and we represent
attributes by unary predicates. Another case is link pre-
diction when k = 2 and higher-arity versions thereof.
In link prediction, we have rules such as, for instance,
∀X,Y : CoensFan(X)∧CoensFilm(Y )⇒ likes(X,Y ).

6.3 REALIZABLE SETTING

We can get stronger guarantees when the given (or
learned) theory Φ has zero training error. Keeping the
fraction of the domain-sizes |CΓ|k−a/|CΥ| small, Theo-
rem 13 implies non-vacuous bounds for predicates of arity
a for any size of the domain of Γ. Intuitively, this means
that we can use theories that are completely accurate on
training data for inference using k-entailment. However,
the required size of the domain of the training example
Υ, to guarantee that we will not produce too many er-
rors, grows exponentially with k (for a fixed arity a) and
polynomially with |CΓ|.

6.4 VOTING

When using voting entailment, we can always obtain non-
trivial bounds by making γ large; obviously this comes at
the price of making the inferences more cautious. Voting
entailment is a natural inference method in domains where
one proof is not enough, i.e. where the support from
several proofs is needed before we can be sufficiently
confident in the conclusion; an example of such a domain
is the well-known smokers domain, where knowing that
one friend smokes does not provide enough evidence to
conclude that somebody smokes; only if we have evidence
of several smoker friends is the conclusion warranted that
this person smokes.

6.5 RELATIONSHIP TO MAP INFERENCE

A popular approach to collective classification in rela-
tional domains is MAP-inference in Markov logic net-
works. Therefore a natural question is how this approach
performs in our setting. Perhaps surprisingly, it might
produce as many errors as classical logic reasoning in the
examples from Section 4.1, if the Markov logic network
contains the same rules, all with positive weights, as we
had in these examples. This is because MAP-inference
will predict the same literals as classical logical inference



when the rules from the Markov logic network are con-
sistent with the given evidence. Thus, we can see that
our guarantees for both k-entailment and voting entail-
ment are better than guarantees one could get for MAP-
inference. This is also in agreement with the well-known
observations that, for instance, in the smokers domain,
MAP inference often predicts everyone to be a smoker
or everyone to be a non-smoker if there is only a small
amount of evidence.

7 RELATED WORK

Our main inspiration comes from the works on PAC-
semantics by Valiant [23] and Juba [10]. Our work differs
mainly in the fact that we have one large relational struc-
ture ℵ, and a training example Υ and a test example Γ,
both sampled from ℵ, whereas it is assumed in these
existing approaches that learning examples are sampled
i.i.d. from some distribution. This has two important
consequences. First, they could use statistical techniques
developed for i.i.d. data whereas we had to first derive
concentration inequalities for sampling without replace-
ment in the relational setting. Second, since they only
needed to bound the error on the independently sampled
examples, they did not have to consider the number of
incorrectly inferred facts. In contrast, in the relational set-
ting that we considered here, the number of errors made
on one relational example is the quantity that needs to
be bounded. It follows that completely different tech-
niques are needed in our case. Another difference is that,
in their case, the training examples are also masked. In
principle, we could modify our results to accommodate
for masked examples by replacing “accurate” formulas
by sufficiently-often “witnessed” formulas (see [10] for a
definition).

Dhurandhar and Dobra [5] derived Hoeffding-type in-
equalities for classifiers trained with relational data, but
these inequalities, which are based on the restriction on
the independent interactions of data points, cannot be
applied to solve the problems considered in the present
paper. Certain other statistical properties of learning have
also been studied for SRL models. For instance, Xiang
and Neville [25] studied consistency of estimation. How-
ever, guaranteeing convergence to the correct distribution
does not mean that the model would not generate many
errors when used, e.g., for MAP-inference. In [26], they
further studied errors in label propagation in collective
classification. In their setting, however, the relational
graph is fixed and one only predicts labels of vertices
exploiting the relational structure for making the predic-
tions. Here we also note that it is not always possible or
desirable in practice to sample sets of domain elements
uniformly as we assumed to be the case in our analysis.

Other sampling designs for relational data were studied,
e.g. in [1]. A study of PAC guarantees for such other
sampling designs is left as a topic for future work.

There have also been works studying restricted forms of
inference in a purely logical context, e.g. [6]. It is an
interesting question for future work to find out which
existing restricted inference systems would lead to non-
vacuous error bounds in the relational setting.

8 CONCLUSIONS

We have studied the problem of predicting plausible miss-
ing facts in relational data, given a set of imperfect logical
rules, in a PAC reasoning setting. As for the considered
inference methods, one of our main objectives was for
the inference methods to stay close to classical logic. The
first inference method, k-entailment, is a restricted form
of classical logic inference and hence satisfies this ob-
jective. The second inference method, voting entailment,
is based on a form of voting that combines results from
inferences made by k-entailment on subsets of the rela-
tional data. Importantly, the voting is not weighted which
makes voting entailment easier to understand. We were
able to obtain non-trivial bounds for the number of literals
incorrectly predicted by a learned (or given) theory for
both k-entailment and voting entailment. Probably the
most useful results of our analysis lie in the identification
of cases where the bounds for learning and reasoning in
relational data are non-vacuous, which we discussed in
detail in Section 6.

There are many interesting directions in which one could
extend the results presented in this paper. For instance,
as practical means to improve the explainability of in-
ferences made by voting entailment, we could first find
representatives of isomorphism classes of “proofs” that
are aggregated by voting entailment, and only show these
to the user. Another direction is to extend the notion of
implicit learning from [10] into the relational setting. It
would also be interesting to exploit explicit sparsity con-
straints and to study other sampling designs, although
that might also turn out to be analytically less tractable
than the setting considered in the present paper. Finally,
although all bounds presented in this paper assume fi-
nite hypothesis classes, we note that it is also possible to
extend our results to infinite hypothesis classes [13].
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