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Abstract

Temporal-difference (TD) learning methods
are widely used in reinforcement learning to
estimate the expected return for each state,
without a model, because of their significant
advantages in computational and data effi-
ciency. For many applications involving risk
mitigation, it would also be useful to estimate
the variance of the return by TD methods. In
this paper, we describe a way of doing this that
is substantially simpler than those proposed
by Tamar, Di Castro, and Mannor in 2012, or
those proposed by White and White in 2016.
We show that two TD learners operating in
series can learn expectation and variance esti-
mates. The trick is to use the square of the TD
error of the expectation learner as the reward of
the variance learner, and the square of the ex-
pectation learner’s discount rate as the discount
rate of the variance learner. With these two
modifications, the variance learning problem
becomes a conventional TD learning problem
to which standard theoretical results can be ap-
plied. Our formal results are limited to the ta-
ble lookup case, for which our method is still
novel, but the extension to function approxi-
mation is immediate, and we provide some em-
pirical results for the linear function approx-
imation case. Our experimental results show
that our direct method behaves just as well as
a comparable indirect method, but is generally
more robust.

1 INTRODUCTION

Conventionally, in reinforcement learning (RL) the agent
estimates the expected value of the return—the dis-
counted sum of future rewards—as an intermediate step

to finding an optimal policy. The agent estimates the
value function by averaging the returns observed from
each state in a trajectory of experiences. To estimate
this value function online—while the trajectory is still
unfolding—we update the agent’s value estimates to-
wards the expected return. Algorithms that estimate
the expected value of the return in this way are called
temporal-difference (TD) learning methods. However, it
is reasonable to consider estimating other functions of
the return beyond the first moment. For example, Belle-
mare et al. (2017) estimated the distribution of returns
explicitly. In this paper, we focus on estimating the vari-
ance of the return using TD methods.

The variance of the return can be used to design algo-
rithms which account for risk in decision making. The
main approach is to formulate the agent’s objective as
maximizing reward, while minimizing the variance of the
return (Sato et al., 2001; Prashanth and Ghavamzadeh,
2013; Tamar et al., 2012).

An estimate of the variance of the return can also be use-
ful for adapting the parameters of a learning system auto-
matically, thus avoiding time-consuming, human-driven
meta parameter tuning. Sakaguchi and Takano (2004)
used the variance estimate explicitly in the decision mak-
ing policy to set the temperature variable in the Boltz-
mann action selection rule. Using variance in this way
can automatically adjust the amount of exploration, al-
lowing the learning system to adapt to new circumstances
online. Conventionally, this temperature would either be
set to a constant or decayed according to a fixed sched-
ule. In either circumstance, the performance can be quiet
poor in non-stationary domains, and a human expert is
required to select the constant value or fixed schedule.
Similarly, White and White (2016) estimated the vari-
ance of the return to automatically adapt the trace-decay
parameter, A\, used in learning updates of TD algorithms
(see Section 2 for an explanation of the role of \). Not
only does this approach avoid the need to tune \ by hand,
but it can result in faster learning.



Figure 1: Each TD node takes as input a re-
ward R, a discounting function ~, and fea-
tures ¢. For the direct method (top) the

squared TD error of the first-stage value
estimator is used as the meta-reward for
the second-stage V' estimator. For VTD
(bottom), a more complex computation is
used for the meta-reward and an extra stage
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The variance V' of the return can be estimated either di-
rectly or indirectly. Indirect estimation involves comput-
ing an estimate of variance from estimates of the first and
second moments. Sobel (1982) was the first to formulate
Bellman operators for the second moment and showed
how this could be used to compute variance indirectly.
This is the approach used by Tamar et al. (2016), Tamar
and Mannor (2013), and Prashanth and Ghavamzadeh
(2013). White and White (2016) introduced several ex-
tensions to this indirect method including estimation of
the A-return (Sutton and Barto, 1998), support for off-
policy learning (Sutton, Maei, et al., 2009; Maei, 2011),
and state-dependent discounting (Sutton, Modayil, et al.,
2011; White, 2017). Their method, which they refer to as
VTD, serves as the indirect estimation algorithm used in
this paper. We note that an alternative method, which we
do not investigate here, could be to estimate the distri-
bution of returns as done by Bellemare et al. (2017) and
compute the variance from this estimated distribution.

Variance may also be estimated directly. Tamar et al.
(2012) gave a direct algorithm but restricted it to esti-
mating cost-to-go returns in a strictly episodic manner,
i.e., estimates are only updated after an entire trajectory
has been captured. We introduce a new algorithm for di-
rectly estimating the variance of the return incrementally
using TD methods. Our algorithm uses two TD learners,
one for estimating value and the other for estimating the
variance of the return. These estimators operate in se-
ries with the squared TD error of the value learner serv-
ing as the reward of the variance learner and the squared
discount rate of the value learner serving as the discount
rate of the variance learner. Like VTD (White and White,
2016), our algorithm supports estimating the variance of
the A-return, state-dependent discounting, estimating the
variance of the on-policy return from off-policy samples,
and estimating the variance of the off-policy return from
on-policy samples (Section 3.2 motivates these exten-
sions). We call our new algorithm Direct Variance TD

of computation is required.

(DVTD). We recognize that the algorithm of Sato et al.
(2001) can be seen as the simplest instance of our algo-
rithm, using the on-policy setting with fixed discounting
and no traces'. Sakaguchi and Takano (2004) also used
this simplified algorithm, but treated the discount of the
variance estimator as a free parameter.

We introduce a Bellman operator for the variance of the
return, and further prove that, even for a value function
that does not satisfy the Bellman operator for the ex-
pected return, the error in this recursive formulation is
proportional to the error in the value function estimate.
Interestingly, the Bellman operator for the second mo-
ment requires an unbiased estimate of the return (White
and White, 2016). Since our Bellman operator for the
variance avoids this term, it has a simpler update. As
shown in Figure 1, Both DVTD and VTD can be seen
as a network of two TD estimators running sequentially.
Note, that we restrict our formal derivations and subse-
quent analysis to the table lookup setting.

Our primary goal is to understand the empirical proper-
ties of the direct and indirect approaches. In general, we
found that DVTD is just as good as VID and in many
cases better. We observe that DVTD behaves better in
the early stages of learning before the value function
has converged. Furthermore, we observe that the vari-
ance of the estimates of V' can be higher for VTD under
several circumstances: (1) when there is a mismatch in
step-sizes between the value estimator and the V' estima-
tor, (2) when traces are used with the value estimator,
(3) when estimating V' of the off-policy return, and (4)
when there is error in the value estimate. Finally, we
observe significantly better performance of DVTD in a
linear function approximation setting. Overall, we con-
clude that the direct approach to estimating V', DVTD, is
both simpler and better behaved than VTD.

'Dimitrakakis (2006) used a related TD method, which es-
timates the squared TD error



2 THE MDP SETTING

We model the agent’s interaction with the environment
as a finite Markov decision process (MDP) consisting of
a finite set of states S, a finite set of actions, A, and a
transition model p : S x § x A — [0, 1] defining the
probability p(s’|s,a) of transitioning from state s to s’
when taking action a. In the policy evaluation setting
considered in this paper, the agent follows a fixed policy
w(als) € [0,1] that provides the probability of taking
action a in state s. At each timestep the agent receives
a random reward Ry, 1, dependent only on S, Ay, S¢y1.
The return is the discounted sum of future rewards

Gt = Riy1 +vip1 Bego + vep1vep2 Rz + o

(D
=Rit1 + 741Gt

where v € [0, 1] specifies the degree to which future re-
wards are discounted. Note that we define discounting
as state-dependent such that ;11 = y(S¢+1). This al-
lows us to combine the specification of continuing and
episodic tasks. Further implications of this are discussed
in Section 3.2.

The value of a state, j(s), is defined as the expected re-
turn from state s under a particular policy 7:

](S) :]Eﬂ—[Gt|St = S] (2)

We use j to indicate the true value function and .J the es-
timate. The TD-error is the difference between the one-
step approximation and the current estimate:

0t = Rer + Y414 (Se1) — Je(Se). 3)

This can then be used to update the value estimator using
a TD method, such as TD(0) as follows:

J(8)tr1 = J(8)t + ady 4

3 ESTIMATING THE VARIANCE OF
THE RETURN

For clarity of presentation, we first discuss the sim-
plest version of both the direct and indirect methods and
present the full algorithms in Section 3.2.

The direct TD method uses both a value estimator and a
variance estimator. The value estimator provides an es-
timate of the expected return. The variance estimator,
on the other hand, uses the value estimator to provide an
estimate of the variance of the return. Since we use TD
methods for both the value and variance estimators we
need to adopt additional notation; variables with a bar
are used by either the second moment or variance esti-
mator. Otherwise, they are used by the value estimator.

The key to using both the indirect and direct methods as
TD methods is to provide a discounting function, 7, and
a meta-reward, R. In the following, we present a simpli-
fied TD(0) version of both algorithms.

Simplified Direct Variance Algorithm

Ve+1 %2+1
Riy1 < 02
8 < Rey1 4+ Fe41Vi(s') — Vi(s)
Vis1(s) < Vi(s) + ad (5)

Simplified Second Moment Algorithm

Ve+1 %2+1
Ripr 4 Ry + 271 Regr Jesa (1)
0p <= Reg1 +Yer1My(s') — My(s)  (6)
My (s) < My(s) + ady
Vis1(s) < Mypa(s) — Jiga(s)?

3.1 DERIVATION OF THE DIRECT METHOD

We now derive the direct method for estimating the vari-
ance of the return. Again, for clarity, we only consider
the simple case described in Section 3 (See Appendix B
for a derivation of the more general extended algorithm).

The derivation of the direct method follows from char-
acterizing the Bellman operator for the variance of the
return: Theorem 1 gives a Bellman equation for the vari-
ance v. It has the form of a TD target with meta-reward
R, = 6} and discounting function 4,41 = ~7,;. There-
fore, we can estimate V' using TD methods. The Bellman
operators for the variance are general, in that they al-
low for either the episodic or continuing setting, by using
variable . By directly estimating variance, we avoid a
second term in the cumulant that is present in approaches
that estimate the second moment (Tamar and Mannor,
2013; Tamar et al., 2016; White and White, 2016).

To have a well-defined solution to the fixed point, we
need the discount to be less than one for some transition
(White, 2017; Yu, 2015). This corresponds to assuming
that the policy is proper, for the cost-to-go setting (Tamar
et al., 2016).

Assumption 1. The policy reaches a state s where
~(s) < 1 in a finite number of steps.

Theorem 1. Forany s € S,

J(8) = E[Rip1 + 415 (Se41) | St = 5]
v(s) = E [67 + 71 10(Se41) | St = 3] (7)

Proof. First we expand G; — j(S;), from which we re-



cover a series with the form of a return.

Gy — j(S¢) = Rip1 + 741Gy — J(S)
= Rip14+7e415(Se41) =5 (Se) +7e41(Gep1—5(St41))
=0t + Y+1(Gry1 — §(Si41)) (8)

The variance of Gy is therefore

u(s) = E [(Gt “E[G,| S = s)|S: = s}
=E[(G=i(s)* | Si = 5] ©)
=E [(0t + 1+1(Gea1 — 5(Se41)))* | St = 5]

+E 2 1(Gryr — 5(Se41))? | St = 5]
+ 2FE [’yt+]5t(Gt+1 _](StJrl)) | St — S}

Equation (7) follows from Lemma 1 in Appendix B
which shows E[v¢110:(Gi41—3(Se41)) | St =s] =
0. Similar to Lemma 1, using the law of to-
tal expectation, E [y2, | (Gy41 — j(Si41))% | Sy = s] =
E [7Z10(Se11) | 8¢ = s]. -

We provide an initial characterization of error in the vari-
ance estimate obtained under this recursion, when an
approximate value function rather than the true value
function is used. As we show in the below theorem,
the resulting error in the variance estimator is propor-
tional to the squared error in the value estimate, and dis-
counted accumulated errors into the future. If the ap-
proximation error is small, we expect this accumulated
error to be small, particularly as the accumulation errors
are signed and so can cancel, and because they are dis-
counted. However, more needs to be done to understand
the impact of this accumulated error.

Theorem 2. For approximate value function J with vari-
ance estimate V(s) = E [67 + 721V (Si+1) |9 = ],
if there exists € S — [0,00) bounding squared
value estimation error (J(s) — j(s))? < e(s) and
accumulation error |E[vi410:(j(St+1) — J(Set1)) +

Ve Ve+20t41(F(St2) =T (Se42))+... |St = s]| < e(s),
then

[o(s) ~ B [57 + 31V (Se1) | S0 = 8] | < 3e(s)

Proof. We can re-express the true variance in terms of
the approximation .J, as

v(s) =E [(Ge —j(s) + I (s) = I (s))* | S¢ = 3]
=E[(G: = J()* | Sp = s] + (J(5) = j(s))”
+OE[Gy — J(s) | St = 5] (J(s) — §(s) (10)
This last term simplifies to
E[Gi—J(s) ]| Si=s] =

— j(s) = J(s) (1

E[Gi—j(s) | Se=s]+j(s)=J(s)

giving (J(s) — j(5))* +2(j(s) = J(5))(J(s) = j(5)) =
—(J(s) —j(s))?. We can use the same recursive form as
(9), but with J, giving

E [(Gt—J(S))Q | St:S] =E [5252 +’Yt2+1V(St+1) ‘ St:S:I
+2E 7416 (Gegr — J(Se41)) | St = 5]

+2E [ 171120041 (Grya— I (Seq2))|Se =5] + ... (12)

where the terms involving 0; (G411
late. Notice that

— J(S¢+1)) accumu-

|E [:410:(Gr1 — J(St41)) | S = 5] |
= |E[Ye4106(Gre1 — §(Se11)) | S = ]

+ E 410605 (Sex1) = J(Se41)) | S = ] |
= |E [y410:(j (Se+1) = J(St41)) | Se = ] |

where the second equality follows from Lemma 1. B
the same argument as in Lemma 1, this will also hold
true for all the other terms in (12). By assumption, the
sum of all these covariance terms between j and J are
bounded by ¢(s). Putting this together, we get

lv(s) =V (s)| = ’v(s)—E [55+7§+1V(St+1) | Sp=s] ’
< 2¢(s) + (J(s) = 4(5))* < 3e(s) 0

3.2 THE EXTENDED DIRECT METHOD

Here, we extend the direct method to support estimat-
ing the A-return, state-dependent +, eligibility traces and
off-policy estimation, just as White and White, 2016 did
with VTD (derivation provided in Appendix B). We first
explain each of these extensions before providing our full
direct algorithm and VTD.

The A-return is defined as

G} = Rip1+ 741 (1= A1) e (Se1) + Y41 A1 Gy

and provides a bias-variance trade-off by incorporating
J, which is a potentially lower-variance but biased es-
timate of the return. This trade-off is determined by a
state-dependent trace-decay parameter, \; = A(S;) €
[0,1]. When J;(Si4+1) is equal to the expected re-
turn from Sy;1q = s, then E[(1 — Ay1)Je(Sey1) +
Yea1Ae41GRy1[Se41 = 8] = Ex[G21]Si41 = 5], and
so the A-return is unbiased. Beneficially the expected
value J;(S;41) is lower-variance than the sample G7, ;.
If J; is inaccurate, however, some bias is introduced.
Therefore, when A = 0, the A-return is lower-variance
but can be biased. When A = 1, the A-return equals the
Monte Carlo return (Equation (1)); in this case, the up-
date target exhibits more variance, but no bias. In the
tabular setting evaluated in this paper, A does not affect



Table 1: Algorithm Notation

importance sampling ratio for estimating the variance of the target return from off-policy samples.

J estimated value function of the target policy 7.

M estimate of the second moment.

\% estimate of the variance.

R, R meta-reward used by the J and (M, V') estimators.

A bias-variance parameter of the target A\-return.

K, kK trace-decay parameter of the J and (M, V') estimators.

v,%  discounting function used by J and (M, V') estimators.

8:,6; TD error of the J and (M, V) estimators at time ¢.

p

n importance sampling ratio used to estimate the variance of the off-policy return.

the fixed point solution of the value estimate, only the
rate at which learning occurs. It does, however, affect the
observed variance of the return, which we estimate. The
A-return is implemented using traces as in the following
TD()) algorithm, shown with accumulating traces:

S:St

er—1(s)+1
€t(5)<— YeAer—1(s)
Vs €S,8 £ Sy

’Yt/\tet—l(S)

Jt+1(st) — Jt(St) —+ aétet(St)
(13)

For notational purposes, we define the trace parameter
for the value and secondary estimators as x and & respec-
tively. Both of these parameters are independent of the
A-return for which we estimate the variance. That is, we
are entirely free to estimate the variance of the A-return
for any value of A independently of the use of any traces
in either the value or secondary estimator.

State-Dependent v. While most RL methods focus
on fixed discounting values, it is straightforward to use
state-based discounting (Sutton, Modayil, et al., 2011),
where 7, = ~(S¢) (White (2017) go further by defin-
ing transition based discounting). This generalization en-
ables a wider variety of returns to be considered. First,
it allows a convenient means of describing both episodic
and continuing tasks and provides an algorithmic mech-
anism for terminating an episode without defining a re-
current terminal state explicitly. Further, it allows for
event-based terminations (Sutton, Modayil, et al., 2011).
It also enables soft terminations which may prove use-
ful when training an agent with sub-goals (White, 2017).
The use of state-dependent discounting functions is rela-
tively new and remains to be extensively explored.

Off-policy learning. Value estimates are made with re-
spect to a target policy, 7. If the behavior policy, up = 7
then we say that samples are collected on-policy, other-
wise, the samples are collected off-policy. An off-policy
learning approach is to weight each update by the im-
portance sampling ratio: p; = ;g:ﬁ:g
different scenarios to be considered when estimating the

There are two

variance of the return in the off-policy setting. The first
is estimating the variance of the on-policy return of the
target policy while following a different behavior policy.
The second has the goal of estimating the variance of the
off-policy return itself. The off-policy A-return is:

G?:p =pe(Ret1 + Yer1 (1= A1) (Se41) +
Y A1 G 19

where the multiplication by the potentially large impor-
tance sampling ratios can significantly increase variance.

It is important to note you would only ever estimate one
or the other of these settings with a given estimator. Let
n be the weighting for the value estimator, and p the
weighting for the variance estimator. If estimating the
variance of the target return from off-policy samples, the
first scenario, 1, = 1 V¢ and p; = p;. If estimating the
variance of the off-policy return p; = 1 V¢t and n, = p,.

3.2.1 The Extended Algorithms

To estimate V', our method uses both value and variance
estimators. The value estimator provides an estimate of
the expected return. The variance estimator, on the other
hand, uses the value estimator to provide an estimate of
the variance of the return. Our method, DVTD, and the
indirect method, VTD, can be seen as simply defining
a meta-reward and a discounting function and can thus
be learned with any known TD method, such as TD with
accumulating traces as shown in Equation 13. Table 1
summarizes our notation.

Direct Variance Algorithm - DVTD
Rty (m6e + (e — 1) Jeqa(s))?
Ver1 < Verr Mgt
Op <= Riy1 + Y41 Va(s) — Vi(s)

_ pt(WRi€—1(s) +1) s=5;
e(s) {Pt(%ﬁtet 1(8)) Vs €S,s # 5,
Vi1 (s) < Vi(s) + adies(s)
(15)



We also present the full VTD algorithm below (again,
shown with accumulating traces). Note that this algo-
rithm does not impose that the variance be non-negative.

Second Moment Algorithm - VID

Gt Rey1 +ve41(1 = Xegr) Jega (5)
Ripr < 7 GF + 2041 041 GeJisa (8)

Vi1 77:52%2+1)\?+1
0t = Rit1 + Yep1 Mi(s') — My(s)

(
(s ﬁt(:}/t/%tét—l(s) + 1) S = St
(s) = {ﬁt('_yt/%tét_l(s)) Vs € S,s# 5,
Mt+1(8) < Mt(S) —+ &gtét(s)

Vig1(s) < Mipa(s) = Jega(s)?
(16)

4 EXPERIMENTS

The primary purpose of these experiments is to demon-
strate that both algorithms can approximate the true ex-
pected V' under various conditions in the tabular setting.
We consider two domains. The first is a deterministic
chain, which is useful for basic evaluation and gives re-
sults which are easy to interpret (Figure 2). The second is
a randomly generated MDP, with different discount and
trace-decay parameters in each state (Figure 3). For all
experiments Algorithm 13 is used as the value estimator.
Unless otherwise stated, traces are not used (k = k = 0)
and estimates were initialized to zero. For each experi-
mental setting the average of 30 separate experiments is
presented with standard deviation shown as shaded re-
gions. True values were determined by Monte Carlo es-
timation and are shown as dashed lines in the figures.

We look at the effects of relative step-size between
the value estimator and the variance estimators in Sec-
tion 4.1. Then, in Section 4.2 we use the random MDP to
show that both algorithms can estimate the variance with
state-dependent v and A. In Section 4.3 we evaluate the
two algorithms’ responses to errors in the value estimate.
Section 4.4 looks at the effect of using traces in the esti-
mation method. We then examine the off-policy setting
in Section 4.5. Finally, Section 4.6 provides experimen-
tal results in a linear function approximation setting.

4.1 THE EFFECT OF STEP-SIZE

We use the chain MDP to investigate the impact of step-
size choice. In Figure 4(a) all step-sizes are the same
(o« = & = 0.001) and here both algorithms behave simi-
larly. For Figure 4(b) the step-size of the value estimate,
(a = 0.01), is greater than that of the secondary estima-
tors, (& = 0.001). Now DVTD smoothly approaches the

N(1,1)

start —( So S1

N(1,1) - N(1,1) o N(1,1) D

Figure 2: Chain MDP with 4 non-terminal states and 1
terminal state. From non-terminal states there is a sin-
gle action with a deterministic transition to the right. On
each transition, rewards are drawn from a normal distri-
bution with mean and variance of 1.0. Evaluation was
performed for A = 0.9, which was chosen because it is
not at either extreme and because 0.9 is a commonly used
value for many RL experimental domains.

Figure 3: Random MDP, with a stochastic policy and
state-based v and A. The state-dependent values of ~y
and A are chosen to provide a range of values, with at
least one state acting as a terminal state where v = 0.
On-policy action probabilities are indicated by p and off-
policy ones by .

correct value, while VTD first dips well below zero. This
is expected as the estimates are initialized to zero and the
variance is calculated as V(s) = M (s) — J(s)?. If the
second moment lags behind the value estimate, then the
variance will be negative. In Figure 4(c) the step-size for
the secondary estimators is larger than for the value es-
timator (0.001 = o < @ = 0.01). While both methods
overshoot the target in this example, VTD has greater
overshoot. For both cases of unequal step-size, we see
higher variance in the estimates for VID.

Figure 5 explores this further. Here the value estimator
is initialized to the true values and updates are turned
off (a« = 0). The secondary estimators are initialized to
zero and learn with & = 0.001, chosen simply to match
the step-sizes used in the previous experiments. Despite
being given the true values the VTD algorithm produces
higher variance in its estimates, suggesting that VTD is
dependent on the value estimator tracking.

This sensitivity to step-size is shown in Figure 6. All es-
timates are initialized to their true values. For each ratio,
we computed the average variance of the 30 runs of 2000
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Figure 4: Chain MDP (A = 0.9). Varying the ratio
of step-size between value and variance estimators. a)
Step-sizes equal. & = & = 0.001. b) Variance step-size
smaller. a = 0.01,& = 0.001. c¢) Variance step-size
larger. o = 0.001, & = 0.01. We see greater variance in
the estimates and greater over/undershoot for VITD when
step-sizes are not equal.

episodes. We can see that DVTD is largely insensitive
to step-size ratio, but that VTD has higher mean squared
error (MSE) except when the step-sizes are equal. This
result holds for the other experimental settings of this pa-
per, including the random MDP, but further results are
omitted for brevity.

Would there ever be a situation where different step-sizes
between value and secondary estimators is justified? The
automatic tuning of parameters, such as step-size, is an
important area of research, seeking to make learning
algorithms more efficient, robust and easier to deploy.
Methods which automatically set the step-sizes may pro-
duce different values specific to the performance of each
estimator. One such algorithm is ADADELTA, which
adapts the step-size based on the TD error of the estima-
tor (Zeiler, 2012). Figure 7 shows that using a separate
ADADELTA (p = 0.99, ¢ = 1e—6) step-size calculation
for each estimator results in higher variance for VTD as
expected, given that the value estimator and VTD pro-
duce different TD errors.
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Figure 5: Chain MDP (A = 0.9). Value estimate held
fixed at the true values (o« = 0, @ = 0.001). Notice the
increased estimate variance for VID, especially State 0.
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Figure 6: Chain MDP (A = 0.9). The MSE summed
over all states as a function of ratios between the value
step-size o (shown along the x-axis) and the variance
step-size & (shown in the 5 series). The direct algorithm
is indicated by the solid lines, and VTD is indicated by
the dashed. The MSE of the VTD algorithm is higher
than the direct algorithm, except when the step-size is
the same for all estimators, & = & or for very small &.

4.2 STATE-DEPENDENT ~ AND ).

One of the contributions of VTD was the generalization
to support state-based v and \. Here we evaluate the ran-
dom MDP from Figure 3 (in the on-policy setting, using
1), which was designed for this scenario and which has
a stochastic policy, is continuing, and has multiple pos-
sible actions from each state. Both algorithms achieved
similar results (see Appendix A).

4.3 VARIABLE ERROR IN THE VALUE
ESTIMATES

The derivation of our DVTD assumes access to the true
value function. The experiments of the previous sections
demonstrate that both methods are robust under this as-
sumption, in the sense that the value function was es-
timated from data and used to estimate V. It remains
unclear, however, how well these methods perform when
the value estimates converge to biased solutions.

To examine this, we again use the random MDP shown
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Figure 7: Chain MDP (A = 0.9). Results using
ADADELTA algorithm to automatically and indepen-
dently set the step-sizes « and &. The step-sizes pro-
duced are given in Appendix D.
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Figure 8: Random MDP. For each run, the value es-
timate of each state is offset by a random noise drawn
from a uniform distribution whose size is a function of
an error ratio and the maximum true value in the MDP.
Standard deviation of the estimates is shown by shading.

by Figure 3. True values for the value functions and
variance estimates are calculated from Monte Carlo
simulation of 10,000,000 timesteps. For each run of the
experiment each state of the value estimator was initial-
ized to the true value plus an error (J(s)o = j(s) +€(s))
drawn from a uniform distribution: €(s) € [—(, ¢], where
¢ = maxs(|v(s)|)  err ratio (the maximum value in this
domain is 1.55082409). The value estimate was held
constant throughout the run (o = 0.0). The experiment
consisted of 120 runs of 80,000 timesteps. To look at the
steady-state response of the algorithms we use only the
last 10,000 timesteps in our calculations. Figure 8 plots
the average variance estimate for each state with the
average standard deviation of the estimates as the shaded
regions. Sweeps over step-size were conducted, & €
[0.05,0.04,0.03,0.02,0.01,0.007,0.005,0.003, 0.001],
and the MSE evaluated for each state. Each data point
is for the step-size with the lowest MSE for that error
ratio and state. While the average estimate is closer to
the true values for VTD, the variance of the estimates is
much larger. Further, the average estimates for VTD are
either unchanged or move negative, while those of the
direct algorithm tend toward positive bias.

For Figure 9 the MSE is summed over all states. Again,
for each error ratio the MSE was compared over the same
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Figure 9: Random MDP. The MSE computed for the

last 10,000 timesteps of 120 runs summed over all states

using the step-size with the lowest overall MSE at each

error ratio. For each point the step-size used (o = @) is

displayed.
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Figure 10: Random MDP. Using traces (TD()), o =
@ = 0.01). Traces only used in value estimator (kx =
1.0,k = 0.0). Notice the slight increase in the variance
of the VTD estimates for State 0 and 3.

step-sizes as before and, for each point, the smallest MSE
is plotted. These results suggest the direct algorithm is
less affected by error in J.

4.4 USING TRACES

We briefly look at the behavior of the random MDP
when traces are used. We found no difference when
traces are only used in the secondary estimator and not
in the value estimator (v = 0.0,k = 1.0. See Ap-
pendix A, Figure 14). Figure 10 considers the opposite
scenario, where traces are only used in the value estima-
tor (¢« = 1.0,k = 0.0). Here we do see a difference.
Particularly the VTD method shows more variance in its
estimates for State 0 and 3.

4.5 OFF-POLICY LEARNING

We evaluate two different off-policy scenarios on the ran-
dom MDP. First, we estimate V' under the target policy
from off-policy samples. That is, we estimate the V' that
would be observed if we followed the target policy, i.e.,
n = 1, p = p. Both methods achieved similar results in
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Figure 11: Random MDP estimating the variance of the
off-policy return (¢« = & = 0.01,p = 1,n = p).

this setting (Figure 15). In the second off-policy setting,
we estimate the variance of the off-policy return (Equa-
tion 14). Here p = 1 and 7 = p. Figure 11 shows that
both algorithms successfully estimate the return in this
setting. However, despite having the same step-size as
the value estimator, VTD produces higher variance in its
estimates, as is most clearly seen in State 3.

4.6 FUNCTION APPROXIMATION

While this paper has focused on the tabular case, where
each state is represented uniquely, here we include a first
empirical result in the function approximation setting.
We evaluate both methods on the random walk shown in
Figure 12(a). This domain was previously used by Tamar
et al. (2016) for indirectly estimating the variance of the
return with LSTD()\). We use transition based v (White,
2017) to remove the terminal state and translate the task
into a continuing task. Further, we alter the state repre-
sentation to make it more amenable to TD()). For a state
s; we used ¢7(i) = [1, (i + 1)/30]7 as features for the
value learner and ¢/ (1) = ¢y (¢) = [1, (i + 1) /30, (¢ +
1)2/30%]7 as features for the secondary learner. We set
k = Kk = 0.95 and performed sweeps over step-sizes
of {2¢,i € {-15,—12,...,—1,0}}. We first found
the best step-size for the value learner and then found
the best step-size for VTD. Using the same step-size for
VTD and DVTD, we obtain the results shown in Fig-
ure 12(b). Here we see DVTD drastically outperforms
VTD. Further details are available in Appendix C.

S DISCUSSION

Both DVTD and VTD effectively estimate the variance
across a range of settings, but DVTD is simpler and more
robust. This simplicity alone makes DVTD preferable.
The higher variance in estimates produced by VTD is
likely due to the larger target which VTD uses in its
learning updates: E[X?] > E[(X — E[X])?]; we show
more explicitly how this affects the updates of VID
in Appendix E. We expect the differences between the
two approaches to be most pronounced for domains with
larger returns than those demonstrated here. Consider
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Figure 12: Random Walk. a) Random walk with re-
wards of —1 for every transition to a non-terminal state.
Note that there is no discounting in this domain. b) Re-
sults under linear function approximation averaged over
100 runs. Shading indicates standard error (negligible).

the task of a helicopter hovering formalized as a rein-
forcement learning task (Kim et al., 2004). In the most
well-known variants of this problem the agent receives a
massive negative reward for crashing the helicopter (e.g.,
minus one million). In such problems the magnitude and
variance of the return is large. Here, estimating the sec-
ond moment may not be feasible from a statistical point
of view, whereas the target of our direct variance estimate
should be better behaved. By focusing on simple MDPs
we were able to carefully evaluate the properties of these
algorithms while keeping them isolated from additional
effects like state-aliasing due to function approximation.
Further studies in more complex settings, such as func-
tion approximation, are left to future work.
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